
This is the author’s version of the work. Published in SoSyM.
The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-015-0495-8

From Software Extensions to Product Lines of Dataflow
Programs

Rui C. Gonçalves · Don Batory · João L. Sobral · Taylor L. Riché

Abstract Dataflow programs are widely used. Each

program is a directed graph where nodes are computa-
tions and edges indicate the flow of data. In prior work,
we reverse-engineered legacy dataflow programs by de-

riving their optimized implementations from a simple

specification graph using graph transformations called

refinements and optimizations. In MDE-speak, our

derivations were PIM-to-PSM mappings. In this paper,

we show how extensions complement refinements, op-
timizations, and PIM-to-PSM derivations to make the

process of reverse engineering complex legacy dataflow

programs tractable. We explain how optional function-

ality in transformations can be encoded, thereby en-

abling us to encode product lines of transformations as

well as product lines of dataflow programs. We describe

the implementation of extensions in the ReFlO tool and
present two non-trivial case studies as evidence of our

work’s generality.

Keywords MDE, PIM, PSM, Model Transformations,
Software Extensions, Dataflow Programs, Software

Product Lines

Rui C. Gonçalves
INESC TEC, 4710–057 Braga, Portugal
E-mail: rgoncalves@di.uminho.pt

Don Batory
The University of Texas at Austin, Austin, TX 78712, USA
E-mail: batory@cs.utexas.edu

João L. Sobral
Universidade do Minho, 4710–057 Braga, Portugal
E-mail: jls@di.uminho.pt

Taylor L. Riché
National Instruments, Austin, TX 78759, USA
E-mail: taylor.riche@ni.com

1 Introduction

Dataflow programs (D fP) abound in today’s world.

They are fault-tolerant servers [14,46], relational query
execution plans [20,46], dense linear algebra kernels [39,
38], virtual instruments [53,49,26], stream processing

applications [26,54], and large-scale cloud data process-

ing applications [13,25]. A Df P is a directed graph:

nodes called boxes are components or computations;
edges indicate the flow of data. Edges that flow into a

box are box inputs; edges leaving a box are box outputs.
The graph of a Df P is referred to as its architecture.

In prior work [24] we explored an MDE approach

to encode Df P design knowledge as graph transforma-
tions so that a simple easy-to-understand Df P could be

transformed into a complex and optimized implementa-
tion, also expressed as a Df P. That is, we transformed

an initial Df P (graph), always preserving its behav-

ior, until we reached another Df P that had the desired

implementation properties regarding, for example, effi-
ciency or availability. This Df P could then be mapped
to code using a domain-specific code generator. The

transformations we used were refinements (replace a
box with an implementing graph) or optimizations (re-

place a subgraph with a semantically equivalent graph).

Our derivations begin with a simple Df P (high-level
specification or platform independent model (PIM)). In

this paper, we show how a complex PIM can be con-
structed incrementally. That is, we start with an el-
ementary PIM that defines only part of the desired

behavior. New behavior is incrementally added to this

PIM, until we arrive at a PIM with the desired behav-

ior [47]. Adding behavior is extension; an increment in
behavior (or functionality) that is added is called a fea-

ture.

In its most basic form, an extension maps a box A

without a functionality F to a box B with the functional-

2 Rui C. Gonçalves et al.

ity of A and F. Refinements and optimizations preserve

behavior; extensions (in contrast) extend behavior.

A
0

A
1

A
2

A
Ω

B
0

B
1

B
2

B
Ω

...

...

...

...

Z
0

Z
1

Z
2

Z
Ω

Fig. 1: Extension

vs. derivation

Extensions are not new.

They are basic to classical ap-

proaches to software develop-

ment [51,1]. A simple specifi-

cation A0 is progressively ex-

tended to produce a desired

specification, say Z0 (Figure 1).

The final specification, Z0, is

then used as the starting point

for a derivation, using refine-
ments, to produce the desired
implementation ZΩ , called a

platform specific model (PSM) (Figure 1).

Our initial interest in this topic arose when we tried

to reverse engineer legacy Df Ps, to understand and en-
code the domain knowledge used by experts to build

them. We used the model-driven approach described

above, where expert knowledge was captured as model

transformations in the process of mapping a PIM to

a PSM. We discovered that when a PIM is complex,

it is almost impossible to recognize, understand, and

explain the transformations that map it to a PSM. In

short, the classical approach of Figure 1 is not always

practical. We devised an alternate way to derive such
PSMs. Namely, we derive an implementation AΩ from

a simple specification A0 and then incrementally extend

this derivation to that which maps Z0 to ZΩ in Figure 1

[47]. Extensions are higher-order transformations [55]
in our approach.

Reverse engineering legacy systems to extract and

systematize the transformations (knowledge) used to

build them is only the first step of a larger process. The

knowledge gathered and encoded can later be used to

mechanize/automate forward engineering [39,38], i.e.,

to generate new programs. Extensions provided a mech-

anism to ease the process of extracting knowledge from

legacy systems, and allowed us to improve the tools to

assist experts in this task. Moreover, extensions can ex-

press optional features. When this happens, a software

product line (SPL) of Df Ps arises [2]. In this paper, we

show how program derivations are extended to product

lines of derivations.

To summarize, our initial work [24] focused on

multi-step derivations of implementations from specifi-

cations. This paper generalizes [24] and [47] to examine

and reveal the rich relationships among extensions, re-

finements, optimizations, derivations, dataflow graphs,

and SPLs. The contributions of this paper are to:

– define fundamental relationships among these con-

cepts;

– illustrate a pragmatic way to extend dataflow

graphs, graph transformations, and PIM-to-PSM

derivations;

– distinguish transformations (refinements and opti-

mizations) from higher-order transformations (ex-

tensions);
– explain how extensions can be encoded to support

incremental development (or reverse engineering) of

Df Ps and the specification of dataflow SPLs; and

– describe how extensions were implemented in the

ReFlO framework [24].

We start with a review of background concepts that

are central to our approach.

2 Background

Fundamental ideas in Object-Oriented Programming

(OOP) are “implements” and “extends”. Figure 2a is

a UML declaration that class C implements interface I.

Interface I specifies some abstract behavior for which
class C provides an implementation. Figure 2b pro-

vides some additional declarations. Interface IX extends
interface I, i.e., it specifies some additional behavior

when compared to I. Similarly, class CX extends class

C, i.e., it extends implementation C, so that CX also im-

plements the additional behavior required by IX.

𝑥
𝑐′𝑐

𝑥′

«interface»

I

C

(a) implements

«interface»

I

«interface»

IX

C CX

(b) extension

𝑥′ ⋅ 𝑐 = 𝑐′ ⋅ 𝑥

𝑥
𝑐′𝑐

𝑥′𝑥′ ⋅ 𝑐 = 𝑐′ ⋅ 𝑥

(c) commuting diagram

I IX

CXC

x

x’

c’c

x’∙c = c’∙x

Fig. 2: Fundamental ideas in OOP and product lines.

Extensions define increments in behavior (either

on a specification/interface or on an implementa-

tion/class). SPLs generalize the scale of extension. A

feature embodies an increment in functionality (a.k.a.

requirement). Instead of limiting extension to one class

or one interface at a time, a feature extends an entire

class diagram [7]. This is what we have in Figure 2b:

diagram “C implements I” is extended to diagram “CX

implements IX”.

By reversing the arrows in Figure 2b, the mapping

relationships of a commuting diagram in Figure 2c are

exposed. The key property of a commuting diagram is

that all paths between any two nodes yield the same

result [43]. So in Figure 2c, we can develop class CX in

two ways starting with I. One way is to extend I to

IX and then IX is implemented by CX. Alternatively, we

From Software Extensions to Product Lines of Dataflow Programs 3

could have implemented I by C and then extend C to

CX.

In this paper, we apply these ideas to design SPLs
of Df Ps. Df Ps have interfaces. An interface I can be

implemented by a code component C, a relation we de-

fine as an implementing rewrite rule I → C, meaning I

can be replaced by C. Or more generally, I could be im-
plemented by a dataflow graph G, written I → G, where

G implements the behavior of I.

We also need extensions: a dataflow interface I is
extended to interface IX, written as an extension map-

ping I IX. Similarly, extension mappings can also be

defined for a code component or a dataflow graph. We

use the latter to express the changes a feature makes to

a dataflow graph.

We now make a critical observation: the rewrite
rules that we expose and use in our work encapsu-

late basic steps or modules of domain-specific D fP
construction. These rewrites are identified with the

help of domain experts: they know and implicitly use

these “identities” in their designs. Our work provides a

means for experts to (a) articulate them in a machine-

processable form and (b) use them to design—or ex-

plain the design—of domain-specific Df Ps.

Here is how we will proceed: we first explore how an

abstract dataflow graph AG (PIM)—consisting only of

interconnected interfaces—can be progressively elabo-

rated using one or more implementation rewrites to an

implementing graph IG (PSM). We denote such a map-

ping by AG →∗ IG (→∗ represents multiple behavior-

preserving derivation steps). This is our earlier work

[24].

We then show how AG maps to a more elaborate
abstract dataflow graph EAG using extensions, denoted

AG ∗ EAG, and then how the derivation of the imple-

menting graph IG can be extended to the derivation of

the graph that implements EAG, which is EIG. That is,

we show (AG →∗ IG) ∗ (EAG →∗ EIG). How deriva-
tions are extended is a primary contribution of this pa-

per.

To our readers: The meaning of “implements” and
“extends” in OOP are well-understood. Countless suc-

cessful programs have been built using these ideas with-

out a hint of formal models behind them. Our work

is the same vein: we rely on standard OOP concepts

of “implements” and “extends” to express how we re-

engineered complex legacy dataflow applications (e.g.,

EIG above) by starting with a simple description AG of
the application and developing a commuting diagram

that allows us to reconstruct EIG using fundamental

implementation and extension rewrites of the target do-

main.

The next section presents an illustrative example of

our approach. Section 6 presents real-world case stud-

ies.

3 Motivating Examples and Methodology

3.1 Refinements and Optimizations

Figure 3 shows a Df P or PIM called Server that

projects (eliminates) fields and sorts a stream of

database tuples. The tuples are displayed by WSERVER

and then are transmitted as the output of Server.

Boxes PROJECT, SORT and WSERVER are interfaces as

they do not imply any particular implementation.

Fig. 3: Initial Server Df P.

These interfaces express operations that are well-
known to domain experts. An expert also knows differ-

ent ways of implementing these interfaces, which can
be used to derive implementations of programs provid-
ing certain properties, such as efficiency or availability.

Server can be parallelized (to improve efficiency) by

replacing the PROJECT and SORT interfaces with their

parallel implementations, which a domain expert speci-
fies as rewrite rules PROJECT → parallel project and
SORT → parallel sort [24].

Figure 4 shows the SORT → parallel sort rewrite:

an interface box (SORT) is linked—using an imple-

mentation connector (dashed arrow)—to a paral-

lel implementation following a map-reduce strategy

(parallel sort) [37]. A refinement is the application

of a rewrite rule that replaces an interface by an im-
plementation. After using the aforementioned rewrite
rules to refine Server, we obtain the Df P of Figure 5.

Fig. 4: SORT → parallel sort rewrite rule.

The Df P of Figure 5, if directly mapped to code,

would be inefficient. It has two identical SPLIT boxes.

The substreams that are output by the PROJECT boxes

are merged into a single stream, which is then split to

reconstruct the substreams that were merged! This is

clearly unnecessary work. We can apply the optimiza-

tion of Figure 6 to eliminate this overhead: it replaces a

4 Rui C. Gonçalves et al.

Fig. 5: Server Df P after map-reduce refinements.

sequential composition of boxes MERGE−SPLIT with di-

rect connectors from inputs to outputs, producing the

optimized Df P of Figure 7. Again, such inefficiencies
are known to domain experts. They, in turn, write op-

timization rewrite rules to remove them.

Fig. 6: The MERGE− SPLIT optimization.

An optimization is a transformation that replaces

a subgraph G′ with another graph G that preserves the
semantics of G′, but implements G′ in a different way.

Optimization G′ → G is really a pair of transformations:
G′ is abstracted to the interface AI that it implements,

and then AI is replaced by an alternative implementa-

tion G.

Fig. 7: Optimized Server Df P.

3.2 Extensions

Let A be a dataflow interface, component, or graph. We
write F.A to denote the F extension of A.

Suppose we want to add new functionality to the

Server PIM. We want WSERVER to change the sort key

attribute at runtime. How would this change be made?
Answer: by extending the Server with feature K (short

for Key), Server K.Server, resulting in the PIM of

Figure 8.

Fig. 8: The Df P K.Server.

Methodology. Extension of a Df P is accom-

plished by a two-step procedure. Think of K as
a function G K.G that maps a graph G to

the K-extended graph K.G. In general, each el-

ement e ∈ G—where an element e is a box,

port or connector—is either mapped to an el-

ement K.e ∈ K.G or removed from K.G. Element

K.e is an extension of e: a connector may carry
more data, a box has a new port or its ports

may accept data conforming to an extended data

type.1 Occasionally K does nothing, i.e., K.e = e.

Whatever the outcome may be, an expert would

know—it is not always evident to non-experts.

For our Server example, the effects of extension

K are not difficult to deduce.
The first step is to perform the K mapping. Fig-

ure 9 shows that the only elements changed by

K are SORT and WSERVER. Box K.SORT, which K-

extends SORT, has sprouted a new input (to spec-
ify the sort key parameter), and K.WSERVER has

sprouted a new output (to specify a sort key pa-

rameter). The resulting Df P (Figure 9) is provi-

sional—it is not yet complete.

Fig. 9: Applying K to Server.

The second step completes the provisional Df P:
the new input of K.SORT needs to be supplied.

An expert would connect the new output of

K.WSERVER to the new input of K.SORT. This

yields Figure 8 and the Server K.Server ex-

tension is complete.

Now suppose we want K.WSERVER to change the list

of attributes that are projected at runtime. Another

extension accomplishes this: K.Server L.K.Server,
where L denotes feature List. This extension produces

the PIM of Figure 10.

Fig. 10: The Df P L.K.Server.

Methodology. The procedure defined above is

applied. List maps each element e ∈ K.Server

1 In object-oriented parlance, E is an extension of C iff E is
a subclass of C.

From Software Extensions to Product Lines of Dataflow Programs 5

to L.e ∈ L.K.Server. Namely, box L.PROJECT

sprouts a new input port (to specify the list of
attributes to project) and L.K.WSERVER sprouts

a new output port (to provide that list of at-

tributes). This produces the provisional Df P of

Figure 11.

Fig. 11: Applying L to K.Server.

Figure 11 is completed by connecting the

new input of L.Project to the new output

of L.K.WSERVER. This yields Figure 10, the
K.Server L.K.Server extension.

With the Key and List features, we defined three

PIMs: Server, K.Server, and L.K.Server. There is a

fourth: extend Server with just the List feature. Fig-

ure 12 depicts the different PIMs that can be built
and the extension relationships among them. Starting

from Server, we can either extend it with feature Key
(obtaining K.Server) or with feature List (obtaining

L.Server). Taking either of these PIMs, we can add the

remaining feature to obtain L.K.Server. By doing so,

we have created a tiny product line of Servers where

Server is the base product and Key and List are op-
tional features.

Server

K.Server

L.Server

L.K.Server

Fig. 12: A Server product line.

Henceforth, we assume the order in which features

are composed is irrelevant: L.K.Server = K.L.Server as

both mean Server is extended with features List and
Key. This assumption is standard in the SPL literature

where a product is identified by its set of features. Of
course, dependencies among features can exist, where

one feature requires (or disallows) another [2,6]. This

is not the case for Server; nevertheless, our work does

not preclude such constraints, as the user can provide

a feature model [17] specifying those constraints.

3.3 Rewrite Rules, Derivations and Their Extensions

We now step back from the previous sections to expose

our use of a rule base R of refinements and optimiza-

tions. Given a PIM S, we use one or more rules in R to

derive a PSM G, written S
R
−→∗ G. Further, observe that

PIM S is not unique: we could use the rules of R to
derive a PSM for any one of a large collection of PIMs.

A rule base R therefore encodes reusable steps in many

PIM →∗ PSM mappings.

Extensions fit into this universe in an interesting

way. Just as extensions elaborate Df Ps, extensions also

elaborate rule bases and derivations:

– the E extension of rule base R is another rule base
E.R;

– the E extension of derivation (S
R
−→∗ G) is

(E.S
E.R
−−→∗ E.G).

Recall Section 3.1. We started with the Server

PIM and derived its PSM. We used three rewrite

rules: SORT → parallel sort (we denote it by r1),
PROJECT → parallel project (denoted by r2), and

the ms mergesplit → ms identity optimization (de-

noted by r3). We presented the derivation Server
r1−→

Server1
r2−→ Server2

r3−→ ServerΩ where ServerΩ is

the PSM of Figure 7. The sequence of rewrites ap-

plied is r3 · r2 · r1,
2 so we can write the derivation as

Server
r3·r2·r1−−−−→ ServerΩ .

Recall Section 3.2. We extended the Server PIM

with features Key and List. Consider feature Key. We

want to derive the PSM for K.Server. We can approx-

imate this derivation by extending each rewrite rule ri
to K.ri, and applying them in order to yield the deriva-

tion K.Server
(K.r3)·(K.r2)·(K.r1)
−−−−−−−−−−−→ K.ServerΩ , where

K.ServerΩ is the PSM of K.Server.

Rule extension is a consequence of the concepts

we discussed earlier. Figure 13 illustrates (SORT →

parallel sort) (K.SORT → K.parallel sort), i.e.,

how the r1 rewrite rule is extended by the Key feature.

Methodology. Extending rewrite rules is no
different than extending Df Ps. To spell it out,

a rewrite rule L → R specifies that L can be re-

placed with R. When feature/extension K is ap-

plied, L is mapped to a provisional K.L and R is

mapped to a provisional K.R. These provisional

Df Ps are then completed by an expert to yield

the non-provisional K.L and K.R. Rule extension
follows: (L → R) (K.L → K.R).3 The same

holds for optimization rewrites.

2 In standard function composition notation, the order in
which the transformations are listed is the reverse of the order
in which they are applied.
3 Rule extensions need not be unique. Our experience to-

date is that they are, largely because the increments in DfP
functionality are sufficiently small for unique extensions to
present themselves.

6 Rui C. Gonçalves et al.

Fig. 13: Extending the SORT → parallel sort rewrite

rule.

3.4 Bringing It All Together

Figure 14 summarizes this section:

– we began with PIM Server;
– by rewriting Server using rules from a rule set R,

we derived an implementing Df P ServerΩ ;

– we extended Server with features Key and then

List to create a small product line of PIMs, namely

{Server . . . L.K.Server};
– we extended R to rule sets K.R, L.K.R, and L.R by

applying features Key and List;

– we extended the Server
R
−→∗ServerΩ derivation to

corresponding derivations of implementations of
K.Server, L.K.Server, and L.Server:

K.Server
K.R
−−→∗K.ServerΩ (3.1)

L.K.Server
L.K.R
−−−→∗L.K.ServerΩ (3.2)

L.Server
L.R
−−→∗L.ServerΩ (3.3)

Server

K.Server

L.Server

L.K.Server

Server
Ω

K.Server
Ω

L.Server
Ω

L.K.Server
Ω

K

L

L
K

Fig. 14: Extending derivations and PSMs.

Server is a simple example. In more complex Df Ps,

obtaining extended derivations may require additional

rewrite rules (not just the extended counterparts of pre-

viously used rewrites), or for previously used rewrites to

be dropped. Such changes we cannot automate—they

would have to be specified by a domain-expert. Nev-

ertheless, a considerable amount of tool support can

be provided to users and domain-experts in program

derivation, precisely because the basic pattern of ex-

tension that we use is straightforward.

3.5 Commuting Diagrams of Df P Designs

Our approach to the design and derivation of Df Ps is

visual. Figure 15 shows the commuting diagram whose
upper-left node is the Server PIM of Figure 3 and

whose lower-right node is L.K.ServerΩ of Figure 10.

This figure is digitally enlargable so that readers can
“zoom” in on a particular design nij, extension nij

ni(j+1) or refinement/optimization nij→ n(i+1)j step.

The commuting diagrams that ReFlO produces are

large, simply because systems that are being modeled

are complex, they may have many steps in their PIM-

to-PSM mappings, and they have many features.

Finally, we hinted at the possibility that feature-

extended derivations may use additional refinements or

optimizations that did not exist in the non-extended

derivation (or vice versa). This means we may have

identity transformations in the commuting diagram, so

that the before-and-after extension derivations are of
the same length, and that each vertical arrow X→Y in

the original derivation corresponds to the E-extended

arrow E.X→ E.Y in the extended derivation (and vice

versa). Identity-transformation-padded derivations are
visible in our case studies.

In the next section, we explain how these ideas were

implemented in our ReFlO tool, and then the basic

workflow for using the approach we propose. After that,
we present some steps of our derivations of two real ap-
plications using ReFlO.

4 Encoding Extensions (Higher-Order

Rewrites)

There are many ways to encode (i.e., express in a

machine-understandable notation) extensions. At the

core of ReFlO is its ability to store rewrite rules. Given

an initial rule base R, for each rule r ∈ R we maintain

a (small) product line of rules: an initial rule r and each
of its extensions. For a reasonable number of features

(say < 20), a simple way to encode the variations of a

rewrite rule is to form the union of it variants, and then

annotate each element of the result to specify for which

combinations of features it is to appear (and hence for

which combinations of features it should be discarded).

From Software Extensions to Product Lines of Dataflow Programs 7

Fig. 15: The ServerցL.K.ServerΩ commuting diagram.

This is an annotative approach to product line imple-
mentation [16].

Annotations specify how we can “project” a variant

of a rewrite rule, for a certain combination of features,

from the union of all variants of that rule. They may

even specify that a rewrite rule should disappear for

a certain combination of features. We do this for all

rewrite rules of a rule base.

Rewrite rules (and its elements) are annotated with

two attributes: a feature predicate and a feature tags

set. The feature predicate determines when a box, port,

or connector is part of a rewrite rule. The feature tags

set determines how boxes are tagged/labeled, i.e., K is

a tag for feature Key. In this section we explain how

these annotations specify a product line of rule bases,
and how they enable the projection of the rewrite rules

variants.

4.1 eXtended ReFlO Domain Models

In ReFlO, a rule base is encoded in a ReFlO Domain

Model (RDM). We defined its UML class diagram meta-

model in [24]. With annotations, we enhanced this

metamodel (see Figure 16). Now an initial rule base

and its extensions are superimposed into a single arti-

fact called an eXtended ReFlO Domain Model (XRDM),

which encodes a product line of RDMs. A projection of
an XRDM produces an RDM supporting a given set
of features. That is, whereas an RDM defines rewrite

rules supporting a fixed set of features, an XRDM is

the result of superimposing multiple RDMs, effectively

defining rewrite rules supporting multiple sets of fea-

tures.

name : String
replicated : String
doc : String
featuresPredicate: String

Element

parameters : String
featuresTags : String

Box

template : String

Interface

Algorithm

Implementation

Pattern

featuresPredicate : String

Connector

dataType : String

Port

Output

Input

1 source

1

target

*

ports *

1

source

outgoing

*

1

target

incoming

* elements

connectors *

Primitive

featureModel : String

XRDM

*
*

Fig. 16: UML class diagram metamodel.

Boxes, ports, and connectors now have a

featuresPredicate attribute. Given a subset of fea-

tures S ⊆ F and a model element with predicate

P : P(F) → {true, false} (where P denotes the power

set), P(S) is true if and only if the element is part of

the RDM when S are the enabled features. We use

a propositional formula to specify P, where its atoms
represent the features of the domain. P(S) is computed

by evaluating the propositional formula associating

true to the atoms corresponding to features in S and

associating false to the remaining.

Boxes now have another attribute, featuresTags.

It is a set of abbreviated feature names that determines

box tagging. A tag is a prefix that is added to a box’s

name to identify the variant of the box being used (e.g.,

L and K are tags of box L.K.WSERVER, specifying that this

8 Rui C. Gonçalves et al.

box is a variant of the WSERVER with features L(ist) and

K(ey)).

Example. Recall our web server example. We
can define rewrite rule WSERVER → pwserver

to specify a primitive implementation (direct

code implementation [24]) for WSERVER (see Fig-

ure 17a).

When feature Key (abbreviated as K) is applied

to this rule, a new port (OK) is added to the
WSERVER and pwserver boxes. As these ports are

present only when feature Key is enabled, they

are annotated with predicate key. Further, the

boxes now provide extra behavior, therefore we

need to add the K tag to each. The result is de-

picted in Figure 17b (red boxes show tags sets,

and blue boxes show predicates).

When feature List (abbreviated as L) is applied,

another port (OL) is added to both boxes. Again,

these ports are annotated with a predicate (in

this case, list specifies the ports are only part
of the model when feature List is enabled). The

set of tags of each box also receives an additional

tag L. The final model is depicted in Figure 17c.

(a)

key key{K}{K}

(b)

key key

{K,L}{K,L} list list

(c)
Fig. 17: Incrementally specifying a rewrite rule.

This information encodes the extensions of the rule

base and allows us to project an RDM for a specific set

of features from the XRDM.
Features may have inter-dependencies, i.e., a certain

feature may require or exclude another, which in SPLs

are typically specified by a feature model. Therefore,

the XRDM has an additional attribute, featureModel,

allowing users to specify a feature model that expresses

the valid combinations of features, capturing their de-

pendencies and incompatibilities. ReFlO uses the gram-
mar notation of [6] to specify the feature model.

4.2 Projection of an RDM from the XRDM

A new transformation is needed to map an XRDM to

an RDM with the desired features enabled. This trans-

formation takes an XRDM, and a given set of active

features, and projects the RDM for that set of features.

The projection is done by examining all model elements
and hiding (or making inactive) those elements whose
predicate is evaluated to false for the given list of fea-

tures. To simplify predicate specifications, we use im-
plicit rules that determine when an element must be
hidden regardless of the result of evaluating its predi-

cate. The idea is that when a certain element is hidden,
its dependent elements must also be hidden. For exam-
ple, when a box is hidden, all of its ports must also
be hidden. A similar reasoning may be applied in other

cases. The rules are:

– if the lhs of a rewrite rule is hidden, the rhs is

hidden;
– if a box is hidden, all of its ports are hidden;

– if a graph is hidden, so too are its internal boxes

and connectors;

– if a port is hidden, the connectors linked to that

port are hidden.

These rules greatly reduce the effort needed to spec-
ify an XRDM, as repetition of formulas is avoided. Con-

sequently, the projection algorithm we use is straight-
forward.

Part of a projection is to determine which tags are

attached to each box. Given the set S of selected fea-

tures, and given box B with tag set T, the tags of B

after the projection are T ∩ S. That is, T specifies the
features that change the behavior of B, but we are only

interested in the enabled features specified by S.

Example. Consider the rewrite rule from Fig-
ure 17c and assume S = {K}. Projection yields

Figure 18. Ports OK, that depend on feature

Key, are present. However, ports OL, that depend

on feature List, are hidden. Additionally, both

boxes are tagged with K (as {K, L} ∩ {K} = {K}).

Fig. 18: Projection of feature K from rewrite rule

WSERVER → pwserver (note the greyed out OL ports).

The projection is only allowed if the selected combi-

nation of features is valid (according to the user speci-

fied feature model).

5 Approach Workflow

Our goal is to build a knowledge base by reverse en-

gineering existing systems, a process conducted by do-
main experts (or by a developer with the support of a

From Software Extensions to Product Lines of Dataflow Programs 9

domain expert). As the knowledge base becomes larger,

it will eventually be usable for forward engineering, al-

lowing developers to automatically explore the space of

implementations for a domain of programs.

An expert starts with a simplified specification

(PIM) of a system he wants to reverse engineer—it is

simplified as some features of the target system have

been removed. He creates interfaces for required do-

main operations along with their possible implemen-

tations and optimizations, and codifies them as ReFlO

rewrite rules. Using these rules, he derives a PSM that
implements the PIM.

Next, the expert adds a feature F to the PIM to

elaborate it, and then he reviews existing rewrite rules

to F-extend them. That is, he examines each rewrite

rule, determines how it is affected by F, and adds the
new model elements and annotations needed to support

F. In the end, the expert can apply a projection to the

XRDM, to obtain the RDM with the rewrite rules sup-

porting the new feature, and repeat the derivation to

produce an F-extended PSM for the F-extended PIM.

During this process, the domain expert may realize that
completely new rewrite rules are also needed, which he
adds to the XRDM. This process is repeated by pro-

gressively adding features, until a PIM is reached that

matches the target system. The PIM-to-PSM mappings

produced along the way are extended too, yielding a

PSM that matches the target system. At this point, as-

suming the refinements, optimizations, and extensions

used are correct, the domain expert has a correct-by-

construction design of the target system.

The expert may choose different orders in which to

add features. Different orders will expose feature inter-

actions in different orders—in the end, all features and

interactions will be accounted for. But he should also

take into account the feature dependencies imposed by

the feature model. That is, if feature G depends on fea-

ture F, he must add feature F before G. The result of

evaluating a feature predicate is the same for a given set

of features, regardless of the order in which they were

added. The set of features chosen must comply with the

feature model, though the projection operation verifies

this constraint.

Although ReFlO does not guarantee the behavioral

correctness of the rewrite rules of an XRDM, it pro-

vides a safe composition [52] mechanism, which allows
experts to check whether all projections that can ob-

tained from an XRDM are syntactically correct and

whether types of interfaces and implementations are

compatible. Moreover, the interpretations mechanism

provided by ReFlO can be explored to implement more

complex validation rules. See [24] for details.

6 Case Studies

We highlight the most sophisticated dataflow applica-
tions that we reverse-engineered in this section: a crash

fault-tolerant (CFT) server called UpRight [14] and a

parallel molecular dynamics (MD) [22] simulator called

MolDyn [12,48].

As said earlier, ReFlO rewrites and extensions en-
code deep domain knowledge—knowledge that typically

is appreciated (only) by domain experts. Consequently,
we expect few readers of this paper to be experts in ei-
ther CFT or MD. Admittedly for us, only the fourth au-

thor (Riché) was an expert in CFT (he was a co-author

of UpRight) and the first author (Gonçalves) was fa-

miliar with an MD application. Without expertise, our

case studies read like a semantics-free structured evo-
lution of graphs.

Of course, this is not the case. For UpRight, Riché

built a lightweight, concurrent actor framework in

Python [45], and coded each of its different derivations

and extensions by hand. (He finished this work prior

to the completion of ReFlO.) At each step, he ran a

regression suite to ensure that all tests passed. After

each extension, more tests were included to check that

the extra functionality was correct. As for MolDyn, ex-

isting C++ code components and test suite were used

to support the translation from models to code, and to

verify code (and models) correctness [41]. That is, from
a software engineering viewpoint, our approach allowed

us to write tests to confirm that each of our design mod-
ifications were correct.

The next sections give an overview of our CFT and

MD designs and extensions.

6.1 UpRight

Figure 19a shows an SPL of four variant PIMs

of UpRight and their derivations: Synchronous CFT
(SCFT), Asynchronous CFT (ACFT), Authenticated
Synchronous CFT (ASCFT), and Authenticated Asyn-

chronous CFT (AACFT). The shaded region in Fig-

ure 19a denotes a commuting diagram that we highlight

below; the remaining commuting diagrams (of which

there are many) illustrate the same ideas of prior sec-

tions, except they are more complicated.
The full commuting diagram with SCFT PIM in the

upper-left corner and AACFTΩ in the lower-right is given

in Appendix A. For more details, see [23].

6.1.1 Highlighted Commuting Diagram

Figure 20 is an enlarged version of the highlighted com-

muting diagram. The ACFT PIM (upper left) has a set

10 Rui C. Gonçalves et al.

(a)

(b) (d)

(c)

A

A

list A.list

Fig. 20: An UpRight commuting diagram.

SCFT

ACFT

ASCFT

AACFT

SCFTΩ

R
A

A
R

ASCFTΩ

ACFTΩ

AACFTΩ

(a) (b)

Fig. 19: UpRight’s (a) SPL derivations and (b) PIM
cylinder.

of client C boxes (only two are shown, but an arbitrary

number is supported) that submit messages to a Serial
box that multiplexes messages to a recoverable virtual

server R.VS. Each message is processed by the server,

the server updates its state, and then sends its result

to a Demult box that routes the response message back

to its originating client. ACFT PIM of Figure 20a is

formed by unrolling the cylinder in Figure 19b.

The first refinement of ACFT is list; it replaces

server R.VS with a recoverable list R.L, which queues

messages and remembers its state (for purposes of re-

covery), followed by a recoverable server R.S. Box R.L

sends messages to R.S for processing (this is the R.L →

R.S connector in Figure 20b). When R.S recovers from
a failure, it requests/needs state information from R.L

(this is the R.S → R.L connector in Figure 20b).

Adding Authentication to ACFT extends it to the
AACFT PIM (Figure 20a Figure 20c). The only

box affected by Authentication is the recoverable vir-

tual server, i.e., R.VS A.R.VS.

A.list, an A-extended list rewrite, is the first re-

finement of AACFT. Messages are first validated (au-

thenticated) by box V, which discards invalid messages.

Valid messages are then sent to the list box A.R.L which

queues and forwards messages to a recoverable server

R.S. As before, when R.S is recovering from a failure, it

requests state information from the list box A.R.L.

6.1.2 Encoding Extensions

For each of the four UpRight designs in Figure 19a,

there is a unique definition of the list rewrite, namely
list, R.list, A.list, and A.R.list. Figure 21 shows

the annotations of this rewrite rule with the features A

and R that allow ReFlO to project the correct version of

the rewrite given a set F of features, where F ⊆ {R, A}.

{A,R} {R}

Recovery RecoveryAuthenticationnot Authentication

{A,R}

Fig. 21: Annotated VS → list rewrite rule.

6.2 MolDyn

Figure 22 shows an SPL with six variant PIMs of Mol-

Dyn and their derivations: the base MDCore, which

can be enhanced with features Neighbors, Blocks, and

Cells (which requires the Blocks feature). The shaded
region represents the commuting diagram (Figure 22)

that we highlight in this section. The full commuting

diagram with MDCore PIM in the upper-left corner and

CBNMDCoreΩ in the lower-right is given in Appendix B,

noting the initial derivation MDCore → MDCoreΩ is vi-

sually simpler than the final derivation CBNMDCore →
CBNMDCoreΩ . For more details, see [23].

From Software Extensions to Product Lines of Dataflow Programs 11

(a)

(b)

(c)

(d)

N

N

move_forces N.move_forces

Fig. 23: A MolDyn commuting diagram.

BNMDCoreΩ

MDCore

NMDCore

CBNMDCore

N

B

C

C

B
N

N

BNMDCore

BMDCore

CBMDCore

MDCoreΩ

BMDCoreΩ
CBNMDCoreΩ

CBMDCoreΩ

Fig. 22: MolDyn derivations.

6.2.1 Highlighted Commuting Diagram

MD simulations use computational resources to pre-

dict properties of materials [22]. Materials are mod-

eled by a set of particles (e.g., atoms or molecules)

with certain properties (e.g., position, velocity, and

force). The set of particles is initialized with properties

such as density and initial temperature. The simulation

starts by computing interactions between particles, iter-

atively updating properties, until the system stabilizes,

at which point the properties of the material can be

studied/measured.

The expensive part of MD simulation is computing

particle interactions (forces among particles), where a

naive implementation has a complexity of O(N2) where

N is the number of particles. Figure 23a shows the base

PIM we use. It contains UPDATEP box, which express

the core operation of an MD simulation, the update

of particles. The final goal of this derivation is to ob-

tain an optimized parallel implementation of MolDyn

(with support for shared memory, distributed memory,

or both). The selected commuting diagram of Figure 23

shows only the first step of this derivation, where we ex-

pose the two operations needed to update the particles:
first particles positions are updated (Move box), then

forces among particles are recomputed (FORCES box).

A common technique used in MD simulations to re-

duce the base O(N2) complexity is pre-computing and

caching the list of particles that interact with another

particle [57]; doing so improves performance. Called the

Neighbors feature, N may or may not change the be-

havior of the simulation.4 Implementing N requires an
extension of the internal boxes used by the program,

which results in the PIM NMDCore shown Figure 23c,

which is identical (sans N.UPDATEP) to Figure 23a.

To obtain the implementation for this PIM we need

to extend the move forces algorithm. The extended al-

gorithm exposes the two steps of updating particles as
before, through boxes MOVE and FORCES. However, box

FORCES is extended and now has a new input, which
receives a list of neighbors of each particle (i.e., the

particles that interact with a certain particle). More-
over, a new box (NEIGHBORS) was added to compute

this list of neighbors, using as input the set of particles
output by box MOVE. Box MOVE itself is not affected by
this extension.

4 We can “relax” the correctness criteria of the simulation
(and therefore change the behavior of the program) [57] to
improve performance.

12 Rui C. Gonçalves et al.

6.2.2 Encoding Extensions

Figure 24 shows the annotated rewrite rule UPDATEP →
move forces after specifying the Neighbors extension,

which allow ReFlO to project both rewrite rules used in

the commuting diagram of Figure 23.

{N}

NeighborsNeighbors

{N}

Fig. 24: Annotated UPDATEP → move forces rewrite

rule.

6.3 Discussion

We re-engineered the dataflow designs of UpRight and

MolDyn by starting with a simple PIM-to-PSM deriva-

tion ∆A starting with a simple PIM A0 and deriving its

PSM AΩ :

∆A = A0 →
∗ AΩ

An expert validated the PIM design, the PSM design,

and the steps (rewrites) used in derivation. We vali-

dated this work by an implementation.

We then extended the derivation by adding a fea-

ture B to the PIM, to the rewrite rules, and includ-
ing additional rules that were needed to produce the

feature-extended PSM and its derivation:

∆B = B.(A0 →
∗ AΩ) = (B.A0) →

∗ (B.AΩ) = B0 →
∗ BΩ

Again, we confirmed the correctness of the extension

via implementation. By repeating the process of adding

more features, we extended the original derivation ∆A

to a derivation∆Z whose PSM is the design of the target

system we wanted to re-engineer:

∆Z = Z0 →
∗ ZΩ

This is the process that we followed and that we rec-

ommend others to follow to re-engineer legacy dataflow

applications.
Our extensions approach is integrated with ReFlO

framework, which does not impose a particular model

of computation to our Df P, i.e., different domains may

specify different rules for how a Df P is to be trans-

lated to code and executed. The dataflow computing

model [31] is an obvious candidate and it is the one used

by UpRight. In contrast, MolDyn (and in some other

domains analyzed) the translation to code simply treats

each box as a function that must be executed with some
order constraints (and parallelism is obtained execut-
ing multiple instances of the Df P, following an single

program multiple data model [19]). When specifying the

rewrite rules, extensions or PIMs, the user should make

sure they are correct with regard to the model used to

generate code and execute the Df P.

7 Related Work

There is a strong connection between classical work on

formal program development and the approach we pro-

pose. Z [51], Event-B [1], and Abstract State Machines

(ASMs) [10] have notions of refinement and extension.

(Event-B uses different terms—horizontal refinement

and vertical refinement—for the same ideas.) Event-B

and ASMs focus on state transition representations of

programs, whereas we deal with Df Ps. Our emphasis is
not on developing proofs of program correctness, but in-

stead what it takes to encode the knowledge used/need

as rewrite rules to build complex and efficient Df Ps and

product lines of Df Ps in an MDE context.

We use extensions to explain the effects of op-
tional features in dataflow graphs, allowing us to en-

code a SPL of dataflow graphs. There are several tech-
niques in which features of SPLs can be implemented.
Some are compositional, including AHEAD [5], Fea-

tureHouse [3], Delta-Oriented Programming (DOP) of

Bettini et al. [9], and AOP [33], all of which work mainly

at code level. Other solutions have been proposed to

handle SPLs of higher-level models [40,44].

We use an annotative approach where a set of arti-
facts containing all features/variants are superimposed.

Artifacts (e.g., code, model elements) are annotated

with feature predicates to determine when these arti-

facts are visible in a particular combination of features.

Preprocessors are a primitive example [35] of a simi-

lar technique. Code with preprocessor directives can be

made more understandable by tools that color code [21]

or that extract views from it [50]. More sophisticated

solutions exist, such as XVCL [29], Spoon [42], Spot-

light [15], or CIDE [32]. However, our solution works at

a model level, not code.

Other annotative approaches also work at the model

level. Ziadi et al. [60] proposed a UML profile to specify

model variability in UML class diagrams and sequence

diagrams. Czarnecki and Antkiewicz [16] proposed a

template approach, where model elements are anno-

tated with presence conditions (similar to our feature

predicates) and meta-expressions. FeatureMapper [28]

allows the association of model elements (e.g., classes

and associations in a UML class diagram) to features.

From Software Extensions to Product Lines of Dataflow Programs 13

Instead of annotating program architectures directly

(usually too complex), we annotate model transforma-

tions (simpler) that are used to derive program imple-

mentations. This reduces the complexity of the anno-

tated models, and it also makes extensions available

when deriving other implementations, thereby making

extensions more reusable.

An appealing alternative to annotations, and closer

in spirit to compositional approaches, is work by Haber,

et al. on Delta Simulink [27]. Simulink models are com-

ponent (multi-)graphs, syntactically similar to dataflow

graphs [49]. Deltas (from DOP) are a sequence of

block add, remove, replace, and modify operations on

Simulink graphs. Deltas are used to express features

(extensions) of Simulink graphs, and is an alternative to
Czarnecki’s annotative approach. To us, graph rewrites
provide a higher-level and a more natural modeling ap-
proach when it comes to correct-by-construction pro-

gram derivation. Whether annotations or deltas are bet-

ter for encoding extensions remains an open problem for

SPL construction, in general, and not just graphs.

Our work can be used to extract an SPL from legacy
applications. RE-PLACE [8] is an alternative to reengi-

neer existing systems into SPLs. Other approaches have

been proposed with similar intent, employing refactor-

ing techniques [34,36,56].

Extracting variants from a XRDM is similar to pro-

gram slicing [59]. Slicing has been applied to models [30,

4] to reduce model complexity and make easier for de-

velopers to analyze models. These approaches are fo-

cused on the understandability of the artifacts, whereas

in our work focuses on rule variability. Nevertheless,

ReFlO projections remove elements from rewrite rules

that are not needed for a certain combination of fea-

tures, which we believe also contribute to improved

rewrite rule understandability. In [58] Wasowski pro-

poses a slice-based solution where SPLs are specified

using restrictions, that remove features from a model,

so that a variant can be obtained.

We use a dataflow notation in our work. Similar

graphical notation has been used by several other tools

such as LabVIEW [53], Simulink [49], Weaves [26], Frac-

tal [11], or StreamIt [54]. However, they focus on com-

ponent specification and construction of systems com-

posing those components. We are unaware of any sup-

port for extensions in these tools.

ReFlO supports analyses to verify whether all pro-

jections of a XRDM that can be obtained meet the

metamodel constraints. The analysis method used is

based on solutions previously proposed by Czarnecki

and Pietroszek [18] and Thaker et al. [52].

8 Conclusions

Designing program architectures always has an element
of “magic”. The term “spaghetti diagram” was coined

to express architectural diagrams that are indecipher-
able, except to their authors. How these architectures

work and why they work remains a mystery but to a

few people.

Classical formal approaches to software develop-

ment recognized this problem by elaborating designs in

an incremental manner. One starts with a simple spec-
ification. This specification is progressively elaborated
by understandable increments in functionality. When

the full specification is produced, a derivation of its

implementation is undertaken, using refinements and

optimizations.

Our work explored this classical approach from the
applied perspective of deriving complex dataflow pro-

grams (Df Ps) from an MDE perspective. Our involve-

ment stemmed from the need to reverse-engineer com-

plex legacy Df Ps [24,47]. In prior work [24], we showed

how refinement and optimization design knowledge of

Df Ps could be captured as graph transformations, so

that a complex and optimized Df P (or PSM) could be
derived from a high-level Df P (or PIM). We observed

that starting PIMs could be complicated, and the trans-

formations that refined and optimized such PIMs were

themselves complex: hard to recognize, hard to define,

and (frankly) hard to believe [46].

This paper blends ideas from classical formal work

on program design with our prior work [24,47]. We be-

gin with an elementary PIM and derive its PSM us-

ing simple, domain-specific refinements and optimiza-
tions. This set of graph rewrites defines a rule base R.

We showed how increments in program functionality,

called features, could be integrated into this universe.

A feature F extends a graph G to graph F.G through

the addition, modification, and removal of boxes and

connectors. Each graph rewrite rule L→R is extended

by feature F to an extended rule F.(L→R) = F.L→F.G.
F-extending a rule base R, which adds new rules, delete

rules, and modifies existing rules, yields an F-extended

rule base F.R.

Further, we showed that PIM
R
−→ ∗PSM derivations

(the notation meaning apply one or more rules r ∈ R

to map a PIM graph to a PSM graph), were also sub-

ject to extensions. That is, the F-extension of derivation

PIM
R
−→∗PSM was F.PIM

F.R
−−→∗F.PSM.

We explained how extensions were implemented in

the ReFlO tool; we used an annotative approach to su-

perimpose rules that were related by extension. By a

simple projection operation, we could recreate the rule

that was specific to a set of features. By doing this for

14 Rui C. Gonçalves et al.

all rules, we could recreate the rule base that was spe-

cific to a set of features.
Our approach relies on domain experts to define the

rewrite rules and extensions (that comprise the domain

knowledge). To make the approach easier for those do-

main experts, we use a declarative notation that relates

graphs providing equivalent behavior, where the expert

does not have to care about the steps that are required
to actually perform the transformations on a Df P.

The approach we propose, supported by the ReFlO

tool/framework, provides an important contribution to
encode and systematize domain knowledge that is used
by experts, and to show how and why complex archi-
tectures work in a more understandable way. ReFlO in-

cludes model-to-text capabilities, which enable the gen-
eration of runnable code from models.

Availability. The ReFlO framework with extensions

support can be downloaded at http://cs.utexas.

edu/users/schwartz/DxT/reflo/x/.

Acknowledgements We gratefully acknowledge helpful
feedback from B. Marker (U. Texas), and from the anony-
mous reviewers. Rui Gonçalves and João Sobral are funded
by ERDF – European Regional Development Fund through
the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT –
Fundação para a Ciência e a Tecnologia (Portuguese Foun-
dation for Science and Technology) within projects FCOMP-
01-0124-FEDER-010152, FCOMP-01-0124-FEDER-011413
and UID/CEC/00319/2013. Rui Gonçalves is additionally
funded by FCT grant SFRH/BD/47800/2008. We also grate-
fully acknowledge support for this work by NSF grants
CCF-0724979, CCF-1421211, and OCI-1148125.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software
Engineering. Cambridge University Press, 1st edition,
2010.

2. S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-
Oriented Software Product Lines. Springer Berlin Heidel-
berg, 2013.

3. S. Apel, C. Kästner, and C. Lengauer. Featurehouse:
Language-independent, automated software composition.
In ICSE ’09: Proceeding of the 31st International Confer-
ence on Software Engineering, pages 221–231, 2009.

4. J. H. Bae, K. Lee, and H. S. Chae. Modularization of the
UML metamodel using model slicing. In ITNG ’08: Pro-
ceedings of the 5th International Conference on Information
Technology: New Generations, pages 1253–1254, 2008.

5. D. Batory. Feature-oriented programming and the
AHEAD tool suite. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering, pages
702–703, 2004.

6. D. Batory. Feature models, grammars, and propositional
formulas. In SPLC ’05: Proceedings of the 9th international
conference on Software Product Lines, pages 7–20, 2005.

7. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software En-
gineering, 30(6):355–371, 2004.

8. J. Bayer, J.-F. Girard, M. Würthner, J.-M. DeBaud, and
M. Apel. Transitioning legacy assets to a product line
architecture. ACM SIGSOFT Software Engineering Notes,
24(6):446–463, 1999.

9. L. Bettini, F. Damiani, and I. Schaefer. Compositional
type checking of delta-oriented software product lines.
Acta Informatica, 50(2):77–122, 2013.

10. E. Borger and R. F. Stark. Abstract State Machines:
A Method for High-Level System Design and Analysis.
Springer-Verlag, 2003.

11. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stefani. The fractal component model and its support
in java: Experiences with auto-adaptive and reconfig-
urable systems. Software—Practice & Experience, 36(11-
12):1257–1284, 2006.

12. J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and
R. A. Davey. A benchmark suite for high performance
java. Concurrency: Practice and Experience, 12(6):81–88,
1999.

13. C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. Flumejava:
Easy, efficient data-parallel pipelines. In PLDI ’10:
Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
363–375, 2010.

14. A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. L. Riché. UpRight cluster services. In
SOSP ’09: Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles, pages 277–290, 2009.

15. D. Coppit, R. R. Painter, and M. Revelle. Spotlight: A
prototype tool for software plans. In ICSE ’07: Proceedings

of the 29th international conference on Software Engineer-
ing, pages 754–757, 2007.

16. K. Czarnecki and M. Antkiewicz. Mapping features to
models: a template approach based on superimposed vari-
ants. In GPCE ’05: Proceedings of the 4th international
conference on Generative Programming and Component En-

gineering, pages 422–437, 2005.
17. K. Czarnecki and U. W. Eisenecker. Generative

programming: methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co., 2000.

18. K. Czarnecki and K. Pietroszek. Verifying feature-
based model templates against well-formedness OCL con-
straints. In GPCE ’06: Proceedings of the 5th international
conference on Generative programming and component en-

gineering, pages 211–220, 2006.
19. F. Darema. The SPMD model: Past, present and fu-

ture. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 2131. Springer Berlin
Heidelberg, 2001.

20. D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The gamma
database machine project. IEEE Transactions on Knowl-
edge and Data Engineering, 2(1):44–62, 1990.

21. J. Feigenspan, M. Papendieck, C. Kästner, M. Frisch, and
R. Dachselt. Featurecommander: Colorful #ifdef world.
In SPLC ’11: Proceedings of the 15th International Software

Product Line Conference, pages 48:1–48:2, 2011.
22. D. Frenkel and B. Smit. Understanding molecular simu-

lation: from algorithms to applications. Academic press,
2001.

23. R. C. Gonçalves. Parallel Programming by Transformation.
PhD thesis, Universidades do Minho, Aveiro e Porto,
Braga, 2015.

24. R. C. Gonçalves, D. Batory, and J. L. Sobral. ReFlO: An
interactive tool for pipe-and-filter domain specification

http://cs.utexas.edu/users/schwartz/DxT/reflo/x/
http://cs.utexas.edu/users/schwartz/DxT/reflo/x/

From Software Extensions to Product Lines of Dataflow Programs 15

and program generation. Software and Systems Modeling,
2014.

25. Google Cloud Dataflow. https://cloud.google.com/

dataflow/.
26. M. M. Gorlick and R. R. Razouk. Using weaves for soft-

ware construction and analysis. In ICSE ’91: Proceedings
of the 13th international conference on Software engineer-

ing, pages 23–34, 1991.
27. A. Haber, C. Kolassa, P. Manhart, P. M. S. Nazari,

B. Rumpe, and I. Schaefer. First-class variability mod-
eling in matlab/simulink. In VaMoS ’13: Proceedings of

the 7th International Workshop on Variability Modelling of
Software-intensive Systems, pages 4:1–4:8, 2013.

28. F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMap-
per: mapping features to models. In ICSE Companion ’08:
Companion of the 30th international conference on Software
engineering, pages 943–944, 2008.

29. S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. XVCL:
XML-based variant configuration language. In ICSE ’03:
Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 810–811, 2003.

30. H. Kagdi, J. I. Maletic, and A. Sutton. Context-free slic-
ing of UML class models. In ICSM ’05: Proceedings of

the 21st IEEE International Conference on Software Main-
tenance, pages 635–638, 2005.

31. G. Kahn. The semantics of a simple language for parallel
programming. In Information Processing ’74: Proceedings
of the IFIP Congress, pages 471–475, 1974.

32. C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE ’08: Proceedings of
the 30th international conference on Software engineering,
pages 311–320, 2008.

33. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP ’97: Proceedings of the 11th Eu-
ropean Conference on Object-Oriented Programming, pages
220–242, 1997.

34. R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A
case study in refactoring a legacy component for reuse in
a product line. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pages
369–378, 2005.

35. J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In ICSE ’10:

Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering, pages 105–114, 2010.

36. J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In ICSE ’06: Proceed-
ings of the 28th international conference on Software engi-
neering, pages 112–121, 2006.

37. Mapreduce. http://en.wikipedia.org/wiki/MapReduce.
38. B. Marker, D. Batory, and R. A. van de Geijn. Under-

standing performance stairs: Elucidating heuristics. In
ASE ’14: Automated Software Engineering, 2014.

39. B. Marker, J. Poulson, D. Batory, and R. van de Geijn.
Designing linear algebra algorithms by transformation:
Mechanizing the expert developer. In High Perfor-
mance Computing for Computational Science—VECPAR
2012, volume 7851 of Lecture Notes in Computer Science,
pages 362–378. Springer Berlin Heidelberg, 2013.

40. A. McNeile and N. Simons. State machines as mixins.
Journal of Object Technology, 2(6):85–101, 2003.

41. Md product line. http://alba.di.uminho.pt/research/

md-product-line/.
42. R. Pawlak. Spoon: Compile-time annotation processing

for middleware. IEEE Distributed Systems Online, 7(11),
2006.

43. B. Pierce. Basic Category Theory for Computer Scientists.
MIT Press, 1991.

44. C. Prehofer. Plug-and-play composition of features and
feature interactions with statechart diagrams. Software
and Systems Modeling, 3(3):221–234, 2004.

45. Python code generator. http://code.google.com/p/

stepwise-ft/.
46. T. L. Riché, D. Batory, R. C. Gonçalves, and B. Marker.

Architecture design by transformation. Technical Report
TR-10-39, The University of Texas at Austin, Depart-
ment of Computer Sciences, 2010.

47. T. L. Riché, R. C. Gonçalves, B. Marker, and D. Batory.
Pushouts in software architecture design. In GPCE ’12:
Proceedings of the 11th ACM international conference on
Generative programming and component engineering, pages
84–92, 2012.

48. R. A. Silva and J. L. Sobral. Optimizing molecular dy-
namics simulations with product lines. In VaMoS ’11:
Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems, pages 151–157, 2011.

49. Simulink - Simulation and Model-Based Design. http:

//www.mathworks.com/products/simulink/.
50. N. Singh, C. Gibbs, and Y. Coady. C-CLR: a tool for nav-

igating highly configurable system software. In ACP4IS
’07: Proceedings of the 6th workshop on Aspects, compo-
nents, and patterns for infrastructure software, 2007.

51. J. M. Spivey. The Z Notation: A Reference Manual. Pren-
tice Hall, 1989.

52. S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In GPCE ’07: Proceedings of
the 6th international conference on Generative programming
and component engineering, pages 95–104, 2007.

53. The LabVIEW Environment. http://www.ni.com/

labview/.
54. W. Thies. Language and Compiler Support for Stream Pro-

grams. PhD thesis, MIT, 2008.
55. M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin.

On the use of higher-order model transformations. In
ECMDA-FA ’09: Proceedings of the 5th European Confer-

ence on Model Driven Architecture - Foundations and Ap-

plications, pages 18–33, 2009.
56. S. Trujillo, D. Batory, and O. Diaz. Feature refactor-

ing a multi-representation program into a product line.
In GPCE ’06: Proceedings of the 5th international confer-
ence on Generative programming and component engineer-

ing, pages 191–200, 2006.
57. L. Verlet. Computer ”experiments” on classical fluids. i.

thermodynamical properties of lennard-jones molecules.
Physical Review, 159(1):98–103, 1967.

58. A. Wasowski. Automatic generation of program families
by model restrictions. In Software Product Lines, volume
3154 of Lecture Notes in Computer Science, pages 73–89.
Springer Berlin Heidelberg, 2004.

59. M. Weiser. Program slicing. In ICSE ’81: Proceedings
of the 5th international conference on Software engineering,
pages 439–449, 1981.

60. T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Towards a UML
profile for software product lines. In Software Product-
Family Engineering, volume 3014 of Lecture Notes in Com-

puter Science, pages 129–139. Springer Berlin Heidelberg,
2004.

https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
http://en.wikipedia.org/wiki/MapReduce
http://alba.di.uminho.pt/research/md-product-line/
http://alba.di.uminho.pt/research/md-product-line/
http://code.google.com/p/stepwise-ft/
http://code.google.com/p/stepwise-ft/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.ni.com/labview/
http://www.ni.com/labview/

16 Rui C. Gonçalves et al.

A UpRight Commuting Diagrams

F
ig
.
25
:
T
h
e

S
C
F
T
ց

A
A
C
F
T
Ω
co
m
m
u
ti
n
g
d
ia
gr
am

fo
cu
si
n
g
th
e
D
f
P
s
of

th
e
d
er
iv
a
ti
o
n
s.

From Software Extensions to Product Lines of Dataflow Programs 17

F
ig
.
26
:
T
h
e

S
C
F
T
ց

A
A
C
F
T
Ω
co
m
m
u
ti
n
g
d
ia
gr
am

fo
cu
si
n
g
th
e
re
w
ri
te

ru
le
s
u
se
d
.

18 Rui C. Gonçalves et al.

B MolDyn Commuting Diagrams

Fig. 27: The MDCoreցCBNMDCoreΩ commuting diagram focusing the Df Ps of the derivations.

From Software Extensions to Product Lines of Dataflow Programs 19

Fig. 28: The MDCoreցCBNMDCoreΩ commuting diagram focusing the rewrite rules used.

	Introduction
	Background
	Motivating Examples and Methodology
	Encoding Extensions (Higher-Order Rewrites)
	Approach Workflow
	Case Studies
	Related Work
	Conclusions
	UpRight Commuting Diagrams
	MolDyn Commuting Diagrams

