
From Softmax to Sparsemax:

A Sparse Model of Attention and Multi-Label Classification

André F. T. Martins†♯ ANDRE.MARTINS@UNBABEL.COM

Ramón F. Astudillo†⋄ RAMON@UNBABEL.COM

†Unbabel Lda, Rua Visconde de Santarém, 67-B, 1000-286 Lisboa, Portugal
♯Instituto de Telecomunicações (IT), Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
⋄Instituto de Engenharia de Sistemas e Computadores (INESC-ID), Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

Abstract

We propose sparsemax, a new activation func-

tion similar to the traditional softmax, but able

to output sparse probabilities. After deriving

its properties, we show how its Jacobian can be

efficiently computed, enabling its use in a net-

work trained with backpropagation. Then, we

propose a new smooth and convex loss function

which is the sparsemax analogue of the logis-

tic loss. We reveal an unexpected connection

between this new loss and the Huber classifi-

cation loss. We obtain promising empirical re-

sults in multi-label classification problems and in

attention-based neural networks for natural lan-

guage inference. For the latter, we achieve a sim-

ilar performance as the traditional softmax, but

with a selective, more compact, attention focus.

1. Introduction

The softmax transformation is a key component of several

statistical learning models, encompassing multinomial lo-

gistic regression (McCullagh & Nelder, 1989), action se-

lection in reinforcement learning (Sutton & Barto, 1998),

and neural networks for multi-class classification (Bridle,

1990; Goodfellow et al., 2016). Recently, it has also been

used to design attention mechanisms in neural networks,

with important achievements in machine translation (Bah-

danau et al., 2015), image caption generation (Xu et al.,

2015), speech recognition (Chorowski et al., 2015), natural

language understanding (Hermann et al., 2015; Sukhbaatar

et al., 2015; Rocktäschel et al., 2015), and computation

learning (Graves et al., 2014; Grefenstette et al., 2015).

There are a number of reasons why the softmax transfor-

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

mation is so appealing: it is simple to evaluate and differ-

entiate, and it can be turned into a (concave) log-likelihood

function by taking the logarithm of its output. Alternatives

proposed in the literature, such as the Bradley-Terry model

(Bradley & Terry, 1952; Zadrozny, 2001), the multinomial

probit (Albert & Chib, 1993), the spherical softmax (Ol-

livier, 2013; de Brébisson & Vincent, 2015), or softmax

approximations (Bouchard, 2007), while advantageous in

certain scenarios, lack some of these convenient properties.

In this paper, we propose the sparsemax transformation.

Sparsemax has the distinctive feature that it can return

sparse posterior distributions, assigning zero probability to

some output variables. This property makes it appealing

for filtering large output spaces, predicting multiple labels,

or as a component to identify which of a group of variables

are relevant for a decision, making the model more inter-

pretable. Crucially, this is done while preserving most of

the attractive properties of softmax: we show that sparse-

max is also simple to evaluate, it is even cheaper to differ-

entiate, and that it can be turned into a convex loss function.

To sum up, our contributions are as follows:

• We formalize the new sparsemax transformation, derive

its properties, and show how it can be efficiently com-

puted (§2.1–2.3). We show that in the binary case sparse-

max reduces to a hard sigmoid (§2.4).

• We derive the Jacobian of sparsemax, comparing it to the

softmax case, and show that it can lead to faster gradient

backpropagation (§2.5).

• We propose the sparsemax loss, a new loss function that

is the sparsemax analogue of logistic regression (§3). We

show that it is convex, everywhere differentiable, and

can be regarded as a multi-class generalization of the Hu-

ber classification loss (Huber, 1964; Zhang, 2004).

• We apply the sparsemax loss to train multi-label linear

classifiers (which predict a set of labels instead of a sin-

gle label) on benchmark datasets (§4.1–4.2).

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

• Finally, we devise a neural selective attention mecha-

nism using the sparsemax transformation, applying to a

natural language inference problem (§4.3).

2. The Sparsemax Transformation

2.1. Definition

Let ∆K−1 := {p ∈ R
K | 1⊤p = 1, p ≥ 0} be the

(K − 1)-dimensional simplex. We are interested in maps

from R
K to ∆K−1. Such maps are useful to convert a vec-

tor of real weights (e.g., label scores) to a probability distri-

bution (e.g. posterior probabilities of labels). The classical

example is the softmax, defined componentwise as:

softmaxi(z) =
exp(zi)∑
j exp(zj)

. (1)

A limitation of the softmax transformation is that the re-

sulting probability distribution always has full support, i.e.,

softmaxi(z) 6= 0 for every z and i. This is a disadvan-

tage in applications where a sparse probability distribution

is desired, in which case it is common to define a threshold

below which small probability values are truncated to zero.

In this paper, we propose as an alternative the following

transformation, which we call sparsemax:

sparsemax(z) := argmin
p∈∆K−1

‖p− z‖2. (2)

In words, sparsemax returns the Euclidean projection of the

input vector z onto the probability simplex. This projection

is likely to hit the boundary of the simplex, in which case

sparsemax(z) becomes sparse. We will see that sparsemax

retains most of the important properties of softmax, having

in addition the ability of producing sparse distributions.

2.2. Closed-Form Solution

Many algorithms have been proposed to project onto the

simplex (Michelot, 1986; Pardalos & Kovoor, 1990; Duchi

et al., 2008). We start by recalling the result that such pro-

jections correspond to a soft-thresholding operation. Be-

low, we denote [K] := {1, . . . ,K} and [t]+ := max{0, t}.

Proposition 1 The solution of Eq. 2 is of the form:

sparsemaxi(z) = [zi − τ(z)]+, (3)

where τ : R
K → R is the (unique) function that satis-

fies
∑

j [zj − τ(z)]+ = 1 for every z. Furthermore, τ
can be expressed as follows. Let z(1) ≥ z(2) ≥ . . . ≥
z(K) be the sorted coordinates of z, and define k(z) :=

max
{
k ∈ [K] | 1 + kz(k) >

∑
j≤k z(j)

}
. Then,

τ(z) =

(∑
j≤k(z) z(j)

)
− 1

k(z)
=

(∑
j∈S(z) zj

)
− 1

|S(z)|
, (4)

Algorithm 1 Sparsemax Evaluation

Input: z

Sort z as z(1) ≥ . . . ≥ z(K)

Find k(z) := max
{
k ∈ [K] | 1 + kz(k) >

∑
j≤k z(j)

}

Define τ(z) =
(
∑

j≤k(z) z(j))−1

k(z)

Output: p s.t. pi = [zi − τ(z)]+.

where S(z) := {j ∈ [K] | sparsemaxj(z) > 0} is the

support of sparsemax(z).

Proof: See App. A.1 in the supplemental material.

In essence, Prop. 1 states that all we need for evaluating

the sparsemax is to compute the threshold τ(z); all coordi-

nates above this threshold (the ones in the set S(z)) will be

shifted by this amount, and the others will be truncated to

zero. We call τ in Eq. 4 the threshold function: this piece-

wise linear function will play an important role in the se-

quel. Alg. 1 illustrates a naı̈ve O(K logK) algorithm that

uses Prop. 1 for evaluating the sparsemax. More elaborate

O(K) algorithms exist based on partitioning and median-

finding (Blum et al., 1973; Pardalos & Kovoor, 1990).1

2.3. Basic Properties

We now highlight some properties that are common to soft-

max and sparsemax. Let z(1) := maxk zk, and denote by

A(z) := {k ∈ [K] | zk = z(1)} the set of maximal compo-

nents of z. We define the indicator vector 1A(z), whose kth

component is 1 if k ∈ A(z), and 0 otherwise. We further

denote by γ(z) := z(1) − maxk/∈A(z) zk the gap between

the maximal components of z and the second largest. We

let 0 and 1 be vectors of zeros and ones, respectively.

Proposition 2 The following properties hold for ρ ∈
{softmax, sparsemax}.

1. ρ(0) = 1/K and limǫ→0+ ρ(ǫ−1z) = 1A(z)/|A(z)|
(uniform distribution, and distribution peaked on the

maximal components of z, respectively). For sparsemax,

the last equality holds for any ǫ ≤ γ(z) · |A(z)|.

2. ρ(z) = ρ(z + c1), for any c ∈ R (i.e., ρ is invariant to

adding the same constant to each coordinate).

3. ρ(Pz) = Pρ(z) for any permutation matrix P (i.e., ρ
commutes with permutations).

4. If zi ≤ zj , then 0 ≤ ρj(z)− ρi(z) ≤ η(zj − zi), where

η = 1
2 for softmax, and η = 1 for sparsemax.

Proof: See App. A.2 in the supplemental material.

1In practice, there are observed linear time algorithms which
are often a better choice. See Condat (2014, Table 1), who provide
an empirical comparison among several of these algorithms.

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

− 3 − 2 − 1 0 1 2 3

t

0.0

0.2

0.4

0.6

0.8

1.0 softmax1 ([t,0])

sparsemax1 ([t,0])

Figure 1. Comparison of softmax and sparsemax in 2D (left) and 3D (two righmost plots).

Interpreting ǫ as a “temperature parameter,” the first clause

of Prop. 2 shows that the sparsemax has the same “zero-

temperature limit” behaviour as the softmax, but without

the need of making the temperature arbitrarily small. We

will use this fact in the experiments in §4.2 to control the

degree of sparsity achieved with the sparsemax activation.

Prop. 2 is reassuring, since it shows that the sparsemax

transformation, despite being defined very differently from

the softmax, has a similar behaviour and preserves the same

invariances. Note that some of these properties are not sat-

isfied by other proposed replacements of the softmax: for

example, the spherical softmax (Ollivier, 2013), defined as

ρi(z) := z2i /
∑

j z
2
j , does not satisfy properties 2 and 4.

2.4. Two and Three-Dimensional Cases

For the two-class case, it is well known that the softmax

activation becomes the logistic (sigmoid) function. More

precisely, if z = (t, 0), then softmax1(z) = σ(t) :=
(1 + exp(−t))−1. We next show that the analogous in

sparsemax is the “hard” version of the sigmoid. In fact,

using Prop. 1, Eq. 4, we have that, for z = (t, 0),

τ(z) =





t− 1, if t > 1
(t− 1)/2, if −1 ≤ t ≤ 1
−1, if t < −1,

(5)

and therefore

sparsemax1(z) =





1, if t > 1
(t+ 1)/2, if −1 ≤ t ≤ 1
0, if t < −1.

(6)

Fig. 1 provides an illustration for the two and three-

dimensional cases. For the latter, we parameterize z =
(t1, t2, 0) and plot softmax1(z) and sparsemax1(z) as a

function of t1 and t2. We can see that sparsemax is piece-

wise linear, but asymptotically similar to the softmax.

2.5. Jacobian of Sparsemax

The Jacobian matrix of a transformation ρ, Jρ(z) :=
[∂ρi(z)/∂zj]i,j , is of key importance to train models with

gradient-based optimization. We next derive the Jacobian

of the sparsemax activation, but before doing so, let us re-

call how the Jacobian of the softmax looks like. We have

∂softmaxi(z)

∂zj
= (δije

zi
∑

k e
zk − eziezj)/(

∑
k e

zk)
2

= softmaxi(z)(δij − softmaxj(z)), (7)

where δij is the Kronecker delta, which evaluates to 1 if

i = j and 0 otherwise. Letting p = softmax(z), the full

Jacobian can be written in matrix notation as

Jsoftmax(z) = Diag(p)− pp⊤, (8)

where Diag(p) is a matrix with p in the main diagonal.

Let us now turn to the sparsemax case. The sparsemax is

differentiable everywhere except at splitting points z where

the support set S(z) changes, i.e., where S(z) 6= S(z+ǫd)
for some d and infinitesimal ǫ.2 From Eq. 3, we have that:

∂sparsemaxi(z)

∂zj
=

{
δij −

∂τ(z)
∂zj

, if zi > τ(z),

0, if zi ≤ τ(z).
(9)

From Eq. 4, the gradient of the threshold function τ is:

∂τ(z)

∂zj
=

{ 1
|S(z)| if j ∈ S(z),

0, if j /∈ S(z).
(10)

Note that j ∈ S(z) ⇔ zj > τ(z). Therefore we obtain:

∂sparsemaxi(z)

∂zj
=

{
δij −

1
|S(z)| , if i, j ∈ S(z),

0, otherwise.
(11)

Let s be an indicator vector whose ith entry is 1 if i ∈ S(z),
and 0 otherwise. We can write the Jacobian matrix as

Jsparsemax(z) = Diag(s)− ss⊤/|S(z)|. (12)

It is instructive to compare Eqs. 8 and 12. We may re-

gard the Jacobian of sparsemax as the Laplacian of a graph

whose elements of S(z) are fully connected. To compute

2For those points, we can take an arbitrary matrix in the set of
generalized Clarke’s Jacobians (Clarke, 1983), the convex hull of
all points of the form limt→∞ Jsparsemax(zt), where zt → z.

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

it, we only need S(z), which can be obtained in O(K) time

with the same algorithm that evaluates the sparsemax.

Often, e.g., in the gradient backpropagation algorithm, it is

not necessary to compute the full Jacobian matrix, but only

the product between the Jacobian and a given vector v. In

the softmax case, from Eq. 8, we have:

Jsoftmax(z) ·v = p⊙(v− v̄1), with v̄ :=
∑

j pjvj , (13)

where ⊙ denotes the Hadamard product; this requires a

linear-time computation. For the sparsemax case, we have:

Jsparsemax(z) ·v = s⊙ (v− v̂1), with v̂ :=

∑
j∈S(z) vj

|S(z)|
.

(14)

Interestingly, if sparsemax(z) has already been evaluated

(i.e., in the forward step), then so has S(z), hence the

nonzeros of Jsparsemax(z) · v can be computed in only

O(|S(z)|) time, which can be sublinear. This can be an im-

portant advantage of sparsemax over softmax if K is large.

Computational efficiency. In sum, the computational

needs of softmax and sparsemax are compared as follows:

• At training time, sparsemax can backpropagate gradients

faster due to the sparsity (as stated above).

• At inference time, the softmax forward pass is faster, but

asymptotically both are linear time. In our experiments

(§4), even with the O(K logK) Algorithm 1, similar

runtimes were achieved with softmax and sparsemax.

3. A Loss Function for Sparsemax

Now that we have defined and analyzed the sparsemax

transformation, we will use it to design a new loss function

that resembles the logistic loss, but can yield sparse poste-

rior distributions. Later (in §4.1–4.2), we apply this loss to

label proportion estimation and multi-label classification.

3.1. Logistic Loss

Let D := {(xi, yi)}
N
i=1 be a dataset, where each xi ∈ R

D

is an input vector and yi ∈ {1, . . . ,K} is a target label. We

consider empirical risk minimization problems of the form

minimize
λ

2
‖W‖2F +

1

N

N∑

i=1

L(Wxi + b; yi),

w.r.t. W ∈ R
K×D, b ∈ R

K , (15)

where L is a loss function, W is a matrix of weights, and

b is a bias vector. The loss function associated with the

softmax is the logistic loss (or negative log-likelihood):

Lsoftmax(z; k) = − log softmaxk(z)

= −zk + log
∑

j

exp(zj), (16)

where z = Wxi + b, and k = yi is the “gold” label. The

gradient of this loss is, invoking Eq. 7,

∇zLsoftmax(z; k) = −δk + softmax(z), (17)

where δk denotes the delta distribution on k, [δk]j = 1 if

j = k, and 0 otherwise. This is a well-known result; when

plugged into a gradient-based optimizer, it leads to updates

that move probability mass from the distribution predicted

by the current model (i.e., softmaxk(z)) to the gold label

(via δk). Can we have something similar for sparsemax?

3.2. Sparsemax Loss

A nice aspect of the log-likelihood (Eq. 16) is that adding

up loss terms for several examples, assumed i.i.d, we obtain

the log-probability of the full training data. Unfortunately,

this idea cannot be carried out to sparsemax: now, some

labels may have exactly probability zero, so any model that

assigns zero probability to a gold label would zero out the

probability of the entire training sample. This is of course

highly undesirable. One possible workaround is to define

Lǫ
sparsemax(z; k) = − log

ǫ+ sparsemaxk(z)

1 +Kǫ
, (18)

where ǫ is a small constant, and
ǫ+sparsemaxk(z)

1+Kǫ is a “per-

turbed” sparsemax. However, this loss is non-convex, un-

like the one in Eq. 16.

Another possibility, which we explore here, is to construct

an alternative loss function whose gradient resembles the

one in Eq. 17. Note that the gradient is particularly im-

portant, since it is directly involved in the model updates

for typical optimization algorithms. Formally, we want

Lsparsemax to be a differentiable function such that

∇zLsparsemax(z; k) = −δk + sparsemax(z). (19)

We show below that this property is fulfilled by the follow-

ing function, henceforth called the sparsemax loss:

Lsparsemax(z; k) = −zk+
1

2

∑

j∈S(z)

(z2j−τ2(z))+
1

2
, (20)

where τ2 is the square of the threshold function in Eq. 4.

This loss, which has never been considered in the literature

to the best of our knowledge, has a number of interesting

properties, stated in the next proposition.

Proposition 3 The following holds:

1. Lsparsemax is differentiable everywhere, and its gradient

is given by the expression in Eq. 19.

2. Lsparsemax is convex.

3. Lsparsemax(z + c1; k) = Lsparsemax(z; k), ∀c ∈ R.

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

4. Lsparsemax(z; k) ≥ 0, for all z and k.

5. The following statements are all equivalent: (i)

Lsparsemax(z; k) = 0; (ii) sparsemax(z) = δk; (iii)

margin separation holds, zk ≥ 1 + maxj 6=k zj .

Proof: See App. A.3 in the supplemental material.

Note that the first four properties in Prop. 3 are also sat-

isfied by the logistic loss, except that the gradient is given

by Eq. 17. The fifth property is particularly interesting,

since it is satisfied by the hinge loss of support vector ma-

chines. However, unlike the hinge loss, Lsparsemax is ev-

erywhere differentiable, hence amenable to smooth opti-

mization methods such as L-BFGS or accelerated gradient

descent (Liu & Nocedal, 1989; Nesterov, 1983).

3.3. Relation to the Huber Loss

Coincidentally, as we next show, the sparsemax loss in the

binary case reduces to the Huber classification loss, an im-

portant loss function in robust statistics (Huber, 1964).

Let us note first that, from Eq. 20, we have, if |S(z)| = 1,

Lsparsemax(z; k) = −zk + z(1), (21)

and, if |S(z)| = 2, Lsparsemax(z; k) =

−zk +
1 + (z(1) − z(2))

2

4
+

z(1) + z(2)

2
, (22)

where z(1) ≥ z(2) ≥ . . . are the sorted components of z.

Note that the second expression, when z(1) − z(2) = 1,

equals the first one, which asserts the continuity of the loss

even though |S(z)| is non-continuous on z.

In the two-class case, we have |S(z)| = 1 if z(1) ≥ 1 +
z(2) (unit margin separation), and |S(z)| = 2 otherwise.

Assume without loss of generality that the correct label is

k = 1, and define t = z1 − z2. From Eqs. 21–22, we have

Lsparsemax(t) =





0 if t ≥ 1
−t if t ≤ −1
(t−1)2

4 if −1 < t < 1,

(23)

whose graph is shown in Fig. 2. This loss is a variant of the

Huber loss adapted for classification, and has been called

“modified Huber loss” by Zhang (2004); Zou et al. (2006).

3.4. Generalization to Multi-Label Classification

We end this section by showing a generalization of the loss

functions in Eqs. 16 and 20 to multi-label classification,

i.e., problems in which the target is a non-empty set of la-

bels Y ∈ 2[K] \ {∅} rather than a single label.3 Such prob-

lems have attracted recent interest (Zhang & Zhou, 2014).

3Not to be confused with “multi-class classification,” which
denotes problems with a target variable y ∈ [K] where K > 2.

Figure 2. Comparison between the sparsemax loss and other com-

monly used losses for binary classification.

More generally, we consider the problem of estimating

sparse label proportions, where the target is a probability

distribution q ∈ ∆K−1, such that Y = {k | qk > 0}. We

assume a training dataset D := {(xi, qi)}
N
i=1, where each

xi ∈ R
D is an input vector and each qi ∈ ∆K−1 is a target

distribution over outputs, assumed sparse.4 This subsumes

single-label classification, where all qi are delta distribu-

tions concentrated on a single class. The generalization of

the multinomial logistic loss to this setting is

Lsoftmax(z; q) = KL(q ‖ softmax(z)) (24)

= −H(q)− q⊤z + log
∑

j exp(zj),

where KL(.‖.) and H(.) denote the Kullback-Leibler di-

vergence and the Shannon entropy, respectively. Note that,

up to a constant, this loss is equivalent to standard logistic

regression with soft labels. The gradient of this loss is

∇zLsoftmax(z; q) = −q + softmax(z). (25)

The corresponding generalization in the sparsemax case is:

Lsparsemax(z; q) = −q⊤z+
1

2

∑

j∈S(z)

(z2j−τ2(z))+
1

2
‖q‖2,

(26)

which satisfies the properties in Prop. 3 and has gradient

∇zLsparsemax(z; q) = −q + sparsemax(z). (27)

We make use of these losses in our experiments (§4.1–4.2).

4. Experiments

We next evaluate empirically the ability of sparsemax for

addressing two classes of problems:

1. Label proportion estimation and multi-label classifica-

tion, via the sparsemax loss in Eq. 26 (§4.1–4.2).

2. Attention-based neural networks, via the sparsemax

transformation of Eq. 2 (§4.3).

4This scenario is also relevant for “learning with a proba-
bilistic teacher” (Agrawala, 1970) and semi-supervised learning
(Chapelle et al., 2006), as it can model label uncertainty.

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

Figure 3. Simulation results for label proportion estimation with

uniform (top) and random mixtures (bottom). Shown are the mean

squared error and Jensen-Shannon divergence as a function of the

document length, for the logistic and the sparsemax estimators.

4.1. Label Proportion Estimation

We show simulation results for sparse label proportion es-

timation on synthetic data. Since sparsemax can predict

sparse distributions, we expect its superiority in this task.

We generated datasets with 1,200 training and 1,000 test

examples. Each example emulates a “multi-labeled doc-

ument”: a variable-length sequence of word symbols, as-

signed to multiple topics (labels). We pick the number of

labels N ∈ {1, . . . ,K} by sampling from a Poisson distri-

bution with rejection sampling, and draw the N labels from

a multinomial. Then, we pick a document length from a

Poisson, and repeatedly sample its words from the mixture

of the N label-specific multinomials. We experimented

with two settings: uniform mixtures (qkn
= 1/N for the

N active labels k1, . . . , kN) and random mixtures (whose

label proportions qkn
were drawn from a flat Dirichlet).5

We set the vocabulary size to be equal to the number of

labels K ∈ {10, 50}, and varied the average document

length between 200 and 2,000 words. We trained mod-

els by optimizing Eq. 15 with L ∈ {Lsoftmax, Lsparsemax}
(Eqs. 24 and 26). We picked the regularization constant

λ ∈ {10j}0j=−9 with 5-fold cross-validation.

Results are shown in Fig. 3. We report the mean squared er-

ror (average of ‖q − p‖2 on the test set, where q and p are

respectively the target and predicted label posteriors) and

the Jensen-Shannon divergence (average of JS(q,p) :=
1
2KL(q‖p+q

2)+ 1
2KL(p‖p+q

2)).6 We observe that the two

5Note that, with uniform mixtures, the problem becomes es-
sentially multi-label classification.

6Note that the KL divergence is not an appropriate metric here,

Table 1. Statistics for the 5 multi-label classification datasets.

DATASET DESCR. #LABELS #TRAIN #TEST

SCENE IMAGES 6 1211 1196
EMOTIONS MUSIC 6 393 202
BIRDS AUDIO 19 323 322
CAL500 MUSIC 174 400 100
REUTERS TEXT 103 23,149 781,265

Table 2. Micro (left) and macro-averaged (right) F1 scores for the

logistic, softmax, and sparsemax losses on benchmark datasets.

DATASET LOGISTIC SOFTMAX SPARSEMAX

SCENE 70.96 / 72.95 74.01 / 75.03 73.45 / 74.57
EMOTIONS 66.75 / 68.56 67.34 / 67.51 66.38 / 66.07
BIRDS 45.78 / 33.77 48.67 / 37.06 49.44 / 39.13
CAL500 48.88 / 24.49 47.46 / 23.51 48.47 / 26.20
REUTERS 81.19 / 60.02 79.47 / 56.30 80.00 / 61.27

losses perform similarly for small document lengths (where

the signal is weaker), but as the average document length

exceeds 400, the sparsemax loss starts outperforming the

logistic loss consistently. This is because with a stronger

signal the sparsemax estimator manages to identify cor-

rectly the support of the label proportions q, contributing to

reduce both the mean squared error and the JS divergence.

This occurs both for uniform and random mixtures.

4.2. Multi-Label Classification on Benchmark Datasets

Next, we ran experiments in five benchmark multi-label

classification datasets: the four small-scale datasets used by

Koyejo et al. (2015),7 and the much larger Reuters RCV1

v2 dataset of Lewis et al. (2004).8 For all datasets, we re-

moved examples without labels (i.e. where Y = ∅). For all

but the Reuters dataset, we normalized the features to have

zero mean and unit variance. Statistics for these datasets

are presented in Table 1.

Recent work has investigated the consistency of multi-label

classifiers for various micro and macro-averaged metrics

(Gao & Zhou, 2013; Koyejo et al., 2015), among which a

plug-in classifier that trains independent binary logistic re-

gressors on each label, and then tunes a probability thresh-

old δ ∈ [0, 1] on validation data. At test time, those labels

whose posteriors are above the threshold are predicted to

be “on.” We used this procedure (called LOGISTIC) as a

baseline for comparison. Our second baseline (SOFTMAX)

is a multinomial logistic regressor, using the loss function

since the sparsity of q and p could lead to −∞ values.
7Obtained from http://mulan.sourceforge.net/

datasets-mlc.html.
8Obtained from https://www.csie.ntu.edu.tw/

˜cjlin/libsvmtools/datasets/multilabel.html.

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

in Eq. 24, where the target distribution q is set to uniform

over the active labels. A similar probability threshold p0
is used for prediction, above which a label is predicted to

be “on.” We compare these two systems with the sparse-

max loss function of Eq. 26. We found it beneficial to scale

the label scores z by a constant t ≥ 1 at test time, before

applying the sparsemax transformation, to make the result-

ing distribution p = sparsemax(tz) more sparse. We then

predict the kth label to be “on” if pk 6= 0.9

We optimized the three losses with L-BFGS (for a maxi-

mum of 100 epochs), tuning the hyperparameters in a held-

out validation set (for the Reuters dataset) and with 5-fold

cross-validation (for the other four datasets). The hyperpa-

rameters are the regularization constant λ ∈ {10j}2j=−8,

the probability thresholds δ ∈ {.05×n}10n=1 for LOGISTIC

and p0 ∈ {n/K}10n=1 for SOFTMAX, and the coefficient

t ∈ {0.5× n}10n=1 for SPARSEMAX.

Results are shown in Table 2. Overall, the performances of

the three losses are all very similar, with a slight advantage

of SPARSEMAX, which attained the highest results in 4 out

of 10 experiments, while LOGISTIC and SOFTMAX won 3

times each. In particular, sparsemax appears better suited

for problems with larger numbers of labels.

4.3. Neural Networks with Attention Mechanisms

We now assess the suitability of the sparsemax transforma-

tion to construct a “sparse” neural attention mechanism.

We ran experiments on the task of natural language infer-

ence, using the recently released SNLI 1.0 corpus (Bow-

man et al., 2015), a collection of 570,000 human-written

English sentence pairs. Each pair consists of a premise and

an hypothesis, manually labeled with one the labels EN-

TAILMENT, CONTRADICTION, or NEUTRAL. We used the

provided training, development, and test splits.

The architecture of our system, shown in Fig. 4, is the

same as the one proposed by Rocktäschel et al. (2015).

We compare the performance of four systems: NOATTEN-

TION, a (gated) RNN-based system similar to Bowman

et al. (2015); LOGISTICATTENTION, an attention-based

system with independent logistic activations; SOFTATTEN-

TION, a near-reproduction of the Rocktäschel et al. (2015)’s

attention-based system; and SPARSEATTENTION, which

replaces the latter softmax-activated attention mechanism

by a sparsemax activation.

We represent the words in the premise and in the hypothe-

sis with 300-dimensional GloVe vectors (Pennington et al.,

9The ability of using this “inverse temperature” t to control
the sparsity is enabled by Prop. 2, item 1. We may regard this as
an hyperparameter analagous to the thresholds δ and p0 used in
the LOGISTIC and SOFTMAX baselines, respectively.

Figure 4. Network diagram for the NL inference problem. The

premise and hypothesis are both fed into (gated) RNNs. The

NOATTENTION system replaces the attention part (in green) by a

direct connection from the last premise state to the output (dashed

violet line). The LOGISTICATTENTION, SOFTATTENTION and

SPARSEATTENTION systems have respectively independent lo-

gistics, a softmax, and a sparsemax-activated attention mecha-

nism. In this example, L = 5 and N = 9.

2014), not optimized during training, which we linearly

project onto a D-dimensional subspace (Astudillo et al.,

2015).10 We denote by x1, . . . ,xL and xL+1, . . . ,xN , re-

spectively, the projected premise and hypothesis word vec-

tors. These sequences are then fed into two recurrent net-

works (one for each). Instead of long short-term memories,

as Rocktäschel et al. (2015), we used gated recurrent units

(GRUs, Cho et al. 2014), which behave similarly but have

fewer parameters. Our premise GRU generates a state se-

quence H1:L := [h1 . . .hL] ∈ R
D×L as follows:

zt = σ(Wxzxt +Whzht−1 + bz) (28)

rt = σ(Wxrxt +Whrht−1 + br) (29)

h̄t = tanh(Wxhxt +Whh(rt ⊙ ht−1) + bh) (30)

ht = (1− zt)ht−1 + zth̄t, (31)

with model parameters W{xz,xr,xh,hz,hr,hh} ∈ R
D×D

and b{z,r,h} ∈ R
D. Likewise, our hypothesis GRU

(with distinct parameters) generates a state sequence

[hL+1, . . . ,hN], being initialized with the last state from

the premise (hL). The NOATTENTION system then com-

putes the final state u based on the last states from the

premise and the hypothesis as follows:

u = tanh(WpuhL +WhuhN + bu) (32)

where Wpu,Whu ∈ R
D×D and bu ∈ R

D. Finally, it

predicts a label ŷ from u with a standard softmax layer. The

SOFTATTENTION system, instead of using the last premise

state hL, computes a weighted average of premise words

10We used GloVe-840B embeddings trained on Common Crawl
(http://nlp.stanford.edu/projects/glove/).

http://nlp.stanford.edu/projects/glove/

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

Table 3. Accuracies for the natural language inference task.

Shown are our implementations of a system without attention, and

with logistic, soft, and sparse attentions.

DEV ACC. TEST ACC.

NOATTENTION 81.84 80.99
LOGISTICATTENTION 82.11 80.84
SOFTATTENTION 82.86 82.08
SPARSEATTENTION 82.52 82.20

Table 4. Examples of sparse attention for the natural language in-

ference task. Nonzero attention coefficients are marked in bold.

Our system classified all four examples correctly. The examples

were picked from Rocktäschel et al. (2015).

A boy rides on a camel in a crowded area while talking on his
cellphone.
Hypothesis: A boy is riding an animal. [entailment]

A young girl wearing a pink coat plays with a yellow toy golf
club.
Hypothesis: A girl is wearing a blue jacket. [contradiction]

Two black dogs are frolicking around the grass together.
Hypothesis: Two dogs swim in the lake. [contradiction]

A man wearing a yellow striped shirt laughs while seated next
to another man who is wearing a light blue shirt and clasping his
hands together.
Hypothesis: Two mimes sit in complete silence. [contradiction]

with an attention mechanism, replacing Eq. 32 by

zt = v⊤tanh(Wpmht +WhmhN + bm) (33)

p = softmax(z), where z := (z1, . . . , zL) (34)

r = H1:Lp (35)

u = tanh(Wpur +WhuhN + bu), (36)

where Wpm,Whm ∈ R
D×D and bm,v ∈ R

D. The LO-

GISTICATTENTION system, instead of Eq. 34, computes

p = (σ(z1), . . . , σ(zL)). Finally, the SPARSEATTENTION

system replaces Eq. 34 by p = sparsemax(z).

We optimized all the systems with Adam (Kingma & Ba,

2014), using the default parameters β1 = 0.9, β2 = 0.999,

and ǫ = 10−8, and setting the learning rate to 3 × 10−4.

We tuned a ℓ2-regularization coefficient in {0, 10−4, 3 ×
10−4, 10−3} and, as Rocktäschel et al. (2015), a dropout

probability of 0.1 in the inputs and outputs of the network.

The results are shown in Table 3. We observe that the

soft and sparse-activated attention systems perform simi-

larly, the latter being slightly more accurate on the test set,

and that both outperform the NOATTENTION and LOGIS-

TICATTENTION systems.11

Table 4 shows examples of sentence pairs, highlighting the

premise words selected by the SPARSEATTENTION mech-

anism. We can see that, for all examples, only a small num-

ber of words are selected, which are key to making the final

decision.12 Compared to a softmax-activated mechanism,

which provides a dense distribution over all the words,

the sparsemax activation yields a compact and more inter-

pretable selection, which can be particularly useful in long

sentences such as the one in the bottom row.

5. Conclusions

We introduced the sparsemax transformation, which has

similar properties to the traditional softmax, but is able

to output sparse probability distributions. We derived

a closed-form expression for its Jacobian, needed for

the backpropagation algorithm, and we proposed a novel

“sparsemax loss” function, a sparse analogue of the logis-

tic loss, which is smooth and convex. Empirical results in

multi-label classification and in attention networks for nat-

ural language inference attest the validity of our approach.

The connection between sparse modeling and interpretabil-

ity is key in signal processing (Hastie et al., 2015). Our

approach is distinctive: it is not the model that is assumed

sparse, but the label posteriors that the model parametrizes.

Sparsity is also a desirable (and biologically plausible)

property in neural networks, present in rectified units (Glo-

rot et al., 2011) and maxout nets (Goodfellow et al., 2013).

There are several avenues for future research. The ability

of sparsemax-activated attention to select only a few vari-

ables to attend makes it potentially relevant to neural archi-

tectures with random access memory (Graves et al., 2014;

Grefenstette et al., 2015; Sukhbaatar et al., 2015), since

it offers a compromise between soft and hard operations,

maintaining differentiability. Sparsemax is also appealing

for hierarchical attention: if we define a top-down product

of distributions along the hierarchy, the sparse distributions

produced by sparsemax will automatically prune the hier-

archy, leading to computational savings. A possible dis-

advantage of sparsemax over softmax is that it seems less

GPU-friendly, since it requires sort operations or median-

finding algorithms. There is, however, recent work provid-

ing efficient implementations of these algorithms on GPUs

(Alabi et al., 2012).

11Rocktäschel et al. (2015) report scores slightly above ours:
they reached a test accuracy of 82.3% for their implementation of
SOFTATTENTION, and 83.5% with their best system, a more elab-
orate word-by-word attention model. Differences in the former
case may be due to distinct word vectors and the use of LSTMs
instead of GRUs.

12On the development set, we observed that only 24.6% of the
premise words were selected.

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

Acknowledgements

We would like to thank the three anonymous reviewers, and

also Tim Rocktäschel for answering various implementa-

tion questions, and Mário Figueiredo and Chris Dyer for

helpful comments. This work was partially supported by

Fundação para a Ciência e Tecnologia (FCT), through con-

tracts UID/EEA/50008/2013 and UID/CEC/50021/2013,

the LearnBig project (PTDC/EEI-SII/7092/2014), and the

GoLocal project (grant CMUPERI/TIC/0046/2014).

References

Agrawala, Ashok K. Learning with a Probabilistic Teacher.

IEEE Transactions on Information Theory, 16(4):373–

379, 1970.

Alabi, Tolu, Blanchard, Jeffrey D, Gordon, Bradley, and

Steinbach, Russel. Fast k-Selection Algorithms for

Graphics Processing Units. Journal of Experimental Al-

gorithmics (JEA), 17:4–2, 2012.

Albert, James H and Chib, Siddhartha. Bayesian Analysis

of Binary and Polychotomous Response Data. Journal of

the American statistical Association, 88(422):669–679,

1993.

Astudillo, Ramon F, Amir, Silvio, Lin, Wang, Silva, Mário,

and Trancoso, Isabel. Learning Word Representations

from Scarce and Noisy Data with Embedding Sub-

spaces. In Proc. of the Association for Computational

Linguistics (ACL), Beijing, China, 2015.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio,

Yoshua. Neural Machine Translation by Jointly Learn-

ing to Align and Translate. In International Conference

on Learning Representations, 2015.

Blum, Manuel, Floyd, Robert W, Pratt, Vaughan, Rivest,

Ronald L, and Tarjan, Robert E. Time Bounds for Se-

lection. Journal of Computer and System Sciences, 7(4):

448–461, 1973.

Bouchard, Guillaume. Efficient Bounds for the Softmax

Function and Applications to Approximate Inference

in Hybrid Models. In NIPS Workshop for Approxi-

mate Bayesian Inference in Continuous/Hybrid Systems,

2007.

Bowman, Samuel R, Angeli, Gabor, Potts, Christopher, and

Manning, Christopher D. A Large Annotated Corpus for

Learning Natural Language Inference. In Proc. of Em-

pirical Methods in Natural Language Processing, 2015.

Bradley, Ralph Allan and Terry, Milton E. Rank Analy-

sis of Incomplete Block Designs: The Method of Paired

Comparisons. Biometrika, 39(3-4):324–345, 1952.

Bridle, John S. Probabilistic Interpretation of Feedforward

Classification Network Outputs, with Relationships to

Statistical Pattern Recognition. In Neurocomputing, pp.

227–236. Springer, 1990.

Chapelle, Olivier, Schölkopf, Bernhard, and Zien, Alexan-

der. Semi-Supervised Learning. MIT Press Cambridge,

2006.

Cho, Kyunghyun, Van Merriënboer, Bart, Gulcehre,

Caglar, Bahdanau, Dzmitry, Bougares, Fethi, Schwenk,

Holger, and Bengio, Yoshua. Learning Phrase Repre-

sentations Using RNN Encoder-Decoder for Statistical

Machine Translation. In Proc. of Empirical Methods in

Natural Language Processing, 2014.

Chorowski, Jan K, Bahdanau, Dzmitry, Serdyuk, Dmitriy,

Cho, Kyunghyun, and Bengio, Yoshua. Attention-based

Models for Speech Recognition. In Advances in Neural

Information Processing Systems, pp. 577–585, 2015.

Clarke, Frank H. Optimization and Nonsmooth Analysis.

New York, Wiley, 1983.

Condat, Laurent. Fast projection onto the simplex and the

ℓ1 ball. Mathematical Programming, pp. 1–11, 2014.

de Brébisson, Alexandre and Vincent, Pascal. An Explo-

ration of Softmax Alternatives Belonging to the Spher-

ical Loss Family. arXiv preprint arXiv:1511.05042,

2015.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T.

Efficient Projections onto the L1-Ball for Learning in

High Dimensions. In Proc. of International Conference

of Machine Learning, 2008.

Gao, Wei and Zhou, Zhi-Hua. On the Consistency of Multi-

Label Learning. Artificial Intelligence, 199:22–44, 2013.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua.

Deep Sparse Rectifier Neural Networks. In International

Conference on Artificial Intelligence and Statistics, pp.

315–323, 2011.

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron.

Deep Learning. Book in preparation for MIT Press,

2016. URL http://goodfeli.github.io/

dlbook/.

Goodfellow, Ian J, Warde-Farley, David, Mirza, Mehdi,

Courville, Aaron, and Bengio, Yoshua. Maxout Net-

works. In Proc. of International Conference on Machine

Learning, 2013.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neu-

ral Turing Machines. arXiv preprint arXiv:1410.5401,

2014.

http://goodfeli.github.io/dlbook/
http://goodfeli.github.io/dlbook/

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

Grefenstette, Edward, Hermann, Karl Moritz, Suleyman,

Mustafa, and Blunsom, Phil. Learning to Transduce with

Unbounded Memory. In Advances in Neural Information

Processing Systems, pp. 1819–1827, 2015.

Hastie, Trevor, Tibshirani, Robert, and Wainwright, Mar-

tin. Statistical Learning with Sparsity: the Lasso and

Generalizations. CRC Press, 2015.

Hermann, Karl Moritz, Kocisky, Tomas, Grefenstette, Ed-

ward, Espeholt, Lasse, Kay, Will, Suleyman, Mustafa,

and Blunsom, Phil. Teaching Machines to Read and

Comprehend. In Advances in Neural Information Pro-

cessing Systems, pp. 1684–1692, 2015.

Huber, Peter J. Robust Estimation of a Location Param-

eter. The Annals of Mathematical Statistics, 35(1):73–

101, 1964.

Kingma, Diederik and Ba, Jimmy. Adam: A Method for

Stochastic Optimization. In Proc. of International Con-

ference on Learning Representations, 2014.

Koyejo, Sanmi, Natarajan, Nagarajan, Ravikumar,

Pradeep K, and Dhillon, Inderjit S. Consistent Multil-

abel Classification. In Advances in Neural Information

Processing Systems, pp. 3303–3311, 2015.

Lewis, David D, Yang, Yiming, Rose, Tony G, and Li, Fan.

RCV1: A New Benchmark Collection for Text Catego-

rization Research. The Journal of Machine Learning Re-

search, 5:361–397, 2004.

Liu, Dong C and Nocedal, Jorge. On the Limited Memory

BFGS Method for Large Scale Optimization. Mathemat-

ical programming, 45(1-3):503–528, 1989.

McCullagh, Peter and Nelder, John A. Generalized Linear

Models, volume 37. CRC press, 1989.

Michelot, C. A Finite Algorithm for Finding the Projection

of a Point onto the Canonical Simplex of Rn. Journal of

Optimization Theory and Applications, 50(1):195–200,

1986.

Nesterov, Y. A Method of Solving a Convex Programming

Problem with Convergence Rate O(1/k2). Soviet Math.

Doklady, 27:372–376, 1983.

Ollivier, Yann. Riemannian Metrics for Neural Networks.

arXiv preprint arXiv:1303.0818, 2013.

Pardalos, Panos M. and Kovoor, Naina. An Algorithm for a

Singly Constrained Class of Quadratic Programs Subject

to Upper and Lower Bounds. Mathematical Program-

ming, 46(1):321–328, 1990.

Pennington, Jeffrey, Socher, Richard, and Manning,

Christopher D. Glove: Global Vectors for Word Rep-

resentation. Proceedings of the Empiricial Methods in

Natural Language Processing (EMNLP 2014), 12:1532–

1543, 2014.

Penot, Jean-Paul. Conciliating Generalized Derivatives. In

Demyanov, Vladimir F., Pardalos, Panos M., and Bat-

syn, Mikhail (eds.), Constructive Nonsmooth Analysis

and Related Topics, pp. 217–230. Springer, 2014.

Rocktäschel, Tim, Grefenstette, Edward, Hermann,

Karl Moritz, Kočiskỳ, Tomáš, and Blunsom, Phil. Rea-

soning about Entailment with Neural Attention. arXiv

preprint arXiv:1509.06664, 2015.

Sukhbaatar, Sainbayar, Szlam, Arthur, Weston, Jason, and

Fergus, Rob. End-to-End Memory Networks. In Ad-

vances in Neural Information Processing Systems, pp.

2431–2439, 2015.

Sutton, Richard S and Barto, Andrew G. Reinforcement

Learning: An Introduction, volume 1. MIT press Cam-

bridge, 1998.

Xu, Kelvin, Ba, Jimmy, Kiros, Ryan, Courville, Aaron,

Salakhutdinov, Ruslan, Zemel, Richard, and Bengio,

Yoshua. Show, Attend and Tell: Neural Image Caption

Generation with Visual Attention. In International Con-

ference on Machine Learning, 2015.

Zadrozny, Bianca. Reducing Multiclass to Binary by Cou-

pling Probability Estimates. In Advances in Neural In-

formation Processing Systems, pp. 1041–1048, 2001.

Zhang, Min-Ling and Zhou, Zhi-Hua. A Review on Multi-

Label Learning Algorithms. Knowledge and Data Engi-

neering, IEEE Transactions on, 26(8):1819–1837, 2014.

Zhang, Tong. Statistical Behavior and Consistency of Clas-

sification Methods Based on Convex Risk Minimization.

Annals of Statistics, pp. 56–85, 2004.

Zou, Hui, Zhu, Ji, and Hastie, Trevor. The Margin Vector,

Admissible Loss and Multi-class Margin-Based Classi-

fiers. Technical report, Stanford University, 2006.

