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iii



iv



Abstract

“Why does my program crash?”—This ever recurring question drives the devel-
oper both when trying to reconstruct a failure that happened in the field and
during the analysis and debugging of the test case that captures the failure.

This is the question this thesis attempts to answer. For that I will present
two approaches which, when combined, start off with only a dump of the memory
at the moment of the crash (a core dump) and eventually give a full explanation
of the failure in terms of the important runtime features of the program such as
critical branches, state predicates or any other execution aspect that is deemed
helpful for understanding the underlying problem.

The first approach (called RECORE) takes a core dump of a crash and by
means of search-based test case generation comes up with a small, self-contained
and easy to understand unit test that is similar to the test as it is attached to
a bug report and reproduces the failure. This test case can server as a starting
point for analysis and manual debugging. Our evaluation shows that in five out
of seven real cases, the resulting test captures the essence of the failure.

But this failing test case can also serve as the starting point for the second
approach (called BUGEX). BUGEX is a universal debugging framework that
applies the scientific method and can be implemented for arbitrary runtime fea-
tures (called facts). First it observes those facts during the execution of the
failing test case. Using state-of-the-art statistical debugging, these facts are
then correlated to the failure, forming a hypothesis. Then it performs exper-
iments: it generates additional executions to challenge these facts and from
these additional observations refines the hypothesis. The result is a correlation
of critical execution aspects to the failure with unprecedented accuracy and
instantaneously point the developer to the problem. This general debugging
framework can be implemented for any runtime aspects; for evaluation pur-
poses I implemented it for branches and state predicates. The evaluation shows
that in six out of seven real cases, the resulting facts pinpoint the failure.

Both approaches are independent form one another and each automates a
tedious and error prone task. When being combined, they automate a large
part of the debugging process, where the remaining manual task—fixing the
defect—can never be fully automated.
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Zusammenfassung

“Warum stürzt mein Programm ab?” – Diese ewig wiederkehrende Frage be-
schäftigt den Entwickler, sowohl beim Versuch den Fehler so zu rekonstruieren
wie er beim Benutzer auftrat, als auch bei der Analyse und beim Debuggen des
automatisierten Testfalles der den Fehler auslöst.

Und dies ist auch die Frage, die diese Thesis zu beantworten versucht. Dazu
präsentiere ich zwei Ansätze, die, wenn man sie kombiniert, als Eingabe lediglich
einen Speicherabzug (“core dump”) im Augenblick des Absturzes haben, und als
Endergebnis eine Erklärung des Absturzes in Form von wichtigen Ausführungs-
eigenschaften des Programmes liefert (wie z.B. Zweige, Zustandsprädikate oder
jedes andere Merkmal der Programmausführung das für das Fehlerverständnis
hilfreich sein könnte).

Der erste Ansatz (namens RECORE) nimmt einen Speicherabzug, der beim
Absturz erstellt wurde, und generiert mittels suchbasierter Testfallerzeugung
einen kleinen, leicht verständlichen und in sich abgeschlossenen Testfall, der
denen die den Fehlerberichten (“bug reports”) beigefügt sind ähnelt und den
Fehler reproduziert. Dieser Testfall kann als Ausgangspunkt der Analyse und
zum manuellem Debuggen dienen. Unsere Evaluation zeigt, dass in fünf von
sieben Fällen der erzeugte Testfall den Absturz erfolgreich nachstellt.

Dieser fehlschlagende Testfall kann aber auch als Ausgangspunkt führ den
zweiten Ansatz (namens BUGEX) dienen. BUGEX ist ein universelles Rahmen-
werk, das die wissenschaftliche Methode verwendet und für beliebige Ausführ-
ungsmerkmale des Programmes implementiert werden kann. Zuerst wird der
fehlschlagende Testfall bezüglich dieser Merkmale beobachtet, d.h. die Merk-
male werden aufgezeichnet. Dann werden aktuelle Methoden des Statistischen
Debugging verwendet, um die Merkmale mit dem Testfall zu korrelieren, also
um eine Hypothese zu bilden. Anschließend werden Experimente ausgeführt:
BUGEX generiert zusätzliche Programmausführungen um diese Korrelation zu
prüfen und die Hypothese zu verfeinern. Das Ergebnis ist eine Korrelation
zwischen kritischen Ausführungseigenschaften und dem Fehlschlagen des Pro-
grammes mit beispielloser Genauigkeit. Die entsprechenden Merkmale zeigen
dem Entwickler unmittelbar das Problem auf. Dieses allgemeine Rahmenwerk
kann für beliebige Ausführungsmerkmale implementiert werden. Zu Evalua-
tionszwecken habe ich es für Programmzweige und Zustandsprädikate imple-
mentiert. Die Evaluation zeigt, dass in sechs von sieben realen Fällen die resul-
tierenden Merkmale den Fehler genau bestimmen.

Beide Ansatätze sind unabhängig von einander und jeder automatisiert eine
mühsame und fehleranfällige Aufgabe. Wenn man sie kombiniert automatisieren
sie einen großteil des Debugging Prozesses. Die verbleibende manuelle Aufgabe
– den zu Fehler beheben – kann nie vollständig automatisiert werden.
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Chapter 1

Introduction

If debugging is the process of removing bugs,
then programming must be the process of putting them in.

— Edsger W. Dijkstra

Programs are made by humans and humans make mistakes. A mistake in
the code of a program is called a defect or less formal a “bug”. The process of
removing or fixing bugs is called debugging. Debugging is a tedious task that
accounts for about 50% of the effort spent on developing and maintaining a
piece of software [65]. Thus any technique that can enhance or automate parts
of that process is of high practical value and helps to cut both time and cost in
the overall development process.

Many defects are not found by reviewing the source code, but because of
the observable erroneous program behavior they cause, which is called a failure.
Some failures present themselves as crashes, that is they cause the program to
terminate abruptly or to be terminated by the runtime system; often discarding
valuable user input (which can amount to hours of work) and leaving resources
(e.g., files and connections) in inconsistent state.

Every nontrivial program operates on some sort of internal data, called the
execution state. Often, a defect corrupts that execution state, causing an in-
fection. A failure only can occur if the program subsequently operates on the
corrupted data. This leads to a distance between the time the defect is exe-
cuted and the state is infected, and the time the failure is observable. And it
also means that, even if the defect is triggered, it does not always need to show.

All defects are differences between the expected and the actual program be-
havior. They can only be identified relative to an explicit or implicit specifica-
tion. Generally, defects are neither self-evident nor independent; by examining
the program in isolation, defects cannot be detected. Defects could also be
called surprises as in “without specification, there are no bugs—only surprises”
(Brian Kernighan).

1



2 CHAPTER 1. INTRODUCTION

However, there is an implicit and absolute specification that applies to all
programs. A program should be able to respond to all possible conditions. If
it is unable to proceed because it is in an erroneous state, it should terminate
gracefully with an appropriate error message, and, if possible, save user input
and leave used resources in a consistent state. Under no circumstances is it ac-
ceptable for a program to crash. A defect relative to this absolute specification,
i.e., a defect that results in a crash of the program, is a self-evident defect. Of
course whether a defect results in a crash depends on the ability of the runtime
system to detect certain erroneous states (e.g., division by zero, illegal memory
access, . . . ). So the same defect may on one runtime system result in a crash
and on a different runtime system—or even a different configuration of the same
runtime system (e.g., if assertions are disabled)—go undetected.

Software specification is a vast field in its own right, with which this thesis
is not concerned. Thus in the following, only self-evident defects are considered;
and every time the term failure is used, it denotes a crash. However, since such
defects are only a specialization of relative defects, it should be straightforward
to adapt the approaches if a general specification of the program is available.

Debugging is a formalizable process consisting of the following subtasks:

Registering the failure In order to be able to manage the failure, it must
first be registered. This can happen automatically, e.g., if a program crashes
on an end user’s machine, the user is often requested to send an automatically
created crash report to the program manufacturer via the push of a button.
Usually, this includes a memory dump or core dump1. Systems in which
the failure can be registered and managed (e.g., documented, assigned and
tracked) are called bug tracking systems.

Figure 1.1: Request to send an automatically created crash report

Verifying and reproducing the failure Before the failure can be acted on,
its existence must first be verified by reproducing it (see Section 1.3). This
manual reproduction is then turned into an automated reproduction by means
of a simplified automated test case. Having an automated test case is impor-
tant, because if the failure cannot be replayed at will, it cannot be verified
that the fix actually causes the failure to disappear. An automated test case
also helps the developer to investigate the failure in the next step.

1 The name stems from magnetic core memory, the principal form of random access memory
from the 1950s to the 1970s.
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Understanding the failure For the developer to make an informed decision
of how they want to fix the defect, they first have to understand the causation
chain which eventually leads to the failure. And since they really start with
the failure and not with the defect, they have to backtrack the infection that
causes the failure to the defect that causes the infection.

Correcting the defect In general, any given defect has unlimited ways of
being fixed, including a complete rewrite of the program from scratch. Any
change that breaks the causation chain that eventually triggers the failure is a
valid fix. Which fix the developer settles for is a complex decision, depending
on many different factors. And since the fix defines the location of the defect,
it can never be fully automatically localized. However, once the fix is applied,
the automated test case becomes important to verify that the fix actually
made the failure disappear.

Automated debugging is the scientific field that tries to automate parts of the
debugging process. In this thesis, two approaches are presented which represent
two major contributions to the field of automated debugging:

Generating a Test Case The task to create an automated test case that
replays the failure is both important and can be very difficult. Which is the
reason why it is common for open source projects to require an automated self-
contained test case for the very act of registering a bug. The difficulty stems
from the fact that, in order to create that test case, one usually has to already
have an idea of how the failure comes into existence. And to get this idea is very
difficult if one cannot replay the failure at will or at least has some knowledge
about the circumstances in which the failure occurred.

RECORE (Chapter 3) takes a core dump as often supplied from a user and
automatically generates an automated and self-contained test case that triggers
the failure, effectively automating the complete task. It does so by generating
random test cases and using a genetic algorithm to evolve the test cases towards
triggering the same failure and producing a similar core dump. To greatly speed
up the process, it reuses values found in the original core dump.

Explaining a Failure As already pointed out, the task to localize the defect
can never by fully automated, because in general, for each failure, there are un-
limited possibilities to fix it. However, a tool can help a developer to understand
how a failure comes to be, by highlighting differences between runs that lead to
the failure and similar runs that will not fail, and by pointing to critical aspects
and characteristics of how the data interacts with different parts of the code.

BUGEX (Section 4.2) implements a general debugging framework, by em-
ploying the scientific method. It observes different runtime aspects (called facts)
of the failing run. It then uses state-of-the-art statistical debugging methods
to rank these facts, creating a hypothesis about which facts correlate with the
failure. Then it performs experiments: it generates additional executions to
challenge these facts and from these additional observations refines the hypoth-
esis (i.e., the correlation of the facts to the failure). The result is a correlation
of facts to the failure with unprecedented precision. The whole framework can
be applied to any runtime information one deems of interest; to demonstrate its
power, it was implemented for branches and state predicates.



4 CHAPTER 1. INTRODUCTION

1.1 An Ongoing Example

As an ongoing example, that will be used throughout this thesis, consider the
failure that is reproduced by the Java test case shown in Figure 1.3. This
test case stems from the bug report 2487417 of the JodaTime date and time
library [62]. It produces a certain date (October 18, 2009) and transforms this
date to a time interval that represents the 24 hours of that date in the Brazilian
time zone. Figure 1.2 shows the description of the failure as found in the bug
report.

I am using LocalDate.toInterval() to compute ‘all day’ intervals as specified:
“Converts this object to an Interval representing the whole day.”

This works perfectly with one exception: on daylight cut days in a Brazilian
timezone. LocalDate.toInterval() specification is “Converts this object to an
Interval representing the whole day”. While “00:00:00” does not exist, the
all-day interval does exist I think.

Figure 1.2: Bug report for JodaTime bug 2487417

1 public class JodaTest extends TestCase {

2 public void testBrazil () {

3 DateTimeZone dtz =

4 DateTimeZone.forID("America/Sao_Paulo");

5 LocalDate date = new LocalDate (2009 , 10, 18);

6 Interval interval = date.toInterval(dtz);

7 }

8 }

Figure 1.3: Test case that reproduces JodaTime bug 2487417: toInterval()
fails when processing October 18, 2009, Brazil time

The reason why this test fails is that October 18, 2009 is the last day of
daylight savings time (DST) in Brazil, a condition that is improperly handled
by JodaTime due to an inconsistent mapping between UTC time (the inter-
nal intermediate format) and local time. It basically boils down to the fact
that JodaTime tries to create a time interval that starts at midnight, but an
internal consistency check recognizes that on that date, there was no midnight—
and raises an IllegalArgumentException with the message and stack trace as
shown in Figure 1.4.

1.2 When are Two Failures Equivalent?

An important question when dealing with failures is: When are two failures
identical or equivalent? The obvious answer is: when they are triggered by the
same defect. But as pointed out earlier, the defect in turn is defined by its
fix. And since there are infinitely many fixes for any given failure, so are there
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java.lang.IllegalArgumentException:

Illegal instant due to time zone offset transition:

2009-10-18T03:00:00.000

at org.joda.time.chrono.ZonedChronology.localToUTC

(ZonedChronology.java:143)

at org.joda.time.chrono.ZonedChronology.getDateTimeMillis

(ZonedChronology.java:119)

at org.joda.time.....AssembledChronology.getDateTimeMillis

(AssembledChronology.java:133)

at org.joda.time.base.BaseDateTime.<init>

(BaseDateTime.java:254)

at org.joda.time.DateMidnight.<init>

(DateMidnight.java:268)

at org.joda.time.LocalDate.toDateMidnight

(LocalDate.java:740)

at org.joda.time.LocalDate.toInterval

(LocalDate.java:847)

Figure 1.4: Stack trace of JodaTime bug 2487417

infinitely many equally valid identifications of the defect. In addition to that, the
defect is an intermediate result of the debugging task. And since humans make
mistakes also when debugging, we need an equivalent failure to prove that the
defect actually was correctly identified and fixed. So how can one know whether
two failures are equivalent before debugging them and finding the defect that
causes them, in spite of the circular dependency?

Ultimately, there is no way to decide this. In theory, the only time one can
be sure two failures are equivalent is if every aspect of the program executions
are completely equivalent. Since a program is but a mathematical mapping of
inputs to outputs, all it takes is to record the inputs to reproduce the output.
However, there are many aspects of input [126]:

User Interaction This is what first comes to mind when talking about inputs:
the input from the user in its many possible forms. And this is also the easiest
input to track and store. However, if stored for debugging, this may raise
privacy issues.

Data In many different forms, data is stored in files and databases. This input
is still relatively easy to track and store. However, in addition to privacy
issues, the sheer amount of data can be a problem.

Time Reproducing the exact time a program was started is already quite a
challenge, but still feasible.

Randomness For some programs (e.g. games and cryptographic applications)
nondeterminism is part of the design. In that case it suffices to capture the
seed of the pseudorandom number generator. But there are many more ways
how randomness is introduced into a program. For instance, hash values in
Java are calculated from the memory addresses that the objects in question
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reside in—which depend on so many factors that they are next to impossi-
ble to faithfully reproduce. And this is just one example of the many ways
unintended randomness finds its way into programs.

Schedules Execution schedules of multiple threads in a program and multiple
instances (processes) of the same program are also hard to reproduce, as they
are defined by the runtime or operating system and are usually outside of the
control or even the perception of the developer.

Operation Environment This includes the operating system, the specific ar-
chitecture, the file structure, other programs installed on the system, and
every third party library and system function that is used by the program.
In quintessence it is already hard to create the exact same environment on a
different computer of the same model and impossible to do this on a computer
of a different model.

Physics If one was able to faithfully reproduce all other aspects of an execution,
this is the last barrier, where finally practical reality forces its way into the
theoretical virtuality that a computer program constitutes. Simple physical
deviations may cause deviations and errors in the program and are truly
impossible to exactly reproduce.

So in practice, it is simply infeasible to reproduce every aspect of a program
execution. And in addition to that, it is of no practical value. Because not the
failure is in the center of the focus, but the defect. So one should settle for
a heuristic that approximates the fact that two failures are equivalent if they
are caused by the same defect. An easy to use heuristic that showed to work
reasonably well and is therefore widely used in practice is to treat two failures
as equivalent if the same exception was raised from the same location in the
program (as indicated by line number of source code).

So for the failure with the example stack trace as given in Figure 1.4, this
would mean any other failure is equivalent to it, if the raised exception is a
java.lang.IllegalArgumentException with the same message (“Illegal in-
stant due to time zone offset transition: 2009-10-18T03:00:00.000”) and if the
location it was raised at is the org.joda.time.chrono.ZonedChronology class
and the line number is 143 (which is in the localToUTC() method). Note that
the rest of the stack trace is not considered in this heuristic, as the same defect
might be triggered with different call stacks.

1.3 Reproducing a Failure

When a program fails in the field, the developer who wants to debug the issue
must first be able to reproduce the problem by raising an equivalent failure (as
discussed in Section 1.2). Being able to reproduce a failure locally is important
for diagnostic purposes, because developers can then inspect arbitrary aspects
of the failing execution to locate the failure cause. If the problem cannot be
reproduced, though, one can never know whether the fix is successful: Only if
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the failure goes away after the fix has been applied does the developer know
that she effectively found the failure cause.

The stack trace, which is the default output in Java in case of an error,
suffices in practice to decide if two failures are equivalent, as it contains both
the exception and the location in the code where the exception was raised (as
discussed in Section 1.2). However, the stack trace does not suffice to trigger
the same failure, as it does not contain any information of what input or method
sequence lead to reaching the particular location in the code.

To be able to reproduce the failure, one needs to record (at least some)
input of the program. But as was already shown in Section 1.2, the problem in
practice is that recording inputs incurs time and memory overhead, and neither
developers nor users may be willing to spend resources on a diagnostic feature
that (in the best of cases) will never be used.

Once a failure has occurred, though, such diagnostic overhead no longer
matters. A common practice on modern operating systems is to produce a core
dump—a persistent snapshot of the stack and heap memory at the moment
of the failure (see Figure 1.1). Such a core dump can be easily transferred to
a developer, who can then load it into an interactive debugger and inspect it
post-mortem to understand how the failure came to be.

Such a core dump, however, just reports the final state, not the history.
Assuming one finds an illegal value in some variable: How did that value come
to be? The input that caused the failure may long have been overwritten by
later input: What was it that caused the problem in the first place? With a core
dump, you are a detective faced with a corpse—and you have to reconstruct all
the events that lead to it.

So for the failure as given in Section 1.1, this means that the core dump
contains the offending time zone offset transition. Other values, such as the
DateTimeZoneID are stored in the respective objects as local variables and are
also part of the core dump. However, intermediate values that are needed to
create the infected state, such as the concrete date or a certain method sequence
are likely to be lost. So with just a stack trace (as given in Figure 1.4) a
developer will have to invest some effort to create a simple test case as shown
in Figure 1.3—if they succeed at all.

1.4 Understanding a Failure

“Why does my program crash?”—This ever recurring question of software de-
bugging drives the developer during the analysis of the failure. As discussed
earlier, a program can be fixed in infinite many different ways. Several heuris-
tics have been shown to reasonably well identify simple defects similar to how
developers do so. However, complex defects are impossible to automatically
identify; this can only be left to human judgment.

But what we can do is empower the developer to make an informed decision,
by helping them understand the failure. Manual debugging is driven by exper-
iments, test runs that narrow down failure causes by systematically confirming
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or excluding individual factors. To fully comprehend a failure, one may need to
consider many different aspects such as the range of the input parameters, the
program’s structure and its runtime behavior. These explain different aspects of
the failure and help the developer understand and eventually fix the underlying
defect.

For instance, in order to understand the failure that is described in Sec-
tion 1.1, the developer might ask questions such as “What is special about
Brazil as a time zone in regard to that particular date?” and “Why does this
make my program crash?” If a developer wants to write a fix for the underlying
defect or even only assess it, they have to investigate the code and do some man-
ual debugging to understand how the failure comes into existence. And since
this three lines long test case invokes 367 methods and executes 1,465 lines of
code (ignoring Java system libraries), they might have a hard time doing so.

The state of the art in automated debugging focuses on statistical approaches
to defect localization [2, 44, 64, 75, 76, 77, 78]. These techniques effectively rank
the lines of code according to their likelihood of containing the defect. Given a
sufficiently high number of executions, one can expect a statistical approach to
narrow down the search space to less than 5% of the code. While these numbers
are impressive, the result is still not necessarily helpful for the programmer, as
5% of the code may still encompass thousands of lines of code. The evaluation
of those approaches usually assumes an “ideal user” [99], who immediately rec-
ognizes the defect on sight. This convenient assumption allows for an easy and
objective evaluation. But this assumption is also very questionable [94]: After
some time has passed, developers usually do not understand their own code, let
alone someone else’s. If only the problematic lines of code are presented without
explanation or context, developers will not recognize the defect. Additionally,
as recent research has shown, developers are unwilling to proceed through long
lists of unrelated suspicious locations, with small chances of spotting the de-
fect [94]. And even if the code is almost correct and the fix is simple, without
understanding the failure developers cannot write the fix.

And additional to that, statistical debugging relies on the strong assumption
that test suites include large numbers of test cases, which is unfortunately rarely
the case in practice. And even if so, these test cases are usually optimized for
coverage, which means that they try to execute as much of the code as possible
at least once. Statistical debugging on the other hand would benefit from having
a small part of the code being executed extensively, to generate as much relevant
and diverse input to the calculation of the correlation as possible

In contrast, little effort has been spent to help developers understand a
failure. And for an obvious reason: the evaluation depends on human feedback
and thus is much more laborious and error prone. Yet this is a much better
indicator of the overall goal of developer productivity.

The fix for the example from Section 1.1 involves an API change with depre-
cation of several methods and classes, and the development of new classes and
methods to replace them. For such cases most approaches to defect localization
do not even fail well—they are not designed to detect when the fix involves more
than a single line of code.
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1.5 Publications

This dissertation builds on the following papers (in reverse chronological order):

Reconstructing Core Dumps - ICST 2013
by Jeremias Rößler, Andreas Zeller, Gordon Fraser, Cristian Zamfir and
George Candea.
ICST 2013: Proceedings of the 2013 International Conference on Software
Testing, Verification and Validation, March 2013

Isolating Failure Causes through Test Case Generation - ISSTA 2012
by Jeremias Rößler, Gordon Fraser, Andreas Zeller, Alessandro Orso.
ISSTA 2012: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, July 2012.

How Helpful Are Automated Debugging Tools? - USER 2012
by Jeremias Rößler.
USER 2012: Proceedings of the first Workshop on User evaluation for Soft-
ware Engineering Researchers, June 2012.

Understanding Failures Through Facts - ESEC/FSE 2011
by Jeremias Rößler.
ESEC/FSE 2011: Proceedings of the 8th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, September 2011.

When does my program fail? - CSTVA 2011
by Jeremias Rößler, Alessandro Orso, Andreas Zeller.
CSTVA 2011: Proceedings of the 3rd Workshop on Constraints in Software
Testing, Verification, and Analysis, March 2011.

All experiments and experimental setups presented were designed and con-
ducted by the author of this thesis. However, the author was supervised and
reused existing tools and techniques. Therefore, most of the papers that this
dissertation builds on had additional authors. Referring to the team that con-
tributed to the work of which this thesis is part of, the personal pronoun “we”
rather than “I” is used throughout the thesis.

1.6 Thesis Structure

The remainder of this thesis is structured as follows: In Chapter 2, we give a
broad overview over similar and related approaches and introduce some basic
methods and techniques that our approach builds upon. In Chapter 3 we in-
troduce RECORE, a technique that, starting only from a core dump, employs a
genetic algorithm to generate a unit test that reconstructs the failure. In Chap-
ter 4 we present our efforts to help a developer understand the failure at hand.
First we illustrate an initial attempt to solve the problem (Section 4.1), and then
proceed to BUGEX (Section 4.2), a refined technique that can be understood as
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a universal framework to explain a failure in terms of arbitrary runtime aspects.
In Section 4.3.2 we give a short outline on how started to evaluate BUGEX with
a user study. We finish the thesis with conclusions and future work (Chapter 5),
which contains a scheme for a large scale evaluation and a general benchmark
for debugging tools.

It should be noted, that the work the individual chapters base upon, was
performed in different chronological order than the order of the chapters sug-
gests. But we preferred to order the chapters according to the debugging pro-
cess, rather than to the mostly arbitrary sequence in which the research was
conducted. As can be seen in Section 1.5, we started with trying to help devel-
opers understand failures (Section 4.1). To overcome the limitations of our first
approach, we started all over again and eventually came up with a different ap-
proach we called BUGEX (Section 4.2). In order to correctly evaluate BUGEX,
we prepared a user study (Section 4.3) and a large scale automated evaluation
(Section 5.2.1).



Chapter 2

Background

If I have seen further it is by standing on the shoulders of giants.

— Isaac Newton

This work builds on understanding and reusing research and work of pre-
ceding thinkers and really would not have been possible without. We rely on
the state-of-the-art of many existing fields and specialities and employ different
existing techniques by combining them in new ways or applying them to new
areas.

In the following, we will illustrate some basic state-of-the-art techniques
that this work is based on, and present some similar and related leading edge
approaches, that have yet to be challenged and refined by a broader body of
research.

2.1 Automated Test Case Generation

Both RECORE and BUGEX heavily rely on execution generation techniques.
In practice, test cases usually are executions of a program that assert some
sort of result (i.e., check whether the program conforms to a specification).
However, if no specification is available, it is difficult to classify the execution
result of generated test cases as failing or passing. This is the well-known oracle
problem [115].

One possibility is to generate test cases without explicit oracles, partly re-
lying on the runtime system to detect more severe problems. When doing so,
there is no difference between test cases and program executions. Therefore, in
the following, we will use the term test case generation synonymous to execution
generation.

Automated test case generation has made significant progress in the recent
past, making it possible to derive test inputs that in many cases can reach

11
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large parts of the code. A straightforward and often used approach is to simply
generate these test inputs randomly and thus is called random testing (e.g.,
Randoop [92]). This is computationally cheap and large numbers of tests can be
produced in a short time. As random tests are unlikely to reach parts of the code
that require the traversal of complex predicates, more systematic approaches
have been presented.

Symbolic execution [67] is a technique that analyses the program by tracking
symbolic rather than actual values and explores the complete execution space.
However, for most real-life programs the execution space is infinite and its com-
plete exploration infeasible. Symbolic execution suffers from the problem of
state explosion [111].

Dynamic symbolic execution (DSE, e.g., DART [38], Klee [15]) tries to cir-
cumvent this problem by collecting, during a concrete execution e, path con-
straints that encode the subdomain of inputs that will follow the same program
path as e. By systematically negating individual clauses in these path condi-
tions, it iteratively expands to additional executions, adding more information
and increasing the precision in the process. One can theoretically explore all
possible paths, however, this also allows to abort at any stage and still get
some results. But since the execution space is only partly explored, DSE is
not complete. For instance it generates a set of constraints on the input that
could possibly be further reduced; thus it does not produce the weakest pre-
condition [25]. In return the approach scales much better and is applicable
to programs of any size. DSE has been integrated in popular tools, such as
Pex [110] and Sage [39].

An alternative approach is to cast the test generation problem as a search
problem (search-based testing, SBST) and use efficient meta-heuristic search
algorithms to produce solutions, that is, test cases [86]. This has been shown
to be particularly useful if individual test cases are not just primitive input
values to a function, but rather complex sequences of method calls. One main
advantage of search-based testing is that it is very easy to adapt it to new testing
objectives (such as reconstructing core dumps), and tests can be optimized
towards different functional and non-functional properties [86].

One of the most popular search algorithms applied in SBST is a Genetic Al-
gorithm (see Section 2.2), where a population of candidate solutions is evolved
using operators that intend to imitate natural evolutionary processes. A fitness
function determines how close a candidate solution is to the optimization target,
and the fitter an individual is, the more likely it is used during reproduction,
which is based on selection, crossover and mutation. For example, the recent
EvoSuite prototype [32] evolves test suites towards satisfying a coverage crite-
rion using a genetic algorithm and is applicable to any Java library that requires
no user input. Alternatively, EvoSuite optimizes individual test cases towards
satisfying an individual goal. A test case is a sequence of statements (e.g., con-
structor and method calls, primitive value assignments, field assignments, array
assignments), and mutation modifies a sequence by deleting, adding, and replac-
ing statements. For more details about the search operators we refer to Fraser
and colleagues [34]. A promising avenue of research in this direction considers
combinations of the individual techniques [52, 82].
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So far, there has been surprisingly little work leveraging test case generation
for debugging purposes—unless one qualifies delta debugging (see Section 2.5.2)
as a test case generator. Baudry and colleagues [11] suggest to improve test
suites for defect localization by adding mutated tests; they specifically aim for
diversity in defect-diagnosing distinguishing statements. Artzi et al. [7] do not
assume the presence of an existing test suite, but rather generate tests from
scratch that aim for diversity in the attributes relevant for statistical debug-
ging, such as statements covered, branches taken, or function return values.
Both approaches generate general test suites to facilitate arbitrary debugging
tasks and have been shown to be effective at that. In contrast, BUGEX gen-
erates tests to provide a precise diagnosis for a single given failure and follows
an experimental approach that uses feedback from test outcomes to guide test
generation. Because BUGEX generates and executes tests for a specific debug-
ging problem, it might overall generate many more tests than these alternative
techniques. However, this additional cost is offset by the ability to specifically
isolate very precise failure causes.

2.2 Genetic Algorithms

As explained in Section 2.1, both RECORE and BUGEX are based on EvoSuite

to generate test cases. Since EvoSuite implements a genetic algorithm, we
slightly expand on that class of search-based algorithms. These fundamentals
are illustrated following Russell and Norvig [105].

In the following, we are concerned with finding the solution to an arbitrary
optimization problem. The search space of a problem is the solution space as
defined by the set of all possible candidate solutions. If the search space is too
large to be explored systematically (e.g., if it is infinite/continuous), local search
algorithms were shown to produce “good enough” solutions in reasonable time.
They maintain only a single current state (rather than e.g. a search path) and
thus operate with a constant amount of memory, regardless of the size of the
search space. In general, local search algorithms move only to neighboring states
of the current state (hence the term “local”).

The shape of the search space (called state space landscape) is defined by an
objective function. Such a state space landscape has a “location” (defined by
the state) and an “elevation” or objective value (defined by the value of the state
according to the objective function). Depending on whether the problem is cast
as an maximization or minimization problem, the aim is either to find the lowest
valley (a global minimum) or the highest peak (a global maximum). Since these
two problems can easily be converted from one to the other, in the following we
will only consider maximization problems. Often, such landscapes also contain
local maxima (a peak that is higher than each of its neighboring states, but lower
than the global maximum) and plateaux (areas where the objective function is
flat). An example of such a state space landscape is given in Figure 2.1. Note
that in practice, one often has multiple optimization parameters, rendering the
search space as a multidimensional landscape.

A hill-climbing search is simply a loop that moves to neighboring states in
the direction of increasing value (that is, uphill) and terminates when it reaches
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Figure 2.1: Example of a one-dimensional state space landscape as defined by
an objective function (following Russell and Norvig [105])

a peak. This simple greedy algorithm often makes rapid initial progress but gets
stuck on local maxima (instead of global maxima) or plateaux (where it lacks
“guidance” in which direction to proceed).

To circumvent this, stochastic hill climbing chooses at random from several
possible uphill moves (i.e. if the landscape is multidimensional). In case of
many (e.g. thousands) of neighboring states or successors, one can implement
stochastic hill climbing as first-choice hill climbing by generating successors
randomly until one is generated that is better than the current state.

If the successor can also be worse than the current state, this is called random
walk. A purely random walk is highly inefficient, but has better chances of not
getting stuck at local maxima. Simulated annealing (named after the annealing
process in metallurgy), also accepts a worse successor by a certain probability
that decreases over time. Random-restart hill climbing conducts a series of
hill-climbing searches, starting from randomly generated initial states.

Instead of a single current state, the local beam search algorithm keeps track
of k states. At each step, it generates all successors of all k states, but keeps
only the k best successors of the complete list. Although this may initially seem
like running k random-restart hill-climbing algorithms in parallel, the difference
is that it quickly abandons unfruitful searches, concentrating resources on where
most progress is being made. Local beam search can suffer from a reduction of
diversity among the k states (e.g. if a single state has more than k successor
states which are superior to any other successor state), concentrating the states
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in a small region of the state space and making it little more then an expensive
version of hill climbing. Stochastic beam search (analogous to stochastic hill
climbing) tries to circumvent this problem by choosing k successors at random
with the probability being an increasing function of the objective value.

When calling the successors “offspring” and their objective value “fitness”,
stochastic beam search resembles an evolutionary process of asexual reproduc-
tion and natural selection. A genetic algorithm or GA makes this a sexual
reproduction by combining two parent states or individuals instead of modify-
ing a single state. This combination is called crossover and highly dependent on
the problem domain. For instance, if the individuals are sequences of method
calls, a crossover could mean that they are cut at a random crossover point and
the two different halves are combined (as is implemented in EvoSuite).

Depending on the diversity of the parents, crossover can produce individuals
that are quite different from either parent. The population is often more diverse
in the beginning, so crossover (like simulated annealing) makes the algorithm
take large steps in the search space early in the process and smaller steps later
when individuals become more similar. Crossover also bears the advantage
that it can combine different parts of individuals that evolved independently
and perform useful functions, thus raising the level of granularity at which
the search operates. Eventually, as in stochastic beam search, all individuals
are also modified or mutated by a certain probability. The next generation of
the population is then chosen from the newly generated ones, according to the
objective function or fitness function. As was pointed out above, this fitness
function defines the search space landscape and thus is highly important for the
effectiveness of the algorithm. For instance if the fitness function renders the
search landscape flat, the evolutionary algorithm degrades into simple random
search.

Of course, genetic algorithms are a crude simplification of the complex real-
world evolutionary process. From the many differences, the most important
is probably that the natural genes themselves encode parts of the mechanisms
of the biological processes (e.g., mate selection, crossover and mutation pro-
cesses and probabilities, . . . ) as well as the mechanisms by which the genes are
translated into an organism. So in nature, the individuals as well as the search
algorithm itself are improved.

2.3 Record and Replay

As was detailed in Section 1.3, before a developer can debug a failure, they
must first be able to reproduce it on their local machine. Most approaches to
reproducing failures rely on record/replay : The idea is to record events first,
and to replay them later. This works well for low-bandwidth event sources;
recording a user’s input on a GUI, for instance, is unlikely to have a perceptible
impact on performance.

As larger amounts of data are recorded, overhead becomes significant. At
the system level, record/replay systems such as ReVirt [27], PRES [93] and
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ReSpec [73]) and hardware and/or compiler assisted systems (e.g., Capo [89],
CoreDet [12]) support efficient recording of multi-core, shared-memory-intensive
programs. However, these systems incur high runtime overhead due to recording
or require specialized hardware that is not widely available. For data centers,
for instance, making up for a 50% throughput drop requires provisioning twice
as many machines. The additional storage required for recording also matters:
record/replay systems [4] for datacenter applications report significant log sizes
even after applying aggressive logging optimizations.

For general-purpose software, record/replay has been mainly explored in the
context of automated debugging. ADDA [18] records events at the level of C
standard library and file operation functions. Jinsi [14] records the interac-
tion between individual objects in terms of methods called and objects passed.
Such recorded information is great for debugging runs in the lab, as automated
debugging tools can manipulate the event stream to isolate failure causes; the
Jinsi tool, for instance, was evaluated to narrow down the defect search space
to 0.22% of the code. The large overhead of such systems, however, limits data
recording to the lab.

If one is willing to suffer execution overhead, one can record crucial infor-
mation required to reproduce the error. The BUGREDUX framework [60] can
collect execution data in the field and (like RECORE) use test case generation
to reconstruct the failure. In its evaluation, the authors found stack traces col-
lected during execution to provide the greatest benefit compared to the overhead
in collecting the data. Fitnex [119] combines elements of both techniques: It
is a fitness-based search strategy used to guide the Pex [110] symbolic execu-
tion engine toward a certain goal (e.g., an uncovered line of code). The fitness
function uses the predicates that appear in branch instructions to estimate how
close an execution path is to a particular test target. However, unlike RECORE,
Fitnex does not use any of the information in the core dump to evaluate fitness.
Likewise, SherLog [120] uses clues from existing application logs to reconstruct
the path to a failure using static analysis. Subsequent enhancements of Sher-
Log [122, 121] improve the ability to reproduce failures by using additional
recording (and additional runtime overhead).

A little collected information can go a long way. The RECRASH tool [8]
records executions by recording parts of the program state at each method
entry—namely those objects that are reachable via direct references. When the
program crashes, it thus allows the developer to observe a run in several states
before the actual crash. Even just recording these references results in a 13%–
64% performance overhead. However, it allows the programmer to examine the
last few steps before the failure. If the failure-inducing state was created outside
of the last stack trace, however, RECRASH will only show that feeding this state
caused the crash, but give no indication on how the state came to be.

As stated before, RECORE aims at zero overhead, which sets it apart from
all such record/replay systems. Like BUGREDUX, its focus is on not only re-
producing the failure, but reconstructing it—that is, to devise a self-contained
sequence of events that reproduce the failure. Unlike record/replay, however,
we aim at avoiding all overhead at runtime.
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2.4 Execution Synthesis

The development of RECORE was mainly inspired by recent work on execution
synthesis. Execution synthesis [123] is a technique that automatically repro-
duces bugs in C/C++ programs starting from a bug report, without doing any
recording while the software is running in production.

Execution synthesis uses the core dump to extract the program failure con-
dition and the stack trace (but not the heap). It combines static analysis,
symbolic execution [67, 15] and thread schedule synthesis to find an execution
that matches the stack trace and the failure in the core dump. This combination
of analyses reduces the search space of possible executions. The dynamic search
of execution synthesis is based on Klee [15]: it uses context-sensitive proximity
heuristic to select the executions that are more likely to reproduce the failure.
Once it finds a path that reproduces the failure, it uses Klee to compute the
concrete program inputs required to reproduce the failure.

The main challenge of execution synthesis is reducing the search space. This
is especially problematic for deep execution paths that generate hard-to-solve
constraints. In such cases, execution synthesis will take longer to reproduce a
failure or timeout.

RECORE goes beyond execution synthesis in a number of ways. First, it is
more general: While execution synthesis only uses the final stack trace, RECORE

also relies on method arguments and targets—and can be easily extended to
arbitrary mid-execution events or states. Second, by using a search-based ap-
proach to reconstructing the core dump, it can produce partial solutions—that
is, test cases that reconstruct as much of the failure as possible, but which
need not satisfy all constraints imposed by a constraint-based approach such
as execution synthesis. On the other hand, execution synthesis is applicable
to multi-threaded programs and can deduce inputs that would be hard to find
through evolutionary search. In the long run, we expect test case generation
(and thus failure reconstruction) to integrate evolutionary algorithms with con-
straint solvers to form a greater whole.

2.5 Defect Localization

Defect localization is concerned with automatically identifying defects in the
source code. As it lies at the heart of automated debugging; this is a broad and
diversified field.

A general problem is that, as discussed earlier, there are infinitely many
ways to fix any given defect. So in the general case, automatically localizing a
defect is futile. However, when applying some heuristics (e.g., that code changes
should be minimal) or under certain assumptions (e.g., that the code is “almost”
correct), current defect localization approaches can amazingly accurately pin-
point problems in the code. There are different approaches to reach that goal,
some of which try to work in a fully automated fashion and some of which try
to help the developer.
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Agrawal and colleagues [3] created a tool termed χslice that produces dices
(set difference of dynamic slices) to localize defects. Renieris and Reiss [99]
try to localize the fault by comparing the coverage spectra of a failing run to
its “nearest” passing run (according to their distance metric). Pytlik and col-
leagues [96] do preliminary work with two types of simple variable invariants.
Given a counterexample trace of a model checker, Groce’s Explain tool [42] cre-
ates a passing run with minimal distance and extracts a specialized dynamic
slice. Dallmeier and colleagues [22] use method call sequences to identify defec-
tive classes. Qi and colleagues [97] use the path conditions of a correct and a
faulty version of a program to generate an additional execution path and present
differences as possible locations of the defect. The Deputo tool of Abreu and
colleagues [1] combines a spectrum-based approach with model-based diagnosis.

2.5.1 Statistical Debugging

Statistical debugging techniques are a family of techniques that identify poten-
tially faulty code by observing the characteristics of a large number of failing
and passing program executions. Intuitively, entities that are exercised mostly
by failing executions are more likely to be faulty than entities that are exer-
cised mostly by passing executions. The first statistical debugging approach,
Tarantula, uses statement coverage information to assign suspiciousness values
to statements and rank them accordingly [64]. Liblit and colleagues extended
Tarantula by defining a more general approach that focuses on predicate values
instead of statements [75, 76]. Chilimbi and colleagues [17] use path profiles in-
stead. Since then, a large number of statistical debugging approaches have been
presented in the literature (e.g. [2, 44, 77, 78]). These approaches differ from
one another in the type of entities they consider (e.g., statements, predicates,
data values) and in the type of statistical analysis performed on the information
collected for such entities.

Our BUGEX approach employs statistical debugging techniques to calculate
the correlation between individual facts and the failure. Specifically, it makes
use of the approach of Abreu and colleagues [2]: Every fact is treated as an
independent component of the system. A diagnosis dk and an observation obs
are sets of such components. Specifically, an observation is a set of compo-
nents that participated in a certain execution—either a passing or a failing one.
The components in a diagnosis represent possible causes for the failure, and
thus the diagnosis has a certain probability to explain a set of (both failing
and passing) observations. The ranking is calculated as the sum of the condi-
tional probability—according to Bayes’ theorem—of the diagnosis dk given the
observation obs, for all such observations:

P (dk|obs) =
P (obs|dk)

P (obs)
× P (dk)

Since P (obs) is a normalizing denominator that is identical for all probabili-
ties, it does not have to be computed directly. The A-priori probability P ({j})
that an individual component j is faulty usually depends on code complexity,
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design, and other parameters. However, since determining this A-priori proba-
bility is a complex problem in itself, it is simply assumed that each component
has the same A-priori probability of p = 0.1 of being faulty. The probability
that a diagnosis dk is correct without considering any observations, in a system
with M components is therefore given by the following formula:

P (dk) = p|dk| × (1− p)M−|dk|

The probability of making an observation obs given a diagnosis dk, in most
cases depends on a goodness factor g(dk) ∈ [0; 1]. This goodness factor considers
the possibility that a faulty component may also exhibit correct behavior and
may therefore also have participated in the generation of correct results. The
goodness factor is simply the sum of the number of failing executions divided by
the sum of the number of all executions in which the component participated.
The probability to make an observation obs given a diagnosis dk is therefore
calculated using the following formula:

P (obs|dk) =















0 if dk ∧ obs ⇒ ⊥
1 if dk ⇒ obs
g(dk)

t else if run passed
1− g(dk)

t else if run failed

In the formula, t is the number of faulty components involved in the execution
according to dk. Using the above approach, BUGEX calculates the probability
that a given diagnosis is correct.

The approach of Abreu and colleagues [2] as described above computes min-
imal diagnoses to rank and thus is also well-suited for situations with multiple
defects. However, the calculation of minimal diagnoses as minimal hitting sets
is an NP-complete problem [98] and thus the use of the deterministic approach
is prohibitive. Better performing approximations [1] generated diagnoses that
did not work well for us. But where Abreu and colleagues were interested in
locating defects, we want to explain them. So we have to question the underly-
ing assumption that we can exclude all other but minimal diagnoses—and think
about situations where multiple branches are together relevant for a failure (e.g.,
because they encode an or-condition).

A main issues with statistical debugging techniques is that they require a
large number of test cases to work well. Given the right heuristics, a small
number of test cases can be sufficient to narrow down the potential culprits
to, say, 5–10% of the code [118], but this can still be hundreds of unrelated
code lines. To pinpoint a bug to a handful of lines, one may need hundreds or
thousands of additional test cases, which unfortunately are rarely available in
practice. Even if an extensive test suite were to exist, the tests in it might not
have the right characteristics (e.g., they might not have enough discriminating
power). In most practical cases, in fact, the starting point of a debugging session
is a single failing test case.

BUGEX needs only a single failing test to operate: starting from a failing run,
BUGEX systematically generates both failing and passing tests whose executions
are used to confirm or refute possible correlations between observed facts and
the failure at hand. In addition, BUGEX can steer the test generation so as to
target interesting facts and further accentuate differences.
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2.5.2 Experimental Debugging

The second line of automated debugging techniques is characterized by their
experimental approach. Rather than assuming a set of executions, these tech-
niques generate additional executions whose outcome guides the systematic iso-
lation of failure causes. The first representative of these techniques is delta
debugging, an approach starting with only one failing and one passing run and
isolating minimal failure-inducing differences in inputs [127], code changes [124],
or program states [125]. The most recent work in the field minimizes object in-
teraction [14], to a test case encompassing a mere 0.2% of the source code.
Most related to our work is the concept of predicate switching, an approach that
flips branch outcomes [129] during execution in order to identify defect-related
branches.

As they operate on a potentially unlimited number of executions, experimen-
tal approaches can narrow down failure causes with high precision. However,
they manipulate executions in a way that may be unsound and may thus raise
infeasibility issues. Such infeasibility may in turn compromise diagnoses and
make it harder to understand the results when they involve state or branch
manipulation.

BUGEX is inherently experimental in nature, as it systematically generates
test cases to isolate failure causes and uses the outcome of previous tests to
generate new ones. BUGEX therefore also assumes the presence of an oracle—
that is, an automated means to distinguish passing from failing runs. This can
be as simple as a single assertion or even no oracle at all in case of program
crashes. However, in contrast to techniques such as delta debugging or predicate
switching, it is sound, and the executions it generates and uses for its diagnosis
are always feasible.

2.6 Program Understanding

Before the developer can conceive a fix, they have to understand the problem.
However, the concrete form of this process mainly depends on the developers
previous knowledge of the system. The whole scientific field of program un-
derstanding is concerned with this process, but many works assume that the
programmer has no previous knowledge of the system. For our work we assume
that gaining contextual knowledge of the design and purpose of the system are
preconditions, without which the understanding of the actual problem cannot
take place. But even a programer who has perfect understanding of the design of
the system and its intended functionality, may still have problems understanding
where the difference between intended and actual behavior arises from. How-
ever, when it comes to specialized maintenance tasks, theories on large scale
program comprehension are still in their infancy [112].

Brooks [13] presumes that the general programming process consists of con-
structing mappings from a problem domain, possibly through several interme-
diate domains, into the programming domain. Thus comprehending an existing
program involves reconstructing part or all of these mappings. Furthermore, he
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assumes that this reconstruction process is driven by the creation, confirmation,
and refinement of hypotheses. Which is exactly what BUGEX does.

The main goal of BUGEX is to help programmers understand how failures
come to be. BUGEX presents different facts about the execution to the user.
The intuition of these facts is comparable to the facts LaToza and colleagues [72]
observed when monitoring developers as they tried to understand foreign code.
This notion is mirrored in other contexts as “spectra”, “features” or “execution
profiles”. Harrold and colleagues [47] give a very good overview and classification
of the different possible types of program spectra. Santelices and colleagues [106]
find that for a set of lightweight fault-localization techniques, a combination
of different types of program spectra (such as we use) outperforms individual
approaches.

The main problem of approaches that aim to foster program understanding is
that helpfulness is not a measurable quantity, so it is not directly and objectively
verifiable whether the approach meets its goal. To verify such an approach, one
has to conduct human studies, which tend to be time-consuming, laborious and
error-prone. Perhaps this is one of the reasons, why this goal has received so
little attention in the past.

Most automated debugging techniques discussed so far focus on getting good
quantitative results in predicting defect locations and are often evaluated using
unrealistic benchmarks (see Section 2.8). However, they provide no explanation
or context for why a given statement is ranked as suspicious. These techniques
simply assume perfect bug understanding, that is, that simply examining a faulty
statement in isolation is enough for a developer to detect, understand, and fix
the corresponding bug. Unfortunately, perfect bug understanding rarely occurs
in practice, as developers need additional information to recognize and correct
bugs [94].

Only a few approaches explicitly try to help the developer understand a
failure. Tarantula, for instance, visualizes test information and highlights sus-
picious code [64], but provides no further explanation. The cause-effect chains
and cause transitions of Zeller [125] and Cleve and Zeller [19] explain a failure
in terms of how variable values cause each other through a program execution,
but ignore other important aspects. Zhang et al. [128] generate comments for
a given failing test case by changing variable values of the test and associating
these values with the execution outcome. They then generalize over these val-
ues using a rules based invariant detection engine. In contrast, BUGEX allows
to correlate arbitrary runtime facts with the failure, including branches taken
(implying the statements executed) or variables taking specific values. The
probabilistic program dependence graphs (PPDG) from Baah and colleagues [9]
can also be used to comprehend a fault, but since it bases on intraprocedural
program dependence graphs, it does not work across functions. Rapid, by Hsu
and colleagues [49] use a string matching algorithm to identify common seg-
ments in the traces of failing executions. Context-Aware Statistical Debugging
by Jang and Su [59] combines statistical debugging, clustering, and control-flow
analysis to identify relevant control flow paths that may contain bug locations.

Dialog-oriented approaches also explicitly support failure understanding.
Whyline is a tool from Ko and colleagues [69] that allows developers to ask



22 CHAPTER 2. BACKGROUND

questions about the visual output of a program based on a recorded execution.
The tool by Hao and colleagues [45] suggests breakpoints to the developer for
an interactive localization of the defect. BUGEX could also be used in such an
interactive setting. However, our evaluation results suggest that its precision is
high enough to render further interaction unnecessary.

2.7 User Studies

The common evaluation scheme [99] used to rank automated debugging tech-
niques, bases on some assumptions that a recent user study by Parnin and
Orso [94] showed several issues with.

1. The evaluation assumes that the developer will proceed linearly through long
lists of unrelated suspicious locations. However, this contrasts the findings
of the user study, in which successful developers jump through such lists,
and only developers that were unable to fix the defect proceeded in a linear
fashion.

2. Success is measured in the percentage of the code of the whole program, the
developer would have to inspect before reaching the defect in the ranking.
In contrast to that, the user study showed that, after a certain number of
statements inspected, the user’s confidence in the results ceased and the users
stopped using the tool. That number was absolute and not related to the size
of the program under investigation.

3. The evaluation assumes perfect bug understanding, which means showing the
defective line of code in isolation suffices for the developer to recognize the
defect. Again, the user study showed that developers need some explanation
or context to understand the defect before being able to recognize it in the
code.

Also, Parnin and Orso [94] found something else during their user study:
developers fix the same bug in different locations. However, while the authors
simply assumed that some developers chose the “wrong” place to fix the bug,
we think reality is much more intricate: we assume that there is no “right”
location of the bug in the first place. Instead, the bug can be fixed equally well
in multiple locations. The whole notion of the location of the bug also stems
from a flaw in the evaluation scheme: in all evaluations that we are aware of
(both user studies and quantitative evaluations), either a given correct program
is changed to introduce (seed) bugs, then the “correct” fix is the one that reverts
the change. Or the “correct” fix is the solution to the bug as recorded in a bug
database, which we deem merely an accidental selection of the infinitely many
possible fixes. And even more important, we assume that, often enough, the fix
of a bug consists of more than a single line of code and can even be distributed
over several locations in the code. This takes the whole notion of the “location
of a bug” ad absurdum.

Instead of tying to locate the bug, we should aim to help the developer
understand the bug—which simultaneously addresses all problems mentioned
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above. However, as bug understanding is not a directly measurable quantity,
this makes the evaluation problematic.

To the best of our knowledge, only a few studies with actual users of au-
tomated debugging tools were conducted. Weiser [114] performed a study on
slicing with 21 programmers and programs whose sizes ranged from 25 to 150
lines of code. Francel and Rugaber [31] performed a study with 17 students,
also on slicing. Kusumoto and colleagues [71] also performed a study on slicing
with 6 students and programs of around 400 lines of code. Sherwood and Mur-
phy [107] performed an experiment on a debugging tool that shows differential
coverage between execution traces with six subjects and real-world medium-
sized programs. Ko and Myers [69] performed an extensive empirical study
evaluating their Whyline tool with 20 subjects and a program of 150 thousand
lines of code.

2.8 Bug Benchmarks

In order to properly evaluate automated debugging techniques as discussed
above, one needs to apply them to well documented defects [109, 87] that are
already fixed, so that results can be verified. In order to allow to draw con-
clusions as general as possible about the performance and applicability of the
approach, an evaluation should consider as many different real defects from as
many different real projects as possible. The general intention is that the defects
form a representative set of the different types of defects and that the projects
come with a context (e.g., size, number of tests, . . . ) as realistic as possible.
However, present bug benchmarks often use very small or specific projects with
an unrealistic amount of test cases, and still lack in the amount and variety of
defects—often they even contain seeded (intentionally inserted) defects.

Most of the approaches discussed in Section 2.5.1 are evaluated on the
Siemens Suite [46, 50]. The Siemens suite consists of seven C/C++ applica-
tions that also have been ported to Java for benchmarking purposes. The
Siemens suite is unrealistic due to the small size of its programs, manually
crafted one-line defects, and the excessive size of its test suite, which favors
statistical approaches. Most of the defects are semantic and some defect types
(e.g., such as concurrency defects) are missing entirely. And since the code was
ported from C, none of the applications are object-oriented.

The PEST benchmark [80] suffers from similar short-comings as the Siemens
suite but contains only two subjects. BugBench [79] contains defects from sev-
enteen open source C/C++ projects. The contained defects are mostly memory-
related—only a small amount of defects are related to concurrency or semantics.
The Software-Artifact Infrastructure Repository (SIR) [26] contains a growing
number of C/C++ and Java programs. Most applications are relatively small
and most bugs are artificial [23]. iBugs[24] contains 390 real defects from three
open-source Java projects. Although this are many defects, the small number
of projects may impair its generalizability.
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In summary, none of the presented bug benchmarks manages to fulfill the
requirements of an evaluation of automated debugging tools applicable to object-
oriented Java code, in that they do not offer a representative collection of real
defects from a multitude of different projects of varying size and purpose. This
is one of the reasons, why our evaluation was conducted with only seven defects.
However, as detailed in Section 5.2.1, we aim to remedy these issues.



Chapter 3

From Failure to Test

Parts of the contents of this chapter have been published in Rößler et al. [104].

The basic idea of RECORE is to leverage search-based test generation (Sec-
tion 2.1), to produce a test case that triggers as similar a failure as possible.
As discussed in Section 1.2, reproducing the identical failure is impossible and
anyway of no practical value. So here, “similarity” means similarity of the stack
trace (the active methods) as well as similarity of the memory dump (local vari-
ables and method arguments) at the moment of the failure. Guided by such a
dump (also called “core dump”), our RECORE test case generator searches for
a series of events that precisely reconstructs the failure from primitive data. We
can thus reconstruct the entire history of the failure-inducing state:

1. RECORE1 is the first technique to use search-based test generation to re-
construct failures from saved core dumps. Being search-based, it can also
produce partial solutions. Furthermore, the approach can be easily extended
towards reproducing other recorded events; to have search-based test gen-
eration reconstruct failures, one only needs a fitness function and a seeder
leveraging post-mortem data. Both features are in contrast to constraint-
based approaches such as execution synthesis [123].

2. RECORE2 goes beyond existing record/replay tools such as RECRASH [8] or
BUGREDUX [60] in that the approach requires zero runtime overhead.3 That
is, production code can run unchanged, with same time and space require-
ments; RECORE kicks in only at the moment of failure to produce a core
dump.

3. Finally, rather than unserializing data and objects from the core dump, as RE-

CRASH does, RECORE reconstructs all objects from primitives. The resulting
test case thus shows a history of how the failing data comes to be.

1“RECORE” stands for “Reconstructing core dumps”.
2“RECORE” is also one bit beyond “RECORD” (as in record/replay).
3This assumes regular binaries. For Java programs and other interpreted languages, we

assume support of the virtual machine to produce core dumps, as discussed in Section 3.2.1.

25
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3.1 An Example

To exemplify how RECORE works, we will use the JodaTime Brazilian Date
example introduced in Section 1.1. RECORE uses an adapted version of Evo-
Suite [34] to search for a test that triggers as similar a failure as possible, with
the criteria as defined in Section 1.2. However, to create a guidance for the
evolutionary algorithm that RECORE bases on, we consider additional factors
when calculating how close we are to our goal (blended into the fitness function
as detailed in Section 3.2.2).

First, we analyze the stack trace (as given in Figure 1.4) and the memory
dump. In our evaluation (Section 3.3), we started off with existing manually
created test cases, so we simply assumed that the stack trace is relevant in its
entirety. However, in a real world environment, we would likely receive stack
traces which contain additional layers (e.g. GUI) of code that is irrelevant for
the developer. In that case, the developer would have to configure on which
layer of the stack trace they would want the unit test to base on.

Then we create some initial test cases. EvoSuite does this by randomly
choosing a method from the project to call. We adapted this approach such that
with decreasing probability, RECORE choses a method from the stack trace, any
method of an object from the stack trace, or a method of an object on the core
dump.

We will use an ongoing example to illustrate how such an evolution could
look like. However, it is important to note that all decisions shown during the
evolution of this example will only occur with a certain probability, as this is a
random-based approach and not a deductive one.

For one of the many initial test cases created, RECORE could choos the
toInterval method of the org.joda.time.LocalDate class (because it is a
method on the stack trace as shown in Figure 1.4). Then RECORE tries to
create an object to call the method upon. So it tries to create an object of the
type org.joda.time.LocalDate. This class happens to have 11 constructors,
2 public static methods that indirectly create an instance, and there are 3 other
methods within the project that return a org.joda.time.LocalDate object.

For the sake of this example, we assume RECORE happens to choose the
constructor which takes a single parameter of type long. Now RECORE needs
to come up with a value for this parameter. We tweaked EvoSuite such that
with decreasing probability, it either chooses primitive values as found on the
memory dump from within an object of the class for which the value will be a
parameter, a value from the memory dump or a random value. With a certain
probability, RECORE could chose that parameter to be 0. To be able to call
that method, RECORE also needs to come up with a parameter of the type
org.joda.time.DateTimeZone. With a certain probability, RECORE could de-
cide to use null as parameter. So RECORE just randomly created the test case
as shown in Figure 3.1.

RECORE executes this test case twice. In the first run it determines where
in the execution the call stack of the test gets closest to the given target stack
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1 void recore_test () {

2 LocalDate localDate0 = new LocalDate (0L);

3 Interval interval0 = localDate0.toInterval(null);

4 }

Figure 3.1: Initial test case as generated by RECORE

trace, and in the second run it triggers a memory dump at that very location.
Analyzing the results, RECORE recognizes that, a) the test case does not throw
any exception at all, b) that it does not even get close to the target location,
and c) that the differences in the memory dump are substantial. Among others,
it notices that the iLocalMillis field in the org.joda.time.LocalDate object
differs. In the target memory dump, this field has the value 1255824000000,
whereas in the memory dump of the generated test case, that field has the value
0.

Since the result is not yet satisfactory, RECORE now randomly decides to
mutate this test case. With a certain probability, RECORE could decide to
replace the long parameter with a different value. Because it recognized the
difference in the memory dump, now it will use the value as found on the original
memory dump with a much higher probability when looking for values of that
type. So chances are high that RECORE decides to use the value as found.

1 void recore_test () {

2 LocalDate localDate0 = new LocalDate (1255824000000L);

3 Interval interval0 = localDate0.toInterval(null);

4 }

Figure 3.2: Test case as generated by RECORE after feedback

RECORE might decide to replace the null parameter as well. This param-
eter is of type org.joda.time.DateTimeZone. This is an abstract class, and
there are 6 public static methods which return an object of this type. RECORE

might use the forTimeZonemethod of the org.joda.time.DateTimeZone class.
For this, it needs an object of type java.util.TimeZone as a parameter. The
class org.joda.time.tz.FixedDateTimeZone provides a method, which re-
turns an object of this type: toTimeZone(). So now RECORE needs to in-
stantiate the class org.joda.time.tz.FixedDateTimeZone. This class has a
single constructor and there exists only one other method in the project which
returns an object of this type. With a certain probability, RECORE could choose
the constructor. For this, RECORE needs to come up with different primitive
values in the same manner as indicated above. So now the test case looks as
shown in Figure 3.3.

When executing this test case, RECORE recognizes an improvement both
in terms of the produced stack trace as well as in terms of the produced mem-
ory dump, so it prefers this mutated version over its predecessor. Since the
parameter of the toInterval method has changed, RECORE is now able to
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1 void recore_test () {

2 LocalDate localDate0 = new LocalDate (1255824000000L);

3 FixedDateTimeZone fixedDateTimeZone0 =

4 new FixedDateTimeZone("zsgsdasr", "", 7, 7);

5 TimeZone timeZone0 = fixedDateTimeZone0.toTimeZone ();

6 DateTimeZone dateTimeZone0 =

7 DateTimeZone.forTimeZone(timeZone0 );

8 Interval interval0 =

9 localDate0.toInterval(dateTimeZone0 );

10 }

Figure 3.3: Mutated test case as generated by RECORE

compare the internals of the two parameters as represented in the memory
dumps. Among others, it recognizes a difference of the java.lang.String

value of the iID field, where in the target memory dump, the field has the
value "America/Sao Paulo", and in the memory dump of the generated test
case, the field has the value "zsgsdasr". So again, when trying to find a new
java.lang.String value for the test case, this value has a much higher chance
of getting chosen.

This generated test case so far still does neither fully reproduce the stack
trace nor the memory dump nor does it even throw an exception. So another
round of mutations is applied. This time, RECORE decides to change the first
argument of the org.joda.time.tz.FixedDateTimeZone constructor and use
the value supplied by the memory dump difference. The resulting test case
is shown in Figure 3.4. Again, note that this is not deduced but merely a
random decision. However, in such a case, deduction might be a valuable future
improvement.

1 void recore_test () {

2 LocalDate localDate0 = new LocalDate (1255824000000L);

3 FixedDateTimeZone fixedDateTimeZone0 =

4 new FixedDateTimeZone("America/Sao_Paulo",

5 "", 7, 7);

6 TimeZone timeZone0 = fixedDateTimeZone0.toTimeZone ();

7 DateTimeZone dateTimeZone0 =

8 DateTimeZone.forTimeZone(timeZone0 );

9 Interval interval0 =

10 localDate0.toInterval(dateTimeZone0 );

11 }

Figure 3.4: The test case generated by RECORE reproduces exactly the stack
trace in Figure 1.4.

This test case fails like the original test case (see Figure 1.3), reproducing
exactly the same stack trace (as shown in Figure 1.4). The test has all the
necessary input:
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• localDate0 holds a specific instant in JodaTime format: 1,255,824,000,000
milliseconds after January 1, 1970. This corresponds to October 18, 2009.

• fixedDateTimeZone0 holds the time zone: "America/Sao Paulo".

• Feeding this date and time zone into toInterval() raises an exception.

Developers can now load this test case into the debugger and reproduce the
failure at will; as it is self-contained, no additional context (such as serialized
objects from the original core dump) is required. Better yet, one can feed
the test case as is into an automated debugger. The BUGEX tool [102], for
instance, would pinpoint the failure-inducing branch, showing that October 18,
2009 is the last day of daylight savings time (DST) in Brazil, a condition that
is improperly handled by JodaTime due to an inconsistent mapping between
UTC time (the internal intermediate format) and local time. Applying the
official fix for the original failure also fixes the RECORE test case, indicating
that it indeed triggered the exact defect.

3.2 Implementation Details

Figure 3.5: Overview how RECORE works

Figure 3.5 shows the basic steps of RECORE. It starts with an executable
program (a) and a remote core dump (b), consisting of stack and heap data.
RECORE then uses EvoSuite as test generator, leveraging the core dump as
fitness guidance and source for primitive values, to generate tests (c) whose final
state (d) is then compared to the original core dump (b). The test generator
systematically evolves the test case to increase similarity. When the original
stack trace is reconstructed, RECORE issues the appropriate test case (e).



30 CHAPTER 3. FROM FAILURE TO TEST

3.2.1 Collecting Crash Data

Operating systems such as Unix or Windows can be set up to produce a core
dump upon abnormal termination of the program—a file (traditionally named
“core”) which would contain the program counter, stack pointer, memory con-
tents, and other processor and operating system information. Such a core file
can be loaded into a debugger to explore the state at the moment of failure just
as if the program were still running. As core dumps are only produced in case
of failures, they induce zero overhead in regular runs.

RECORE is set up to work on Java programs. In Java programs, the equiv-
alent of abnormal termination is an unchecked exception—that is, conditions
that cannot be reasonably recovered from, which generally cause abnormal ter-
mination, and which indicate bugs to be fixed. Such an exception contains the
stack trace at the moment of failure, but does not contain memory information;
in particular, local variables and arguments at the time of failure are lost as
the exception is raised through the stack. In analogy to the execution of reg-
ular binaries, one would normally set up the Java virtual machine to produce
a core dump whenever an unchecked exception is raised—again only incurring
overhead in case of fatal failures.4

Our current RECORE prototype does not extend the Java virtual machine;
instead, it instruments the code such that a raised exception captures the heap,
all local variables, and all method arguments at the time of failure. To do
this for every method on the call stack, RECORE wraps each method in a try-
catch block. This is done on Bytecode level, using JavaAgent technology [53]
to instrument the client code when it is loaded. So only the binaries of the
program are needed. However, to illustrate this, Figure 3.6 shows what it would
look like in Java source code.

1 try {

2 // method code as found

3 } catch (RuntimeException exc) {

4 exc.pushStackFrameDump("methodName",

5 this , new Object []{<parameters >},

6 new Object []{< localVariables >});

7 throw exc;

8 }

Figure 3.6: The try-catch that is put around each method

This approach likely induces an overhead on most Java virtual machines.
This potential overhead, however, is only due to the current implementation;
if RECORE were written for C programs, or if RECORE would plug directly
into the Java virtual machine, any program would be executed without any
change to execution time or memory—until a fatal failure occurs, which is when
dumping the current state sets in.

4Generally speaking, unchecked exceptions simply should not occur. Even if an unchecked
exception would be caught and handled during execution, such that execution resumes, one
would still be interested in reproducing the failure—and also in the resulting core dump.
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The adapted code as shown in Figure 3.6 simply adds the method’s name,
the callee, the current argument values and the current values of the local vari-
ables to the exception. Since storing this information is no standard exception
functionality, we provide a slightly changed java.lang.Throwable in the Java

bootclasspath [56]. That class offers the additional functionality of two methods
which are inherited by all subclasses (see Figure 3.7).

1 pushStackFrameDump(String method ,

2 Object callee ,

3 Object [] parameters ,

4 Object [] localVars );

5 Stack <Object[]> getStackDump ();

Figure 3.7: Methods added to the java.lang.Throwable

Finally, the main class of the code is instrumented to set our own imple-
mentation of a java.lang.Thread.UncaughtExceptionHandler (as shown in
Figure 3.8). This handler uses standard Java MXBean technology [55, 54] to
create a heap dump. This dump also contains the thrown exception which holds
the gathered information about parameters and local objects.

1 static {

2 Thread.setDefaultUncaughtExceptionHandler(

3 new HeapDumpingExceptionHandler ());

4 }

Figure 3.8: Code added to the client’s main class

In case the exception is not caught and would thus crash the program, this
handler is called.

By default, RECORE is set up to record the state only in case of unchecked
exceptions—that is, conditions that cannot be reasonably recovered from, which
generally cause abnormal termination, and which indicate bugs to be fixed.
With this setting, we mimic core dumps of regular binaries, and thus only incur
overhead in case of fatal failures. RECORE can also be set up to record the
state for non-fatal exceptions (such as invalid user input, database problems,
missing files, etc.). Storing the current stack frame is a very small overhead
compared to the overall effort in raising an exception, and exceptions (as the
name suggests) would be expected to be rare, such that we would expect the
overhead to be hardly measurable in practice. But as the promise of RECORE

is zero overhead at runtime, this zero overhead is the default setting.

3.2.2 Fitness Function

The key idea of RECORE is to set up a fitness function that checks similarity
to guide the evolutionary algorithm. Generally spoken, the better the fitness
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of a particular test case, the likelier it is that it will influence the generation of
future test cases. Hence, defining an appropriate fitness function is the central
part of RECORE. Note that we cast this as a minimization problem and set up
the genetic algorithm to minimize the fitness—so a fitness of 0 is an ideal result.

Statement Distance

The first factor that determines the fitness of a test case is its ability to exactly
reproduce the given stack trace. For this, we need a measure of how close we
are in reaching a stack trace, for which in turn we first need a measure of how
close we are in reaching a specific location in the code.

For a given test and a location l in the code (in our case: class, method,
and line), we assume a function StatementDistance(test , l) whose value is the
higher the farther away the test is from reaching l. A value of zero means zero
distance (i.e. l was reached); a value of one means maximal distance.

StatementDistance can be based directly on a fitness function as used in
search-based test generation [86]. In our case, StatementDistance is based on
the unchanged fitness function from EvoSuite, the platform which RECORE

uses to generate tests. The EvoSuite fitness function uses two measures as
guidance:

• The approach level [113] determines how close the generated test is in reach-
ing the target code (typically, yet uncovered code). It denotes the distance
between the target point in the control dependence graph and the point at
which execution diverged: The higher the approach level, the more control
dependent branches between test and target.

• The branch distance [70] determines how close the branch predicate at the
point of diversion is to evaluating to the desired value. The branch distance
can be calculated using a simple set of rules [86]: For instance, given a branch
condition if (x < 15), the value x = 20 implies a higher branch distance
than x = 16.

These two measures are combined as follows:

StatementDistance(test , l) =

approach level(test , l) + norm
(

branch distance(test , l)
)

To normalize the branch distance in the range [0, 1], we use norm(x) =
x/(x+ 1).



3.2. IMPLEMENTATION DETAILS 33

Stack Trace Distance

Based on StatementDistance, we can now define stack trace distance. We denote
a stack trace S = 〈l1, . . . , ln〉 as a sequence of source code locations li, where
l1 is the outermost frame, ln the innermost frame, and each frame li is invoked
from the frame li−1.

Let R = 〈r1, . . . , rn〉 be the reference stack trace from the core dump, and
S = 〈s1, . . . , sm〉 be the stack trace from the generated test. Let

lcp = max
{

j ∈ [1, . . . ,min(n,m)] | ∀i ≤ j : ri = si)
}

be the length of the longest common prefix of R and S, starting from the
outermost caller. We define the function StackTraceDistance(R,S) as follows.
If lcp = |R| = |S| holds, then StackTraceDistance(R,S) = 0 holds as well, as the
stack traces are identical. Otherwise, we define it to depend on the number of
stack frames yet to reach (expressed by the value of |R| − lcp) and the distance
between the test and the first diverging stack frame rlcp :

StackTraceDistance(R,S) =

|R| − lcp −
(

1− norm(StatementDistance(test , rlcp))
)

By using StackTraceDistance as guidance in the fitness function, test case gen-
eration will thus strive to maximize stack trace similarity, starting from the
outermost frames.

Stack Dump Distance

The second factor that determines the fitness of a stack trace is its ability to
reconstruct variable values as found in the core dump. In principle, we could
guide RECORE to reconstruct all variables from the heap and from the stack.
However, such an attempt is likely to be misleading. First, we would have
to reconstruct thousands of individual values, which is unlikely to be feasible.
Second, few of these values actually matter for reproducing and fixing the failure.
We thus decided to focus on those values which we also require to reconstruct
a given stack trace, namely those values found in the stack.

We assume a function ObjectDistance(x, y) ∈ [0, 1] which compares two ob-
jects x and y and again returns a normalized value between zero and one. We
obtain this value by relying on the EvoSuite object distance, which is based
on the comparison of primitive field values:

• If x and y contain numbers, the normalized absolute difference is added to
the total difference.

• If x and y contain strings, the normalized Levenshtein distance [74] is added
to the total difference.

• If x and y contain complex objects, the field values of these objects are
compared recursively, adding the result to the total difference.
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• If either field value is null, 1 is added to the total difference.

The total difference is then divided by the number of fields.

Based on ObjectDistance, we can now define the stack dump distance across
all objects as found on the stack. Let obj (s) denote the set of object identi-
fiers in local scope at a location s (i.e., the currently active object, all method
parameters and all local variables). Let s(o) denote the object identified by o.
We then define the stack dump distance as the sum over all object distances as
found on the common stack frames:

StackDumpDistance(R,S) =

lcp
∑

i=0

∑

o∈obj (ri)

ObjectDistance
(

ri(o), si(o)
)

Again, the larger the distance, the more and the higher the object differences.

Total Fitness

During the execution of a generated test, we obtain several stack traces, each
with its own stack dump distance. To measure the fitness of a test, we go
for the minimum of all traces obtained. Let S1, . . . , Sn denote the stack traces
obtained during the execution of a test test . We can then define test trace and
dump distances as follows:

TestStackTraceDistance(R, test) =

min
{

StackTraceDistance(R,S) · S ∈ {S1, . . . Sn}
}

as well as

TestStackDumpDistance(R, test) =

min
{

StackDumpDistance(R,S) · S ∈ {S1, . . . Sn}
}

Again, the higher the similarity, the lower the fitness value.

We give the highest priority to reconstruct the stack trace, whereas recon-
structing the local variables is a lesser goal. Hence, the stack trace distance
determines the overall fitness, whereas the stack dump distance is in [0, 1]. This
is also helpful in guiding test generation while no progress is made reconstructing
the call stack.

Finally, we impose a penalty for runs where the target exception is not
thrown and thus install some lock-in effect: once the exception was thrown by a
test, other factors (i.e. stack dump distance) cannot guide test case generation
away from the exception again.

ExceptionPenalty(test) =

{

0 if same exception is thrown

1 otherwise
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The sum of these three gives the fitness function whose value RECORE strives
to minimize:

Fitness(R, test) = TestStackTraceDistance(R, test)

+ TestStackDumpDistance(R, test)

+ ExceptionPenalty(test)

RECORE extends EvoSuite with the fitness function above, thus guiding
test case generation towards reconstructing the given core dump. The genetic
algorithm stops once the best known fitness remains unchanged for 1,000 gen-
erations.

3.2.3 Seeding Primitive Values

A core dump is not only helpful for guiding the search. It also contains all the
primitive values found on the heap at the point of failure. These values can
be used to seed the search—that is, provide useful starting points rather than
values taken at random.

In evolutionary search, seeding refers to any technique that exploits previous
related knowledge to help solve the problem at hand. Although in general
seeding should not be a requirement to solve the problem at hand, it can boost
the search such that a solution is found with limited search budget, where
this would be impossible without. Seeding is also an important component of
EvoSuite [33]; for example, EvoSuite re-uses primitive values and strings
found in the bytecode.

RECORE sets up EvoSuite seeding to take advantage of the core dump.
Note that the following probability values were chosen arbitrarily. We believe
that changing these parameters may affect the time it takes to search for these
results, but not necessarily the result quality.

1. Seeding values. To seed values, RECORE only uses values from the heap
dump (as the dump also contains all constants from the source code).

• With a probability of p = 1
3 , RECORE uses the feedback it receives from

the distance function (Section 3.2.2): If a primitive P in the reference
stack dump is different from the current best test case, then P is directly
fed back to be used.

• With p = 2
3 , RECORE uses a value from the heap dump: If the value is to

be used in a method or constructor that occurs in the stack trace, then
it reuses the parameters for that method or constructor from the stack
dump. If the method or constructor stems from a class that is found
somewhere on the stack dump, RECORE reuses the primitive values it
finds as the field variables of that class. Otherwise, it uses an arbitrary
value from the heap dump.
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2. Creating method calls. When inserting or replacing method calls or con-
structors in a test case, EvoSuite choses randomly from the set of known
calls.

• With p = 3
7 , RECORE makes EvoSuite use one of the calls on the stack

trace. This way, we give preference to the methods that need to be on
the stack trace in the end.

• With p = 2
7 , RECORE uses any method or constructor of the classes on

the stack trace.

• With p = 1
7 , RECORE uses the feedback it receives from the distance

function (Section 3.2.2): If an object in the reference stack dump is
different from the current best test case (i.e. different class or non-null),
then a method or constructor from the class of that object is used.

• Eventually, with p = 1
7 , an arbitrary method from any class (of the

target project) that can be found on the heap is used.

Both the above measures dramatically speed up failure reconstruction and
cause RECORE to make the same use of core dumps as a human debugger
doing a post-mortem analysis. Rather than just seeding values, the core dump
would of course also allow us to simply bypass most of test case generation by
taking objects from the core dump and feeding these into the failing methods.
As discussed in Section 2.3, this can result in very precise reconstruction of
the failure per se; however, the history of how the objects got into their final
state is lost. As we are interested in reconstructing the failure history from the
beginning, RECORE only uses primitive values from the core dump.

In RECORE, we go for a middle ground instead: As it comes to synthesizing
objects, we always resort to invoking the official constructors. Primitive argu-
ments (numbers, strings, booleans, enumerations), however, are selected from
values found in the core dump. This way, RECORE also addresses the provi-
sioning problem of test case generation: Normally, such primitive values would
have to be randomly constructed. By using values from the actual execution,
we can produce much more realistic test cases—in particular, test cases that are
similar to the original failure.

3.2.4 Limitations

As a test generator, RECORE suffers from the general limitations of such tools.
To start with, there is no general constructive way of reaching a specific program
state—this is an instance of the halting problem. Test generation tools such as
RECORE will thus fail to reconstruct a failure if the search space is ill-formed
or the conditions are very complex. In a situation in which only few specific
inputs lead to the desired state (such as passwords in cryptographic checks, for
instance), RECORE is unlikely to construct helpful inputs.

These general concerns are offset by the fact that test case generation often
achieves high coverage in practical settings. In our specific setting of reconstruct-
ing core dumps, we even know that the specific state we search is reachable. In
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Table 3.1: RECORE evaluation subjects
ID Section Subject Lines of code

JOD1 3.3.1 Brazilian Date bug 62,326
VM1 3.3.2 Vending Machine bug 68
MAT1 3.3.3 Sparse Iterator bug 53,496
JOD2 3.3.4 Western Hemisphere bug 62,326
JOD3 3.3.5 Parse French Date bug 53,845
COD1 3.3.6 Base64 Decoder bug 8,147
COD2 3.3.7 Base64 Lookup bug 6,154

principle, we can therefore reconstruct any state simply by having RECORE

search long enough—but this is only a theoretical option. Additionally, the core
dump may contain precisely those specific inputs we are looking for—but they
may just as well have been overwritten by later computations before the failure
occurs.

For all these reasons, it is unrealistic to assume that RECORE will always be
successful. It may be useful and effective in practice in a number of situations,
though. Whether this is the case on real-life programs with real-life failures will
be explored in the next section.

3.3 Case Studies

To evaluate the potential of RECORE, we applied it to a set of seven bugs,
summarized in Table 3.1. Our selection of programs and defects was driven by
the following requirements:

1. The underlying test case generation technique (EvoSuite, in our case) must
be able to handle the program and defect.

2. The failure must not depend on artifacts other than the program and the
corresponding test case.

3. The defect must be well explained, documented and must come with a patch/-
fix, such that we can validate the result of the approach.

Note that these are fairly lightweight requirements. The first one only re-
quires that (a) the test case that reveals the defect can be encoded in Evo-

Suite’s internal format and (b) EvoSuite can generate inputs for the program.
The second and third ones are fairly standard requirements.

Our experiments are promising: RECORE is able to reconstruct the exact
failure in five cases, and partially in another case. The resulting test cases
are self-contained, short, and comprehensible. At the same time, the RECORE

approach incurs no overhead in production code. Because it operates fully
automated, this means that the resulting test cases come at literally not cost.
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Each of these bugs is produced by a single test case which we set up such
that a core dump would be produced upon failure (Section 3.2.1). We then fed
RECORE with the original program as well as the core dump. What we wanted
to know were the answers to three questions:

• Can RECORE produce test cases that produce the exact same stack

trace? Note that this is one of RECORE’s success criteria, so this question
may also be posed as: “Does RECORE produce a result?”

• Does the generated test case pass after applying the original fix?

This question asks: “Is the test case useful in debugging the original failure?”
It should actually run the other way round: If we fix the error based on the
produced test case, would we also fix the original failure? For the original
failure, however, we have the single official fix, so we use this one as ground
truth.

• Are the test cases readable and easy to understand? The answer to
this question is best left to the reader. For this purpose, we provide a detailed
analysis of each failure and test case; this is also the reason why we prefer
seven in-depth case studies to statistical summaries over bug collections.

Table 3.2 provides the running time of RECORE for the seven subjects.5 In
the remaining sections, we present the seven reconstructed failures.

3.3.1 JodaTime Brazilian Date Bug

Our first bug is the Brazilian Date Bug discussed in Section 1.1, namely bug
report 2487417 for JodaTime [62]. It takes RECORE 35 minutes to reconstruct
this failure. The stack trace matches exactly, and the official fix also makes
the test case pass. This is a poster example for the capabilities of RECORE—
reconstructing the exact time and time zone in which the error occurs.

Interestingly, the only major difference between the generated test case and
the human-written test case is that the generated test case (Figure 1.3) generates
the date from the number of seconds (see Figure 3.9), where the human-written
test case generates the date using a calendar date (Figure 3.10).

Table 3.2: Summary of results
Reproduces Passes

ID Section Duration stack? after fix?

JOD1 3.3.1 35m ± 17m yes yes
VM1 3.3.2 9m ± 2m yes yes
MAT1 3.3.3 17m ± 18m yes yes
JOD2 3.3.4 22m ± 14m no no

JOD3 3.3.5 18m ± 12m yes no

COD1 3.3.6 149m ± 108m yes yes
COD2 3.3.7 6m ± 1m yes yes
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1 localDate1 = new LocalDate (1255824000000L);

Figure 3.9: Date in number of seconds

1 localDate1 = new LocalDate (2009 , 10, 18);

Figure 3.10: Date in calendar form

Why can’t RECORE use the “nicer” calendar date? The number of seconds
is contained in the LocalDate object in the heap, whereas the calendar date
constituents would have to be searched and reconstructed first. Finding such
inputs is within the capabilities of evolutionary algorithms, but RECORE will
go with the simpler solution first.

3.3.2 Vending Machine Bug

Vending Machine is a small artificial example used for earlier studies on auto-
mated debugging [14, 102]. A vending operation that can cause the credit to fall
below zero is erroneously enabled, raising an exception when invoked. RECORE

reproduces a test that precisely captures the failure (Figure 3.11).

1 VendingMachine vendingMachine0 = new VendingMachine ();

2 String string0 = "SILVERDOLLAR";

3 Coin coin0 = Coin.create(string0 );

4 vendingMachine0.insert(coin0);

5 vendingMachine0.vend ();

6 vendingMachine0.vend ();

Figure 3.11: Test generated by RECORE for the Vending Machine bug

Again, the stack trace matches exactly, and applying the official fix makes
the test case pass.

3.3.3 Commons Math Sparse Iterator Bug

Apache Commons Math is a library of lightweight, self-contained mathematics
and statistics components. Defect number 367 [83] is a NullPointerException

raised by a sparse iterator, which should iterate over the non-zero values in
a vector. The test case generated by RECORE reconstructs the failure (Fig-
ure 3.12).

5All times were measured on a quad-core 2.67 GHz Intel x86 CPU with 8 GB RAM;
RECORE and EvoSuite are single-threaded.
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1 ArrayRealVector arrayRealVector0 = new ArrayRealVector ();

2 double double0 = -1832.3093176108437;

3 ArrayRealVector arrayRealVector1 =

4 (ArrayRealVector) arrayRealVector0.append(double0 );

5 ComposableFunction composableFunction0 =

6 ComposableFunction.SIGNUM;

7 RealVector realVector0 =

8 arrayRealVector1.map(composableFunction0 );

Figure 3.12: Test generated by RECORE for the Sparse Iterator Bug

Interestingly, this test case produces a stack trace that extends the original—
that is, it has more callers on the outside. Rather than calling the failing iterator
functions directly, RECORE reproduces the failure indirectly as it finds that the
method map() by itself invokes the iterator and triggers the failure. Again, the
generated test case passes as the official fix is applied.

On a related note: After applying the fix, the given test fails with a different
exception (i.e. the correct exception), whereas the generated test passes.

3.3.4 JodaTime Western Hemisphere Bug

In JodaTime bug report 2889499 [63], selecting a time zone at the border of
the Western hemisphere and calling toDateTimeZone() can cause an arithmetic
exception after a long chain of subsequent time/date calculations. Due to the
complex dependencies, RECORE fails to reach the statement at which the error
was raised, and thus cannot reconstruct the issue.

With this test case, we have met the limitations discussed in Section 3.2.4;
a better test case generator may be able to address this issue. Note, though,
that this failure comes at virtually no cost: The attempt to reproduce the error
is fully automatic, and the production code has no runtime overhead.

3.3.5 JodaTime Parse French Date Bug

In the JodaTime bug report 1788282, parsing a legal french date fails with an
IllegalArgumentException [61]. The test generated by RECORE reproduces
the exact stack trace (Figure 3.13).

With this, however, RECORE has not recreated the original failure. The
input "11.sept..2007" is correctly reconstructed, and the stack trace is the
same. However, the failure is different:

• In the original run, the date format is "dd.MMM.yyyy". Here, "MMM" stands
for the possibly abbreviated month, which in French can include a dot (i.e.,
the "sept." in "11.sept..2007").
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1 DateTimeFormatter dateTimeFormatter0 =

2 ISODateTimeFormat.time ();

3 Locale locale0 = Locale.FRENCH;

4 DateTimeFormatter dateTimeFormatter1 =

5 dateTimeFormatter0.withLocale(locale0 );

6 String string0 = "11. sept ..2007";

7 DateTime dateTime0 =

8 dateTimeFormatter1.parseDateTime(string0 );

Figure 3.13: Test generated by RECORE for the Parse French Date Bug

• The test case generated by RECORE uses an ISO date format, which is
"yyyy-MM-dd". The provided input "11.sept..2007" obviously does not
match the ISO format; hence parsing fails.

The difference in failure manifests itself in a different state; the original run
fails to parse the month, whereas the generated run fails at the first dot. This
also results in different exception messages, which instructs the programmer to
proceed with caution.

Why can’t RECORE reproduce the original failure? The DateTimeFormatter
class takes a string in its constructor. To recreate the object in the core dump,
RECORE must pass the original string "dd.MMM.yyyy". However, the fact that
this string was used in the constructor is lost in history, and reverse-executing
the parser to reconstruct it is beyond RECORE’s capabilities (and actually, be-
yond the capabilities of any of today’s test generators).

With this test case, we thus again have met the limitations discussed in
Section 3.2.4. It should be noted, though, that half of the input (namely, the
french date) is correctly reconstructed, which should speed up manual debugging
considerably.

3.3.6 Commons Codec Base64 Decoder Bug

The Apache Commons Codec library provides implementations of common en-
coders and decoders such as Base64, Hex, Phonetic and URLs. Issue 98 [21]
reports that “certain (malformed?) input to Base64InputStream causes a
NullPointerException in Base64.decode().” The description of the prob-
lem as found in the bug report is given in Figure 3.14.

The test case generated by RECORE reconstructs this failure as given in Fig-
ure 3.15. The input in this test case (US ASCII) differs from the test case which
triggered the original failure; in particular, a character encoding ("US-ASCII")
would normally not be used as a string to encode. However, this generated input
(8 characters) is much smaller than the reported input (1190 characters). The
test case produces the exact same stack trace; and again, applying the original
fix also makes this test case pass.
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Certain (malformed?) input to Base64InputStream causes a
NullPointerException in Base64.decode(). The exception occurs when
Base64.decode() is entered with the following conditions:

• [The field] buffer is null.

• [The field] modulus is 3 from a previous entry.

• [The parameter] inAvail is −1 because Base64InputStream.read()

reaches EOF on line 150.

Under these conditions, Base64.decode() reaches line 581 with buffer still
null and throws a NullPointerException.

Figure 3.14: Description of the Base64 Decoder bug as found in the bug report

1 String string1 = CharEncoding.US_ASCII;

2 byte[] byteArray0 = Base64.decodeBase64(string1 );

3 ByteArrayInputStream byteArrayInputStream0 =

4 new ByteArrayInputStream(byteArray0 );

5 Base64InputStream base64InputStream0 =

6 new Base64InputStream(byteArrayInputStream0 );

7 byte[] byteArray1 = Base64TestData.streamToBytes(

8 base64InputStream0 , byteArray0 );

Figure 3.15: Test case generated by RECORE for the Base64 Decoder bug

3.3.7 Commons Codec Base64 Lookup Bug

The issue number 22 [20] shows that the Apache Commons Codec library throws
an ArrayIndexOutOfBoundsException. To reconstruct the failure, RECORE

produces an array with one negative element as input, which is also the case in
the original failure (Figure 3.16).

1 byte byte0 = -125;

2 byte[] byteArray0 = new byte [3];

3 byteArray0 [0] = byte0;

4 byte byte1 = 64;

5 byteArray0 [2] = byte1;

6 boolean boolean0 = Base64.isArrayByteBase64(byteArray0 );

Figure 3.16: Test case generated by RECORE for the Base64 Lookup bug

Again, the stack trace is identical and the original fix also fixes the generated
test case.

3.3.8 Threats to Validity

As any empirical study, our evaluation is subject to threats to validity.



3.3. CASE STUDIES 43

Threats to construct validity have to do with how we measured the effec-
tiveness of our technique. We assume a failure to be reconstructed if the stack
trace is the same, and if the original fix makes the generated test case pass. For
a full evaluation of effectiveness, we would have developers design fixes based
on the RECORE results, and see how effective these fixes are in addressing the
original issues. This is part of our future work (Section 5.2); for now, assessing
the usefulness and readability of the generated tests is left to the reader.

Threats to internal validity might come from how the study was performed.
We carefully tested RECORE to reduce the likelihood of defects. To counter the
issue of randomized algorithms being affected by chance, we ran each experiment
multiple times; all reported results are representative. The running time is the
average over all runs.

Threats to external validity concern the generalization to software and faults
other than the ones we studied, which is a common issue in empirical analysis.
Our sample size is small; only seven different programs and bugs were used in the
study. The reason for this is that it is time consuming to find and reproduce real
bugs by manually analyzing bug reports (see also Section 2.8). This produces a
bias towards well documented and easy to reproduce issues; given the general
limitations of test case generation (Section 3.2.4), there will be a number of
failures which RECORE will not be able to reproduce.

RECORE and its underlying EvoSuite test case generator have several pa-
rameters such as weights, timeouts, and thresholds which all may influence the
result. Wherever possible, we picked default values as used in other studies.
Given the apparent effectiveness of search-based test generation in reconstruct-
ing failures, we believe that changing these parameters may affect the time it
takes to search for these results, but not necessarily the result quality.

3.3.9 Summary

Our results are summarized in Table 3.2. In five out of seven issues, RECORE

is able to recreate the precise failure: The generated tests reproduce the stack
trace, and the original fix also fixes the test. Even when failure reconstruction is
not complete (Section 3.3.5), the generated test still partially reconstructs the
input.

All generated test cases reconstruct the failure from scratch, using primitive
values only, and are all short enough to not only ease reproduction, but also
debugging in itself. All this is achieved with zero overhead at runtime, and in
an all-automatic run after the failure.
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Chapter 4

From Test to Explanation

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

— Brian Kernighan

A major effort of the debugging activity goes into understanding the failure.
If we want to help the developer in that task, we should try to explain the failure
to him. But what makes a good explanation? What does it mean to understand
a failure anyway?

4.1 The First Approach

Parts of the contents of this section have been published in Rößler et al [103].

Explaining a failure fully in an automated fashion is currently far from pos-
sible. Current approaches to this overall goal try to give the developer some
helpful information in pointing them to different aspects of the failure (Sec-
tion 2.6). One such aspect is the equivalence classes of the input, for which the
failure occurs.

The world we life in, and which we know and are accustomed to, is analogue
and continuous. Within the computer, this is different. Everything is digital,
using discrete, discontinuous, quantized values. And each of this values could, in
principle, be treated differently. To overcome this problem and help developers
with their intuitive assumption of continuous ranges, our goal was to capture
discontinuities or equivalence classes of the input: value boundaries, for which
the behavior of the application changes.

Therefore we first tried to come up with constraints on the input which
are basically equivalence classes on the input or “boundaries” within which the
failure occurs. These help the developer understand under which circumstances

45
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the failure occurs: “The program fails whenever the date is a daylight cut
day and the cutover time is midnight.” This eventually helps characterizing,
understanding, and classifying the problem, and in turn is important to assess
the severity of it and helps in identifying related or duplicate problems.

Essentially, we explore a technique to identify failure circumstances automat-
ically. Starting with a concrete failing run, we first compute the path condition
leading to the failure—a conjunct of constraints on the inputs under which the
control flow reaches the location where the specific failure occurs with the right
state. This conjunction of constraints provides the conditions for the failure to
occur, but can become arbitrarily complex. In order to simplify and generalize
the collected path conditions and identify the general failure conditions, we use
a combination of systematic experimentation, constraint solving, and constraint
abstraction.

4.1.1 Intuition Behind the Approach

In a recent study at Microsoft [68], knowing “in what situations a failure oc-
curred” was the third most frequent unsatisfied information need of developers,
and by far the most time-consuming of all. Why is this so difficult?

As a simple real-life example, consider the JodaTime Brazil example, as
given in the Introduction (Section 1.1): It takes as input a specific date and
timezone and converts the date into an 24 hours interval in the given timezone.

At this point, we have everything in place to start our investigation. We
have a failing application and a test input that allows us to reproduce the
failure at will, but we do not know under which circumstances the program
fails. We do not know whether the failure would occur for other date and
timezone combinations and, if so, for which ones. It is also possible, although
unlikely, that the failure may occur for this very specific combination only, in
which case we might focus on more prevalent issues first. Therefore, even before
we start the actual debugging, we need to understand the failure circumstances.

For relatively simple programs, our approach produces a short and crisp
description of the failure circumstances. For the given failure, for instance, the
computed failure condition are shown in Figure 4.1.

1 isDaylightCutDay () and (cutoverTime == 00:00:00)

Figure 4.1: Failure conditions for the JodaTime Brazilian example

This means that the failure occurs whenever (1) the date is a daylight cut
day in the given timezone, and (2) the cutover time is midnight.

4.1.2 Implementation Details

Figure 4.2 provides an overview of the approach: Our technique takes two
inputs—a program p and an input i that makes the program fail—and produces
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Figure 4.2: Intuitive view of the approach

one output—a set of failure conditions that can be examined by the developer.
To produce such conditions, the technique performs two steps: (1) constraints
collection and (2) constraints classification.

Phase 1: Constraints collection

Phase 1 of our technique first runs the given test to detect the specific failure
under investigation and collect the path conditions (the set of constraints on
the input parameters) corresponding to the failure. In the pseudocode shown in
Figure 4.3, which depicts the main steps of our technique, Phase 1 is summarized
by lines 1–3 of the algorithm, where executeConSym is the function that executes
the program concretely and symbolically at the same time. The constraints can
be fairly complex even for a relatively simple and short fragment of code.

Phase 2: Constraints classification

After collecting the path conditions (PC) for the failing execution of interest, in
Phase 2 our technique iterates over those conditions to classify them as irrele-
vant, enabling, or failure conditions. As shown in the pseudocode in Figure 4.3,
for each constraint c, the technique (a) creates an alternative set of path condi-
tions (PC’), where c is replaced with its negation (line 5) and (b) tries to get a
solution for PC’ (i.e., a set of input values that satisfy PC’) using a constraint
solver (line 6).

If PC’ is unsatisfiable, or the constraint solver timeouts trying to find a
solution for it, the algorithm delays the classification of c (not shown in the
pseudocode for simplicity) until some other constraints are dropped. It would
have also been possible to have the constraint solver return the minimal un-
satisfiable core and negate all related constraints at once. Conversely, if PC’ is
satisfiable, our technique reruns the program using the newly computed input
values, which can result in one of three outcomes:
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Parameters: program p, failing input i
Result: failure conditions Cfail , enabling conditions Cenabling

1: Cfail := true;Cenabling := true;
2: o := p(i);
3: PC := executeConSym(p, i);
4: for all c ∈ PC do

5: PC ′ := PC − {c}+ {¬c};
6: i′ := solve(PC ′);
7: o′ := p(i′);
8: if o = o′ then
9: PC := PC − {c};

10: else if orac(i′) 6= o′ then
11: Cenabling := Cenabling ∧ {c};
12: else

13: Cfail := Cfail ∧ {c};
14: end if

15: summarizeConstraints(Cenabling , Cfail);
16: end for

Figure 4.3: Simplified pseudocode that depicts the approach

The new inputs still cause the original failure (line 8), which means
that c did not affect the outcome of the execution. In this case, the technique
classifies c as irrelevant and drops it.

The new inputs cause a failure different from the original one (line
10). In this case, we assume that the constraint represents a precondition
that the inputs must satisfy to be valid and reach the point of the original
failure. Thus, our technique classifies c as an enabling condition.

The new inputs trigger neither the original nor a different failure

(line 12). In this case, our technique classifies c as a failure condition, that
is, a conditions that is necessary to trigger the failure of interest.

At the end of Phase 2, our technique has identified a subset of the original
PC divided into two sets of constraints: enabling and failure conditions. Finally,
to summarize the constraints, our technique uses information collected during
dynamic symbolic execution to (a) identify and factor out recurring expressions
within constraints and (b) identify methods that return a boolean value and
can be used to summarize subsets of constraints they generate (line 15). For
our example, the technique would identify the constraints created while execut-
ing isDaylightCutDay() as constraints generated by a boolean method and
would suitably replace them with the name of the method. The result of such
substitution would be the short and crisp description of the failure.

As this description would be generated in a fully automated way, it could
be provided to the developers at no additional (human) cost to help them un-
derstand and eliminate the failure.
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1 public void doSomething(int x){

2 if (x < 0) {

3 throw new IllegalArgumentException (...);

4 }

5 if (x <= 5) {

6 System.out.println("x is " + x);

7 }

8 if (x < 7) {

9 throw new IllegalStateException (...);

10 }

11 }

Figure 4.4: Simple example to further illustrate the approach

4.1.3 Simplifying Constraints

To illustrate constraint simplification in more depth, consider the code in Fig-
ure 4.4. Assume we have a test case that calls method doSomething() with a
value 4 for parameter x. The initial step of our algorithm of Figure 4.3 would
execute the test and observe an IllegalStateException being thrown. The cor-
responding PC consists of the following constraints: (x ≥ 0) ∧ (x ≤ 5) ∧ (x < 7).

The technique would then iterate over the constraints to classify them. As-
sume that the algorithm arbitrarily choses (x ≥ 0) to be classified first. Negating
it yields the following PC’: (x < 0) ∧ (x < 5) ∧ (x < 7). A constraint solver fed
with these constraints would return a value of x that satisfies the constraints,
such as x = −1. The technique would then execute the test again with pa-
rameter x being −1, which would result in an IllegalArgumentException being
thrown. Because this failure is different from the initial one, our algorithm
would classify the constraint that was negated as an enabling condition and
keep it in the PC. In fact, this constraint encodes the condition for an input to
be valid and, although it does not trigger the failure, it is necessary to reproduce
it.

Assume now that the next constraint the algorithm choses to negate is
(x ≤ 5), which results in the PC’ being (x ≥ 0) ∧ (x > 5) ∧ (x < 7). Given
these constraints, the constraint solver would return x = 6. Again, the tech-
nique would rerun the program, this time setting parameter x to 6. The out-
come of this execution would be an IllegalStateException, which is the original
failure we are analyzing. The technique would therefore conclude that the con-
straint is irrelevant for reproducing the failure and would drop it, leaving only
(x ≥ 0) ∧ (x < 7) in the set of constraints. Again, it is clear from the code that
this is the right course of action, as the condition guards a statement that writes
to the console; for the failure to occur, it is irrelevant, whether that statement
is executed or not.

The next and last constraint the algorithm choses to negate would be (x < 7),
which results in PC’ being (x ≥ 0) ∧ (x ≥ 7). In this case, any value for x
greater or equal to 7 would satisfy the constraints, so let us just assume that
the constraint solver produces the solution x = 7. When the technique reruns
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the program with x being 7, the result is a normal execution of the program
that does not produce any failure. The algorithm would therefore classify the
constraint as a failure condition, a constraint that is necessary for the failure of
interest to be triggered.

At the end, the technique would present the developer with two constraints:
constraint (x ≥ 0), marked as an enabling condition, and constraint (x < 7),
marked as a failure condition. The developer could then use this information to
understand and correct the fault in the code.

4.1.4 Limitations

We have developed a prototype tool that implements our technique. The pro-
totype is built on top of Java PathFinder (JPF) [48], a symbolic execution
engine for Java programs, and leverages JPF’s extensions for dynamic symbolic
execution and the CVC3 constraint solver [10].

However, we encountered several practical challenges when using our tool on
real-world examples (such as the one given above):

Hard-to-solve Constraints

Some generated constraints go beyond the solving capabilities of existing con-
straint solvers (e.g., constraints generated by caching and hashing functions that
make use of bit-wise operators). This could possibly be addressed by two (pos-
sibly complementary) directions: the use of solvers that operate on formulas
defined over the theory of bit-vectors and arrays, such as STP [36]; and the
replacement of constraints that go beyond the theories supported by the solver
with their concrete values from a previous execution.

Disjunctions

One problem we encountered for the initial formulation of our approach is related
to the presence of predicates containing OR operators in the code. Since Java
short-circuits OR operators (i.e., if the first condition is true, the other conditions
are not evaluated), our technique may only observe a subset of a disjunctive
predicate at runtime. This is an issue because, as discussed in Section 4.1.3,
our technique negates constraints and drops them if the failure still occurs for
inputs that satisfy the negated constraints. Consider, for instance, the code
snippet shown in Figure 4.5, and assume that the original value of x is smaller
than that of y.

When executing the code, the second part of the predicate would not be
evaluated, and our technique would only add to the PC constraint (x < y).
Then, when it negates that constraint and solves the modified PC, the technique
might by chance obtain a value for x that is greater than 10 from the constraint
solver (e.g., due to additional conditions on y). In such a case, although the
constraint is violated, the predicate it belongs to (i.e., (x < y)∨(x > 10)) would
still evaluate to true. The technique would therefore erroneously classify the
constraint as irrelevant and drop it.
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1 public void do(int x, int y) {

2 if (x < y || x > 10) { fail (); }

3 }

Figure 4.5: Example of a predicate that contains an OR condition

Limitations of Symbolic Execution

Because our approach relies on symbolic execution, and more specifically on
dynamic symbolic execution, it also suffers from some of the limitations of this
type of techniques. In particular, there may be cases where the inputs that
cause the failure involve complex interactions with the environment, such as
access to the network, the file system, and external databases. These types of
interactions are notoriously problematic for symbolic execution techniques and
limit the general applicability of our approach.

Diverging Globally

One severe problem that to this date we were not able to circumvent is the
following: when negating individual constraints that are close to the failure, the
corresponding execution would still be “local enough”; that is execute relevant
parts of the code such that the resulting path conditions and the differences
to the path condition of the failing test would be meaningful. But once the
negated constraints are far away from the failure (e.g., in terms of the execution
stack), the corresponding executions would go astray and execute parts of the
code that are totally unrelated to the problem at hand. As a consequence we
were unable to come up with additional failing executions of the same failure. To
make things worse, additional generated passing executions were not very helpful
either, because since they would execute parts of the code that are unrelated
to the failure, the resulting path conditions would be so different from the path
conditions of the failure, that the difference would not be meaningful.

Although the test case for the JodaTime Brazilian example (Figure 1.3)
is fairly small and compact, it executes 367 methods and a total of 5,711 in-
dividual statements. (Note that these figures consider only code that belongs
to JodaTime and ignore the execution of code in the Java system libraries.)
When we apply the above approach to the test case, it generates 89 initial con-
straints, some of which contain around 2,000 subexpressions. Clearly, most of
these constraints are in no way local (by any means of the term). And this
would probably be similar for all but the simplest examples.

While we possibly would have been able to circumvent the other challenges,
this one is systematic to our approach. It means that ultimately we would
have to encode the complete program in the form of constraints (which already
for programs of medium size is prohibitive). In order to focus the generated
additional executions on “interesting” parts of the program (i.e., target the test
case generation at executing the last branch before the failure), we decided
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Figure 4.6: Intuitive view of how the generated execution paths relate

to employ a different execution generation strategy. We settled for an genetic
algorithm (see Section 2.2). Since this is a random-based approach instead of a
systematic one, we also needed to change the approach from logical deduction
to a strategy that works well on a less structured and less complete set of
executions. For that we settled on statistical debugging (see Section 2.5.1).
Which in summary means, that we needed to change the approach completely
and start all over from scratch. The approach that implements those changes
is BUGEX (Section 4.2).



4.2 The BugEx approach

Parts of the contents of this section have been published in Rößler [100] and
Rößler et al [102].

In this chapter, we present a novel approach to automated debugging that
combines the mutual benefits of experimental and statistical approaches, yet
avoids their respective shortcomings. As detailed in Section 2.5.1, one major
issue of statistical debugging approaches is that they require a large body of
existing test cases. And yet, most of these test cases are targeted to cover the
complete project, i.e., execute as much of the code as possible at least once. In
contrast to that, statistical debugging works best if the code in question (i.e.,
susceptible code) is executed as much as possible with as diverse as possible
contexts. Another major issue of statistical debugging approaches is that the
goal is to localize a defect. Consequently, approaches from that field fail to pro-
vide additional information to the developer to allow them to make an informed
decision about whether the localization of the defect is correct or not and how
the localized defect would best be fixed.

As detailed in Section 2.5.2 many approaches such as predicate switching
and delta debugging on execution states (i.e. cause-effect chains) do alter exe-
cutions and thereby reach states that would be impossible to reach by ordinary
executions of the program. These approaches than usually rely on the runtime
system to detect such states or rely on the developer to detect the error in the
reasoning of the approach.

BUGEX addresses all of these issues. First, starting from a single failing
test case, it gathers a variety of runtime facts. To examine the correlation of
those facts to the failure, it produces additional executions that differ in as few
facts as possible, concentrating on the failure at hand and on the “interesting”
parts of the code—thus overcoming the shortcomings of the first approach (see
Section 4.1). This way it also eliminates the need for any additional, manually
crafted tests. Second, the facts that correlate with the failure tend to be related
to one another and stress different aspects of the failure, such as properties of
execution states or branches taken. In this way, they provide a context for each
other and, ultimately, an explanation of how the failure came to be: “The failure
occurs whenever the daylight savings time starts at midnight local time.” And
third, since BUGEX does not tinker with the code or the executions themselves,
by design it cannot create artifacts (e.g., impossible executions) that can occur
using most experimental debugging techniques (such as predicate switching or
delta debugging, see Section 2.5.2).

Moreover, our BUGEX approach can be seen as a general debugging frame-
work, that works with any aspect of an execution that one can reason about. By
systematically generating tests that confirm or refute the correlation of individ-
ual facts to the failure, it performs general systematic experimentation and thus
has the scientific approach (observe, form hypothesis, experiment, refine) at its
heart, following it in a fully automated fashion. BUGEX converges quickly and
steadily and results are unambiguous and consistent with one another among
different types of aspects. In fact, our results (see Section 4.2.4) show that
BUGEX can pinpoint central facts with outstanding precision and quality. It
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can be set up (e.g. on a continuous integration or build server) to start its work
automatically, as soon as a failing test case is detected within the project. This
way it can deliver the information at the moment a developer is informed about
the failure.

In summary, our BUGEX approach

1. provides a generic automated debugging scheme that has the scientific ap-
proach at its heart and can be parameterized with arbitrary runtime facts
(it is currently implemented with branches and state predicates, but it could
also be implemented with data-flow relations, thread schedules, and more);

2. requires a single failing run, generating test cases as needed—unlike statistical
debugging, which requires an existing test suite;

3. ensures that every run is real and reproducible, unlike state- or code-changing
techniques such as predicate switching or delta debugging;

4. by driving the test case generation so that it highlights the differences between
failing and passing runs, it pinpoints important facts with outstanding preci-
sion and quality, unlike statistical debugging (which relies on the capabilities
of the given test suite);

5. provides a general explanation of the failure that is valid for all encountered
executions and may therefore even improve over the findings of manual de-
bugging.

In our evaluation, a prototype of BUGEX precisely pinpointed important
failure explaining facts for six out of seven real-life bugs.

4.2.1 Explanatory Facts

To fully understand a failure, one has to take into account various aspects,
such as input, program structure and runtime behavior both in terms of control
flow and data flow. Information about these aspects is represented by facts
of different types that complement and confirm each other and are helpful in
diverse scenarios. Examples of such facts are:

Constraints on the input: The input-related path conditions, as they
are encountered during execution, form constraints on that input. The pro-
posed approach tries to extract 1-minimal [127] failure conditions that explain
the failure in terms of the input (as shown by previous work [103]). For the
JodaTime Brazilian example, these failure conditions are given in Figure 4.7.

1 isDaylightCutDay () and (cutoverTime == 00:00:00)

Figure 4.7: Conditions necessary to trigger the Brazilian example

That is, the failure occurs whenever the chosen date is a daylight cut day in
the corresponding time zone and the cutover time is midnight.
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Variable values: The relations and abstractions of the values of variables
may also point to the underlying problem. For the initial example, the value of
the expression given in Figure 4.8 has always the same relation to the chosen
date: It is the date of the next daylight savings time transition, whenever that
transition is at 00:00:00. That is in line with the constraints on the input as
mentioned above.

1 dateTZ.nextTransition(date.getLocalMillis ())

Figure 4.8: Date of the next daylight savings time transition

State predicates: State predicates (or Program invariants [29]) that hold
for failing runs, but never for passing runs or vice versa often reveal some in-
teresting properties. For the initial example, invariants of passing runs that are
violated by failing runs are given in Figure 4.9.

1 millisLocal == millisUTC + getOffset(millisUTC)

2 millisUTC == millisLocal - getOffsetFromLocal(millisLocal)

Figure 4.9: Invariants violated by the failing test of the Brazilian example

This means that the local time is always the universal time plus offset, where
the universal time is always the local time minus local offset. For the faulty runs,
this mapping is inconsistent, since the created local time maps to some universal
time, but this universal time in turn maps back to a different local time.

Definition-usage pairs: The definition and later usage of a variable in the
code gives a good understanding of how the data flows through an execution of
the program and what data dependencies exist. If the problematic definition and
later usage of a value are far away from each other, which is especially common
in object oriented programs, that connection can be important to show. For the
initial example, such definition-usage pairs could be used to show the origin of
the invariant violation as given above (see Figure 4.10).

1 getOffsetFromLocal(millisLocal) !=

2 getOffset(millisLocal -

3 getOffsetFromLocal(millisLocal ))

Figure 4.10: Definition-usage pair for the Brazilian example

This is the guarding condition of an internal consistency check which discov-
ers that the start of the day (midnight) does not exist in the chosen time zone
and raises an exception.

Executed branches: The correlation between executed branches (branch
coverage) and defects is an often chosen indicator to single out problematic code.
Yet for the given example, this shows a problem that arises when only consider-
ing existing executions: the code has several places where daylight savings time
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transitions are treated differently, and due to the nature of the problem, all those
branches are highly correlated to the failure. Only when generating additional
executions that challenge the correlation of individual branches, it becomes clear
which of these branches are really relevant for the failure and which are just co-
incidentally correlated. The branch in the org.joda.time.DateTimeZone class,
in lines 863–864 if highly correlated to the failure (Figure 4.11).

1 // if the offsets differ ,

2 // we must be near a DST boundary

3 if (offsetLocal != offsetAdjusted) {

4 // ...

5 }

Figure 4.11: Branch correlated to the Brazilian example

And as the comment above it explains, this branch is indeed relevant not only
to any daylight savings time transition, but to the situation handled incorrectly
by JodaTime.

Number of loop-iterations: When it comes to loops, path conditions may
not be enough information; the developer might also want to know how often a
loop was executed. For example, in JodaTime, there is a piece of code where
two dates from different APIs are aligned (Figure 4.12).

1 while (date.getDate () == dom) {

2 date.setTime(date.getTime () - 1000);

3 }

Figure 4.12: Interesting loop of the Brazilian example

In that situation, the developer wants to know whether the number of loop
iterations is correlated to the failure. For instance, it would be interesting if the
loop is always executed 3.600 times (representing one hour).

As detailed later, we implemented our approach for state predicates and
branches. But since it is a universal debugging framework, we could have im-
plemented it for any of the facts just outlined. Given this test of the JodaTime

Brazilian example as shown in Figure 1.3, after a few minutes BUGEX reports
a single branch in the JodaTime code—a branch that is taken only by failing
runs and never by passing runs (see above).

4.2.2 The Approach in Detail

The basic steps of BUGEX are illustrated by Figure 4.13. BUGEX starts with a
single failure (a) and generates additional runs (b) that are similar to the failing
one and either fail or pass (c). Any difference between these runs in terms of
the facts observed during such runs (d) (e.g., the fact that a specific branch
was taken) would be linked to the pass/fail outcome. BUGEX statistically ranks
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these differences, producing a ranked list of facts (e) that are strongly correlated
with the failure. It then systematically generates more runs (b) that can either
further confirm or refute the relevance of a fact. Eventually, BUGEX produces
a ranked list of minimal fact differences, where the top-ranked facts reveal fail-
ure causes. This can be interpreted as the scientific method of observe, form
hypothesis, experiment, refine.

Figure 4.13: BUGEX in a nutshell

We now discuss the BUGEX approach in detail. In the following sections, we
discuss the individual steps, as shown in Figure 4.13; in addition, the pseudocode
in Figure 4.14 presents a schematic view of our approach.

Parameters: program p, failing test tfail
Result: relevant facts Fcorrelating

1: blast := getFailurePredicate(tfail);
2: Tfail := {tfail};
3: Tpass := ∅;
4: F := getFacts(tfail);
5: Fexplored := ∅;
6: Fcorrelating := correlateToFailure(F, Tfail, Tpass);
7: Funexplored := Fcorrelating \ Fexplored;
8: while Funexplored 6= ∅ do

9: f := getRandom(Fcorrelating);
10: t′fail := generateSimilarFailingRun(f, tfail, blast);

11: Tfail := Tfail ∪ {t′fail};
12: tpass := generateSimilarPassingRun(f, tfail, blast);
13: Tpass := Tpass ∪ {tpass};
14: F := F ∪ getFacts(t′fail) ∪ getFacts(tpass);
15: Fexplored := Fexplored ∪ {f};
16: Fcorrelating := correlateToFailure(F, Tfail, Tpass);
17: Funexplored := Fcorrelating \ Fexplored;
18: end while

Figure 4.14: Simplified pseudocode that depicts the BUGEX approach

The Failing Run

We start with Step (a) in Figure 4.13, namely, the input to BUGEX. As detailed
in Figure 4.14, BUGEX requires a program p and a failing test tfail. (The BUGEX

implementation runs on Java programs and requires a Junit test case.) Like
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other experimental approaches, such as delta debugging, BUGEX requires an
oracle—a predicate that distinguishes passing from failing runs. This oracle
typically is a failing assertion, either in the test, in the code, or in the run
time system. All run time exceptions (null pointers, array indexes, abnormal
termination, etc.) can be debugged with BUGEX instantly, without any effort
by the programmer.

1 object.doSomething ();

Figure 4.15: Example code that can throw a NullPointerException

By default, BUGEX uses the last branch1 before the failure occurs (blast)
as oracle (Line 1 in Figure 4.14). If that last branch is implicit it must be
made explicit. As an example, consider the code given in Figure 4.15. If that
code throws a NullPointerException, we transform this code and introduce
an explicit check for null before (see Figure 4.16).

1 if (object == null) {

2 throw new NullPointerException ();

3 }

4 object.doSomething ();

Figure 4.16: Explicit null check in the code

This can be done automatically. All generated test cases must evaluate this
last branch blast; those that do not are ignored for correlation and discarded.
This last branch blast encodes the oracle on the lowest abstraction level; and
in most cases does not help the developer understand how the failure occurs
or why that specific failure condition is met. If you consider the ubiquitous
NullPointerException, for instance, the failure condition does not tell the
developer why the variable was null at that specific point in the execution.
Nevertheless, the fact that a variable was null serves well to characterize the
failure itself. As this last branch correlates with failure and success by construc-
tion, it is excluded from consideration during the calculation of the correlation.

Test Case Generation

In principle, our approach can use any test generation technique that can be
geared towards generating tests for different types of facts (and thus, in theory,
could select the most appropriate ones for the program and failure at hand). For
our current implementation, we use EvoSuite [32], which implements an evo-
lutionary search approach enhanced with dynamic symbolic execution (see Sec-
tion 2.1). In order to create test cases, this tool is capable to generate series
of method calls. However, because we start of with an existing test case, it

1Technically, one should differentiate between a branch and the branch predicate that
determines whether that branch is executed. For simplicity, and unless otherwise stated, in
this work we use the term branch with both meanings.
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suffices to change the values that appear in that test case. To speed up the
search and avoid undesired side effects, we restrained EvoSuite to only change
values but to not change method calls. Search-based testing is well-suited for
our approach, as different optimization targets can conveniently be encoded in
fitness functions.

To extend EvoSuite to support a new type of facts, one needs to (1) add a
means to collect such facts for existing and newly generated test cases (e.g., via
bytecode transformation) and (2) specify a fitness function that can guide test
generation based on the facts of interest. In addition, the representation used
by EvoSuite needs to be capable of controlling these facts; for example, Evo-
Suite is currently restricted to single-threaded programs, so it would have to be
extended to be able to specify thread schedules as facts. In the current version
of BUGEX, we extended EvoSuite to support two kinds of facts: branches and
state predicates.

Intuitively, the aim of test case generation is to produce tests that (1) are as
similar to the failing test case as possible (see Section 1.2), but (2) differ with
respect to specific individual facts. Ideally, we would find a test that evaluates
the target fact differently, while at the same time evaluate all other facts the
same. In fact, in that case we could logically deduce, whether the target fact is
a cause. The reason for this has philosophical roots that via Lewis go back to
Hume and are well explained by Groce [42]: “a cause is something that makes a
difference: if the cause c had not been, the effect e would not have been.” This
is the notion of counterfactual causality [126].

When changing an execution, we need to consider that such changes might
introduce a new cause c′ that leads to the same effect e, thus giving rise to
the impression c was no cause for e. To minimize such effects, we try to have
the generated executions as similar as possible. In fact, if we could generate
both a failing and a passing run that would differ in only a single branch, this
branch would deductively be the cause and the approach could stop immediately.
However executing a branch differently in reality usually has cascading effects,
such that many subsequent branches are also evaluated differently. For this
reason it is unlikely that such two runs even exist, let alone that we find them
using a random search approach. It is also for this reason, that deterministic
straight forward approaches like delta debugging work with artificial executions
and are seldom able to come up with feasible real-life examples.

Instead, for each fact BUGEX tries to generate both a passing and a failing
test case that differ with respect to that fact, but possibly with respect to others
as well. Therefore, in contrast to the intuitive ideal approach described above,
we do not try to logically deduce the failure cause, but rather create a probability
correlation for which we aim to generate helpful inputs (i.e., executions). This
means that the approach is applicable even if test generation does not succeed
in all cases, and for practical reasons we therefore apply a time limit to the test
generation.

Test Case Requirements

During operation, BUGEX iteratively chooses a fact (Line 9 in Figure 4.14) and
attempts to derive first a failing test (Line 10) and then a passing one (Line 12)
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that both satisfy the following three requirements:

1. The tests must reach the failure oracle blast. If a test does not reach
the failure oracle, the resulting facts are irrelevant.2

2. The tests must evaluate the chosen fact f differently than the orig-

inal test case. This ensures that it is possible to assess the correlation of
the fact to the overall test outcome.

3. If several test cases fulfill the above criteria, the one most similar

to the original test case is selected. As stated above, the optimal result
would be a failing and passing test cases that only differ in f , which rarely
occurs in practice.

The fitness function for a fact type guides the search towards satisfying these
three conditions. How this guidance is implemented generally depends on the
chosen type of fact, and will be illustrated in Section 4.2.3. Given such a fitness
function, EvoSuite takes care of deriving test cases that satisfy the above
requirements (see [32] for details). During test generation, BUGEX guides and
optimizes EvoSuite’s search: Since EvoSuite implements a genetic algorithm,
the more different tests there are in the population to mutate and crossover, the
easier it is for the genetic algorithm to come up with a test case that is good
for a certain fact.

BUGEX ignores branches after blast: For all test cases that we examine, we
trace the execution to extract all executed branches. However there are two
problems to that: First, the traces of the passing executions are usually much
longer, because for obvious reasons they do not end after blast. Second, the
failing runs usually also do not end after blast, as there is exception handling,
message formatting and other code that is executed after the exception was
raised. And if we later calculate a correlation between the execution of a branch
and the failure, of course these branches are highest correlated, because they
literally are executed always and only if the failure occurs. So in order to address
this problem, we cut these executions off at blast (lines 11 and 14 in Figure 4.14
respectively).

Search Optimizations

To improve the search process, we apply several optimizations:

When choosing the next fact to consider for test generation, BUGEX ranks
the facts (see Section 4.2.2) and chooses one of the facts that is highest correlated
to the failure (Line 9 in Figure 4.14). This realizes the feedback loop between test
case assessment and test case generation (from (d) to (b) in Figure 4.13). This
also realizes the iterative nature of the scientific method: first we observe the
original failure. Then we calculate a high correlation of a fact (hypothesis). And

2 In that case the execution went astray, as we already experienced in the first approach
(see Section 4.1).
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then we try to come up with additional executions (experiment) to strengthen,
invalidate or refine the hypothesis.

In addition, this way we can achieve the quick response times shown later in
Section 4.2.4 because we ensure to spend the effort where it is most needed: by
assessing (and attempting to refute) the high correlation of a fact to the failure.
In practice, our results show that even just a few failing and passing tests are
sufficient for dramatically reducing the number of relevant facts.

BUGEX uses seeeding [33], which in evolutionary testing refers to techniques
that exploit previous related knowledge to help solve the test generation problem
at hand. The initial population of the search in EvoSuite is seeded with the
original failing test, as well as relevant tests collected during previous runs. In
particular, a pair of test suites (Tfail and Tpass) with tests that received the
highest fitness for different facts is continuously maintained (Lines 10 and 12 in
Figure 4.14) and used to seed the initial population each time the test generation
process is restarted. To make better use of the pool of available tests, we use
a timeout when searching for tests for a fact, and repeat the search several
times for every highly correlated fact f . The statistical correlation, in turn,
is calculated only on the maintained body of the tests with the highest fitness
value.

Although EvoSuite is capable to evolve tests into completely new ones, to
speed up the search we restrict it to only change the input values used within
the tests, without changing the sequence of calls to the system.

Ranking Facts

The retrieval of runtime facts as indicated by the getFacts function in Fig-
ure 4.14 (Lines 4 and 14) needs to be implemented for each type of facts. Our
implementation for branches and state predicates works by instrumenting the
bytecode of the system under test. When ranking branches, during execution of
a test case, for each branch it is recorded whether the branching condition was
executed and, if so, whether the branch was taken or not (or both, in case of
multiple executions). When creating state predicates for a method, the values
of all variables, fields and parameters are recorded on entering that method,
and state predicates are created as binary relations between these values.

The generated failing and passing executions (Tfail and Tpass) are used to
create a correlation between all executed facts and the failure (Lines 6 and 16).
Since BUGEX’s goal is to explain the fault, rather than localizing it, this cor-
relation also considers all facts in the passing executions. By doing so, the
explanation of the failure might also be a missing fact (e.g., the execution
of a branch in which a variable is set to a value other than null to avoid a
NullPointerException).

BUGEX computes the correlation of the relevant facts to the failure us-
ing an implementation of the approach by Abreu and colleagues [2] (see also
Section 2.5.1). In their approach, every branch is treated as an independent
component of the system. A diagnosis dk, as well as an observation obs, are sets
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of such components. Specifically, an observation is a set of components that
participated in a certain execution. The components in a diagnosis dk represent
possible causes for the failure, and thus the diagnosis has a certain probability
to explain a set of observations. Intuitively, this approach produces a ranking
using the sum of the conditional probability, according to Bayes’ theorem, of the
diagnosis dk, given the observation obs, for all such observations. Finally, our
approach normalizes to one these probabilities over all diagnoses and obtains
a list of facts, ranked by their normalized probability to be responsible for the
failure.

Using this approach, BUGEX calculates the probability that a given diag-
nosis is correct. Currently, BUGEX generates diagnoses by considering a single
component (i.e., fact) at a time. This showed to produce good results and has
the additional benefit that it is computationally cheap. A minor drawback of
this approach is that it only correlates single facts with the failure. In situations
where multiple facts are, together, relevant for a failure, their high correlation is
split among them, which would result in lower individual rankings. However, as
can be seen in the Commons Math example (Section 4.2.6), since the correlation
is so unambiguous, even such a split cannot introduce significant noise.

In our experiments, we usually found the ranking produced by BUGEX to
be unambiguous, with top-ranked facts being ranked higher than the rest by
orders of magnitudes. In order to decrease noise, BUGEX only returns the top-
ranked facts and cuts the result off where the difference in ranking between two
successive facts exceeds an order of magnitude.

As an example, consider the list of ranked branches for the JodaTime Brazil-
ian Date bug. The topmost branch at line 864, shown in Figure 4.11, has a
normalized probability of 0.99924, whereas the second highest ranked branch
(at line 867) has a probability of 0.000043. As the difference exceeds an order of
magnitude, BUGEX only reports the first branch in this case (see Figure 4.11).

4.2.3 Implementation

As detailed above, BUGEX is an approach that is applicable to any kind of
fact that one deems of interest. To demonstrate and evaluate the approach, we
implemented it for two types of facts: executed branches and state predicates.

Isolating Branches

In general, the similarity between two tests in our context is defined by the
number of facts on which they differ. In the case of program branches, we con-
sider the executed branches up to the failure predicate blast; execution after the
failure predicate is ignored. This is necessary, since passing executions, because
they did not fail, will by definition differ arbitrarily from failing executions after
the point of their failure. However, these differences are not interesting for our
purposes. Because blast may be executed multiple times in such execution, we
need to determine which execution of blast matches the execution in the corre-
sponding failing run. To do this, we use dynamic time warping [90], a technique
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originally defined for the alignment of audio tracks, that matches two sequences
by “warping” them non-linearly in the time dimension. Dynamic time warping
lets us (1) align the traces of the passing and the original failing run and (2)
cut the passing execution at the point that matches the last occurrence of the
branch corresponding to blast in the failing execution.

To guide the search towards evaluating the branches such that the similarity
is increased, we use the branch distance [86] measurement, which is commonly
applied in search-based testing. The branch distance estimates how close a
predicate of a branch was to being evaluated in a certain way. For example, if
the branch predicate (arg < 0) is evaluated with arg = 3, the branch distance
to false is 0, and the branch distance to true is −4. (Note that, as EvoSuite

works on Java bytecode, branching conditions are always atomic, such that there
are no conjunctions or disjunctions. Programs written in other languages can
easily be transformed in the same way.) Overall, the fitness of a test consists of
three parts:

1. Branch distance to evaluating blast as either failing or passing,

2. Branch distance to evaluating the predicate of the target branch b differently
than in the original failing run,

3. Sum of the branch distances (normalized in the range [0, 1]) of all remaining
branches to evaluating as in the original failing run.

Each of these three components is normalized in the range [0, 1], and the
overall fitness is the weighted sum of the three. The experimentally determined
weights (4:2:1) reflect the priority of the three requirements.

Isolating State Predicates

This type of fact considers state predicates: predicates that can be expressed
on the program state and the inputs at method entry. In the rest of the work,
for simplicity and when not ambiguous, we use the term predicates to refer to
state predicates.

The retrieval of the predicates is based on work of Fraser and colleagues [35]:
On entry of the currently investigated method, the values of all variables, fields,
parameters and constants that are in scope are recorded; complex objects are
recursively resolved to accessible inspector methods and primitive values. Then,
all collected values are compared with each other, using all sensible comparison
operators that apply to the type of values (e.g., for integer values, this includes
==, <, >, <=, >=). Some insensible comparisons, such as comparing constant with
constant are excluded.

The resulting set of predicates represents the concrete predicates that hold
for the values at method entry for one particular execution of the method. Since
this equals several cross products of all considered values, it can clearly result
in a large amount of predicates to consider. For the JodaTime Brazilian bug
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introduced in Section 1.1, for instance, on individual methods this results in
well more than ten thousand predicates to be correlated with the failure.

Intuitively, the set of methods to be considered consists of all methods in the
dynamic slice for blast in the failing execution. In other words, all methods that
contain at least one statement that was relevant for the execution path to reach
blast should be considered. Considering only methods in the dynamic slice often
tremendously reduces the amount of relevant statements. But because such
statements are scattered throughout the code, the number of relevant methods
often is only slightly reduced. Therefore, for some programs this approach can
lead to an insensibly large number of predicates, given that the developer would
have to investigate the predicates for each method separately and, for several
technical reasons, we have to run our approach on each method individually.

For the JodaTime Brazilian bug introduced in Chapter 1, for instance,
this would mean we would have to investigate the predicates generated for 82
methods. With a timeout of 30 minutes per method, in the worst case this
would take about 2460 minutes or 41 hours. And if for each method we only
retrieve 3 predicates, this would still yield an insurmountable 246 predicates to
manually review. We thus needed to further reduce the number of methods for
the approach to be practical. To do this, we focus only on methods that a)
contain highly ranked branches, because these methods already showed to be
relevant for the failure, or b) are on the stack trace, because, as was illustrated
in Chapter 3, the call stack mostly also is relevant for the failure. Changing this
focus can be subject to future work.

The distance function for an individual fact can again be calculated using
a metric similar to the one used for the branch distance: It is the distance of
the specification variables to a target value, called value distance. For example,
consider the predicate (x > CONST_5), with x being any variable, field, or pa-
rameter, and CONST_5 being a constant from the source code whose value is 5.
If x has value 7 in a test case, the distance to negating this predicate is 2. As
in the case of branches, the overall fitness is calculated as the weighted sum of
the normalized distances.

Before presenting the result to the user, the set of highly correlated predi-
cates is checked for implications. If one predicate implies another, the implied
predicate is removed from the resulting set of predicates. This means that we
keep only the most general predicates in the set.

4.2.4 Evaluation

In our experience, we found branches to be better failure indicators than the
more generic state predicates. Hence, we assume that programmers would first
consult failure-related branches, and only later examine failure-related state
predicates—either as an alternative to branches, if the branches are not helpful,
or in addition to branches, to gain more information about the conditions under
which the failure occurs. This is the approach we followed in our qualitative
evaluation
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Real-Life Case Study

Lines Given

ID Subject of code tests

JOD1 Brazilian Date bug 62,326 3,497
VM1 Vending Machine bug 68 1
MAT1 Sparse Iterator bug 53,496 1,580
COD1 Base64 Decoder bug 8,147 1,149
JOD2 Western Hemisphere bug 62,326 3,497
COD2 Base64 Lookup bug 6,154 185
JOD3 Parse French Date bug 53,845 3,392

Table 4.1: BUGEX evaluation subjects3

To assess how well BUGEX works in practice, we implemented it for the two
types of facts that we discussed earlier—branches and state predicates—and
conducted a case study with the same subjects as the evaluation of RECORE

(Section 3.3).

We deliberately chose to evaluate a small number of defects only, as to be
able to report and discuss the BUGEX results for every single defect. Table 4.1
provides an overview on the program and defect characteristics.

Evaluation Setup

When conducting our study, we focused on the following research questions:

RQ1. Is the number of relevant facts identified by BUGEX small enough for a
developer to examine?

In order to answer RQ1, we ran BUGEX on each of the seven defects and
checked whether there would be a small set of branches (ideally one branch)
and a small set of state predicates that would set themselves apart from the
crowd.

RQ2. Do the facts identified by BUGEX help the developer understand the fail-
ure?

Obviously, bug understanding is not a directly measurable quantity. To an-
swer this question, we present BUGEX’s results for each of the seven defects
considered and discuss how they relate to the actual defects based on our own
experiences in fixing it. We then compare our understanding to the “official”
fix from the change history.
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ID Branches Duration Predicates Duration

JOD1 1 2,380 s 25 13,55 s
VM1 1 19 s 1 56 s
MAT1 8 216 s 9 10,267 s
COD1 1 214 s 23 1,339 s
JOD2 7 8,422 s 9 30,937 s
COD2 1 38 s 2 737 s
JOD3 15 1,577 s n/a n/a

Table 4.2: Number of facts reported by BUGEX

4.2.5 Quantitative Results

Numbers of Facts Reported

Let us start with RQ1. The results produced by BUGEX can be found in Ta-
ble 4.2: The columns “Branches” and “Predicates” show the number of branches
and state predicates reported by BUGEX as being related to the failure.

As discussed earlier, we expect developers to focus on branches first, whose
number is usually in the single digits. In every case, this is a low absolute
number of branches, and thus the answer to RQ1 is clearly “yes”.

For all seven defects examined, BUGEX reports a small number of branches
as the failure cause; in four defects, in particular, it reports a single branch.

In terms of predicates, we also obtain a strong reduction, as BUGEX isolates
less than 1% of all predicates to be relevant for the failure. Yet, with up to 25
state predicates, the absolute number is not as low as for branches. As we detail
in Section 4.2.6, however, the results fall in one of two cases: in one case, we
can ignore the predicates altogether because the single branch reported already
pinpoints the failure; in the other case, the top-most ranked predicates suffice to
fully characterize the failure conditions. Because the predicates are generated
per method, we could return only those that repeat for several methods or the
predicates of methods where there were less than a certain threshold.

Time Required

One may assume that a search-based approach, where a large number of test
cases have to be generated and executed, would take a considerable amount of
time. Indeed, the BUGEX runtime reported in Table 4.2 ranges from a handful
of seconds to multiple hours.4

3Note that different numbers of lines of code for the same project are due to different
revisions of that project.

4All experiments were conducted on a non-dedicated MacBook Pro, 2.53GHz Intel Core 2
Duo, 4GB 1067MHz DDR3 RAM. The approach is multi-threaded.
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�me

branches

Figure 4.17: Number of branches remaining over time. The X axis reports time
in seconds, the Y axis the number of branches. Note the logarithmic scale on
both axes.

In practice, however, developers do not have to wait this long for their results.
In Figure 4.17, we have traced the number of failure-related branches over the
runtime of BUGEX. It is clear to see that for six out of seven subjects, after
only 20 seconds, the number of branches (and actually, also the set of branches
itself) stays stable for the remainder of the runtime. Developers may thus go
for the BUGEX results after a few seconds and get all the relevant facts. Most
importantly, BUGEX is not an interactive tool, so developers could simply run
it overnight on the failures they need to investigate and look at the results in
the morning, or configure a build server to start BUGEX as soon as a test fails.

In six out of seven defects examined,
BUGEX was able to isolate the relevant branches after 20 seconds.

Statistical Debugging with Supplied Test Suites

To put these numbers into context, we applied the statistical debugging ap-
proach on which BUGEX relies (see 4.2.2) on the branches executed using the
test cases that were supplied with the application. These results are summarized
in Table 4.3.
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ID Branches Duration

JOD1 24 25,223 s
VM1 n/a n/a
MAT1 14 1901 s
COD1 51 496 s
JOD2 28 25,341 s
COD2 17 512 s
JOD3 26 25,542 s

Table 4.3: Number of branches reported by statistical debugging

The first thing to note is that statistical debugging takes more time. How-
ever, this time is due to the supplied test cases being set up to generically detect
errors, in contrast to the test suites generated by BUGEX to specifically target
the bug at hand. In practice, the automated test suite would be run in regular
intervals anyway, and statistical debugging would incur only a small overhead
on these runs.

The more important difference is the number of branches that statistical
debugging can isolate. In all seven cases, the number is considerably larger—
from a factor of 1.73 in JOD3, the Parse French Date bug, to a factor of 51 in
COD1, the Base64 Decoder bug.

We also observed that the differences of the correlation of the branches to
the failure is much lower, rendering the cutoff of the list where the difference is
an order of magnitude much more arbitrary.

In all seven defects examined, BUGEX focuses on a far smaller number of
branches than statistical approaches.

Usually, statistical debugging approaches are compared by considering an
imaginary developer which already has perfect bug understanding, such that he
can identify the (seeded) single line of faulty code on sight, without any further
contextual information. The higher the faulty line got ranked, the better the
approach obviously is. There are cases in which BUGEX also returns only a
single line of code. In these cases it would be tempting to ask which rank that
line got by the statistical debugging approach. But since for none of the bugs
we consider here, the fix consists in a single line of code, we do not consider
our result to be the correct answer that we would request from a statistical
debugging approach. Besides, since we only return a single line of code, the
statistical debugging approach would be worse by design of the comparison.
What we really propose with this way of evaluation is a change in paradigm:
Instead of assuming perfect bug understanding, we propose to help developers
understand a failure.

4.2.6 Qualitative Results

Let us now discuss RQ2 by assessing whether and to what extent the results
help developers in understanding the failure. Since this cannot be verified au-
tomatically, we performed a manual investigation, and discuss each failure from
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Table 4.1 in detail. We start with the BUGEX report and relate it to the defect
in the code.

JodaTime Brazilian Date Bug

This is the failure discussed in Section 1.1. Bug report 2487417 for Joda-

Time [62] manifests itself with an exception thrown in the code in Figure 1.3.

Branches. BUGEX’s result (Figure 4.11) shows that the failure is due to the
mapping of the internal and local time being inconsistent, a condition which
is only true (as the comment above the branch shows) if we are near a daylight
savings time boundary.

How does this branch lead to the defect? It turns out there is no simple defect
in the code; the actual fix involves a redesign of the API with deprecation
of several classes and methods and creation of new classes and methods to
replace them. Suggesting new code to write is beyond the capabilities of any
automated debugging tool; however, BUGEX was able to pinpoint the failure
condition to be addressed by the new code. This case raises an interesting
point: State-of-the-art approaches to defect localization try to identify defect
locations in the code, which makes little sense if a large-scale refactoring and
extension is required. By focusing on execution features instead, BUGEX can
better guide such refactorings.

Predicates. Since the isolated branch already pinpoints the failure, there is no
need to explore the predicates.

Vending Machine Bug

This is a small artificial example of a vending machine that serves as a proof-
of-concept, and that we already used in earlier studies on automated debug-
ging [14]. It consists of two classes: the class VendingMachine is where the
simple business logic is located; whereas the class Coin is a mere enumeration
of possible inputs. The machine only handles a single price, and thus vending is
enabled or disabled depending on the remaining amount of credit after insertion
or retrieval of coins and after vending.

Branches. BUGEX returns a single problematic if-clause (Figure 4.18).

1 if (this.currValue == 0) {

2 this.enabled = false;

3 }

Figure 4.18: Branch returned by BUGEX for the Vending Machine example

The vending machine fails when the branch in Figure 4.18 is not taken, that
is, this.currValue is non-zero. This causes the machine to stay in enabled
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state, allowing for a second vending operation, which will bring the credit
below zero and cause an exception. This point is precisely the point where
the defect is, which means that BUGEX perfectly pinpoints the failure cause
in this case.

Predicates. Since the branch already pinpoints the failure cause, there is no
need to explore predicates.

Commons Math Sparse Iterator Bug

Apache Commons Math is a library of lightweight, self-contained mathematics
and statistics components. Defect number 367 [83] is revealed by the test shown
in Figure 4.19.

1 public void test() {

2 double [] vdata = { 0.0, 1.0, 0.0 };

3 RealVector vector = new ArrayRealVector(vdata);

4 Iterator <RealVector.Entry > iter =

5 vector.sparseIterator ();

6 iter.next (). getValue ();

7 iter.next (). getValue (); // throws exception

8 }

Figure 4.19: Test to trigger the Sparse Iterator Bug

In this test, iter is a sparse iterator, which should iterate over the non-zero
values in vdata. The second call to next() throws a NullPointerException.

Branches. For this failure, BUGEX reports eight related branches. All these
branches refer to two references in the iterator, namely current and next,
and either compare them against null or check the index field of the ref-
erenced Entry against value -1. It turns out that the code uses both these
concepts (being null or having an Entry of -1) to indicate a non-existing
entry, which causes the failure when their values are inconsistent. The official
fix uses only the -1 marker to detect non-existing entries, thus eliminating
the inconsistency.

This example demonstrates that BUGEX minimizes the number of branches to
the absolute minimum—but not further. If the failure can be reached through
different paths, BUGEX can report them all (as long as the underlying test
generation technique is able to exercise those alternative paths).

Predicates. Because the results from BUGEX are not immediately conclusive,
for this failure, the developer may chose to examine the reported failure-
related predicates. The predicates with the topmost ranking are index == 1

(again referring to an iterator attribute), hasNext() == true, and a differ-
ent formulation of the first predicate: getIndex() == 1. In this setting,
index == 1 means that the iterator already is at the last non-zero element;
yet, hasNext() is true, suggesting that there would be more elements. This
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pinpoints the inconsistency in the iterator, which is the cause of the failure
of the call to next().

The reason why BUGEX does not report current == null as a failure predi-
cate is that current == null is a valid state that frequently occurs in passing
generated tests. Hence, current == null is a necessary, but not sufficient,
condition for the failure.

Commons Codec Base64 Decoder Bug

The Apache Commons Codec library provides implementations of common en-
coders and decoders such as Base64, Hex, Phonetic and URLs. Bug report 98
(see Figure 4.20) provides predicates under which the failure arises.

Certain (malformed?) input to Base64InputStream causes a
NullPointerException in Base64.decode(). The exception occurs when
Base64.decode() is entered with the following conditions:

• [The field] buffer is null.

• [The field] modulus is 3 from a previous entry.

• [The parameter] inAvail is −1 because Base64InputStream.read()

reaches EOF on line 150.

Under these conditions, Base64.decode() reaches line 581 with buffer still
null and throws a NullPointerException.

Figure 4.20: Bug report of the Base64 Decoder bug [21]

Branches. BUGEX reports a single branch as the culprit: buffer != null in
Base64.readResults() (see Figure 4.21).

1 int readResults (...) {

2 if (buffer != null) {

3 // ...

4 if (...) {

5 // ...

6 buffer = null;

7 }

8 // ...

9 }

10 return eof ? -1 : 0;

11 }

Figure 4.21: Code excerpt for the Base64 Decoder bug

This method and method decode(), in which the exception is raised, are
called in turns several times in every run. The method decode() fills an
internal buffer with decoded input, while the method readResults() empties
that buffer and copies the results into the target array.
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For all passing runs, in the last call to readResults() the buffer is already
null, eof is true, and thus −1 is returned. For all failing runs, conversely, in
the last call buffer is set to null, and the number of bytes read is returned.
The developers decided to fix the issue elsewhere in the code, closely to where
the exception was raised. Although this is a possible fix, based on our analysis
we believe that the code reported by BUGEX is the actual cause, and not just
a symptom, of the failure, and we would have fixed the problem there.

Predicates. While the branch isolated by BUGEX is sufficient to understand
and fix the failure, the isolated predicates provide additional information on
the failure conditions. The top-ranked predicate is modulus == 3, as de-
scribed in the bug report. The other conditions listed in the bug report are
not reported by BUGEX because it can generate passing runs where each of
these conditions hold. Therefore, in this case, not only can BUGEX provide
additional details over the facts stated in the bug report; it can also show
that some reported facts are irrelevant.

JodaTime Western Hemisphere Bug

JodaTime bug report 2889499 [63] is given in Figure 4.22:

DateTimeZoneBuilder# toDateTimeZone(String, boolean) creates Period in
PeriodType.yearMonthDay() for inner purposes. This period is created using
DateTimeZone.getDefault() and started on java’s beginning of the times.
Period fields are calculated as difference of (minuendInstant + offset) and
(subtrahendInstant + offset). offset is a default zone offset for
subtrahendInstant, and is negative on Western semi-sphere. But
subtrahendInstant is already minimal possible value and can’t be increased by
negative value without arithmetic overflow, which was converted to
ArithmeticException in ZonedChronology.ZonedDurationField#

getOffsetToAdd(long).

Figure 4.22: Report of the Western Hemisphere bug

Branches. For this bug, BUGEX identifies seven branches that are highly cor-
related to the failure. Six of the seven branches are related to initializations
and set fields to default values if no specific values are specified. BUGEX re-
ports these branches since the failure requires these default values to be used.
The seventh branch is where the actual fix was applied.

This result shows that, as expected, BUGEX cannot distinguish between con-
ditions for the failure to occur and errors that need to be fixed. Nevertheless,
the number of branches reported is still low enough that a developer could in-
spect them to find the one actually responsible for the failure. Moreover, the
number of state properties is also small and can help understand the defect.

Predicates. BUGEX reports nine different predicates on five methods. Among
these predicates is the very fact that is given in the bug report as the reason
for the failure: subtrahendInstant is already minimal possible value. Another
predicate points to the fact that the error occurs on the calculation of the year
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value. The remaining seven facts are artifacts of the test generation process,
such as the number of transitions used in the test case. Currently BUGEX

cannot find that offset is always negative as stated in the bug description,
because predicates are only checked on method entry, and not within method
bodies or at method exit—where this value is calculated.

Commons Codec Base64 Lookup Bug

Issue number 22 in the apache commons codec library [20] is a failure due to an
ArrayIndexOutOfBoundsException.

Branches. When we apply BUGEX to this test case, it returns a single branch
as the result: the branch from the loop header of the for-loop that iterates
over the input. When we examine the code further, it shows that the (integer)
input is used directly to access a lookup-table, which of course fails whenever
the input is negative. There is no branch in the program that captures this
critical property of the input. What BUGEX has isolated is that the failure
occurs only if the loop body is taken at least once—without input, there is
no failure.

Predicates. While execution of the for branch is necessary for the failure to
occur, it is by no means sufficient. The for loop is entered also by passing
runs (but with much lower probability). Leveraging its generated test cases,
BUGEX isolates two predicates related to the failure:

• The first predicate is arrayOctect.length() == 3. This is an artifact
that stems from the fact that EvoSuite did not alter the length of the
input array.

• The second predicate is octect <= 0. The value of octect depends on
the input and is used directly to access a lookup table, an operation that
fails whenever the input is negative.

Considering also the predicates, BUGEX provides enough information to cap-
ture the failure condition—that it suffices to have one negative number in the
(non-empty) input for the program to fail.

JODATIME Parse French Date Bug

JodaTime’s bug report 1788282 says that parsing a valid french date fails with
an IllegalArgumentException [61].

Branches. For this issue, BUGEX produces 16 relevant branches. Upon in-
spection, we found that all branches are necessary for the failure to occur.
However, none of them provides a direct explanation of the problem.

Predicates. BUGEX is unable in this case to identify sensible predicates that
can explain the failure. The main reason is that, for this failure, the number
of predicates is too large and causes BUGEX’s analysis to timeout or run out
of memory.
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The reason why BUGEX does not work for this example is that it uses the
exception as the failure detector. That is, we assume that the defect is triggered
whenever the exception is being raised. For many of the executions BUGEX

generates, however, the exception is raised for actually incorrect inputs, which
is the right behavior. Therefore, to be able to successfully apply BUGEX to the
given example, we would have to use a more accurate oracle.

This is a manifestation of the well known oracle problem (see Section 2.1),
a general issue that affects many software testing activities. From a method-
ological point of view, it would clearly be highly desirable to have formal spec-
ifications for the code that would allow for creating perfectly accurate oracles.
Unfortunately, this is rarely the case, and the absence of specifications can hurt
not only implementation and documentation, but also testing, verification, and
(as we see) automated debugging.

Threads to validity

Threats to construct validity have to do with how we measured the performance
of our debugging technique, by assuming that the number of branches that need
to be analyzed is directly correlated with the effort needed for this examination.
However, this assumes that branches are suitable to explain faults, whereas in
practice different or additional information might be needed.

Threats to internal validity might come from how the study was performed.
To reduce the probability of defects in our framework, we carefully tested it.
To counter the issue of randomized algorithms being affected by chance, we ran
each experiment multiple times; the results were the same for each run. The
running time is the average over all runs.

Threats to external validity concern the generalization to software and faults
other than the ones we studied, which is common for any empirical analysis.
Our sample size is small; only seven different programs and bugs were used in
the study. The reason for this is that it is time consuming to find and reproduce
real bugs by manually analyzing bug reports. This produces a bias towards well
documented and easy to reproduce issues. However, the set of subjects used
represents the entire set of problems BUGEX was used on, and by choosing
different subjects, rather than applying BUGEX to many issues on the same
subject, we increase the heterogeneity of the sample set.

There are many parameters in BUGEX and the underlying techniques (i.e.,
EvoSuite) that we needed to define, such as weights, timeouts, thresholds, and
so on. Where applicable, we picked parameters as used in other studies; still,
other choices could possibly affect our results [6]. Given that we had close to
optimal results in six out of seven cases, however, we believe that changing the
parameters could affect the time it takes to search for these results, but not
necessarily their final quality.
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Summary

After examining the BUGEX results for the seven failures in Table 4.1, we can
draw two main conclusions. First, the facts reported by BUGEX provided im-
mediate help in pinpointing the bug in six out of seven cases: either the single
branch reported directly led to the defect, or the additional state predicates
highlighted important conditions for the failure to occur.

For six out of the seven failures considered, the facts reported by BUGEX

effectively led to the failure cause.

Second, the analysis of the seven failures provide initial, but clear, evidence
that much of the research in automated debugging has been misguided in point-
ing to quantitative results alone (“5% of the code”), without actually investi-
gating the qualitative value of the approaches. Our discussion of actual defects
shows that, as also discussed by Parnin and Orso [94], helping debugging tasks
involves more than producing a list of source code lines—in particular, the whole
concept of locating a defect in the code becomes questionable if the fix requires
refactorings and extensions.

Failure-related facts, as produced by BUGEX, can provide effective assistance
in isolating and understanding defects.

Statistical Debugging

To have a baseline for our results, we also examined the topmost ranked branches
reported by statistical debugging (Table 4.3). We performed statistical debug-
ging using the test suites supplied with the programs considered. The assump-
tion in statistical debugging is that developers would process the ranked list
of facts one by one, in order; more realistically, we assumed that developers
would do so for at most ten unhelpful diagnoses (see Parnin and Orso [94] for
supporting evidence). In all but one case, the top ten branches did not contain
the branches reported by BUGEX, nor would they have been as helpful; the
only exception is the Commons Math Iterator bug, where the top ten branches
reported by statistical debugging contained many of the branches reported by
BUGEX.

Statistical debugging using existing test suites does not produce as helpful
results as BUGEX.

We conclude that statistical debugging works best when used in conjunction
with a tailored test suite, as also observed by Artzi et al. [7]. However, if such
a test suite is to be generated, one may just as well guide its generation based
on the bug at hand—which is precisely what BUGEX does.

The results also show that, by focusing the generation of additional execu-
tions on the failure at hand (i.e., by employing blast) we were able to overcome
the limitations of the first approach (Section 4.1.4).
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4.2.7 Limitations

Failing test case

As explained in Section 4.2.2, input to our approach is a program p to examine
as well as a failing test case tfail. Currently, this test case needs to fail with
an exception rather than with a failing assertion. The reason being that since
we generate additional test cases, we cannot automatically determine how the
existing assertion suits the new test cases to distinguish passing from failing
runs. If for instance the output to a XML API is checked for general properties
like “has 5 child nodes”, this might well generalize to the new tests. However if
the check is more dependent on the actual input like “element has name ’marvin’
and id ’5”’ then it might not generalize to new test cases as well. But since this
can’t be decided automatically, we need to drop assertions altogether, running
into the well-known “missing-oracle”-problem for generating test cases.

Wrong Failure Predicate

Our approach uses the occurrence of the failure as the failure predicate. So we
assume that it is always incorrect behavior that the failure occurs. However, as
was illustrated by the JodaTime Parse French Date bug (Section 4.2.6) in the
case study, there are situations in which failing is the correct behavior.

Reproducing the failure

Our approach needs to be able to manipulate the circumstances that are crucial
to trigger the failure. If for instance the tests makes use of an existing file that
is used as input, or the failure is non-deterministic, our approach will fail.

Limitations of the underlying technology

The tool relies on the employed test generation technique to come up with test
cases that execute blast. These techniques currently suffer from a number of
problems in that regard. Where dynamic symbolic execution techniques suffer
from difficult to solve constraints, such as hashing- or cryptographic functions,
search based approaches have problems with structured string input such as
XML.

4.3 User Study

Parts of the contents of this section have been published in Rößler [101].

We claim that the results produced by BUGEX will help a developer to un-
derstand a failure. And we showed seven real-life examples in detail to underpin
our claim. However, these seven examples are too small a set to ensure that
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the claim generalizes to other failures as well. To fill that gap, we prepared and
started to conduct a broad user study with 373 students. However, because
of technical hardships imposed by our prototypical implementation, we were
unable to complete the study. We want to present the results of our efforts
nonetheless for other researchers to be able to draw from our ideas as well as
learn from our mistakes.

4.3.1 Research Questions and Hypotheses

First we will present the research questions we tried to answer with the study in
the form of hypothesis to falsify. As mentioned earlier, we deem BUGEX helpful
for developers to understand a defect. Thus our first research hypothesis (RH)
was:

RH1: BUGEX is valuable for the debugging task.

This is a purely subjective evaluation criterion that indicates whether users
like to use the tool. We consider our tool to be valuable for users, if they
continuously prefer to use the tool over not using it. Additionally, we would ask
the users after each bug they fixed, whether they liked the tool, what they liked
about it and what could be improved.

Our approach belongs to the field of automated debugging and has to com-
pete with other approaches from that field:

RH2: BUGEX is more helpful than
state-of-the-art statistical debugging approaches.

We would consider our tool to be more helpful than an alternative approach
if users continuously prefer it over the alternative. Additionally, we would re-
quest the estimated amount of time needed for fixing a bug, how helpful users
considered the tool and how confident they are in the fix they implemented.

If a defect is expressed only in terms of a failing test case, then there are
many equally valid possibilities to fix it. The question is, whether developers
are aware of this:

RH3: Developers are aware that there are
multiple equally valid ways to fix a defect.

To test this hypothesis, we would ask users after each bug they fixed, whether
they had alternatives and how many.

We assume that different fixes have different probabilities to be chosen by
the developer. Furthermore, we assume the decision for a specific fix (including
a rewrite of the complete program) is influenced or even mainly driven by the
expected overall effort, which includes foreseeable future changes and fixes to
probable future bugs. To make a concrete example: if the developer thinks,
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that implementing the program with a different design will save some effort in
the long run, and if there are no additional factors such as upcoming program
release dates, then this will be the fix of choice.

RH4: The main reason to chose a specific fix is that it bears the least
amount of estimated overall effort.

To test this hypothesis, we will ask users after each fix for which they were
aware of alternatives to fix it, which factors influenced their decision for the fix
they eventually chose.

Many studies (including the one by Parnin and Orso [94]) show that users
will only consider a few results before giving up on a tool. So we assume that
less results are more valuable, even if they do not contain the optimal solution.

RH5: Users prefer a smaller result set over a larger one—even if it does not
contain the optimal solution.

We consider this hypothesis confirmed if users continuously prefer a smaller
result set over a larger one.

4.3.2 Design of the User Study

Typical problems of user studies with developers include the following:

1. The study is performed with only a few developers or does not exceed a certain
time boundary (or both).

2. Either developers work on different tasks and thus the results are not com-
parable, or developers are all given the same program, which encompasses
that

(a) all programmers are alien to the code and

(b) the code cannot exceed a certain size and complexity (see also 1).

All of this limits the generalizability of a study. To address these problems
we wanted to perform a different user study. We utilized the participants of a
course in programming that is due in the second semester of studying computer
science at the Saarland University. The course is held in German, so all surveys
were in German as well. 373 students of vastly differing programming experience
registered for the course, but only about 154 successfully completed it.

During the course, all of these students were given four programming tasks
with increasing levels of difficulty. Starting with a simple Hello World program,
the students implemented seam carving and a satisfiability solver, and eventu-
ally ended with a compiler of a small artificial programming language. The
students had a certain amount of time (1–4 weeks per project) to complete the
programming tasks. That amount of time increased with the difficulty of the
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tasks. They worked unmonitored on their chosen workstation, in their chosen
environment and at their chosen time. They could suspend and continue to
work any time.

All intermediate programming results were submitted to a central server and
built and tested every night. The students received feedback from automated
unit tests. If all tests passed, the programming task was assumed to be com-
pleted. Some of the tests were given to the students together with the task and
could be run on the workstations as often as needed and were also run on the
server after every commit. Some other tests were unknown to the students—
they were executed only on the server and only once every night (called nightly
tests). Of these nightly tests, students only received the failure message if a test
failed. This created two different usage scenarios: a usage scenario that resem-
bles normal development, where tests can be executed and manually debugged
as often as needed, and a scenario which resembled that the code was executed
on end user’s machines, where students cannot rely on manual debugging at all
(without using RECORE that is).

For all failing tests (after every commit for the given tests and every night
for the nightly tests), our BUGEX prototype would generate diagnoses (i.e.,
branches and state predicates highly correlated to the failure) that the students
could request via a web interface. Using this feedback was optional. We detected
every request of the diagnoses, and thus were able to see how beneficial the
students deemed them to be (i.e., if they did not cease to request them). When
requesting a diagnosis, the students were required to complete a very short
survey before being granted access. Since we assumed that students might have
been annoyed by the questions if they were too much effort to fill out, all of the
questions were optimized to be answered quickly.

Figure 4.23: Survey on the last committed revision

If they had committed new revisions since they requested the last diagnosis,
they were asked about the last committed revision (Figure 4.23). To refresh
their memory, some details about the revision were given, such as date and
time, revision number, commit message and a link to view a diff. They were
asked which changes to the project were committed with that revision. Possible
answers were “fixed defect”, “added functionality”, “refactoring”, and “other”
with a text field. This question would allow us to disregard changes that were
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not fixes. Multiple answers were possible and the question had an optional field
for comments.

Figure 4.24: Additional question on the last committed revision

If the students selected “fixed defect”, a second question appeared (Fig-
ure 4.24). Students were asked whether they had fixed a defect that had made
a test fail previously, and if so, which one (multiple answers were possible).
All previously failing tests were listed together with a “other defect” text field.
This question would allow us to associate the survey feedback with a certain
failing test and diagnosis, so that we could reviewed later which results of the
automated debugging tools were more helpful. The question had an optional
field for comments.

Figure 4.25: Question on the fix committed in the last revision

If students indicated they had fixed at least one of the listed defects, the
survey continued with another set of 3–4 questions (Figure 4.25), concerned
with one of the fixed defects, identified by the previously failing test. If students
selected more than one defect, one of the failing tests was chosen randomly. The
first question asked was how long it took them approximately to fix the defect
(in minutes) and whether they had help. The second questions asked was how
confident they were in their changes (because they could not rerun the nightly
tests locally). Possible answers were “Certainly fixes the defect”, “Probably
fixes the defect”, “Not sure, whether the defect is fixed”, “Doesn’t fix the defect
(workaround)” and “Don’t know”. These two questions would help us to answer
RH1 and RH2. The third question asked why they decided for this way to fix
the defect. Possible answers were “was the only possibility”, “was fast / easy”,
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“was clean / elegant”, and a “other reason” text field. This question would help
us answer RH4. All questions had an optional fields for comments.

Figure 4.26: Additional question on the fix committed in the last revision

If student selected anything but “was the only possibility” in the third ques-
tion, a fourth question appeared (Figure 4.26), asking how many other possibili-
ties they had recognized. That question also had an optional field for comments.
This question targeted at answering RH3.

Figure 4.27: Optional questions on the fix committed in the last revision

At the bottom of the survey, there were three optional free-text questions
(Figure 4.27). The first question asked them to describe the problem in their own
words. The second question asked them to describe the fix in their own words.
The third questions asked how an ideal explanation of the problem would have
looked like. The text field for that questions contained some example answers:
“location in the code / property of the execution / . . . ”. And at the end, there
was another text field for additional remarks.

Figure 4.28: Survey on the last diagnosis the student received

If students had viewed a diagnosis before (no matter whether of the same or
of a different revision), they were asked a single question (Figure 4.28): “How
helpful was the last given diagnosis to understand the defect?” There were
three possible answers: “very helpful”, “little helpful”, “not helpful”, “didn’t
use diagnosis”. The question had an optional field for comments and a link to



82 CHAPTER 4. FROM TEST TO EXPLANATION

the diagnosis in question, in case the student was not sure which one that was.
This question was targeted to check RH1 and RH2.

Completing the surveys was only enforced by not giving access to further
diagnoses. So if students would cease to use the feedback, they also would cease
to complete the surveys. However, as some of the tests were only executed on
the server, we expected students to be interested in getting as much additional
information about these nightly tests as possible. Therefore, even if students
would have ceased to use the feedback of the given tests in favor of conventional
manual debugging, they still would have wanted to receive the feedback for the
nightly tests.

This also bore another advantage: students might have been reluctant to
try and become acquainted with an alternative debugging method. But if they
would have continued to use the feedback for the nightly tests, this might have
helped to overcome this inhibition and would have familiarized them with the
feedback from the system. As a downside, since the complexity of the tasks also
increased over time, this would have masked whether automated debugging is
more helpful for more complex debugging tasks.

The approach addressed all of the typical problems a user study faces: The
study was performed with a large group of developers and there was practically
no boundary on the time the developers could take to fulfill the programming
task. Also, the students would work with their own code. This meant that they
already knew the code sufficiently well and that the code could be of arbitrary
size and complexity (but, of course, directed towards solving the given problem).
Still the results would have been comparable, as all participants worked on the
same tasks. The tasks were mandatory to pass the course, so the students
had a strong motivation to complete them. And because they could not use
conventional manual debugging on the nightly tests, they had a strong intrinsic
motivation to use the alternative debugging approach.

To appropriately address the research questions formulated in Section 4.3.1,
we offered three different options for diagnosis each participant could choose to
receive. After choosing an option and before being able to receive the feedback
of the next option, the participant had to complete the short survey as shown
above (Figure 4.28). Additional to the survey results, for each option we would
continuously capture the number of times users requested it. The three options
are:

- OPT1 This option was the feedback of a state-of-the-art statistical debugging
approach and established the ground truth that would have allowed us to
check RH2 and RH5.

- OPT2 This option was the feedback of a state-of-the-art statistical debugging
approach, but the feedback only contained a limited number of results. This
option allowed us to check RH5.

- OPT3 This option was the feedback from BUGEX that would have been
compared to OPT2 to check RH1 and RH2.

The options were assigned neutral names and the assignment of names to options
differed for each student.
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Threats to Validity

We identified several possible threats inherent to the design of the study.

This user study was conducted with students only, which introduces a sam-
pling bias. A short mandatory survey at the beginning of the course about
the programming skills and experience of the participating students showed
that 341 students had no practical programming experience. 24 students had
practical experience ranging from half a year to 3 years. Only 8 students had
programming experience of 4 years or more.

One problem that may have arisen with the design of the study was the
introduction of a self-selection bias: by selecting an option and respectively a
system students wanted to receive feedback from, they select themselves into
a group. We wanted to counter this thread by the following measures: The
assignment of the system that generates the feedback to the neutral option
name was kept secret, and different for every student.

Another risk came from the Hawthorne-Effect. This effect describes the
phenomenon, that participants of an intervention study in worklife will behave
differently simply because they know that they participate in a study. However,
the very existence of this effect has been questioned recently [116], and the
results of the corresponding studies have been attributed to other unmonitored
factors. Generally, it is impossible to conduct studies with human beings where
all possible factors are controlled or even monitored. Observing effects that
originate from factors that have been (intentionally or unintentionally) ignored
is a major thread to every study on human beings.

4.3.3 How the Study Failed

When preparing the study, it was not yet clear which projects the students
would work on. In earlier instantiations of this course, the students had projects
where they implemented a red-black-tree, a spell-checker, the burrows-wheeler
transformation and games such as tetris and pac-man.

The final decision for the projects was only made shortly before the start
of the course (or even shortly before the start of the project). So there was
little time to prepare BUGEX and the underlying infrastructure. The final set
of projects which was chosen was a little unfortunate for the means of the study:

The first project was Hello World, as usual. This project does not contain
much code and really only serves as an easy starter, to familiarize the students
with the process and the tools. As a result, there were only few failing tests.

The second project was seam carving. That project would have been a good
match for BUGEX. However, as shown in Section 4.2, BUGEX needs to trans-
form the existing failing test case into some internal format, that EvoSuite can
apply the genetic algorithm on. Former tests were simple method sequences,
very similar to the internal format of EvoSuite. But the tests for this project
consisted of complex code, containing for and while loops and if-then-else
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statements. And since we only got to know that shortly before the project
started, there was only little time to add the functionality to BUGEX that let it
transform such code into the internal format. When we were done implement-
ing this (by executing the code and recording which statements got executed,
thus unrolling loops and dissolving if-then-else statements), the project was
already completed by the majority of the students.

The third project was a satisfiability solver and the fourth project was a
compiler. These projects were mostly working with String input, where that
input was expected to have some complicated and delicate internal structure.
That is for the satisfiability solver we would have had to generate valid boolean
formulae and for the compiler, we would have had to generate valid source code.
Both of this exceeds the possibilities of any currently known general execution
generation technique, and thus also exceeded the possibilities of EvoSuite.
Eventually this forced us to abort the study.

The course this study utilized takes place only every other semester. So the
next possibility to conduct the same study with the same course is only after
this thesis will be already submitted.

4.3.4 Conclusions

To the best of our knowledge, the user study as proposed in this paper is un-
precedented in the field of automated debugging. This made it very promising
in its ability to counter issues we detected in earlier studies. But at the same
time, this caused many uncertainties and risks due to the lack of experience
with such a study. And as eventually turned out, such an uncertainty (i.e.,
which projects would be chosen and what the automated tests would look like)
eventually forced us to abort the study.

We did not want to run BUGEX on a small set of well-prepared failures,
and then present the result of these to a small number of participants of the
study. This would have been much safer, but would have come with the cost
of the before mentioned problems (foreign code, unrealistic work environment,
limited amount of time and participants). Instead we opted to run BUGEX

“in the wild”, i.e., with unknown failures, unknown test cases and unknown
target programs. The result of this showed the limits of BUGEX as it is only a
prototype, missing many features and needing much more testing before being
ready as a robust industry-scale product.

This study showed how much effort the design and preparation of a user
study requires, and how easy error prone it is. This is probably the reason, why
there are still so few user studies in the field of automated debugging.
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Conclusion and

Future Work

In the following we will review the achievements and contributions of this work
to the field of automated debugging and outline what is left to be done in the
future.

5.1 Conclusion

Debugging is a time-consuming, tedious task and a major cost factor in software
development. Of course the obvious solution is to omit debugging altogether by
not making mistakes in the first place. However, despite all efforts and current
research, we assume software will continue to contain defects in the near future.
So we need techniques that help us to debug software.

The debugging process consists of four steps. As already pointed out, the
registration of a failure is already automated. In todays end user applications,
the user can send an automatically generated bug report with the push of a
button.

The next step is to reproduce the failure. So far, the developer needed to
manually create an automated test case that lets them replay the failure at will
for investigation and validation of the fix. We automated this step and are able
to generate such an automated, self-contained test case with nothing more but
the core dump.

The next step in the debugging process is to understand how the failure
comes into existence. We proposed a general debugging framework that can
pinpoint the failure in terms of arbitrary runtime information by applying the
scientific method.

The last step in the debugging process—fixing the defect—can arguably
never be fully automated for arbitrary failures; otherwise one could define the
defect to be the absence of the program and get the code created automatically.

85



86 CHAPTER 5. CONCLUSION AND FUTURE WORK

Therefore, our tool chain automates as much as possible, saving a lot of
effort and reducing overall software development and maintenance cost.

In detail, the contributions of this thesis are the following:

RECORE Our proposed approach generates a minimal, self-contained test
case that recreates a failure from the core dump. It should be emphasized
that this approach does not merely replay the failure by loading objects with
possibly already faulty state into memory, which would not allow developers
to draw conclusions on how the infection came into existence. Instead we
start from a sane state and create the faulty state and ultimately trigger the
failure by a sequence of method calls.

Our implementation uses a genetic algorithm that is seeded with the values
as found on the core dump, and a custom fitness function that optimizes
the test towards similarity with the failure and eventually reconstructs exe-
cutions that reproduce the failure. Thus we showed that search-based test
case generation is useful not only for exploring unknown behavior, but also
for reproducing known behavior. Applied on seven Java bugs, RECORE was
able to exactly reconstruct the failure in five cases, and partially in another
case. The RECORE approach incurs zero overhead in production code; the
resulting test cases capture the essence of the failure, are easy to understand,
and easy to run through a debugger.

BUGEX Our approach is a general debugging framework to show the correla-
tion of arbitrary runtime information (called facts) by employing the scientific
method (observation, hypothesis, experiment, refinement). First we record
the facts for a failing test (observation) and create an initial correlation of
those facts to the failure (hypothesis). In an iterative manner, we refine that
correlation by creating additional executions that challenge it (experiment
and refinement). The result is a correlation of unprecedented accuracy.

This general framework can be implemented for arbitrary execution features
and use any execution generation technique, targeting a certain such fact. We
implemented it for branches and state predicates, using a genetic algorithm as
execution generator. We apply state-of-the-art statistical debugging methods
to calculate the correlation of individual facts to the failure. By systematically
generating test cases, BUGEX can isolate facts that precisely characterize
when and how the failure occurs. Unlike traditional statistical debugging
approaches, BUGEX requires only a single failing run, which is the starting
point for any debugging activity. The results of our preliminary evaluation
of BUGEX are encouraging: in six out of seven cases, the features isolated by
BUGEX pinpointed the failure cause.
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5.2 Future Work

Despite the advances shown in this work, there is still much to do. The next
step we are already working on, but which will not be completed before this
thesis due to the sheer amount of computation time needed, is a much larger
evaluation.

Besides general improvements such as scalability, stability, and speed, there
are some research questions worthwhile to investigate upon in regard to both
RECORE and BUGEX.

5.2.1 Large-Scale Evaluation

The main concern regarding the results presented in this thesis is the question:
how representative is the small sample set used in the evaluation? As described
in Section 4.3, we tried to evaluate BUGEX in a large scale user study during
a course in programming. However, due to technical difficulties and because
the projects for the course were prepared on short notice, the study had to be
cancelled.

We also started to prepare a quantitative evaluation of unprecedented scale
(see also Section 2.8). But due to computation time required to prepare that
evaluation, it is yet unfinished.

The ground truth in automated debugging is always the fix. But as discussed
in Chapter 1, in general, there are infinitely many ways to fix any given defect.
Yet somehow, the developer chose one of those fixes above all others. If we could
recognize a rhythm and rhyme to that, and extract heuristics to determine in
which situation which fix is most appropriate, we would go a long way towards
helping a developer understand a failure, suggest possible fixes or even fix a
defect fully automatically.

The same applies not only to fixes, but also to bugs. To our knowledge,
there is little data on how bugs are introduced during development. If we could
recognize some pattern of how such bugs look like, in what situations they are
introduced, and what other effects they have, we could improve bug prevention
tools and techniques such as PMD [95], FindBugs [30] and Checkstyle [16].

To evaluate existing approaches and tools properly, we need a large set of
real-world failures and fixes. With todays large body of freely accessible open-
source software as well as public bug trackers, we are in a unique situation: the
source code of the programs, the failures and their complete documentation,
and the tests that reproduce the failures are all accessible. We just need to
extract and refine them. And since there are so many of them, we can even
do so in a fully automatic fashion and afford to lose some of them on the way.
Which is exactly what we are working at.

In this chapter, we propose a system (called TrueBug) to automatically
extract a large body of failures and minimal fixes, using existing revision control
systems, unit tests and delta debugging. The very same system can be used to
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also automatically extract a large body of defects as they were introduced into
projects during development. Together, they can form a realistic benchmark of
size, quality and diversity previously unheard of, for the evaluation of automated
debugging techniques. Additional to that, they can be used to gain new insights
into the nature of both defects and fixes.

We already started to work on this. But since we deal with huge amounts
of projects and even greater amounts of data, the overall process takes a lot
of computation time and has not finished yet. However, we will present some
preliminary result to show the feasibility of the approach.

Schematic approach

Figure 5.1: A simplified scheme of TrueBug

The schematic approach of TrueBug is depicted in Figure 5.1. In a first
step, the standardized project web site on the project hosting site is used to
capture some meta data about the project, such as its name, registration date,
number of filed bugs, number of recommendations and weekly downloads. In
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a second step, the complete revision history of the project is retrieved from
the publicly available source code repository, whose URL is also given on the
project website, and transformed into a common intermediate format. This
intermediate format is then used to step through the complete history and
build and test every version of the project. While doing so, we capture all sorts
of data, such as duration and outcome of the build and individual tests. The
produced data is saved in a database for later mining.

Figure 5.2: TrueBug generates a minimal defect and a minimal fix from a
failing test by applying delta debugging on the revision differences

Then we iterate over all test cases that we detected to fail. For each such
failing test case, we take the first subsequent revision where the test case does
not fail. By applying delta debugging between the two revisions and using the
test case as oracle, we can extract the 1-minimal fix that makes the test pass
(Figure 5.2). Likewise, we can use the last previous revision where the test case
did not fail and also apply delta debugging to extract the 1-minimal change that
introduced the defect.

What looks like a simple approach in theory is awfully intricate in reality
as there are many different combinations of project hosting sites, web site lay-
outs per hosting site, revision control systems, build systems and test systems.
And adding to this complexity is the sheer amount of space and bandwidth
needed to download and store complete project histories as well as the needed
computational power to build and test each and every revision of each project
(possibly multiple times when minimizing differences). For each failing test, we
extract both minimal defects and minimal fixes by applying delta debugging.
This means that there are between O(log(n)) and O(n2) steps of minimization
and test execution (with n being the number of differences). Per failing test,
this is done twice—for calculating both the minimal fix and defect.

We found projects were a single revision already was bigger than 5.8GB.
Only the head revisions of the approximately 43,000 Java projects we down-
loaded from SourceForge summed up to more than 1TB of files. For big
software systems, a duration of a single build of up to 19 hours has been re-
ported [85], where there can be hundreds of thousands of revisions per project.
And since there are whole books about how to set up and maintain integration
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servers to execute automated builds, how can we hope to fully automate the
task of configuring and running builds? And all of this for an overwhelming
amount of projects; SourceForge alone hosts some 430,000 projects [117].

The obvious challenges of this venture are probably the reason why no one
else has ever tried to conduct such an analysis before.

Implementation

Our approach makes only some very general assumptions that should be met
by most open source project hosting sites. We implemented it first for Source-
Forge [108], as to our knowledge, this is currently the biggest open source
project hosting site [117].

Although the approach is able to handle all kinds of projects, we initially
restricted ourselves to Java projects in order to get a more homogenous set of
projects to work with. Instead of downloading the complete version history at
once, we only checked out the latest version of the project to see whether we
could recognize its build system(s). In order to do this, we went through all files
and tried to identify the build system by commonly associated file names. For
instance, makefile would indicate Make [81], build.xml files indicate Ant [5]
and project.xml or pom.xml point to two different versions of Maven [84] as
build system. Since our depicted approach depends on the existence of tests
to be able to detect and minimize both defects and fixes, we also required the
projects to contain at least a single Java file with “Test” in the name1.

Figure 5.3: Percentage of mined projects compatible with TrueBug

We discarded 29% of the projects because there was no URL pointing to
a revision control system on their project web site (which can of course also
mean that it is hosted elsewhere). Another 20% were discarded because the
given revision control system was empty or contained no Java files. 8% of the

1JUnit3 has the mandatory naming convention that the class name has “Test” as postfix,
while JUnit4 requires an annotation of a test method with @Test [66].
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projects did either not contain any build system or we were unable to recognize
it. And another 24% of projects did not contain any tests according to the
described file pattern. 2% of the projects were discarded for a whole lot of
different reasons. Only if we could recognize the build system and find some
tests, we marked the project as compatible and continued with our approach.
As can be seen in Figure 5.3, from the approximately 43,464 Java projects we
started with, this already excluded 83% of them, leaving us with 7,328 projects.

Figure 5.4: Distribution of unique build systems per project

Of all the projects we could analyze the files of (including some that did
not have tests), 13,607 had at least one build system we could recognize. For
some projects we found no less than 7 different kinds of build systems and up
to 54 different instances of those build systems for different subprojects. The
distribution of the 19,295 build systems unique per project (that is each build
system was counted only once per project, but a project could have several
build systems) is shown in Figure 5.4. As can be seen, 10,196 projects contain
a build.xml file and thus are likely to use Ant [5] as build system (56% of
the build systems). 6,112 projects use Maven [84] as build system (34% of
the build systems), where there are roughly equally many using Maven 1 and
Maven 2. 1,790 projects use Make [81] as build system (10% of the build
systems). We found other build systems (such as Gradle [41]) to not have a
substantial distribution.

We also considered some other file patterns within the projects, to recog-
nize which Integrated Developments Environments (IDEs) were used. In 12,311
different projects we found artifacts pointing to 13,013 different IDEs unique
per project. As can be seen in Figure 5.5, Eclipse [28] is pretty dominating,
with its artifacts being found in 10,253 projects (80% of the IDEs). We found
artifacts of NetBeans [91] in 2,404 projects (19% of the IDEs). Of JDevel-

oper [58], IntelliJ IDEA [51], and JCreator [57], we only found artifacts
in 90, 57, and 31 projects respectively (together 1% of the IDEs). The artifacts
of the build system are a natural extension of the code and are therefore ex-
pected to get committed to the revision control system. In many projects it is
up to the developer to decide which IDE he wants to use, and often different
developers use different IDEs within the same project. As a consequence and in
contrast to committing artifacts of the build system, is often assumed to be bad
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Figure 5.5: Distribution of integrated development environments

practice to commit artifacts of the IDE. Therefore, we did not expect to find
that many projects with IDE artifacts. And as another consequence, the results
may be biased—for instance, some IDEs might make it harder to configure a
project and thus those artifacts are more likely to end up getting committed
and shared between developers.

Limitations and Future Work

We are well aware that the numbers presented cannot be considered to gener-
alize to all kinds of projects (i.e., non-Java or commercial projects). However,
although we only retrieved data from a single project hosting site, we assume
that they generalize to open source Java projects from other free project hosting
sites. We are aware that free project hosting sites might attract only a certain
kind of open source projects or only projects up to a certain size. And finally,
the fact that we simply discard projects that our approach does not work with
introduces additional bias.

As indicated earlier, these are preliminary results that merely show the fea-
sibility of our approach. The next step is to download the complete version
history and convert the revision control system to Mercurial [88] (our com-
mon intermediate format). We then execute the configured build systems within
the projects for each and every revision. For every failing test we find, we create
the 1-minimal difference to the next and previous passing revision, thus extract-
ing both the minimal defect and the minimal fix. We heuristically optimize the
process where it seems beneficial. Here the vast amount of projects available
comes in handy: we can afford to only support the majority of projects. If a
project has some quirks that do not work with our automated approach, we
simply discard it (although that introduces some statistical bias).

As mentioned above, we detected to be able to use 7,328 projects from
SourceForge. If we can only build 20% of the projects, this will still leave us
with about 1,400 projects to capture build data from. On average, the revision
control systems of projects that are compatible have 766 revisions. If we can
only successfully build 20% of those revision of the 1,400 projects, we will get
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about 214,480 successfully built revisions. If only 20% of these revisions contain
one failing test and if we are able to find previously or subsequently passing
tests for only 20% of these failing tests, we will still end up with about 8,579
minimal fixes and failures.

We are already working on these steps. However, due to the needed compu-
tation time, we decided to only show some preliminary results in this thesis.

We also consider to expand the approach to similar project hosting sites
such as Google Code [40] and GitHub [37] or to project types other than
Java projects. Also, we want to crawl custom project web sites and recognize
URLs that point to the respective revision control system to enrich the data
and increase its diversity.
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5.2.2 Future Work on RECORE

We successfully showed the feasibility to reconstruct failures from core dumps
via test case generation. However, our implementation is only a proof-of-concept
and can be extended in the following ways:

System test generation. A new generation of test generators [43] applies
search-based testing at the system level, synthesizing GUI events as inputs.
Such generation techniques could also be integrated into RECORE, resulting
in tests that work at the GUI level and mimic user behavior instead of at the
unit level.

Capture more events. As illustrated in Section 4.2.6, the lack of history can
effectively prevent RECORE from reconstructing the failure. Following the
BUGREDUX way and investigating which events can be captured during exe-
cution could maximize the effectiveness of reconstructing failures, while min-
imizing the overhead on executions. For instance, RECORE could exploit
events that can be logged at low overhead, such as GUI interaction.

Parallel execution. Multi-threading failures are among the hardest to repro-
duce and debug. Techniques from execution synthesis [123] could be adapted
to control and reconstruct failure-inducing thread schedules.

Improved execution generation approaches. Both RECORE and BUGEX

rely on EvoSuite to generate additional executions. Improving EvoSuite

would thus have a doubly positive effect. One possibility to extend EvoSuite

is to integrate symbolic execution and constraint solving to speed up test case
generation in many situations.

User study To fully evaluate the effectiveness of a tool that yields qualitative
results (that is results that are not measurable directly), a realistic user study
should be performed. Our first attempt to perform such a study turned out
to be fruitless (see Section 4.3). However, this merely means that such a
study should be performed with a different setting and, most notably, with
different projects, that can better be handled by todays execution generation
approaches.
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5.2.3 Future Work on BUGEX

Despite our initial successes, the combination of test case generation and auto-
mated debugging is still in its infancy. Future work will focus on the following
topics:

More runtime facts. Besides branches taken and state conditions, there are
several other runtime facts that may characterize failures (see Section 4.2.1).
We are currently exploring the wide range of test criteria for this purpose:
sub-conditions fulfilled, definition-use relationships, number of loop iterations,
and others. We believe that considering a richer set of facts will help with
even better diagnoses (e.g., “the failure occurs whenever this loop is taken
only once”). One challenge, when considering a new type of facts, is how to
define an appropriate fitness functions, as well as how to integrate the findings
in a single ranking.

Multiple facts. BUGEX currently only associates individual facts with fail-
ures. An obvious extension would be to check for the correlation of multiple
facts (e.g., “the failure occurs only if the state predicates current == null

and hasNext() == true hold simultaneously”).

Test suites and multiple failures. In case an existing test suite with multi-
ple failing tests relating to the same failure (defined by blast) exists, these tests
can be used as seeds for EvoSuite. We will investigate to what extent this
can improve the effectiveness of the approach. This would also allow us to ex-
tend BUGEX so that it can search for multiple causes (and their interferences)
in parallel, rather than treating each failure individually.

Better diagnoses. Being essentially search-based and nondeterministic both
in isolating and test case generation, there is always a chance to improve
BUGEX results. One could also focus on an even stronger guidance of test
case generation based on test results; we also strive for support for multiple
interfering defects [2].

Additional test generation capabilities. Right now, we currently restrict
EvoSuite to only change the values that appear in the given failing test
case. However, EvoSuite is also able to alter the existing series of method
calls. There might be cases for which this is beneficial.

Integration with minimization. Jinsi [14] minimizes failing executions to
a fraction of their size, using a combination of dynamic slicing and delta
debugging. We are currently integrating Jinsi’s minimization and BUGEX’s
isolation capabilities, which should allow us to decrease the search space while
further increasing precision.

User studies. So far, studies in debugging have focused far too much on quan-
titative aspects, widely ignoring the usefulness of the results for develop-
ers. Due to the technical limitations of our prototypical implementation of
BUGEX, we had to abort the first attempt to perform such a study (see Sec-
tion 4.3). But this merely means that such a study should be performed with
a different setting and, most notably, with different projects, that can better
be handled by todays execution generation approaches.
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