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Abstract—We describe the support within high-level hard-
ware synthesis (HLS) for two standard software parallelization
paradigms: Pthreads and OpenMP. Parallel code segments, as
specified in the software, are automatically synthesized by our
HLS tool into parallel-operating hardware sub-circuits. Both
data parallelism and task-level parallelism are supported, as
is the combined use of both Pthreads and OpenMP. Moreover,
our work also provides automated synthesis for commonly oc-
curring synchronization constructs within the Pthreads/OpenMP
library: mutual exclusion (mutex) and barriers. Essentially, our
framework allows a software engineer to specify parallelism to
an HLS tool using methodologies they are likely to be familiar
with. An experimental study considers a variety of parallelization
scenarios, including demonstrated speedups of up to 12.9x in
circuit wall-clock time for the 16-thread case and area-delay
product as low as 12% (~8x improvement) when using 4
pipelined hardware threads.

I. INTRODUCTION

The inherent parallelism of FPGA hardware has been ap-
plied to provide orders of magnitude speedup vs. software for
implementing computations [5]. FPGA hardware is difficult to
design however, requiring the use of hardware description lan-
guages (HDLs), such as VHDL or Verilog. Moreover, hardware
expertise is comparatively rare vs. software expertise [26]. To
deal with these trends, high-level synthesis (HLS) continues
to gain traction as a design methodology for FPGAs, both
to ease hardware development, and ultimately, to make the
performance advantages of FPGA hardware accessible to those
with software skills. There is a gap, however, between HLS-
generated hardware and human-designed hardware, partly due
the inability of HLS to fully exploit the parallelism available
in the target FPGA fabric. We addresses this challenge by
presenting a methodology through which an engineer may
use software techniques to specify parallelism to an HLS
tool, and providing an HLS tool that implements the specified
parallelism in a hardware circuit.

Software compilers have a limited ability to infer paral-
lelism automatically, and as such, it is normally incumbent
on the programmer to specify parallelism within the code.
Common parallelization approaches include using parallel pro-
gramming languages such as OpenCL [19] or CUDA [22], or
the use of libraries like Pthreads [21] and OpenMP [23]. A
question that naturally arises then, is how does one specify
parallelism to an HLS tool? There appears to be no single com-
mon approach among current HLS tool offerings. To specify
fine-grained loop-level parallelism, such as loop pipelining or
loop unrolling, some tools require the use of vendor-specific
directives (pragmas) within the source code [27], while other
tools use constraint side files [6]. Coarse-grained parallelism
is often realized by using an HLS tool to synthesize a sin-
gle hardware core, and then manually instantiating multiple
instances of the core in structural HDL — an approach which
requires knowledge of hardware design.

In this paper, we provide HLS support for standard par-
allel programming methodologies that software engineers are
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already likely familiar with. In particular, we propose using
Pthreads and OpenMP for the specification of parallelism to
an HLS tool. We provide an HLS framework wherein the
parallelism described in the software code is automatically
synthesized into parallel hardware accelerators that perform
the corresponding computations concurrently. Writing deter-
ministic parallel software often requires the use of synchro-
nization constructs that, for example, manage which threads
may execute a given code segment at any given moment. Rec-
ognizing this, we also provide HLS support for two key thread
synchronization constructs in the Pthreads/OpenMP library:
mutexes and barriers. Furthermore, to meet memory bandwidth
constraints, our tool automatically synthesizes arbiters among
parallel accelerators that share memory. Our Pthreads and
OpenMP support in HLS has been implemented within the
LegUp open-source high-level synthesis framework developed
at the University of Toronto [6].

In an experimental study, we demonstrate the capabilities of
our HLS tool across a broad range of parallelization scenarios
applied over a suite of benchmark circuits, including the
use of Pthreads in isolation, combined use of both Pthreads
and OpenMP, as well as Pthreads in conjunction with loop
pipelining. Results show that the proposed techniques can
provide up to 12.9x speedup in wall-clock time with 16
hardware threads, and show an area-delay product as low as
12% (over 8 x improvement) when using 4 pipelined hardware
threads.

The contributions of this work are: 1) Automatic generation
of parallel hardware using both Pthreads and OpenMP. We
believe this to be the first work of its kind, and not found in
prior literature. 2) Automatically generating “nested” parallel
hardware using Pthreads and OpenMP, or Pthreads and loop
pipelining. 3) Quantitatively analyzing the three parallelization
techniques, Pthreads, OpenMP, and loop pipelining, in isola-
tion as well as in tandem. 4) Providing an open-source frame-
work which can be freely used by the research community.

Our work represents a key step towards improving the
performance of hardware that can be produced by an engineer
who solely possesses software skills. The remainder of this
paper is organized as follows: Section II presents related work.
Section III provides an overview of parallel programming in
software using Pthreads and OpenMP. Section IV describes
how these parallel software threads are compiled to concurrent
hardware accelerators. Section V provides an overview of
the targeted system. An experimental study is described in
Section VI and Section VII concludes this work.

II. RELATED WORK

Several prior works consider the use of OpenMP for
FPGAs. The work in [11] implements an extension to OpenMP
so that computations can be off-loaded to an FPGA, although it
was not in the context of high-level synthesis and required that
the FPGA hardware be designed manually using HDL. The
work in [17] describes a framework that generates Handel-
C and VHDL from programs that use OpenMP, where the
generated code is implemented on an FPGA. Although the



work bears some similarity to our own, it has significant
limitations, namely, it only supports the integer data type,
the target hardware has no memory subsystem, the hardware
FSM allows only one statement in each state, and there is no
support for nested parallelism. Our framework does not have
such limitations. The work in [7] describes a source-to-source
translator that accepts a C program that uses OpenMP as input,
and generates source files to be passed to an HLS tool. The
authors do not provide the HLS ability themselves, but instead
use a commercial tool — Impulse CoDeveloper [18].

Concerning Pthreads, [25] describes a framework which
employs Pthreads to generate hardware accelerators at runtime
using on-chip CAD tools. This framework requires an OS
running on an embedded processor (ARM11) to manage the
scheduling and execution of threads. In our work, no OS is
required and the thread support is completely integrated into
the HLS tool itself, permitting auto-generation of a complete
system, synthesizeable by commercial RTL synthesis tools.
HybridThreads (hthreads) is a real-time embedded operating
system which allows programmers to run threads simultane-
ously on a CPU and on an FPGA [15, 9, 10]. The authors
provide an hthreads API, which, while similar to the Pthreads
API, is nonetheless a non-standard approach to parallelization.

It is also worthwhile to comment on the parallelization
capabilities of the HLS tools offered by the two main commer-
cial FPGA vendors. Vivado [27] is Xilinx’s HLS tool, which
provides a rich set of features such as pipelining, memory
partitioning/restructuring, arbitrary precision types, as well as
supporting other user-specified pragmas to control the gener-
ated hardware. Hardware knowledge is needed to fine-tune the
hardware using pragmas and there is currently no support for
standard software APIs to specify parallel execution. Altera’s
OpenCL compiler [3] permits the compilation of OpenCL
kernels to FPGA hardware. Parallelism is explicitly specified
by the programmer in OpenCL, which is compiled to pipelined
hardware units. Related to the Altera effort, [8] provides a
source-to-source compiler which translates CUDA code and
produces annotated C code that can be input into another HLS
tool, AutoPilot [14].

To our knowledge, there is no prior work that offers an
open-source HLS tool with support for parallelism expressed
using the Pthreads or OpenMP standards.

III. PARALLEL PROGRAMMING IN SOFTWARE

This section briefly describes Pthreads and OpenMP and
illustrates how they can be used to express parallelism. We fo-
cus on the most widely-used aspects of the two parallelization
approaches, which are the same aspects we have selected for
automated synthesis to hardware. Consider the following code
snippet that uses Pthreads:

for (i=0; i<4; i++) { //fork threads
pthread_create (&threads[i], NULL, add, &datali]);
}

for (i=0; i<4; i++) { //join threads
pthread_join(threads[i], NULL);
}

The pthread_create function invokes a new thread
to execute a function, whose name is passed as an argument.
Here, four parallel threads are invoked, each of which executes
the add function. As its arguments, pthread_create takes
a pointer to a Pthread thread variable, a pointer to a Pthread
attribute variable (NULL in this case), the name of the function
to execute on the thread, and a pointer to an argument variable
(datali]). Using pthread_create, one can also execute
different functions in parallel, by passing different functions as
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the third argument.

The pthread_join function waits for a specified thread
to terminate. In the above example, it is used to wait until all
four threads have finished executing the add function. As its
arguments, it accepts a thread variable, and a pointer to a return
value variable (NULL in this case).

In parallel programming, synchronization mechanisms are
used to prevent race conditions and ensure correctness of
data, with locks and barriers being the most commonly used
mechanisms. A lock is used to specify mutual exclusion
to a critical section of code, ensuring that at most one
thread can execute the code at a given time. With Pthreads,
locks are specified with the pthread_mutex_lock and the
pthread_mutex_unlock functions. Both functions take a
pointer to a special mutex variable as their only argument. Mul-
tiple locks can be specified by using different mutex variables.
A barrier is used to synchronize threads at a specific point in a
program. When a barrier is used in a program, all threads must
stop at the barrier point and wait until all other threads have
reached the barrier. In Pthreads, pthread_barrier_init
is used to initialize the barrier with the number of threads
that must wait at the barrier. The pthread_barrier_wait
function synchronizes participating threads at the barrier which
blocks the threads until the required number of threads have
reached the barrier.

Turning now to OpenMP, consider the following code
segment:

#pragma omp parallel for num_threads(2) private (i)
for (i = 0; i < SIZE; i++) {
output [1] = A_array[i]*B_array[i];

}

The loop performs a dot product on two arrays, A_array
and B_array. To parallelize this loop using OpenMP,
one simply puts an OpenMP pragma before the loop, as
shown in the example. The OpenMP pragma, #pragma omp
parallel for, is used to parallelize a for loop. The
pragma uses a number of clauses. The num_threads clause
sets the number of threads to use in the parallel execution of
the for loop. The private clause declares the variables in
its list to be private to each thread. In the above example,
two threads will execute the loop in parallel, with one thread
handling the first half the array, and the other handling the
second half of the array. When #pragma omp parallel
for is used on a for loop, the gcc compiler outlines the
body of the loop to a function, and inserts a call to a library
function called GOMP_parallel_start, marking the start
of a parallel section, and then forks threads to execute the
outlined function. This is immediately followed by a call
to another library function, GOMP_parallel_end, which
marks the end of a parallel section and makes the threads wait
for all other threads to finish execution. Note that the parallel
pragma in OpenMP is blocking — all threads executing the
parallel section need to finish before the program execution
continues. #pragma omp parallel can also be used to
parallelize a section of code which is not in a loop.

As illustrated, OpenMP provides a simple and a high-level
approach for parallelization. With a single pragma, the user
is able to parallelize a section of code without complicated
code changes. On the other hand, Pthreads requires explicit
forks and joins of threads. Pthreads generally requires more
work from the programmer but it also gives more fine-grained
control.

IV. PARALLEL THREADS TO PARALLEL HARDWARE

Prior to this work, LegUp HLS was only able to exploit
instruction-level parallelism, and loop-level parallelism via



loop pipelining. The current work greatly expands the extent
to which a user may specify parallelism to the HLS tool.
The approach we take is to automatically instantiate parallel
hardware for parallel threads. That is, each software thread
is mapped automatically into a hardware accelerator'. The
remaining (sequential) portions of the program are executed
in software on a MIPS soft processor. The MIPS processor
invokes parallel accelerators and retrieves their return values by
using wrapper functions, which replace the original software
versions of the parallel code.

A. Wrapper Functions for Parallel Accelerators

The MIPS soft processor communicates with hard-
ware accelerators over memory-mapped addresses de-
fined in wrapper functions. As described above, Pthreads
and OpenMP use the pthread_create/join and
GOMP_parallel_start/end functions to create and ma-
nipulate threads. When these functions are called in a program,
our framework automatically generates wrapper functions.
The wrapper functions are used by the MIPS processor to
send function arguments to accelerators, start the accelerators,
poll to check if the accelerators are done, and retrieve any
return values. Two types of wrapper functions are created by
our tool: calling wrappers are generated to replace software
code that launches threads, namely, pthread_create and
GOMP_parallel_start. Polling wrappers are generated
to replace code that joins threads, namely, pthread_join
and GOMP_parallel_end. Example wrapper functions for
OpenMP are shown below.

1: #define fct_DATA (volatile int*)0x£f000000
2: #define fct_STATUS (volatile int*)0xf000008
3: #define fct_ARG1 (volatile intx)0x£f00000c
4: #define fct_THREADID (volatile intx)0xf000010
5: #define fct_THREADMUTEXID (volatile int«)0xf000014
6:
7: void legup_ompcall_ fct (char* _omp_data_i) {
8: int i;
9: for (i=0; i<4; i++) {
10: * (fct_ARG1+ix8) = (volatile int)_omp_data_i;
11: % (Fct_THREADID+1i%8) = 1ij;
12: * (fct_THREADMUTEXID+ix8) =

(volatile int) fct_DATA+ix8;
13: * (fct_STATUS+ix8) = 1;
14: 1}
15:}
16:
17:void legup_omppoll_fct () {
18: int 1i;
19: for (i1=0; i<4; i++) {
20: while (% (fct_STATUS+ix8) == 0){}
21: 1}
22:}

Prior to the wrapper functions, the address map of the first
hardware accelerator is defined using #define statements
(lines 1-5). Only addresses associated with the first accel-
erator are defined per parallel section (for compactness and
readability of code), and pointer arithmetic is performed to
calculate the addresses associated with the remaining acceler-
ators belonging to the same parallel section. The pointers are
used to send arguments to accelerators (function arguments,
thread ID, and thread mutex ID, as shown on lines 10-12),
start accelerators (line 13), and check if accelerators are done
(line 20). The thread ID is a unique number within a parallel
section that is assigned to each thread to determine the portion
of work the thread is responsible for in the particular parallel

INote that the number of software threads needs to be fixed at compile time
as LegUp currently does not support dynamic creation of hardware accelerators
at runtime.
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section. The thread mutex ID is a unique number across all
parallel sections that is assigned to each thread that accesses a
mutex. This thread mutex ID is used to lock/unlock a mutex.
In the above example, observe that the calling wrapper invokes
four parallel OpenMP accelerators. After executing the calling
wrapper, the processor proceeds to call the polling wrapper
(lines 17-22). The polling wrapper queries each accelerator
and checks the STATUS register in a while loop (line 20).
An accelerator returns a *1” when it is done, which terminates
the while loop.

With Pthreads, the generated wrappers are different from
the OpenMP wrappers, as thread creation with Pthreads is non-
blocking, and it involves a thread variable. An example set of
calling and polling wrapper functions for Pthreads are:

1: #define add_DATA (volatile intx)0x£000000

2: #define add_STATUS (volatile int+)0x£000008

3: #define add_ARG1 (volatile int«*)0x£f00000c

4: #define add_THREADMUTEXID (volatile intx)0xf000010

5:

6: int legup_count_add=0;

7: void legup_pthreadcall_add(char xthreadarg,
pthread_t xthreadvVar) {

8: int legup_accelID_add=legup_count_add++;

9: int LEGUP_ADDR_OFFSET=legup_accelID_add=*8;

10: «threadvar=(int) (add_STATUS+LEGUP_ADDR_OFFSET) ;
11: % (add_ARG1+LEGUP_ADDR_OFFSET) =
(volatile int)threadarg;
12: * (add_THREADMUTEXID+LEGUP_ADDR_OFFSET) =
(volatile int) (add_DATA+LEGUP_ADDR_OFFSET) ;
13: % (add_STATUS+LEGUP_ADDR_OFFSET)=1;
14:}

l6:char xlegup_pthreadpoll (pthread_t threadvVar) ({
17: wvolatile int* STATUS=(volatile int=*) (threadvar);
18: wvolatile intx DATA=STATUS-2;

19: while (*STATUS == 0){}
20: return (char=*)*«DATA;
21:}

For each different C function intended for execution in
a thread, a new calling wrapper (lines 1-14) is created,
whereas, only one polling wrapper (lines 16-21) is created
for all pthread_join calls. The reason for this is that
the pthread_join function uses the thread variable to
determine, at runtime, which thread to join. Therefore, the
polling wrapper must also determine at runtime which hard-
ware accelerator to “join” using the thread variable.

The calling wrapper receives the index of the accelerator
(line 8), for when the same function is executed on multiple
threads, and it calculates the memory offset of the accelerator
based on the index (line 9). This offset is used to calculate the
memory-mapped address of the accelerator, which is saved
into the Pthread variable (line 10), to be used later in the
polling wrapper. Since the thread variable already exists as
an argument to pthread_create, it can be conveniently
“re-purposed” automatically by our system without requiring
any code changes by the user. This is “legal” as the thread
variable itself does not have any other uses. Once the address
is saved, function arguments and the thread mutex ID are sent
to the hardware accelerator (lines 11-12) and the start signal
is given (line 13).

At run-time, the polling wrapper determines which accel-
erator it needs to communicate with by loading its STATUS
address from the thread variable (line 17). Once the address
is retrieved, the polling wrapper gets the DATA address (line
18, STATUS address is always offset by 2 words from the
DATA address, as shown on lines 1-2), then proceeds to poll
the STATUS register to check if the accelerator is done (line
19). It then retrieves the return value if necessary (line 20).



B. Synchronization Mechanisms

We now describe how we support thread synchronization
mechanisms (locks and barriers) in HLS-generated hardware.
In our framework, a lock is created in hardware by using
a special hardware mutex core, which is also mapped to an
address. An instance of the core is instantiated for each mutex
variable used in the parallel program, and a round-robin arbiter
is instantiated for each core to ensure atomic access. The core
itself is quite simple: it contains a register that holds the unique
thread ID of the hardware accelerator that holds the lock and
has a flag to indicate its state (locked/unlocked).

The operation of a lock is as follows. Our framework
automatically replaces all calls to pthread_mutex_lock
and pthread_mutex_unlock with calls to our own
lock/unlock functions. Our lock/unlock functions perform
memory-mapped reads and writes to acquire and release a lock.
Both functions have two arguments: the thread ID, and the
mutex index. The mutex index is used to differentiate between
multiple locks — requests which must be steered to different
instances of mutex cores. Our replacement lock/unlock func-
tions can be executed both in software on the MIPS processor
and in hardware on accelerators.

When a processing element (the MIPS or a hardware
accelerator) calls the lock function, it first tries to write its
thread ID to the mutex core corresponding to the mutex index.
If the mutex is free, the write is successful and the thread ID is
stored. If the mutex is already locked, the mutex core retains
the previously stored thread ID. After the write, the processing
element reads from the mutex to check if the stored thread ID
matches its own ID. If there is a match, this indicates that the
processing element has acquired the lock and is free to enter
the critical section. If the processing element fails to get the
lock, it repeats the locking procedure until it gets the lock (a
behaviour akin to “spin locks”).

In our unlock function, the processing element again writes
to the mutex core with its thread ID. If the mutex is locked
with the matching thread ID, this unlocks the mutex.

OpenMP provides mutual exclusion capability with
two pragmas: #pragma omp atomic and #pragma omp
critical. The atomic pragma permits the specification
of a single-statement critical section, whereas a multiple-
statement critical section can be specified with the critical
pragma. Both of these pragmas are supported in our tool by
using a similar approach to Pthread locks.

Pthread barrier functions, pthread_barrier_init
and pthread_barrier_wait, are likewise automatically
replaced with our own barrier init/wait functions, and a
hardware barrier core is created. The barrier core contains a
register, which is initialized when the barrier init function is
called to store the number of threads to wait at the barrier. The
barrier core also contains a counter, which is incremented each
time a processing element reaches the barrier. When the barrier
wait function is called, the processing element first writes to
the hardware barrier core to increment its counter, then it keeps
polling on the barrier core, which returns a one until enough
threads have reached the barrier. When the counter equals the
number of threads, the barrier core returns a zero, at which
point the processing elements can continue to execute. The
barrier core also resets its counter to zero, so that it can be
used again for the same barrier object.

Table I shows a list of Pthreads and OpenMP library
functions which are currently supported in our framework. In
addition to those listed in the table, OpenMP clauses to set the
number of threads (num_threads), the scopes of variables
(public, private, firstprivate, lastprivate)
and the division of work among threads (static scheduling
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TABLE L SUPPORTED PTHREADS FUNCTIONS/OPENMP PRAGMAS.

Pthreads Functions Description

pthread_create(..) Invoke thread
pthread_join(..) Wait for thread to finish
pthread_exit(..) Exit from thread, can be used to return data
pthread_mutex_lock(..) Lock mutex
pthread_mutex_unlock(..) Unlock mutex
pthread_barrier_init(..) Initialize barrier
pthread_barrier_wait(..) Synchronize on barrier object

OpenMP Prag; Description

Parallel section
Parallel for loop

omp parallel
omp parallel for

omp master Parallel section executed by master thread only
omp critical Critical section
omp atomic Atomic section

reduction(operation: var) Reduce a var with operation

OpenMP Functions Description

Get number of threads
Get thread ID

omp_get_num_threads()
omp_get_thread_num()

of any chunk size) are also supported. Note that all of the
original calls to OpenMP/Pthreads functions are automatically
replaced with corresponding functions in our framework, re-
quiring no manual code changes by the user. Meaning that, the
input C program with calls to the Pthreads/OpenMP API can
be compiled to a hybrid processor/accelerator system as is.

C. Automatic System Generation Flow

An overview of our automatic system generation flow in
shown in Fig. 1. Our flow is integrated with the LegUp HLS
framework, which itself is implemented within the LLVM
compiler framework [20]. The input is a C program containing
calls to the Pthreads and/or OgenMP APIL. The program is
first compiled using 11vm—gcc” which translates the program
into the LLVM IR (intermediate representation). LegUp imple-
ments HLS as a set of back-end compiler passes which operate
directly on the optimized LLVM IR. A detailed description of
LegUp’s algorithms is outside the scope of this paper, and the
interested reader is directed to [6].

We wrote an LLVM pass, SW Pass, which replaces all
of the Pthreads/OpenMP functions with our own functions as
described previously (left side of Fig. 1). It also removes the
functions to be implemented as hardware accelerators from
the software portion of the program. The modified software
IR is compiled to a MIPS executable using the LLVM/MIPS
toolchain. The SW pass also creates a Tcl file, which will
be used to control Altera’s SOPC Builder to automatically
generate the system (described in the next section).

The HW Pass (right side of Fig. 1) operates on the
functions intended to be realized as hardware accelerators,
replacing all calls to Pthreads/OpenMP functions (e.g. locks,
barriers) and removing all software functions that are executed
on the processor. This modified HW IR is passed to LegUp
HLS to produce synthesizeable Verilog. Each thread in soft-
ware becomes its own accelerator in hardware. LegUp HLS
algorithms have also been modified to support nested parallel
hardware (described in the next section).

Once both software and hardware components have been
generated, Altera’s SOPC Builder uses the Tc1 file to generate
the complete system. This generated system can either be
simulated with ModelSim (a testbench with input vectors is
also automatically generated), or compiled to bitstream using
Altera’s Quartus II. This entire flow is automated so that the
user only has to run a single Makefile target.

V. SYSTEM ARCHITECTURE

The system architecture is shown in Fig. 2 and we target
the Altera DE4 board with a Stratix IV 40nm FPGA. The

2Clang, the native front-end for LLVM, does not have OpenMP support.
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system comprises the MIPS soft processor, hardware acceler-
ators, mutex/barrier cores (if used in the program), on-chip
cache, as well as off-chip DDR2 memory. An accelerator
may also have local memories for local data not shared with
the processor or other accelerators. The local memories are
implemented in on-chip Block RAMs, instantiated within a
hardware accelerator. Shared data, on the other hand, is stored
in off-chip DDR2 memory (on the DE4 board), which can
be fetched into the on-chip cache. The components of the
system communicate via the Avalon Interconnect, which is
generated by Altera’s SOPC Builder [1]. Avalon is a point-to-
point network, which allows multiple independent transfers to
occur simultaneously, via memory-mapped addresses. When
multiple components are connected to a single component,
such as the on-chip data cache, a round-robin arbiter is created
by SOPC Builder to arbitrate among simultaneous accesses.
For memory-intensive applications, the default dual-port cache
can be replaced with a multi-ported cache (controlled by a
Tcl parameter), which allows multiple accelerators to access
the cache concurrently [13].

A. Parallel Accelerator Architecture

Parallel accelerators (corresponding to parallel threads) are
connected to the system as shown in Fig. 2. Our framework
permits multiple calls to pthread_create/join with the
same and/or different functions to be executed on the threads,
as well as multiple sections of code parallelized with the
OpenMP parallel pragmas.

In this work, we also allow nested parallelism — threads
forking threads. Consider the case of there being multiple
functions executed in parallel with Pthreads — a first level of
parallelism. These functions could have one or more loops,
some of which could be parallelized with OpenMP — a second
level of parallelism. Currently, we only permit up to two levels
of parallelism for automated hardware synthesis, with Pthreads
being the first level and OpenMP being the second. OpenMP
can also be used as the first level of parallelism, though we do
not consider this case in our experimental study. We refer to the
second-level accelerators as internal accelerators. The internal
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accelerators are created inside their corresponding first-level
accelerators. Internal accelerators can access the local variables
of their first-level accelerators, which are created in local
RAMs, as well as global/stack variables stored in the shared
memory space.

Fig. 3 shows the architecture of a hardware accelerator with
internal accelerators. Internal accelerators, corresponding to
OpenMP threads, are instantiated multiple times, each of which
executes a portion of work in parallel. The internal accelerators
are invoked simultaneously by an FSM, which also controls the
execution of the first-level accelerator. As parallelization with
OpenMP is blocking, after invoking the internal accelerators,
the FSM waits until all of them have finished execution before
continuing on to the next state (adhering to the semantics
of the GOMP_parallel_start/end). Note that wrapper
functions are not generated for internal accelerators, because
they are invoked by the FSM (not the MIPS).

Since internal accelerators can access memory, and because
they execute in parallel, a round-robin arbiter is created inside
the first-level accelerator to arbitrate among internal accel-
erators as they access memory. The round-robin arbiter has
a single-cycle latency to grant an access. When an internal
accelerator makes a memory request, if it is not granted access
by the arbiter, it stalls. Similarly, if an internal accelerator
accesses shared memory and experiences a cache miss, it has to
wait until the data is fetched from off-chip memory; however,
other internal accelerators which are not accessing memory are
free to execute. Hence, the internal accelerators do not execute
in lockstep but work independently of one another. Although
not shown in the figure, additional control logic is created to
steer data from memory accesses back to internal accelerators.

VI. EXPERIMENTAL STUDY

We study the performance and area of several different
hardware configurations, each of which corresponds to a
different parallelization scenario. The baseline configuration is
the default LegUp hybrid processor/accelerator system, with
no accelerators that operate in parallel — the processor and
accelerators operate sequentially and the processor is stalled
while an accelerator does its work.

The parallel configurations fall into 3 classes: 1) a single-
level of parallelization using Pthreads, 2) Pthreads combined
with loop pipelining — a form of nested parallelism, and 3)
Pthreads combined with OpenMP — nested parallelism as de-
scribed in the previous section. For class #1, the Pthreads may
execute the same function or different functions, depending
on the benchmark (see below). When executing the same
function, each accelerator performs a portion of the total work.
Configurations in classes #2 and #3 can be used when the first-
level threads contain loops — such loops can be parallelized
by loop pipelining or OpenMP pragmas. Note that the current
loop pipelining capabilities of the LegUp HLS tool are limited



and can only be applied to loops with bodies that contain no
function calls or branches. With the OpenMP support, however,
loops with branches and function calls can be parallelized.

For class #3 (Pthreads combined with OpenMP), we ex-
periment with various numbers of Pthreads and OpenMP
internal accelerators, for a total of 8 different configurations.
The largest configuration has 30 Pthreads with 4 OpenMP
internal accelerators, which means that there are essentially
a total of 120 accelerators. Note that it does not necessarily
mean that all 120 accelerators are identical, as the 4 OpenMP
accelerators only parallelize the loop inside a Pthread function,
and there can be other operations done outside the loop.
We label architecture configurations as follows: S denotes
the sequential baseline case, 411 denotes the 4 first-level
Pthread accelerators architecture, 41.1-P denotes the 4 first-
level Pthread accelerators with loop pipelining, and nL1-mL2
denotes the architecture with n first-level Pthread accelerators
with m second-level OpenMP accelerators.

A. Benchmarks

We use 7 benchmarks, each of which includes built-in
inputs and golden outputs, with the computed result checked
against the golden output at the end of the program to verify
correctness. The inputs, golden outputs, and the computed
results are held in global variables and stored in the shared
memory space (off-chip DDR2 SDRAM). Even though using
on-chip memory yields better speedup results, off-chip mem-
ory is used to model real world applications with big data sets.
The benchmarks are:

e  Black-Scholes: performs options pricing via a Monte
Carlo approach. Computations are done in fixed-point.

e MCML: simulates light propagation from a point
source in an infinite medium with isotropic scattering.
The benchmark has been adopted from the Oregon
Medical Laser Centre [24] with the computations done
in fixed-point.

e  Mandelbrot: an iterative mathematical benchmark
which generates a fractal image.

e  Line of Sight: uses the Bresenham’s line algorithm [4]
to determine whether each pixel in a 2-dimensional
grid is visible from the source.

e Division: divides a set of integers in an array by
another set of integers.

e  Hash: uses four different integer hashing algorithms
to hash a set of numbers, and compares the number
of collisions caused by the four different hashes.

e dfsin: adopted from the CHStone benchmark
suite [16], it implements a double-precision floating-
point sine function using 64-bit integers.

We synthesized each benchmark into each of the parallel ar-
chitecture configurations and simulated the synthesized circuit
using ModelSim to extract the total number of execution cycles
and verify correctness. Note that we used an accurate Altera-
provided simulation model of the off-chip DDR2 SDRAM
on the DE4 board. Following the cycle-accurate simulation,
each benchmark was synthesized to the Altera Stratix IV
(EP4SGX530KH40C2) with Quartus II (ver. 11.1SP2) to ob-
tain area and critical path delay (F'max) numbers. Execution
time for each benchmark is computed as the product of
execution cycles and post-routed clock period.

B. Results

The performance results for all benchmarks and all ar-
chitectures are presented in Tables II and III, and the area
results are shown in Table IV. For those benchmarks where
loop pipelining could not be used, or those which could not
be parallelized with more accelerators (due to resource limits
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on the Stratix IV or due to the nature of the benchmark), the
results are shown as “N/A”.

Tables II and III show the number of execution cycles
it takes to execute each benchmark, the F'maz, as well
as the wall-clock time (in ws) based on the F'max and
clock cycle results. The speedups and ratios of each parallel
architecture relative to the sequential case are also shown.
As expected, performance generally improves as the degree
of parallelism is increased, up to a certain point. For most
benchmarks, the total number of execution cycles decreases
as more parallel accelerators are used. For Black-Scholes,
MCML, and Mandelbrot, which are computationally intensive
rather than memory intensive, the number of clock cycles
scales well with the number of accelerators, especially up
to the architecture 4L.1-4L.2 (16 accelerators). For 4L.1-4L2,
Black-Scholes, MCML, and Mandelbrot show 15.2, 15, and
13.6x speedup, respectively. For other benchmarks, which
are more memory intensive, such as Line of Sight, Division,
and Hash, the performance improvement is less. For the Line
of Sight and Division benchmarks, a 4-ported cache [13]
was used, which allows higher memory bandwidth, though it
consumes more resources than the default cache, and hence it
is not used for other benchmarks. For the Hash benchmark,
locks are used to prevent race conditions between the internal
accelerators. With more internal accelerators, the contention
to access the mutex core increases, and thus the execution
cycles actually increase as the number of internal accelerators
is increased from three to four. Similarly for other benchmarks,
as the total number of accelerators is excessively increased (up
to 120 accelerators in Line of Sight!), the reduction in clock
cycles is either small, or the number of clock cycles even
increases. With too many accelerators, the work assigned to
each accelerator becomes smaller yet the memory contention
increases, hurting performance.

The F'max of the systems is also affected as the degree of
parallelism is varied. Overall, F'max is negatively impacted
with more accelerators, mainly due to the arbitration and
the stall logic, needed to manage memory contention. Some
benchmarks, such as dfsin, Black-Scholes, and MCML, exhibit
more rapid reductions in F'max than others. We believe that,
as the utilization of the Stratix IV becomes close to full, the
Quartus II synthesis tool has more difficulty optimizing the
implementation. For example, for the 4L.1-4L2 architecture,
dfsin showed 96% logic utilization, and Black-Scholes and
MCML showed 85% logic utilization and used 100% of the
Stratix IV DSP blocks. However, for the other benchmarks,
the F'max reduction for 4L1-4L2 is ~10% when compared to
the baseline.

Fig. 4 shows the geometric mean speedup (in wall-clock
time) of the different architectures normalized to the baseline
case. Since not all parallelization configurations could be used
for all benchmarks, multiple lines are plotted, with each line
showing the geomean speedup for a subset of circuits in which
the particular configuration could be used’. The legend shows
which benchmarks are included for each line on the graph. The
geometric mean across all benchmarks (first line of the legend)
shows that the best speedup of 7.6 is observed with the 4L.1-
412 architecture. The 4L1-P configuration is not included in
this case, since loop pipelining could not be applied in all
benchmarks.

For the benchmarks where loop pipelining could be used
(Division/Mandelbrot/Hash), 4L1-P shows 6.17 x speedup over
baseline, and 4L1-4L2 still shows the best result with 7.51 x
speedup. There are cases where loop pipelining can perform

3If we had used a single line, each data point would represent the average
for potentially different sets of circuits.



far better, however. For instance, for the Division benchmark,
Table III shows that 4L.1-P outperforms all other architectures,
even the 20L1-4L2 architecture which has 80 accelerators.
This is because a 32-bit division takes 32 cycles in LegUp,
using Altera’s divider core pipelined to achieve the highest-
possible F'max. Since the divider itself is pipelined, it can
accept a new input every clock cycle, which is very well
suited to loop pipelining. With 4 Pthread accelerators, each
of which has only one hardware instance of the loop body,
this 4L 1-P architecture shows 12.5x speedup over the baseline
architecture for the Division benchmark. The biggest speedup
in Fig. 4 is 12.9x with the 12L.1-4L2 architecture for three
benchmarks. Mandelbrot shows the largest single benchmark
speedup with 17.2x with the 12L1-4L2 architecture, and
16.6x with the 8L1-4L2 architecture. Overall, as the number
of accelerators is increased excessively, the geomean speedups
decrease due to reductions in F'max and diminishing returns
in clock cycle reduction.

Table IV shows the area results in terms of Stratix IV
logic utilization, M9K blocks, and DSP blocks. The logic
utilization metric reported by Quartus II is an estimate of
how full the device is, calculated from the number of half-
ALMs (adaptive logic modules) used in the design. M9Ks
are Altera’s on-chip RAMs which can hold up to 9 Kbits of
data including parity bits [2]. M144Ks, which are much larger
RAMs that can hold up to 144 Kbits, are only used by one
benchmark, Division, and hence are not shown on the table for
space reasons. Note that usage of M144K blocks is taken into
consideration when calculating the total area of the systems
(see below). The area results presented in Table IV are for
the entire system, which includes the MIPS processor, the on-
chip cache, the DDR2 controller, the interconnection network,
as well as the hardware accelerators. In general, as expected,
the area increases as parallelism is increased, both in terms of
Pthreads and OpenMP accelerators. Mathematically intensive
benchmarks, such as Black-Scholes, MCML, Mandelbrot, and
dfsin, show significant increases in the number DSP blocks. In
fact, even though the logic utilization for Mandelbrot is only
~19%, it could not be parallelized more than 12L.1-4L.2, since
DSP usage was at 95%. Note that, parallelization with Pthreads
does not necessarily increase circuit area if different functions
are executed in parallel (vs. when these functions are executed
sequentially). Thus, for the Hash benchmark, the circuit area
is roughly the same for the S and 4L1 configurations.

Area-delay product is another important metric when eval-
uating the efficiency of different hardware architectures. Cal-
cuating the total circuit area of an FPGA can be particularly
challenging since modern FPGAs consist of different types
of blocks, such as logic blocks, memory blocks, DSP blocks,
and routing, each of which consumes different amount of chip
area. To account for this fact, we use the data from [12], which
gives the chip tile area for each type of block*. Using this data
and the results in Table IV, we calculate the total circuit area
for each architecture configuration for each benchmark. With
this area, and using the wall-clock time results from Tables IT
and III, we computed the geometric mean area-delay product,
shown in Fig. 5 as a percentage compared to the baseline
architecture. Similar to Fig. 4, multiple lines are shown, each of
which includes results for different architectures/benchmarks.
Looking at the geomean result for a/l benchmarks (first line
of the legend), the 4L1 architecture shows the best result with
53.5% area-delay product of the baseline case, and the 4L1-
212 and the 4L1-4L2 architectures follow with 58% and 63%
respectively. For the three benchmarks where loop pipelining

“Note that although [12] provides detailed area data for the types of tiles
in Stratix III, Stratix IV contains the same types of tiles, so we believe the
data can be used for this relative area comparison.
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could be used, 4L1-P shows the best result with 20.8% and
411 follows with 36.7%. For the Division benchmark, 4L1-
P showed 12% area-delay product when compared to the
sequential case. Similar to the speedup results, as the degree
of parallelism is excessively increased, the area-delay product
is also significantly increased, with the 20L1-4L2 architecture
showing 206% over baseline for the Division/Line of Sight
plot.

In summary, the results above demonstrate the capabilities
of our HLS tool to synthesize circuits automatically into a
variety of architectures with dramatically different degrees of
parallelization. Promising results are observed in terms of
execution time and area-delay product. It is worthwhile to
reiterate that with our approach, changing the parallelization
configuration is straightforward, with Pthreads requiring only
a few lines of code changes, and OpenMP requiring a single
number (num_threads clause) to be changed. This enables
wide design space exploration with ease, which is certainly
not feasible with manually designed hardware. With our
framework, exploring with different parallelization schemes in
hardware is no more difficult than the analogous exploration
in software.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a framework which can au-
tomatially compile software threads to parallel hardware ac-
celerators. Two standard software parallelization techniques,
Pthreads and OpenMP, are used to generate hardware acceler-
ators which execute concurrently in a shared memory system.
OpenMP allows a section of code, such as a loop, to be auto-
matically compiled to parallel accelerators, whereas Pthreads
allow the same and/or different functions to be synthesized
to concurrently operating hardware accelerators. Our frame-
work allows nested parallelism, where Pthreads can invoke
OpenMP threads to allow 2 levels of parallel accelerators.
Loop pipelining can also be used in conjunction with Pthreads.
A key advantage of our framework is that software engineers



TABLE II. PERFORMANCE RESULTS OF ALL ARCHITECTURES

FOR BLACK-SCHOLES, MCML, AND MANDELBROT BENCHMARKS.

Black-Scholes MCML Mandelbrot
Time (Speedup)  Cycles (Speedup) Fmax (Ratio)  Time (Speedup)  Cycles (Speedup) Fmax (Ratio) Time (Speedup)  Cycles (Speedup)  Fmax (Ratio)
S 2058 (1) 437947 (1) 130.41 (1) 22317 (1) 1876187 (1) 84.07 (1) 18724 (1) 2523455 (1) 134.77 (1)
4L1 615 (3.9) 108654 (4.0) 127.39 (0.98) 6308 (3.5) 482855 (3.9) 76.55 (0.91) 4930 (3.8) 627059 (4.0) 127.18 (0.94)
4L1-P N/A N/A N/A N/A N/A N/A 4248 (4.4) 434533 (5.8) 102.28 (0.76)
4L1-2L2 488 (6.6) 56344 (7.8) 110.68 (0.85) 3613 (6.2) 246094 (7.6) 68.12 (0.81) 2849 (6.6) 355224 (7.1) 124.67 (0.93)
4L1-3L2 397 (6.9) 42410 (10.3) 87.3 (0.67) 3635 (6.1) 246094 (7.6) 67.71 (0.81) 1904 (9.8) 241805 (10.4) 127 (0.94)
4L1-4L2 364 (10.7) 28736 (15.2) 91.83 (0.7) 1961 (11.4) 125463 (15.0) 63.97 (0.76) 1455 (12.9) 185863 (13.6) 127.73 (0.95)
8L1-4L2 N/A N/A N/A N/A N/A N/A 1131 (16.6) 126828 (19.9) 112.17 (0.83)
12L1-4L2 N/A N/A N/A N/A N/A N/A 1089 (17.2) 113593 (22.2) 104.31 (0.77)
TABLE III. PERFORMANCE RESULTS OF ALL ARCHITECTURES FOR LINE OF SIGHT, DIVISION, HASH, AND DFSIN BENCHMARKS.
Line of Sight Division Hash Dfsin
Time (Speedup) ~ Cycles (Speedup) ~ Fmax (Ratio)  Time (Speedup) ~ Cycles (Speedup) ~ Fmax (Ratio)  Time (Speedup)  Cycles (Speedup) ~ Fmax (Ratio)  Time (Speedup)  Cycles (Speedup) ~ Fmax (Ratio)
S 4146 (1) 556933 (1) 134.34 (1) 2947 (1) 407837 (1) 138.37 (1) 2654 (1) 325859 (1) 12276 (1) 2058 (1) 265513 (1) 129.02 (1)
4L1 1672 (2.5) 197625 (2.8) 118.22 (0.88) 867 (3.4) 112466 (3.6) 1297 (0.94) 696 (3.8) 86378 (3.8) 124.16 (1.01) 615 (3.4) 67507 (3.9) 109.78 (0.85)
4L1-P N/A N/A N/A 235 (12.5) 29457 (13.9) 125.13 (0.9) 635 (4.2) 83748 (3.9) 131.8 (1.07) N/A N/A N/A
4L1-2L2 1045 (4.0) 127471 (4.4) 121.94 (0.91) 560 (5.3) 67237 (6.1) 120.11 (0.87) 540 (4.9) 64588 (5.1) 119.67 (0.97) 488 (4.2) 47533 (5.6) 97.5 (0.76)
4L1-3L2 882 (4.7) 102313 (5.4) 115.98 (0.86) 473 (6.2) 51349 (7.9) 108.59 (0.78) 449 (5.9) 50917 (6.4) 113.3 (0.92) 397 (5.2) 34520 (7.7) 86.89 (0.67)
4L1-4L2 851 (4.9) 98708 (5.6) 115.97 (0.86) 400 (7.4) 46854 (8.7) 117.12 (0.85) 594 (4.5) 66219 (4.9) 111.56 (0.91) 364 (5.7) 27463 (9.7) 75.55 (0.59)
8SL1-4L2 535 (7.6) 59361 (9.4) 111.05 (0.83) 276 (10.7) 27627 (14.8) 100.08 (0.72) N/A N/A N/A N/A N/A N/A
12L1-41.2 407 (10.2) 43540 (12.8) 106.87 (0.80) 239 (12.3) 23133 (17.6) 96.64 (0.7) N/A N/A N/A N/A N/A N/A
16L1-4L2 482 (8.6) 49664 (11.2) 102,94 (0.77) 458 (6.4) 42663 (9.6) 93.09 (0.67) N/A N/A N/A N/A N/A N/A
20L1-4L2 482 (8.6) 44036 (12.7) 91.37 (0.68) 697 (4.2) 57042 (7.2) 81.87 (0.59) N/A N/A N/A N/A N/A N/A
30L1-4L2 499 (8.3) 42558 (13.1) 85.34 (0.64) N/A N/A N/A N/A N/A N/A N/A N/A N/A
TABLE IV. AREA RESULTS OF ALL ARCHITECTURES FOR ALL BENCHMARKS.
Black-Scholes MCML Mandelbrot Line of Sight Division Hash Dfsin
Logic Ut  MY9K  DSP  Logic Ut MY9K DSP  Logic Ut MY9K DSP  Logic Ut M9K DSP  Logic Uil MY9K DSP  Logic Ul MY9K DSP Logic Ut MY9K DSP
N 43474 140 88 38810 136 120 22111 134 28 23550 134 12 24527 134 8 31015 262 36 51763 136 52
4L1 111156 142 328 87874 150 456 26869 134 88 40385 134 24 43134 134 8 31210 262 36 138380 142 184
4L1-P N/A N/A  NA N/A N/A  NA 27208 138 56 N/A NA  NA 43680 138 8 32414 278 36 N/A N/A  NA
4L1-212 198126 174 648 152660 166 904 34187 158 168 54926 158 40 79208 158 8 49550 326 64 276756 158 360
4L1-3L2 276243 174 968 264559 166 1020 37476 158 248 62988 158 56 98317 158 40 58328 326 92 387958 375 568
4L1-4L2 361327 443 1020 355873 419 1020 40890 158 328 70834 158 72 119359 158 2 69031 326 120 408169 451 776
8L1-4L2 N/A N/A N/A N/A N/A N/A 61251 182 648 108737 182 136 204230 182 136 N/A N/A N/A N/A N/A N/A
12L1-4L2 N/A N/A  NA N/A N/A  NA 81224 206 968 146380 206 200 275185 635 200 N/A N/A  NA N/A N/A  NA
16L1-4L2 N/A N/A  NA N/A N/A  NA N/A NA  NA 181166 230 264 340888 1280 264 N/A N/A  NA N/A N/A  NA
20L1-4L2 N/A N/A  N/A N/A N/A  NA N/A N/A  NA 214658 254 328 400613 1280 328 N/A N/A  NA N/A N/A  NA
30L1-4L2 N/A N/A  NA N/A N/A  NA N/A NA  NA 310013 324 488 N/A N/A  NA N/A N/A  N/A N/A N/A  NA

without hardware knowledge can use standard software APIs to
obtain significant speedup through parallel hardware systems.
Geometric mean results over 7 benchmarks showed that using
4 Pthreads accelerators, each of which contains 4 OpenMP
accelerators, provides the best performance results, with 7.6x
speedup and 63% area-delay product when compared to the
single threaded system. The highest speedup was 17.2x in
wall-clock time with the 12L.1-4L2 architecture, and the best
area-delay product was 12% (over 8 x improvement) with the
4L.1-P architecture.

Future work includes adding support for fast estimation of
speed and area with different configurations of Pthreads and
OpenMP accelerators for rapid design space exploration.
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