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Abstract

Structure-from-Motion for unordered image collections

has significantly advanced in scale over the last decade.

This impressive progress can be in part attributed to the

introduction of efficient retrieval methods for those systems.

While this boosts scalability, it also limits the amount of de-

tail that the large-scale reconstruction systems are able to

produce. In this paper, we propose a joint reconstruction

and retrieval system that maintains the scalability of large-

scale Structure-from-Motion systems while also recovering

the often lost ability of reconstructing fine details of the

scene. We demonstrate our proposed method on a large-

scale dataset of 7.4 million images downloaded from the

Internet.

1. Introduction

In the last decade, computer vision has made great

progress in the areas of image retrieval and 3D modeling.

Current image search engines operate on web-scale image

collections and are able to localize specific objects and land-

marks, and aid user-friendly content browsing. In the field

of reconstructing scenes from images and videos, arguably

the biggest steps have been made in 3D modeling from un-

ordered Internet photo collections. A natural step forward

is to address the problem of obtaining a detailed 3D model

of an object depicted in a single, user-provided photograph.

Structure-from-Motion (SfM) systems have been ex-

tended from modeling scenes from a few thousand im-

ages [29, 30] to modeling city-scale photo collections of

millions of images [7, 9]. Early photo collection recon-

struction systems leverage exhaustive matching of image

pairs to determine possible overlapping image pairs. This

is generally quadratic in the number of images and fea-

tures. Hence, this approach does not scale and is not ap-

plicable to datasets containing thousands or even millions

of images, which are commonly available. However, ex-

haustive matching guarantees the discovery of all possible

camera overlaps. To achieve scalability, the current state-of-

Figure 1. Arc de Triomphe, Paris. 3D reconstruction from a single

input image (red inset) using 2,640 views around the landmark

from a 7.4M image database. Only imagery is used (no GPS or

text). The scene contains 395,431 points and the surface resolution

reaches the order of 1mm in the most photographed areas.

the-art large-scale reconstruction systems abandon the ex-

haustive pairwise overlap determination. Instead, modern

systems leverage image retrieval algorithms [21, 3, 4], or

image-clustering techniques to identify overlapping images

during reconstruction, as demonstrated by the systems of

Agarwal et al. [1] and Frahm et al. [7]. While the introduc-

tion of image retrieval was essential to boosting the scal-

ability of reconstruction methods on large datasets, it also

severely impacted the ability to reconstruct fine details of

the scene. This problem stems from the fact that the image

pairs showing the details are often absent from the retrieval

results. This is unsatisfactory, as for applications such as

photo field of view extension using unordered photo collec-

tions, recently proposed by Zhang et al. [36], it is desirable

to have the details present in the reconstruction.

The lack of detail is a result of the employed retrieval

approaches [21, 3, 4], which are tuned to obtain images

similar in scale and appearance. In this paper, we introduce

a tightly-coupled retrieval and SfM system for large-scale

reconstruction from unordered photo collections of several

million images, which not only recovers the coarse geome-

try of the scene but specifically focuses on modeling scene

details. Our approach achieves this by combining SfM with

retrieval across differently scaled scene images.

In order to achieve these detailed reconstructions, our



Figure 2. Reconstruction of the Astronomical Clock in Prague, Czech Republic. Left: 3D model obtained from our retrieval and reconstruc-

tion system. Images illustrating the range of registered views from overview images to images of a specific architectural detail are shown

alongside the model. Right: visualization of the surface resolution from high resolution in red (approximately 1mm surface resolution as

obtained from a known object size in 3D) to low resolution in blue.

system has to overcome the following challenges:

• Achieve a more balanced retrieval of overview and de-

tailed images to provide the images needed for fine-

detail reconstruction.

• Overcome the registration uncertainties that result

from the large resolution differences between overview

images and detailed images.

We resolve these challenges by proposing a tightly-

coupled SfM and retrieval system. Establishing an inter-

active link between the reconstruction system and the re-

trieval system enables us to control the retrieval characteris-

tics based on the current state-of-the-art 3D reconstruction.

This allows us to specifically retrieve images that are re-

quired to overcome the challenges of SfM. Our resulting

reconstructions from unordered Internet photo collections

show high geometric detail while at the same time convey-

ing the structure of the entire scene. An example recon-

struction is shown in Figure 2.

2. Related work

Our system simultaneously leverages retrieval and SfM

algorithms to achieve the goal of detailed scene reconstruc-

tion. In this section, we discuss the relevant state-of-the-art

in both areas, before introducing our method in more detail

in the following sections.

Exploring a large unordered image collection by user de-

fined image query – the problem of large-scale image re-

trieval – made significant progress during the last decade.

Most of the approaches pose the problem as a nearest neigh-

bor search in a descriptor space, such as bag-of-words

[28, 21, 25, 11], VLAD [12, 2], Fischer vectors [24], or

exhaustive matching [34, 27]. Recently, Mikulik et al. [18]

pointed out that the nearest neighbor image search is not op-

timal for the user, who is typically looking for new image

information rather than for near-duplicate images. Novel

formulations and efficient methods for extreme change of

scale were proposed in [18] and for detailed image mining

in [19]. We extend these ideas to identify initial sets of im-

ages suitable for 3D reconstruction and then leverage the

obtained reconstructions to suggest further image retrieval

goals. Instead of targeting the extreme scale changes that

are attractive for a human user, the whole spectrum of scale

transitions is sampled, which is more suitable for 3D recon-

struction. Further, we propose an efficient retrieval method

for content-based crawling around a landmark, mining for

views connecting multiple sides of the landmark.

Scene reconstruction from Internet photo collections

has been introduced in the seminal paper of Snavely et

al. [29, 30]. This was the first approach to show that SfM for

such diverse and unordered collections of thousands of im-

ages is possible. The major limitation of this reconstruction

system was its limited scalability due to exhaustive image

pair overlap evaluation.

To overcome this lack of scalability, Li et al. [13] in-

troduced an appearance-based clustering for grouping the

images. This allowed modeling from tens of thousands of

images on a single PC. Agarwal et al. [1] introduced a cloud

computing algorithm to perform modeling from 150,000

images on 62 computers in less than 24 hours. The ap-

proach leveraged a vocabulary tree based search with query

extension [4] to determine overlapping images, followed by

approximate nearest neighbor feature matching. While pro-

viding scalability, such an approach severely impairs the re-

trieval of detailed images for registration and reconstruc-

tion. Lou et al. [15] proposed a modified vocabulary tree

based retrieval enforcing diversity in the retrieval results.

The proposed reweighting enhances scene coverage for the

reconstruction with SfM, but it does not solve the problem

of not retrieving detailed images.

Frahm et al. [7, 1] extended the approach of Li et al. [13]

to scale to the reconstruction from millions of images. How-

ever, this approach also suffers from the use of recognition
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Figure 3. The proposed pipeline that tightly couples image retrieval and SfM.

methods – gist-feature [22] based appearance grouping –

that fail to obtain detailed images and thus severely limits

the ability to produce fine-detail reconstructions.

Crandall et al. [5] proposed a global method that per-

forms SfM based on a MRF optimization. In order to

properly initialize this hybrid optimization, their approach

requires approximate geo-location priors for the images.

While this approach can retrieve geo-located detail images,

a large fraction of Internet photo collection photos is not

geo-located. Hence, this approach would be very restrictive

in our scenario, and it would only register a fraction of the

images compared to our approach.

3. Overview

Our proposed pipeline (Figure 3) handles image collec-

tions of the size of millions of unordered images. A sin-

gle, user-provided query image serves as the input to our

pipeline. In the first stage, the query image is used as the

initial seed for image retrieval (Section 4). The retrieval

stage first finds nearest neighbor images, followed by a mul-

tiple scale-band crawl to obtain additional views at differ-

ent zoom levels (Section 4.1). Furthermore, we expand

the query by retrieving images to the left and right of the

query image in order to obtain additional context around

the query image (Section 4.2). As a preparation for the

subsequent reconstruction stage, we propose an efficient

matching method (Section 5), leveraging the by-products

of the retrieval stage to intelligently avoid image pairs that

do not overlap. The reconstruction stage employs several

methods to overcome the challenges of detailed image reg-

istration (Section 6). Finally, we perform additional den-

sification (Section 7) by identifying the low-detail parts of

the model and recursively retrieving additional images for

another round of reconstruction. In comprehensive exper-

iments (Section 9) on a dataset of millions of images, we

demonstrate that the method produces large-scale, high-

quality models that also capture the fine details of the scene.

4. Image retrieval

The objective of retrieval for 3D reconstruction is to pro-

vide a matching graph with a variety of viewpoints (for the

stability of the reconstruction), sequences of images provid-

ing a smooth transition between extreme viewpoints or scale

changes (to be able to connect different parts and to help

disambiguate duplicated structures), and mining for images

of further structures in space and scale (to extend the recon-

struction and improve the level of detail).

The retrieval engine builds upon bag-of-words represen-

tation with fast spatial verification [25]. Hessian affine fea-

tures [17] are detected (1900 features per image on average)

and described by the rotation-variant [23] SIFT descrip-

tor [16]. The descriptors are vector-quantized into 16 mil-

lion visual words using k-means with approximate nearest

neighbor search [20]. Fast (several hundred image pairs per

second) spatial verification [25] then estimates an approx-

imate affine transformation between query and result im-

ages. To enforce transformation consistency (scale change,

translation), the scale and position information for each fea-

ture is included in the inverted file [11, 31].

In the proposed method, the initial matching graph is ob-

tained from the image collection using the query image as

an entry point. Depending on the intended result (either

detailed reconstruction of the scene visible in the query im-

age, or detailed reconstruction of the whole neighborhood

of the query image) different mining techniques are used

to generate the initial matching graph. Once a (partial) re-

construction is available, the same techniques are applied to

incrementally extend the reconstruction; see Section 7.

4.1. Multiple scalebands

To retrieve relevant images of various levels of detail

(and/or different amounts of context), we build on the ap-

proach of hierarchical query expansion [19]. Unlike in [19],

we are not interested in the extreme scale changes, but

rather in an image sequence capturing a smooth transition

in scale to support stable SfM estimation.

The hierarchical query expansion proceeds as follows.

An initial query encouraging change of scale is issued with

the query image. To reflect the scale change in image rank-

ing, we use document at a time (DAAT) scoring [31] ex-

ploiting geometry stored in an inverted file. The results of

this initial query are clustered in scale-space. Each spa-

tial image cluster is then used to issue a new expanded

query [4], which retrieves further details at the given loca-

tion. Figure 4 shows four scale bands – context (zoom out),



zoom out query zoom in details

zoom in detailsleft right

Figure 4. Terracotta Army, China. Samples of different scale-bands of the initial query image: context of the query image (zoom out – top

left), two examples of mid-level detail (zoom in), and three detailed images for each of the mid-level band (rightmost). Two examples of

the left and right side of the query are shown in the bottom left.

original scale, two examples of mid-level detail (zoom in),

and three detailed images for each of the mid-level bands.

4.2. Sideways crawl

Retrieving images of multiple scale-bands, starting from

a single query image, yields the whole spectrum of image

scales, but typically only from a single viewing direction.

However, many interesting scene parts are often located

around the corners of or next to the observed landmark. In

this case, the reconstruction significantly benefits from ad-

ditional sideways crawling around the landmark, in order to

obtain more complete and stable models. The crawling is

performed to the left or to the right with respect to the orig-

inal query image. We propose a novel, efficient retrieval

method for content-based crawling around an initial point

of view. As a result, we successfully mine images connect-

ing multiple sides of the landmark (see Figure 5), or images

with a broader view of the whole area of interest in the case

of indoor scenes (see Figure 4).

The sideways crawl retrieval consists of two stages. The

first stage allows us to specifically crawl for images in dif-

ferent directions (left and right). In the second stage, the ini-

tial set of retrievals is extended by additional images from

the desired direction.

The first stage leverages the estimated geometric trans-

formation (an affine transformation in our case) between

the query image and the results. When taking a step to

the right, for instance, features on the right-hand side of

the query image should match a sufficient number of fea-

tures on the left-hand side of the result image. This can be

achieved by geometric re-ranking of the shortlisted results

or more efficiently using the DAAT approach [31]. Addi-

tional geometric analysis, such as estimating the position of

the horizontal vanishing point through homography fitting,

can be performed at additional computational effort.

To retrieve a larger set of relevant images that contain

novel image information, additional queries are executed

using the top ranked images from the first stage. In these

expanding queries, only features from areas not visible in

the original query image are considered. Finally, retrieved

images are merged and then re-ranked based on the amount

of viewpoint change.

To obtain reconstruction of a landmark from all sides,

the sideways crawl is repeated, as illustrated in Figure 5. In

order to also reconstruct details on all sides of the landmark,

each sideways step is followed by multiple scale-band min-

ing. For further examples on the sideways crawl, see an in-

door view of the Terracotta Army landmark in China (Fig-

ure 4). Having introduced the image-retrieval system, we

next detail our SfM system that exploits the unique charac-

teristics of the proposed retrieval system.

5. Matching and geometric verification

The state-of-the-art SfM systems [7, 1] have achieved

impressive results on city-scale reconstructions from un-

ordered photo collections. One frequent reason for the

lack of detail reconstruction is caused by the nature of con-

ventional image retrieval. That is, when starting from an

overview image of the scene, the images of the scene de-

tails are not retrieved as nearest neighbors, because of low

overlap or a large number of similar views outranking the

detail images [19]. The reason for not registering retrieved

detail images in SfM is, that SfM will often require tran-

sition images that establish connectivity between the detail

view with high surface resolution and the overview image

with comparably low surface resolution in the area of the

detail view. In this paper, we propose a novel combina-

tion of a detail oriented retrieval and SfM system to address

the challenge of obtaining 3D models from unordered photo

collections that provide complete scene coverage and high

geometric resolution for the details in the scene.

Our proposed image retrieval method has a major advan-

tage over traditional vocabulary-based and clustering-based
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Figure 5. Sideways crawl of Arc de Triomphe (top) and Astronomical Clock (bottom). Sample results of three recursive rightward and

leftward queries extending the view of the original query image.

approaches. Since the method performs spatial verification

through an affine transformation estimation during retrieval,

it obtains a quantitative measure of the scene overlap early

on. The number of inliers, treated as a similarity score, is a

by-product of robust estimation with RANSAC [6].

Next, our geometric verification of image pairs, i.e. the

test for a pairwise epipolar geometry, in SfM operates in

projective space, estimating an essential or fundamental

matrix for moving cameras and a homography for purely ro-

tating cameras. Because the space of affine transformations

is a subspace of the space of projective transformations, we

can use the existence of an affine transformation between

a set of correspondences as a proxy to assume the exis-

tence of a projective transformation for a larger set of cor-

respondences between the same image pair. While, in the-

ory, the projective transformations may not exercise all de-

grees of freedom, the chance of encountering these configu-

rations are extremely low in practice. In fact, for more than

99.9% of image pairs in the experimental datasets (Section

9) we can estimate a valid epipolar geometry or homogra-

phy when there exists an affine transformation. Hence, if we

enforce the existence of an affine transformation, geometric

verification in SfM only has to process valid image pairs

for reconstruction. This avoids the significant overhead

caused by non-overlapping pairs. This makes RANSAC for

geometric verification significantly faster, since RANSAC

has exponential computational complexity in the number of

model parameters and the outlier ratio of the measurements.

Leveraging the early similarity metric, provided by the

retrieval system, significantly improves the performance

and reliability of our SfM estimation. The reason being that

our proposed pipeline can rank the retrieved images by the

number of affine transformation inliers and the subsequent

geometric verification only spends time on actually overlap-

ping image pairs. This enables us to only match against a

limited number of images instead of matching against much

larger sets of nearest neighbors as in the case of traditional

vocabulary tree based approaches. In all experiments, we

attempt to verify a query image to a maximum number of

200 retrieved images, and we empirically found that nearest

neighbor images with at least 8 affine transformation inliers

to the query image have a very high likelihood of success-

ful registration. Next, we describe the enhancements to our

SfM algorithm to reliably obtain reconstructions of the ge-

ometric scene details.

6. Reconstruction of Details

Detailed scene reconstruction depends on accurate and

reliable camera registration, which is especially challeng-

ing for the highest-resolution images in a photo collection.

There are three major reasons for this: the dependence of

incremental SfM on the order of camera registrations, the

reduced redundancy of measurements during registration of

the detailed views, and the often challenging geometric con-

figurations for these views. In the following, we examine

these challenges and describe our solutions to them.

Generally, the quality of SfM results are dependent on

three main factors: First, to attain reliable and precise esti-

mates, no parameter should rely on just a minimal or small

set of measurements to enable the compensation of mea-

surement noise (detailed views usually have significantly

reduced correspondences to other images). Second, relia-

bility provides us with the ability to detect outliers and de-

termines the degree to which undetected outliers affect our

estimates (outlier detection for detailed views is challeng-

ing due to their reduced redundancy). Third, the uncertainty

of measurements propagates to the uncertainty of the esti-

mated parameters, and the viewing geometry impacts the

stability of estimation (very oblique or distant views gener-

ally have significantly higher measurement and thus regis-

tration uncertainties).

First, incremental SfM is heavily dependent on the or-

der of camera registrations, due to the non-linear nature

of bundle-adjustment. This effect becomes especially im-



portant for detailed scene reconstruction, since the different

levels of detail are usually only sparsely connected or con-

nected with forward motion views. Forward motion is a

particularly challenging situation for SfM, caused by unsta-

ble viewing geometry. In our experience, seeding the re-

construction with one of the detailed views and then incre-

mentally growing the model to include less detailed views

fails in most of the cases or results in inferior-quality mod-

els. We therefore seed the reconstruction with an image

that sees a maximal fraction of the scene, effectively rul-

ing out the detailed and extremely zoomed-out views. From

there, we gradually extend the model, avoiding abrupt scale

and viewpoint changes by ranking cameras for registration

based on the amount of currently visible scene structure.

Second, we discuss the effect of reduced redundancy

that is often encountered for the images observing the de-

tails of the scene. Since images of detailed structure only

see a small fraction of the scene, there are generally much

fewer images that observe the same features. In this case,

conventional nearest neighbor matching produces fewer and

shorter tracks, as it fails to match a significant portion of im-

age pairs from the already small set of images that see the

same structure. Hence, bundle-adjustment must deal with a

significantly reduced redundancy of the measurements, re-

sulting in less accurate and less reliable camera resectioning

and structure estimation. Redundancy, and thus the reliabil-

ity in bundle-adjustment (or, more generally, in maximum

likelihood estimation), is determined as the difference of

the number of independent observations minus the effec-

tive degrees of freedom [32]. Hence, we are provided with

two opportunities for improving redundancy: increasing the

number of observations and reducing the degrees of free-

dom. Inherently, the employed retrieval system mitigates

the effect of reduced redundancy, in that it reveals signif-

icantly more overlapping image pairs. In this manner, we

are able to build significantly more and significantly longer

tracks than before, which leads to significantly increased

redundancy of the measurements compared with standard

retrieval systems, such as the vocabulary tree based ap-

proaches. Additionally, we restrict ourselves to a relatively

simple camera model with a total of 8 degrees of freedom

(3 orientation, 3 translation, 1 focal length, and 1 first-order

polynomial radial distortion parameter with fixed principal

point at the image center).

Third, SfM methods face distinct challenges for difficult

geometric configurations of the scene and/or the cameras.

Many images of the geometric details of the scene are taken

at high zoom levels, i.e. with large focal length. In this case,

the viewing rays are close to parallel, resulting in high reg-

istration uncertainty along the viewing direction. Given that

a relatively large displacement along the viewing direction

causes only a small change in reprojection error. Hence, we

need to have a good initial estimate of the focal length be-

Figure 6. Single query images used for landmark reconstruction.

From left to right: Astronomical Clock, Bridge of Sighs, Terra-

cotta Army, Arc de Triomphe, Notre Dame, Sagrada Familia.

fore starting the non-linear refinement in order to achieve

convergence to the correct solution. For this purpose, we

can use focal length information extracted from EXIF data,

if available. However, crowd-sourced photos often lack this

information due to modifications, such as resizing, crop-

ping, etc. For large zoom factors, it is not enough to simply

assume a default focal length [10, 26], inferred from the im-

age dimensions, and use it as an initial estimate for a non-

linear refinement. Rather, it is necessary to exhaustively

sample an a priori specified space of focal lengths during

2D-3D pose estimation. If EXIF information is missing, we

uniformly sample 50 focal lengths for opening angles be-

tween [5◦, 130◦] using P3P RANSAC and use the solution

with the highest number of inliers, followed by a non-linear

refinement of the pose.

However, even after these modifications, the camera reg-

istration occasionally still fails due to low redundancy, bo-

gus EXIF information, or unfortunate configurations. We

detect these cases in order to avoid a cascade of mis-

registrations due to faulty triangulations from an initially

bad camera. These cases can be detected in different stages

of the SfM pipeline. First, we detect a small number of

inliers during RANSAC pose estimation. Second, a non-

linear refinement of an initial registration is performed;

faulty registrations typically result in high cost in the non-

linear refinement of the pose. Hence, we reject camera reg-

istrations that display any of the above properties. Third,

bundle-adjustment usually converges to a local minimum

for faulty registrations. As a result, it tries to minimize

the cost through the use of extreme camera parameters.

Whenever we refine the structure and motion in bundle-

adjustment, we filter images that have abnormal camera pa-

rameters (opening angle outside [5◦, 130◦], absolute value

of radial distortion parameter greater than 1).

7. Densification

Our proposed combined SfM and retrieval system

achieves significantly more detailed reconstructions than

the state-of-the-art reconstruction systems. However, some

parts of the scene naturally have low detail. This occurs

when the initial set of images, which is obtained by image

retrieval without considering the full 3D scene information,

does not provide a sufficient number of detailed images, or

even none at all, in certain areas of the structure.

However, we wish to produce complete models with high

detail across all parts of the structure. To overcome this lim-



Figure 7. Dense reconstruction of Arc de Triomphe details.

itation, we introduce an incremental strategy to extend the

initial 3D model by explicitly mining for high detail in low-

resolution parts of the originally reconstructed 3D model.

To avoid redundant detail mining everywhere, we propose

to perform detail mining on demand after the initial 3D re-

construction. After the initial reconstruction we are able

to determine the density of the obtained sparse model and

identify the low resolution parts of the 3D model. Then, we

attempt to densify the reconstruction only for those parts.

To find images that cover the low-resolution parts, we

first determine the highest model-resolution of every 3D

point by calculating the spatial extent of every image obser-

vation in the world coordinate frame, i.e. back-projecting

the image pixel to the 3D point into the world coordinate

frame. As multiple images from different distances and at

different zoom levels potentially see the same structure, the

3D point is assigned the maximum resolution of all of its ob-

servations. Given the resolution of the entire structure and

the camera poses, we can then identify images that cover

the low-resolution parts of the scene. Each image typically

only sees a fraction of the entire scene. The median of the

observed 3D point resolutions in an image provides us with

a meaningful measure of the overall contribution of an im-

age to the surface resolution it contributes, independent of

distance to the individual structure or the zoom level. In

a final step, we sort all images by their median resolutions

and iteratively query for more detail for the top images un-

til no further details are found or a sufficient resolution is

achieved. Finally, we connect the new retrievals to the exist-

ing reconstruction by only matching the new images using

the strategy described in Section 5.

8. Duplicate scene structure

Duplicate, symmetric, or repetitive scene structure is a

common pattern in urban environments, posing challenges

for incremental SfM due to a potential cascade of cam-

era mis-registrations and faulty triangulations [35, 8, 33].

These camera mis-registrations are caused by symmetric

scene structure that is erroneously retrieved and registered

by RANSAC based alignment [8].

The existing solutions for the correction of the prob-

lem caused by symmetric scene structure is formulated as

post-processing of registered camera triplets[35] or post-

processing of the entire model [8, 33]. The major draw-

back of all of these approaches is, however, that mis-aligned

cameras and faulty 3D points could potentially cause unsta-

ble models. Moreover, incremental SfM might prematurely

stop the extension of the model when there are too many

conflicting observations in some parts of the scene. Ideally,

such mis-registrations are avoided during the incremental

extension of the model.

We found, that, if a more gradual set of transition images

is provided (such as in a video), the potential for the con-

fusion caused by symmetric structures is significantly re-

duced. Given the ability of our retrieval system to crawl for

images in different directions, we are able to provide a more

gradual sequence of images to the SfM system. Hence, in

practice we observed a significantly increased robustness to

symmetric structures. For example, Arc de Triomphe, Notre

Dame, and St. Vitus consistently produced symmetry issues

with traditional retrieval approaches, while our system does

not suffer from these effects.

9. Experimental Results

In our experiments, we use a generic database of over

7.4 million images downloaded from Flickr through key-

words of famous landmarks, cities, countries, and architec-

tural sites. We use single images as seeds for the retrieval

(Table 1 and Figure 6) and the subsequent reconstruction.

For the retrieval, the maximum number of verifications

per query is set to 5000, the average timings for different

types of queries are summarized in Table 2. Combining the

different query types, we can retrieve a set of images for a

given query image in the order of minutes. The retrieved

collection is a concise set of images (less than 0.1% of the

entire database) with a relatively small number of irrelevant

images, evidenced by the ratio of registered over retrieved

images. Please note, that the registered images are all part

of the same connected component as the query image. The

efficient matching (Section 5) allows us to build the individ-

ual models in a matter of a few hours, since we only need

to perform matching on the retrieved image pairs which are

a fraction of the possible image pairs.

The individual components of the retrieval system have

different effects on the obtained results. The sideways

crawl helps to increase the extent of the 3D model and to

disambiguate the repeated / symmetric structures. When

the reconstruction is executed without sideways crawl (us-

ing a state-of-the-art pipeline), Arc de Triomphe, St. Vitus,

and Notre Dame have symmetry issues and are not recon-

structed as complete – for frontal images the top 100 im-

ages are still frontal. Zoom-out provides more context and

we have observed that it also helps to disambiguate sym-



Retrieved Reg. Pairs Points

Astronomical Clock 10,443 8,163 572,412 830,238

Bridge of Sighs 2,077 1,018 70,473 117,182

Terracotta Army 2,781 2,099 113,747 167,715

Arc de Triomphe 3,744 2,640 179,346 395,431

Notre Dame 4,978 2,081 164,871 304,339

Sagrada Familia 11,783 7,129 617,362 364,510

Table 1. Details of reconstructed models with the number of re-

trieved and registered images, the number of verified image pairs,

and the number of reconstructed 3D points.

Query type Time

NN query, no QE 1 sec

NN query, with QE 5 sec

Multi scale-band crawl 2.8 min

Sideways crawl 5.6 sec

Table 2. Average query duration for the retrieval engine.

metric structures. For instance, if executed without zoom-

out, the sides of Notre Dames left tower are cross-matched.

Zoom-in does not increase the correctness of matching, but

it significantly increases the level of detail.

To quantify the amount of detail reconstruction, we de-

termine the spatial resolution of every 3D point as described

in Section 7. The surface resolution is mapped to jet color

map for visualization, with red referring to the highest and

blue to the lowest resolution. Figures 2 and 8 show the res-

olutions for a variety of scenes. Moreover, Figure 7 is an

example of dense reconstruction using multi-view-stereo.

Another experiment shows that the choice of the query

image is not critical. Seeding the Arc de Triomphe scene

with two different images from opposing sides of the build-

ing results in models with 2640 and 2721 images (intersec-

tion over union 92%), which are visually near-identical.

To compare our system against full pairwise reconstruc-

tion, we injected the Dubrovnik6k dataset [14] with 6,036

images into the 7.4M image database. Starting from a single

query image, our pipeline reconstructs 87% (4430 images)

in the first 3 retrieval-SfM iterations, w.r.t. to full pairwise

reconstruction on the isolated dataset (5102 registered im-

ages). Both approaches result in similar visual quality, but

faster runtime for our pipeline, even though it operates on

7.4M images (compared to 6K for the pairwise approach).

10. Conclusion

We propose a novel tightly coupled image retrieval and

SfM system for the reconstruction of detailed 3D models

from unordered Internet photo collections. Our method

is able to seed the reconstruction from just a single im-

age. The tight integration of reconstruction and retrieval

enables us to retrieve image data suitable for reconstruction

that the current state-of-the-art systems in 3D reconstruc-

tion from photo collections do not recover. We demonstrate

our method on a large variety of scenes from a collection of

7.4 million images downloaded from the Internet.

Figure 8. Reconstructions from top to bottom: Bridge of Sighs,

UK; Terracotta army, China; Arc de Triomphe, France; Notre

Dame, France; Sagrada Familia, Spain. Left: 3D model obtained

from our retrieval and reconstruction system. Middle: registered

images illustrating the range of views from overview images to

images of a specific architectural detail. Right: visualization of

the surface resolution from high resolution in red (approximately

1mm surface resolution) to low resolution in blue.
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