
From Software Threads to Parallel Hardware with
LegUp High-Level Synthesis

by

Jongsok Choi

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Department of Electrical and Computer Engineering

University of Toronto

c© Copyright 2016 by Jongsok Choi

Abstract

From Software Threads to Parallel Hardware with

LegUp High-Level Synthesis

Jongsok Choi

Doctor of Philosophy

Graduate Department of Department of Electrical and Computer Engineering

University of Toronto

2016

High-level synthesis (HLS) can automatically synthesize software to hardware. With the design speci-

fication in software, HLS can reduce the lengthy design cycles of hardware, and make the performance

and energy-efficiency benefits of hardware accessible to those without hardware skills.

Since the introduction of the first C-based HLS tools more than a decade ago [49], however, the

adaption of the technology has been slow by both software and hardware engineers. We attribute this

to two key factors: 1) For hardware engineers, there is still a gap between HLS-generated hardware and

human-designed hardware, partly due to the inability of HLS tools to fully exploit hardware parallelism,

and 2) for software engineers, HLS remains to be a difficult endeavour, as many parts of the design, such

as system integration, largely remain a manual process.

This dissertation provides an HLS framework, LegUp, which seeks to address both issues. LegUp

can compile an entire software program to hardware to produce a hardware-only system, or it can

also automatically partition the program to generate a processor-accelerator hybrid system, wherein the

compute-intensive program segments are accelerated by hardware, with the remaining segments exe-

cuted in software on a processor. In both cases, a complete system is generated, including necessary

memories and interconnect. To allow one to easily exploit hardware parallelism, we provide HLS sup-

port for synthesizing parallel software to parallel hardware. In particular, we support automatically

compiling a multi-threaded program with Pthreads and OpenMP to parallel hardware accelerators that

operate concurrently within a hardware-only or a processor-accelerator hybrid system. In the context

of parallel hardware, we investigate architectural and memory optimizations that help to improve cir-

cuit performance and area, and discuss a method of using the producer-consumer pattern in software

to infer a streaming circuit in hardware. With these techniques, we show that LegUp can produce

high-performance hardware that can be competitive to circuits that are generated by commercial HLS

tools, and demonstrate that LegUp-generated circuits can also outperform software executing on x86

processors.

ii

Acknowledgements

I would like to start by expressing my sincere gratitude to my two incredible advisors, Jason Anderson

and Stephen Brown. Jason Anderson has provided invaluable guidance throughout my Ph.D studies,

and has helped me to vastly improve my research abilities and communication skills. His devotion to

the LegUp project has inspired many students working on the project, including myself. I admire your

enthusiasm and dedication to your students, and I thank you for your mentorship on research, as well

as in life in general. My co-advisor, Stephen Brown, gave me the opportunity to work on this exciting

project with an amazing team, and I appreciate your high-level vision which led to inception of this

project, and thank you for allowing me to flexibly choose my research paths. I would also like to thank

my committee members, Vaughn Betz and Paul Chow, and my external examiner, Deming Chen, for

providing valuable feedback on this work, and Joyce Poon, for chairing my Ph.D defense.

I would like to thank all of the graduate students who I have had the privilege to work with on the

LegUp project: Bain Syrowik, Blair Fort, Nazanin Calagar, Marcel Gort, Mark Aldham, Joy (Yu Ting)

Chen, and Julie Hsiao. In particular, I want to thank Andrew Canis, who I have worked with since

my master’s degree and since the very beginning of the project, and have spent numerous nights coding

and debugging with. It is amazing to see what LegUp has become over the years. I also want to thank

Lanny (Ruo Long) Lian, who has help me on countless number of different topics, and has provided the

extra thrust that we needed to take the project further. Thanks to all the friends that I have made

in graduate school: Braiden Broussau, Xander (Alexander) Chin, Safeen Huda, Jin Hee Kim, Daniel

Di Matteo, Alex Rodionov, Vincent Mirian, Charles Lo, Davor Capalija, Jasmina Vasiljevic, and Henry

Wong, who have all made graduate school an enjoyable place.

I am grateful for the generous scholarships that I was fortunate enough to receive, including the

Natural Sciences and Engineering Research Council of Canada Alexander Graham Bell Canada Graduate

Scholarship, the Ontario Graduate Scholarship, the Right Track CAD Graduate Scholarship, the Walter

C. Sumner Memorial Fellowship, the Bell Graduate Scholarship, and the Rogers Scholarship, all of which

made my long Ph.D years financially viable.

I am thankful to all my friends outside of school, Dave, Dylan, Kevin, Won, Chulmin, and Seyeon,

who made the life of an old student still fun and enjoyable. I am grateful to my parents, who made all of

this possible by moving to Canada half a lifetime ago, while leaving their careers, friends, and families

back home. Thank you for always encouraging me to be my best and to pursue my goals.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Contributions . 5

1.3 Thesis Organization . 7

2 Background 8

2.1 An Overview of Active High-Level Synthesis Tools . 8

2.2 Parallel Programming Languages in High-Level Synthesis 10

2.3 High-Level Synthesis vs. Hand-coded RTL . 11

2.4 LegUp High-Level Synthesis Framework . 11

2.4.1 Key Features . 15

2.4.2 Software-to-Hardware Results . 17

2.4.3 Comparison to Other HLS tools . 19

2.5 Summary . 20

3 From Software Threads to Processor/Parallel-Accelerator Hybrid System 21

3.1 Introduction . 21

3.2 Background . 22

3.3 Parallel Programming with Pthreads/OpenMP . 23

3.4 Parallel Threads to Parallel Hardware . 26

3.4.1 Generation of Thread-Handling Logic . 26

3.4.2 Wrapper Function Generation for Parallel Accelerators 30

3.4.3 Parallel Accelerator Instantiations . 33

3.4.4 Sharing an Accelerator Across Threads . 34

3.4.5 System Architecture . 35

iv

3.4.6 Parallel Accelerator Architecture . 36

3.5 Experimental Study . 37

3.5.1 Benchmarks . 38

3.5.2 Results . 39

3.6 Summary . 45

4 ARM Hard Processor System and Direct Memory Access (DMA) Support 46

4.1 Introduction . 46

4.2 Background . 47

4.3 Pthreads to ARM Processor-Accelerator Hybrid System 49

4.3.1 ARM Hybrid System Architecture . 50

4.3.2 Operating System Support . 52

4.3.3 Bare Metal Support . 54

4.4 Direct Memory Access (DMA) Support . 56

4.5 Experimental Study . 62

4.5.1 Benchmarks and Measurement Methodologies . 64

4.5.2 Results . 66

4.6 Summary . 72

5 Synthesis of Software Threads to Parallel Hardware-only System 74

5.1 Introduction . 74

5.2 Parallel Hardware-only System Generation . 75

5.2.1 Sharing a Hardware Core Across Threads . 80

5.3 Experimental Study . 80

5.3.1 Results . 81

5.4 Summary . 82

6 Resource and Memory Management Techniques for HLS of Parallel Hardware 83

6.1 Introduction . 83

6.2 Background . 84

6.3 Circuit Topology . 84

6.4 System Generator . 86

6.4.1 Automatic Deadlock Prevention . 88

6.4.2 Advantages of Flat Topology with the System Generator 91

v

6.5 Memory Architectures . 92

6.5.1 Points-to Analysis . 92

6.5.2 Global Memory Controller . 93

6.5.3 Local and Shared-local Memories . 94

6.6 Experimental Study . 96

6.6.1 Benchmarks . 97

6.6.2 Results . 98

6.7 Summary . 100

7 Inferring Streaming Hardware with Pthreads 102

7.1 Introduction . 102

7.2 Background . 103

7.3 Producer-Consumer Threads in Software . 106

7.4 Producer-Consumer Threads in Hardware . 107

7.4.1 FIFO Details . 110

7.4.2 Hardware Architecture . 111

7.4.3 Multiple Software Threads to Multiple Streaming Hardware Kernels 112

7.4.4 Streaming Datapath and Stall Logic . 114

7.5 Experimental Study . 115

7.5.1 Benchmarks . 116

7.5.2 Results . 121

7.6 Summary . 123

8 Conclusions 124

8.1 Summary of Contributions . 124

8.2 Future Work . 126

8.2.1 Automated DMA Hardware Generation . 126

8.2.2 Direct Accelerator-to-Accelerator communication 127

8.2.3 Peripheral Component Interconnect Express (PCIe) Support 127

8.3 Closing Remarks . 128

A A Sample Code for Using MMAP to Map a Hardware Accelerator in Linux 129

B The Arria V SoC Preloader Generation and Modification Procedures for Bare Metal

Execution 131

vi

C The Complete Benchmark Results for Chapter 4 134

D The Complete Benchmark Results for Chapter 5 136

E The Complete Benchmark Results for Chapter 6 137

F Code Examples for Creating Streaming Hardware with LegUp 142

Bibliography 146

vii

List of Tables

2.1 An overview of high-level synthesis tools [56]. 9

3.1 Pthreads/OpenMP support in LegUp. 25

3.2 Performance results of all architectures for Black-Scholes, MCML, and Mandelbrot bench-

marks. 41

3.3 Performance results of all architectures for Line of Sight, Division, Hash, and Dfsin bench-

marks. 41

3.4 Area results of all architectures for all benchmarks. 41

4.1 Geometric mean results for MIPS processor-accelerator hybrid systems. 68

4.2 Geometric mean results for ARM processor-accelerator hybrid systems. 68

4.3 Results for Black-Scholes on ARM processor-only, ARM hybrid, and x86 architectures. . . 70

4.4 Results for Black-Scholes on x86 processors when using as many threads as the number

of cores. 72

5.1 Geometric mean performance and area results for hardware-only systems. 82

5.2 Geometric mean power and efficiency results for hardware-only systems. 82

6.1 Geomean baseline results (Arch. 1). 98

7.1 Performance and area results for pipelined-only benchmarks for LegUp HLS. 121

7.2 Performance and area results for Canny benchmark for a commercial HLS tool. 121

7.3 Performance and area results for pipelined-and-replicated benchmarks for LegUp HLS. . . 122

C.1 Benchmark results for the MIPS processor-only architecture (Arch. 0). 134

C.2 Benchmark results for the MIPS single-threaded processor-accelerator hybrid architecture

(Arch. 1). 134

viii

C.3 Benchmark results for the MIPS multi-threaded processor-accelerator hybrid architecture

(Arch. 2). 134

C.4 Benchmark results for the MIPS multi-threaded and pipelined processor-accelerator hy-

brid architecture (Arch. 3p). 135

C.5 Benchmark results for the ARM processor-only architecture (Arch. 0). 135

C.6 Benchmark results for the ARM single-threaded processor-accelerator hybrid architecture

(Arch. 1). 135

C.7 Benchmark results for the ARM multi-threaded processor-accelerator hybrid architecture

(Arch. 2). 135

C.8 Benchmark results for the ARMmulti-threaded and pipelined processor-accelerator hybrid

architecture (Arch. 3p). 135

D.1 Benchmark results for the single-threaded hardware-only system (Arch. 1). 136

D.2 Benchmark results for the multi-threaded hardware-only system (Arch. 2). 136

D.3 Benchmark results for the multi-threaded and pipelined hardware-only system (Arch. 3p). 136

E.1 Benchmark results for Arch. 1. 137

E.2 Benchmark results for Arch. 2. 138

E.3 Benchmark results for Arch. 3. 138

E.4 Benchmark results for Arch. 4. 139

E.5 Benchmark results for Arch. 5. 139

E.6 Benchmark results for Arch. 6. 140

E.7 Benchmark results for Arch. 7. 140

E.8 Benchmark results for Arch. 8. 141

ix

List of Figures

1.1 Processor trends over the last four decades [53]. 2

2.1 Hardware-only flow in LegUp HLS. 13

2.2 Processor-accelerator hybrid flow in LegUp. 14

2.3 MIPS hybrid architecture. 15

2.4 ARM hybrid architecture. 15

2.5 Performance and area results of hardware-only and hybrid systems generated by LegUp

1.0 and eXCite. 18

2.6 Energy consumption results of hardware-only and hybrid systems generated by LegUp 1.0

and eXCite. 19

2.7 Performance comparison of circuits generated by four HLS tools, including LegUp 4.0. . . 20

3.1 The ParallelAPI and the SW Partitioning compiler passes in the Processor-accelerator

hybrid flow. 27

3.2 MIPS processor-accelerator hybrid system architecture. 36

3.3 Nested accelerator architecture. 37

3.4 Geomean speedup ratios. 42

3.5 Geomean area-delay ratios. 44

4.1 ARM processor-accelerator architecture. 51

4.2 MIPS processor-accelerator architecture. 53

4.3 ARM hybrid flow with OS. 54

4.4 ARM hybrid flow with bare metal. 56

4.5 ARM hybrid architecture with DMA support. 60

4.6 Hardware accelerator with output data double buffered. 62

4.7 MIPS hybrid architecture with DMA support. 63

x

4.8 Relative Speedup and energy-efficiency ratios comparing ARM to MIPS. 69

4.9 Speedup ratios for Black-Scholes on ARM processor-only, ARM hybrid, and x86 architec-

tures. 71

4.10 Energy-efficiency ratios for Black-Scholes on ARM processor-only, ARM hybrid, and x86

architectures. 72

5.1 Parallel hardware-only flow in LegUp HLS. 76

5.2 Hardware-only system architecture for OpenMP. 77

5.3 Hardware-only system architecture for Pthreads. 79

6.1 A call graph and its circuit architecture using nested topology. 85

6.2 Internal architectures of module b and c. 85

6.3 Circuit in Figure 6.1 with flat circuit topology. 86

6.4 An example interconnect generated by system generator. 87

6.5 Parallel hardware with/without functional unit sharing. 88

6.6 Circuit architecture with/without deadlock prevention modules. 89

6.7 Memory sharing in nested/flat topology. 91

6.8 Circuit using the different types of memories. 92

6.9 Global memory controller architecture. 94

6.10 Geomean performance and area results for each architecture. 98

6.11 Geomean area-delay product for each architecture. 100

7.1 FIFO interfaces. 112

7.2 Multiple streaming modules connected through FIFOs. 113

7.3 Streaming circuit data-path and stall logic. 114

7.4 System diagram for the Black-Scholes option pricing benchmark for the pipelined-only

architecture. 117

7.5 System diagram for the Black-Scholes option pricing benchmark for the pipelined-and-

replicated architecture. 117

7.6 System diagram for the Canny benchmark for the pipelined-only architecture. 119

7.7 System diagram for the Canny benchmark for the pipelined-and-replicated architecture. . 120

7.8 System diagram for the k-means benchmark for the pipelined-and-replicated architecture. 120

xi

Chapter 1

Introduction

1.1 Motivation

The past four decades have seen tremendous growth in the computing industry. In 1971, Intel released

its first ever microprocessor, the 4004 [127] – a 4-bit processor built for a calculator, with 2,300 tran-

sistors fabricated on a 10 µm (10,000 nm) process. It was capable of adding two 8-bit numbers in 850

µs, or performing ∼1,200 8-bit additions per second. Forty-five years later, one of the latest GPUs

from NVidia, the Tesla P100 GPU built for Deep Learning, has 15.3 billion transistors built on 16 nm

FinFET technology, and delivers more than 10 TFLOPS (1013) of 32-bit single-precision floating-point

compute power [83]. This incredible advancement in technology has been driven by the Moore’s Law, an

observation which stated that the number of transistors on a chip will double approximately every two

years [54]. Moore’s Law has become a self-fulfilling prophecy, with the industry making the technology

advancements necessary to fulfill the law. With each new process node (shrink in transistor feature

sizes), clock frequency increased by ∼50%, and transistor density increased by 100% [62]. Improvements

in manufacturing technology also permitted increasing die sizes without increasing cost. However, as

transistors became smaller, leakage current increased, and with more transistors per unit area, power

density increased exponentially, creating the power wall. This has meant that processor clock frequencies,

and thereby single-thread performance, has remained nearly stagnant in the past decade, as shown in

Figure 1.1. A solution to this has been to increase the number of processor cores, rather than increasing

the speed of a single core. The parallelism permitted improved overall performance, without skyrock-

eting power budgets. With multiple cores, parts of the chip can also be turned off to save power and

prevent overheating, a phenomenon known as dark silicon [26]. Thus, in the past decade, as shown in

1

Chapter 1. Introduction 2

Figure 1.1: Processor trends over the last four decades [53].

the figure, the industry trend has been to increase the number of cores to improve performance. Modern

state-of-the-art consumer CPUs, such as those from the Intel Xeon E7 family [128], have well over 10

cores.

In addition to multi-core CPUs, the use of specialized hardware, which is dedicated to a particular

computational task, has also been on the rise. Many of these accelerators offer high performance through

massively parallel architectures. For example, the Intel Xeon Phi, which is used in supercomputers, has

more than 60 cores [126]. The Nvidia K80 GPU has almost 5,000 CUDA cores [73]. All of these

CPU/GPU cores are generally programmed through parallel programming methodologies in software,

such as Pthreads [7], OpenMP [85], OpenCL [111], and CUDA [133], where the programmer explicitly

specifies the parallelism in the code. In addition to these parallel but flexible architectures, there are

also application-specific accelerators, which are dedicated for performing a specific task, such as encryp-

tion [50], video processing [52], and deep learning [13]. This dissertation presents new methodologies to

ease the design of such accelerators on a reconfigurable platform called a field-programmable gate array

(FPGA).

FPGAs are hardware chips that can be instantly programmed to function as any digital circuit. This

allows one to accelerate an application in hardware, which can provide orders of magnitude improvement

in performance and power efficiency compared to software running on a processor [21, 45, 154]. Over

the past decade, FPGAs also have continued to grow in size and complexity, allowing complex systems

to be implemented on a single FPGA. State-of-the-art FPGAs have high computational capacity with

abundant logic blocks, which can be programmed to function as needed, as well as dedicated hard blocks,

such as memories and DSPs. For example, Xilinx announced the Virtex UltraScale XCVU440, a 20 nm

Chapter 1. Introduction 3

device with 4.4 million logic cells [142], containing more than 20 billion transistors, making it one of the

worlds densest ICs (integrated circuits). These copious amounts of available logic cells can be tailored

to create a custom multi-core hardware system.

Traditionally, one of the biggest barriers to using an FPGA has been its design entry, which required

the use of hardware description languages (HDLs), such as VHDL or Verilog. Compared to software,

HDLs are extremely complex, difficult to use, and time consuming to debug. The difficulty continues

to rise, with the ever-increasing complexity of circuits implemented on FPGAs. Due to these barriers,

software engineers, without hardware knowledge, simply could not use FPGAs. Despite the performance

and power advantages that FPGAs offer, hardware skills are relatively rare compared to software skills

(there are 10× more software engineers than hardware engineers in the United States [70]), thus limiting

the broad uptake of FPGAs as a mainstream computing platform.

In the last two years, however, there have been important new developments in the FPGA industry.

In 2014, Microsoft announced that they accelerated Bing Search by 2× with FPGAs, and with this

success, they have started to use FPGAs in their data centres [63]. In 2015, Intel acquired Altera,

one of the two largest FPGA vendors in the world, for $16.7 billion [124]. With the acquisition, Intel

projected that FPGAs will be in 30% of all data centre servers by year 2020. The significance of these

is that FPGAs, whose previous applications were mostly limited to niche markets in networking or

telecommunications, will increasingly be used for general-purpose computing, which represents a much

larger market. With millions of servers in data centres [51], and constantly changing applications, it is

inconceivable to think that the hardware for these FPGAs will be designed manually, due to the lack of

hardware expertise and lengthy/complex hardware design cycles.

High-level synthesis (HLS) is an up-and-coming design methodology for FPGAs. HLS raises the

design abstraction of hardware to software, allowing a user to automatically generate a circuit description

from a high-level software specification. The advantage of HLS is that a circuit designer can work more

productively at a higher level of abstraction, reducing time-to-market compared to manual hardware

design. With the input specification in software, HLS ultimately aims to bring the performance and

power advantages of FPGA hardware to those with only software skills. With these advantages, and the

associated promise of increased chip revenue, both Altera and Xilinx, the two largest FPGA vendors,

have invested heavily in HLS, with each offering a compiler that can produce high-quality circuits. A

number of academic groups have also built their own HLS tools, including [10, 23, 61, 57]. With the

recent advances in both industry and academia, HLS compilers have improved significantly, such that

in specific cases, they can automatically generate circuits with comparable, or even better performance

and area to manually designed hardware [120], and companies have also started to use HLS to design

Chapter 1. Introduction 4

chips in production [36].

Despite the advantages of HLS, there is still a gap between HLS-generated hardware and human-

designed hardware. This is partly due to the inability of HLS to fully exploit the parallelism available

in the FPGA fabric. Hardware parallelism with HLS is typically achieved in the two following ways: 1)

Instruction-level parallelism, where multiple basic operations, such as a multiplication and an addition

are performed in the same clock cycle, and 2) pipelining, where a single piece of hardware can overlap

multiple iterations of computations to execute them at the same time, much like a pipelined processor.

We consider both such methods as fine-grained parallelism, where a set of instructions, or loops in a

function, are executed in parallel to improve performance. Coarse-grained parallelism, such as those

at the thread -level, are not addressed with these techniques. Thread-level parallelism is increasingly

common in the software domain, as it is essential to take advantage of modern multi-core CPUs/GPUs.

Thus we believe a key missing feature for HLS is a methodology for automated synthesis of a multi-core

hardware system, which takes advantage of the millions of available logic cells to maximize performance,

where the specification to create the multi-core hardware is as easy as using a multi-core CPU. So far,

creating a multi-core hardware system in HLS typically requires one to first generate the core with HLS,

then either stitch the cores together manually using HDL, or use an FPGA-vendor-provided system

integration tool like Qsys [103]. To create a complete system, it also frequently involves bringing up

off-chip interfaces such as DDR3 memory. This can be cumbersome for a hardware engineer, but may

not even be possible for a software engineer. Some HLS tools have begun to support the use of vendor-

specific pragmas to replicate hardware modules [144]. However, vendor-specific pragmas are unintuitive,

not cross-platform, and most importantly, are not standard software. They are used to create hardware

behaviour that is different from software behaviour (software executes sequentially whereas hardware

executes in parallel), which can introduce hardware bugs that are invisible from software.

My Ph.D. research addresses this challenge by presenting a methodology where one can use well-

known standard techniques in multi-threading to specify parallelism in software, where the multiple

software threads are automatically compiled to concurrent accelerators in hardware. This brings parallel

software to parallel hardware. The complete system, including on-chip/off-chip memories and intercon-

nect, is also automatically generated, making the process as streamlined as using a multi-core processor.

We believe this is an important step towards improving the usability of HLS, to truly allow software

engineers to create high-performance multi-core hardware systems, using standard parallel programming

methodologies that they are already likely familiar with. We implement the work in this research within

the LegUp High-level Synthesis Framework from the University of Toronto [10].

Chapter 1. Introduction 5

1.2 Thesis Contributions

The objective of my Ph.D. research is to answer the following questions:

• How can we use software methodologies in HLS to exploit the spatial parallelism available on

FPGA hardware?

• How can we create efficient concurrently operating hardware in HLS using these software method-

ologies?

To answer these questions, we make several contributions, as outlined below:

Chapter 3 describes our HLS support for synthesizing parallel software threads (specified using

the Pthreads or OpenMP standards) to parallel-operating hardware modules, in a process-accelerator

hybrid system. Each software thread is synthesized into a concurrently operating hardware accelerator,

with the remaining program segments executed on a soft MIPS processor. Such a hybrid approach is

attractive as accelerators deliver the compute power of hardware, while the MIPS processor offers the

flexibility of software. The generation of the complete System-on-Chip (SoC), including the processor,

accelerators, on-chip caches, as well as off-chip memory, is entirely automatic. Parallel software often

requires synchronization across threads, hence we also provide HLS support for two key synchronization

constructs: mutexes and barriers. This has been published in the 2013 IEEE International Conference

on Field-Programmable Technology (FPT) [14].

Chapter 4 extends the work in Chapter 3 by adding support for the hard ARM processor (dual-core

Cortex-A9) on the Altera Arria V SoC FPGA [107]. In recent years, FPGA vendors have introduced

SoC chips with a hard ARM processor integrated on the same die as the FPGA [106, 140]. The ARM

processor, typically running at speeds between 800MHz and 1.5GHz, runs much faster than the FPGA

fabric, and can execute software programs significantly faster than what was previously possible with soft

processors, such as the MicroBlaze [135] or the NIOS II [105]. In this chapter, we describe the creation

of an ARM hybrid system on the SoC FPGA, where Pthread functions are accelerated to hardware,

and the remaining software segments are executed on the ARM processor. The ARM processor can

run with an OS, or in bare metal (no OS). We also provide direct memory access (DMA) support

for memory transfers between hardware accelerators and off-chip DDR3 memory, which significantly

improves memory bandwidth and performance. We show that our ARM hybrid systems can show

significant performance and energy benefits compared to software executing on the soft MIPS, the hard

ARM, and two different x86 processors, as well as the MIPS hybrid systems from Chapter 3. This work

is to be submitted to the IEEE Transactions on Very Large Scale Integration Systems (TVLSI).

Chapter 1. Introduction 6

Chapter 5 outlines a different HLS flow, where parallel software threads can be compiled to con-

currently operating hardware modules without the need for a processor to be present in the system.

We note that for some applications, it can be beneficial to compile the entire program to hardware,

instead of using the processor-accelerator hybrid system. ARM SoC FPGAs are still relatively nascent,

with only a handful of SoC FPGAs on the market, and soft processors can add significant area/power

overheads. We describe the hardware-only flow of LegUp, where the entire multi-threaded software pro-

gram is compiled to hardware, with parallel-threaded modules executing concurrently within a larger

hardware system. We show that this methodology can produce parallel circuits that bring significant

benefits in speed, power, and area-delay product, when compared to sequential hardware. Along with

the work in Chapter 4, this work is to be submitted to the IEEE Transactions on Very Large Scale

Integration Systems (TVLSI).

Chapter 6 investigates two crucial aspects that affect circuit performance and area of parallel

hardware: circuit topology and memory architecture. HLS automatically compiles a software program

to a hardware circuit, generally comprised of multiple hardware modules. The hardware modules can be

connected within the overall circuit in various ways, defining different circuit topologies. We investigate

two different circuit topologies, 1) the nested topology, and 2) the flat topology. In the nested topology,

hardware modules are created in a hierarchical manner: modules are instantiated within the modules that

use them. Conversely, the flat topology instantiates all hardware modules at the same level of hierarchy.

We also explore methods to reduce memory contention among parallel hardware units by investigating

three different memory architectures which use: 1) a global memory controller, 2) local memories, and 3)

shared-local memories. Local and shared-local memories are dedicated RAM blocks for a single or a set

of hardware modules. Lastly, we also consider memory replication to localize memories to each hardware

module that uses them to reduce memory contention, as well as converting small memories to registers

to reduce memory usage. This was has been published in the 2015 IEEE International Conference on

Field-Programmable Technology (FPT) [15].

Chapter 7 details our work on providing Pthreads support to infer streaming hardware in HLS.

Streaming hardware, which allows multiple data elements to be processed at the same time in a pipelined

fashion, permits high hardware throughput. However, most HLS tools require that streaming function-

ality be specified using vendor-specific pragmas. This results in non-standard software that generates

hardware behaviour that is different from software. To address this, we propose using a well-known soft-

ware technique to infer streaming parallel hardware in HLS. Specifically, we use the producer-consumer

pattern, commonly used in multi-threaded programming, to infer the generation of hardware that can

exploit both pipeline and spatial parallelism on FPGAs. Our proposed methodology allows one to cre-

Chapter 1. Introduction 7

ate a design in software, using only standard software methodologies, that can not only synthesize to

streaming hardware, but also model the generated hardware more accurately than existing solutions from

other state-of-the-art C-based HLS tools. This work has been published in the 2016 IEEE International

Conference on Application-specific Systems, Architectures and Processors (ASAP) [16].

1.3 Thesis Organization

The Ph.D thesis is organized as follows: Chapter 2 gives a survey of currently available HLS tools,

discusses a number of different parallel programming languages that are supported in the HLS tools,

and examines a few case studies comparing HLS-generated hardware to human-designed hardware. It

also describes the LegUp High-level Synthesis Framework wherein the thesis research is implemented.

The research contributions are presented in Chapters 3, 4, 5, 6, and 7. Chapter 8 provides conclusions

and gives suggestions for future work.

Chapter 2

Background

This chapter provides an overview of a number of currently available HLS tools, discusses some of the

different parallel programming languages which are supported in those HLS tools, and examines a few

case studies that have compared HLS-generated hardware to human-designed hardware. Lastly, it gives

a high-level overview of LegUp HLS, describes some of its most important features, and highlights a few

studies comparing the quality of LegUp-generated hardware to those of other HLS tools.

2.1 An Overview of Active High-Level Synthesis Tools

Table 2.1 lists a number of academic and commercial HLS tools that are currently available, along with

their input/output languages, released years, and target domains. For some HLS tools, their output

languages are not clearly specified publicly, hence for those tool, we have listed their outputs as RTL

(register-transfer level).

A++ [94] is Altera’s newest HLS tool, and is generally intended for use by hardware engineers

to create IP cores from C/C++ code. The generated core can then be manually integrated into a

larger system by the user. On the contrary, Altera’s OpenCL SDK [100], which is targeted for software

engineers, generates a complete system, with C/C++ host code executing on a processor (ARM or x86),

and the HLS-generated hardware from OpenCL executing on an FPGA. It is typically used for massively

parallel applications, where multiple threads execute on deeply pipelined hardware. The PCIe link that

is used by an x86 processor to communicate with an FPGA, as well as off-chip memory interfaces used

by FPGA hardware to access memory, are all set up automatically by the tool.

Xilinx also offers a number of HLS tools, which target different types of users and application domains.

Xilinx acquired AutoESL in 2011 [119], for their HLS tool, AutoPilot [30], which was re-branded as

8

Chapter 2. Background 9

Table 2.1: An overview of high-level synthesis tools [56].

Name Developed By Type Input Language Output Language Year Target Domain
A++ Altera Commercial C/C++ RTL 2015 Generic
Bambu Politecnico di Milano Academic C Verilog 2012 Generic
Bluespec Compiler BlueSpec Inc. Commercial Bluespec System Verilog Verilog 2007 Generic
Catapult HLS Mentor Graphics Commercial C/C++/SystemC Verilog/VHDL/SystemC 2004 Generic
CoDeveloper Impulse Accelerated Commercial Impulse C Verilog/VHDL 2003 Streaming
CyberWorkBench NEC Commercial C/SystemC Verilog/VHDL 2011 Generic
DK Design Suite Mentor Graphics Commercial Handel-C Verilog/VHDL 2009 Embedded
DWARV TU Delft Academic C subset VHDL 2012 Generic
eXCite Y Explorations Commercial C Verilog/VHDL 2001 Generic
FCUDA UIUC Academic CUDA C 2009 Massively parallel
GAUT University of Bretagne Academic C/C++ VHDL 2010 Digital signal processing
LegUp University of Toronto Academic C Verilog 2011 Generic
MaxCompiler Maxeler Commercial MaxJ RTL 2010 Dataflow
SDAccel Xilinx Commercial C/C++/OpenCL RTL 2015 Massively parallel
SDSoC Xilinx Commercial C/C++ Verilog/VHDL 2015 Embedded
SDK for OpenCL Altera Commercial OpenCL Verilog 2013 Massively parallel
Stratus Cadence Commercial C/C++/SystemC RTL 2015 Generic
Synphony C Synopsys Commercial C/C++ Verilog/VHDL/SystemC 2010 Generic
Vivado HLS Xilinx Commercial C/C++/SystemC Verilog/VHDL 2013 Generic

Vivado HLS after the acquisition. Vivado HLS is one of the most widely used commercial HLS tools

for FPGAs, and is typically used by hardware engineers to generate IP cores from software. More

recently, in 2015, Xilinx announced SDAccel [136] and SDSoC [137], both of which are targeted for

software engineers. SDAccel takes as input OpenCL kernels and targets massively parallel applications

that are typically used in data centres (similar to Altera’s OpenCL SDK). SDSoC, on the other hand,

is mainly used for embedded environments, where an SoC, comprising an ARM processor and hardware

accelerators, is implemented on an FPGA. SDSoC is very similar to LegUp, in that it can automatically

generate a complete SoC from software.

There are also an ample number of other commercial HLS tools. Bluespec Compiler [121] takes in

Bluespec System Verilog (BSV) to generate hardware described in Verilog HDL. BSV is a high-level

functional HDL based on Verilog, where modules are implemented as a set of rules. The rules are

then used to express behaviour in the form of concurrently operating FSMs [58]. Catapult HLS [114],

formally from Calypto Design Systems which was acquired by Mentor Graphics in 2015 [113], uses

C/C++/SystemC code to generate hardware. This commercial tool has been used in the past by

companies such as Google and Qualcomm [115, 36]. The Impulse CoDeveloper [123] uses Impulse-C,

which is a C subset, to target image processing and streaming applications. CyberWorkBench [132] from

NEC [131], uses C/SystemC as input, and can generate hardware for both Altera and Xilinx FPGAs, as

well as for ASICs. DK Design Suite [116] uses Handel-C, a subset of the C which has been extended with

hardware-specific constructs, to provide a software flow for compiling of software algorithms onto FPGAs.

eXCite [150] takes an input C code and can generate either Verilog or VHDL. This commercial tool was

used in a comparative study with LegUp [10], which is presented in Section 2.4.2. MaxCompiler [112]

accepts MaxJ, a Java-based language, to generate synthesizable code for the data-flow engines on their

Chapter 2. Background 10

proprietary hardware platforms. Cadence’s Stratus [110] integrates Cynthesizer, which was acquired from

Forte [86], and Cadence’s C-to-Silicon Compiler, into one HLS tool [134]. It uses C/C++/SystemC

descriptions to generate hardware, targeting ASICs, SoCs, and FPGAs. The Synopsys Synphony C

Compiler [117], which was acquired from Synfora [82], takes as input C/C++ code, and can also generate

hardware for both ASICs and FPGAs.

On the academic front, there are also many HLS tools; we highlight a few which are being actively

worked on. Bambu [61], from Politecnico di Milano, leverages the GCC compiler. It takes as input C code

and generates hardware in Verilog. DWARV [57], from the Delft University of Technology, uses the CoSy

commercial compiler infrastructure [118]. It supports a subset of C and can generate hardware described

in VHDL. Bambu, DWARV, and LegUp were used in a comparative study [56], where the summary of

results is presented in Section 2.4.3. FCUDA [28] is a source-to-source compiler that can translate CUDA

to C, which can then be compiled to hardware by AutoPilot [30]. Lastly, GAUT [23] is tool from the

University of Bretagne that uses C/C++ code to target digital signal processing applications.

2.2 Parallel Programming Languages in High-Level Synthesis

As previously mentioned, a number of different HLS tools have started to support parallel programming

languages as input to HLS to produce parallel hardware. Namely, Altera’s SDK for OpenCL and

Xilinx’s SDAccel take as input OpenCL code, FCUDA can receive CUDA code, and LegUp supports

compiling Pthreads and OpenMP into parallel hardware. The different programming languages, which

have different programming models, can have their own strengths and advantages. OpenCL and CUDA

are well-suited for designing massively parallel applications where threads operate on multiple data

elements in parallel. These languages provide support for vector data types, which can be used to

express accessing multiple data elements in a concise and a convenient manner. However, both OpenCL

and CUDA require the user to explicitly specify operations such as queuing kernels, creating buffers, and

transferring data between host and device, as well as require an understanding of GPU programming

concepts such as work-groups (for OpenCL) and blocks (for CUDA). For non-GPU programmers, this

can be a challenging task. OpenMP, on the other hand, allows one to parallelize a section of code,

such as a loop, with a single line of pragma. Thus OpenMP truly provides the ease-of-use for parallel

programming. As for the Pthreads standard, it requires explicit thread forks and joins, but one can

also specify task-level parallelism fairly easily, and Pthreads can give more control to the user, with

synchronization mechanisms such as semaphores [80]. For some applications, any of OpenCL, CUDA,

OpenMP, or Pthreads can be used to implement functionally equivalent designs, however, one should

Chapter 2. Background 11

consider the type of computations an application entails, as well as the ease of implementation associated

with using a particular programming language, and choose the one which is the best suited for the case.

2.3 High-Level Synthesis vs. Hand-coded RTL

HLS tools provide the ability to automatically synthesize hardware from software. While this provides

an easier design methodology, and offers a shorter time-to-market, many hardware engineers question

the quality of hardware generated by HLS. To this end, several works have compared the quality of HLS-

generated hardware to human-designed hardware. AutoPilot was used in [120] to implement a DQPSK

(Differential Quadrature Phase-Shift Keying) Receiver Workload. This workload has a fixed required

throughput to process modulated data at 18.75 Msamples/s at 75 MHz. AutoESL was used compile

the C implementation of the application to hardware, which was compared to a manually designed RTL

implementation. In terms of performance, both designs were able to meet the required throughput,

and in terms of area, the HLS-generated hardware consumed 0.3% less area than the hand-coded RTL.

Hence the HLS approach was able to produce a smaller circuit, while matching the performance.

In [1], Altera’s OpenCL SDK was used to compile a Gzip algorithm [65] described in OpenCL to

FPGA hardware. This HLS-generated hardware was compared to a handed-coded RTL implementation

done by IBM researchers [48], which was considered to have the best publicly known results. The

comparison showed that the OpenCL implementation was 5.3% lower in terms of performance (2.84

GB/s compression rate at 193 MHz vs. 3.0 GB/s at 200 MHz), and used 2% more logic and 25% more

RAMs. Nevertheless, the complete OpenCL implementation was done in a month (one week for the

initial kernel implementation, and three weeks for optimizations). With this, the authors state that

designing hardware with OpenCL can be as easy as writing software code, where its performance can

also be as good as hand-coded RTL.

Overall, several HLS tools have shown promising results, in terms of both performance and area,

when comparing HLS-generated hardware to human-designed hardware. With continuous developments

in the HLS domain, we think that there will soon be more application domains where HLS can be used

to generate hardware that can match, or outperform, manually designed hardware.

2.4 LegUp High-Level Synthesis Framework

LegUp is an open-source HLS compiler framework under active development at the University of Toronto

since 2009. First released in 2011, the tool is currently on its fourth public release, and is freely down-

Chapter 2. Background 12

loadable by the research community. LegUp has been the subject of 20 publications and has been

downloaded over 4,000 times from around the world (http://legup.eecg.toronto.edu).

LegUp accepts a C program as input, which can be compiled to either: 1) A hardware-only system

where the entire program is compiled to a hardware circuit, or 2) a processor-accelerator hybrid system

where one or more functions are accelerated to hardware, with the remainder of the program executed

in software on an embedded processor. The embedded processor can either be a soft MIPS processor, or

a hard ARM processor. The software/hardware partitioning, as well as the generation of the complete

SoC, including the processor, on-chip/off-chip memories, and interconnect, are automatically handled

by LegUp.

LegUp is implemented within the LLVM compiler framework, an open-source compiler that was

initially started as a research project at the University of Illinois at UrbanaChampaign (UIUC) [77],

and is now being developed at Apple. Many companies, including Sony, NVidia, and Google, are using

the compiler commercially. Other HLS tools, such as Xilinx’s Vivado HLS [138], and Altera’s OpenCL

SDK [100], are also constructed within LLVM. Using LLVM allows one to leverage a robust, powerful and

vetted compiler framework, which by default ships with more than 50 compiler optimization passes [38].

With respect to the language support, LegUp supports a large subset of ANSI C. It can synthesize

to hardware most C constructs, including pointers, arrays, structs, functions, integer and floating point

operations. It does not support, however, recursive functions or dynamic memory allocation/deallocation

for hardware synthesis. However, LegUp is not unique in this regard as these features are typically not

supported in HLS tools for compilation to hardware. The benefit of having the hybrid flow, however,

is that program segments containing unsynthesizable constructs can be executed in software on the

processor.

Figure 2.1 shows the hardware-only flow of LegUp. It comprises three major steps, Frontend, IR

transformations, and Hardware Backend. The Frontend step invokes Clang, LLVM’s front-end compiler,

which receives a C program as input and produces LLVM IR (intermediate representation). The IR,

which is LLVM’s internal representation of the program, is target-independent assembly-like code, which

can later be converted to machine-dependent assembly by the LLVM compiler. Clang can also be used to

directly compile a program to an executable, like gcc. After converting C code to the LLVM IR, all HLS

operations are performed on the IR. In the IR Transformations step, the program goes through a series

of compiler optimization passes, each of which attempts to optimize the program. These passes include

standard optimization passes included in LLVM (such as dead code elimination, or constant propagation),

as well as custom passes that we have written ourselves to optimize for the output hardware. Finally,

the optimized IR is input to the Hardware Backend step, which executes the HLS steps of allocation,

Chapter 2. Background 13

C Program

Clang

LLVM IR

Optimization

Passes

Frontend

Verilog

Hardware

Backend

IR

Transformations

Optimized IR

Backend

Figure 2.1: Hardware-only flow in LegUp HLS.

scheduling, and binding, to generate hardware specified in the Verilog hardware description language.

Allocation lays out the constraints on the HLS problem, for example by determining the amount

of hardware that may be used to implement the circuit. LegUp reads in device-specific data from a

configuration Tcl file, which specifies the target FPGA and the resource limits for the device. Scheduling

assigns operations to specific clock cycles, using the target clock period constraint given by the user, as

well as pre-characterized data specifying the delay for each type of operation on the target FPGA device.

Given the clock period constraint, scheduling can also chain multiple instructions into a single cycle. For

example, if a multiplication was characterized to take 7 ns, and a dependant addition was characterized

to take 3 ns, with the given clock period constraint of 10 ns, both operations can be scheduled to execute

in the same cycle, without violating the clock period constraint. After scheduling, binding performs

the task of assigning operations to specific hardware units. When multiple operations are assigned to

the same hardware unit, multiplexers are created to facilitate sharing. Finally, using the information

gathered from allocation, scheduling, and binding, hardware is generated in Verilog.

Figure 2.2 shows the processor-accelerator hybrid flow of LegUp. In this flow, which was initially

established in my M.A.Sc. thesis research [18, 17], LegUp automatically generates an entire SoC system,

including an embedded processor, one or more hardware accelerators, memories, and interconnect. There

have been a number of improvements to the flow since the prior work, including adding support for an

ARM processor (initially the flow only had MIPS processor support), migrating to a newer version of

Altera’s system integration tool, Qsys [103], adding more optimization passes, as well as other general

improvements. To use the hybrid flow, the user first designates one or more C functions for acceleration,

then runs LegUp. Note that the first part of the flow (shown in the top left of the figure), where the C

program goes through a series of optimization passes, and is given to the Hardware Backend, remains

the same as the hardware-only flow shown in Figure 2.1. This allows us to perform the identical set of

Chapter 2. Background 14

C Program

Clang

LLVM IR

Verilog for

accelerated

functions

Hardware

Backend

Optimization

Passes

Optimized IR

Modelsim

Simulation
FPGA

Synthesis

SW Partitioning

ARM/MIPS

toolchain

ARM/MIPS Binary

Processor

HW Accel

Complete System

Altera Qsys

System Integrator

SW IR

Memories

Inter-

connect

Tcl

commands

Optimization

Passes

Optimized SW IR

Figure 2.2: Processor-accelerator hybrid flow in LegUp.

compiler optimizations to the entire program (i.e. to both its software and hardware segments), with

the steps specific to the hybrid flow simply added on as an additional procedure, allowing for easier

maintainability. In the hybrid flow however, the Hardware Backend only compiles to hardware those

functions designated for hardware acceleration. It also generates a wrapper module for each hardware

accelerator, which contains Avalon interfaces (Altera’s on-chip interface) to allow an accelerator to

communicate with the processor and shared memories over the Avalon interconnect [4]. In the hybrid

flow, the software program must also be modified to execute the accelerated functions in hardware

instead of in software. To do this, we run the SW Partitioning pass on the Optimized IR. This pass

partitions the software portion to be executed on the processor by removing the hardware-designated

functions and replacing them with wrapper functions, which provides the means for the processor to

communicate with the hardware accelerators over the interconnection fabric. The wrapper functions

perform memory-mapped reads/writes over the Avalon Interconnect to transfer function arguments,

start accelerators, and retrieve any return values.

As the SW Partitioning pass has knowledge of which functions are designated for hardware, it also

generates Tcl commands, which are subsequently used by Qsys to generate the system. The generated

SW IR from the SW Partitioning pass goes through more optimizations, such as strength reduction and

Chapter 2. Background 15

FPGA

MIPS

Processor
HW Accelerator

Avalon Interconnect

HW Accelerator

On-Chip Cache

Off-Chip Memory

Local

Memories

Local

Memories

Figure 2.3: MIPS hybrid architecture.

FPGA

HW Accelerator

Avalon Interconnect

HW Accelerator

Off-Chip Memory

ARM HPS

On-chip Cache

Local

Memories

Local

Memories

Figure 2.4: ARM hybrid architecture.

inlining, which can further optimize the software program, and the final Optimized SW IR is compiled

with the ARM or the MIPS compiler toolchain (depending on the selected processor architecture) to

generate the software binary. Once both the software and hardware partitions have been processed,

Qsys is automatically invoked, using the previously generated Tcl commands as input, to generate the

complete SoC system. Qsys instantiates the processor, memories, and hardware accelerators, and creates

the Avalon Interconnect to tie all of the components together. Finally, the generated system can then

either be simulated with ModelSim, with the testbench and its test vectors (compiled from the software

binary) automatically generated to initialize the off-chip memory, or it can be synthesized with Altera’s

FPGA CAD tool, Quartus II, to produce the FPGA programming bitstream.

Figs. 2.3 and 2.4 show the general architectures of the MIPS and the ARM hybrid systems. In both

systems, the processor communicates with the hardware accelerators over the Avalon Interconnect, where

they also share an on-chip cache, backed by off-chip memory. An accelerator can also have local memories

which are not shared with the processor, or with other accelerators. For the MIPS hybrid system, shown

in Figure 2.3, the on-chip cache is implemented on the FPGA fabric, and can be customized as needed.

For the ARM hybrid system, shown in Figure 2.4, the cache resides within the ARM Hard Processor

System (HPS), which is a fixed architecture.

2.4.1 Key Features

It is worth highlighting several key features of the LegUp HLS tool. Although LegUp has many other

features, including those used to visualize/debug the generated circuit, we only discuss the most notable

and widely used features of the tool.

Push-Button SoC Generation

As described above, LegUp can generate a complete SoC from software with a single command, make

hybrid. This permits a software engineer without hardware knowledge to create an entire processor-

Chapter 2. Background 16

accelerator system. Off-chip memory interfaces are automatically set up with correct DDR specs, and

the testbench is generated so that input data can be loaded from DDR memory. One can choose to use

a soft MIPS processor, or a hard ARM processor based on a Tcl parameter. The MIPS is an open-

source processor [71] implemented on the FPGA fabric, and can be customized as needed. We support

using the MIPS system on seven different Altera FPGA boards: DE2, DE2-115, DE1-SoC, DE4-230,

DE4-530, DE5-Net, and the Arria V SoC Development Board. The hard ARM processor, on the other

hand, runs at a much higher frequency than a soft processor and is therefore able to execute software

much faster. Use of this processor is limited to those SoC FPGAs with the ARM HPS, and we currently

support three Altera SoC FPGAs: DE1-SoC, SoCKit, as well as the Arria V SoC Development Board.

The ARM processor on these SoC FPGAs has been configured so that it can be programmed via USB

(described in Chapter 4). The user can also choose to run the ARM processor with an OS, or in bare

metal. The push-button SoC generation is used extensively in the work described in Chapters 3 and

4. Recently, other commercial HLS tools, such as Xilinx’s SDSoC [137], have also followed suit, by

providing their own automatic SoC generation feature.

Loop Pipelining

Loop pipelining is an HLS technique for the synthesis of pipelined hardware that can execute multiple

iterations of a loop concurrently, by commencing a new loop iteration before the preceding iteration is

complete. By overlapping the execution of multiple loop iterations, loop pipelining significantly increases

hardware utilization and performance. For high circuit performance, loop pipelining is a crucial HLS

technique, because in many C applications, the hot spots are in loops. LegUp uses a loop pipelining

scheduling algorithm with backtracking [9], developed by Andrew Canis. This scheduler, based on the

SDC scheduling formulation [20], produces loop-pipelined hardware competitive to (and in some cases,

superior to) that produced by a commercial HLS tool. Loop pipelining is used in Chapters 3, 4, 5 and

7.

Multi-Threading

In software, multi-threading is generally used to execute a program on multiple cores. As part of this

thesis research, we have built an analogy to this behaviour in hardware, wherein parallel software threads

can be used to specify multiple concurrently executing hardware cores. Our multi-threading feature in

HLS allows a software engineer to use the parallelization techniques they are already familiar with

to specify hardware parallelism. This is the overarching theme of the research in this thesis. Multi-

threading support is described and used in Chapters 3, 4, 5, 6 and 7. We believe the capability to

Chapter 2. Background 17

synthesize Pthreads and OpenMP kernels into parallel hardware, in either a hardware-only system, or

a processor-accelerator system, is unique to LegUp HLS1. Our multi-threading technique allows one to

easily exploit hardware spatial parallelism on an FPGA purely from software. Multi-threading can also

be combined with loop pipelining, to create multiple pipelined cores.

Bit-width minimization

Software variables utilize standard data types of predefined widths, such as short or int, regardless of

whether all of the bits of the particular data type are used or not. This is acceptable for executing on

a processor, where the data-path widths are fixed. However, for HLS-generated hardware, where the

data-path can be customized as needed, using the pre-defined widths may unnecessarily result in high

area consumption or poor performance. To address this issue, Marcel Gort, implemented automatic bit-

width minimization [33], which analyzes the program at compile-time, leveraging program constants and

the program’s dataflow graph to automatically minimize data-paths widths of the generated hardware.

This feature is not used for the work in this thesis; nevertheless, it is an important area-reduction feature

in HLS and thus is mentioned here for readers who may wish to use LegUp in the future.

2.4.2 Software-to-Hardware Results

To give a sense of the quality of circuits produced by LegUp, and also to entice readers’ interest in

HLS, we discuss a few experiments that analyze the performance and area of hardware-only and hybrid

systems generated by LegUp, as well as compare them to other HLS tools.

In 2011, with our first release of LegUp (LegUp 1.0), we conducted a study [10], where we measured

the performance, area, and energy consumption of 13 benchmarks (12 CHStone benchmarks [37] and

Dhrystone), as we successively moved portions of the program from software to hardware, until the

entire program was compiled to hardware. For this experiment, we created five different architectures

as shown below:

1. A software-only implementation where the entire program is executed in software on the soft MIPS

processor (denoted as MIPS-SW in Figure 2.5).

2. A hybrid processor-accelerator hybrid implementation where the second most compute-intensive

function (and its descendants) in the benchmark is implemented as a hardware accelerator, with

1Other HLS tools, such as Altera’s OpenCL SDK, also allow multiple threads to be compiled to parallel hardware.
However, it does not support creating a hardware standalone system, as it needs to create a full system with PCIe/off-chip
memory interfaces that are locked down. This can be useful for data centre applications, but can be difficult for use in
embedded/IoT domains.

Chapter 2. Background 18

0

5000

10000

15000

20000

25000

30000

35000

40000

0

500

1000

1500

2000

2500

MIPS-SW LegUp-Hybrid2 LegUp-Hybrid1 LegUp-HW eXCite-HW

#
 o

f
LE

s
(g

e
o

m
e

a
n

)

E
xe

cu
ti

o
n

 t
im

e
 (

g
e

o
m

e
a

n
) # of LEs

Exec. time

Figure 2.5: Performance and area results of hardware-only and hybrid systems generated by LegUp 1.0
and eXCite.

the balance of the program running in software on the soft-core MIPS processor (denoted as

LegUp-Hybrid2).

3. Same as 2, but with the most compute-intensive function (and its descendants) compiled to a

hardware accelerator (denoted as LegUp-Hybrid1).

4. A hardware-only implementation where the entire program is compiled to hardware by LegUp

(denoted as LegUp-HW).

5. Same as 4, but with the program compiled with a commercial HLS tool, eXCite (denoted as

eXCite-HW).

Note that eXCite [150] was the only commercial tool we had access to at the time that could compile

the benchmark programs.

Performance and area results, in geometric mean across all benchmarks, are shown in Figure 2.5. The

x-axis shows the five different scenarios described above; the left y-axis represents geomean execution

time (for the line graph); the right y-axis displays area (for the bar graph), in terms of logic elements

(LEs). The general trend is that, as more computations are mapped to hardware, the execution time

improves. Comparing the hardware-only architecture of LegUp to eXCite, LegUp produced circuits with

moderately better performance. In terms of area consumption, area increased as more computations

are compiled to hardware, and abruptly dropped for the hardware-only architectures, as the processor

system is no longer in the system. LegUp-HW consumed roughly 20% more area than eXCite-HW. The

area-delay products of the two tools, which measures the efficiency of hardware, were nearly identical.

The geometric energy consumption results, shown in Figure 2.6, also show a similar trend to the

performance results. Energy consumption is reduced drastically as computations are increasingly im-

plemented in hardware. The LegUp-Hybrid2 and LegUp-Hybrid1 flows used 47% and 76% less energy

Chapter 2. Background 19

 -

 100

 200

 300

 400

 500

 600

MIPS-SW LegUp-Hybrid2 LegUp-Hybrid1 LegUp-HW eXCite-HW

E
n

e
rg

y
 (
μJ

)
(g

e
o

m
e

a
n

)

0

Figure 2.6: Energy consumption results of hardware-only and hybrid systems generated by LegUp 1.0
and eXCite.

than the MIPS-SW flow, respectively, representing 1.9× and 4.2× better energy-efficiency. LegUp-HW

used 94% less energy and eXCite-HW also showed similar results to LegUp-HW (95% less energy).

These early results demonstrated that the first release of LegUp could produce circuits comparable

to those generated by a commercial tool, and also showcased LegUp’s usefulness as a tool for exploring

the hardware/software co-design space.

2.4.3 Comparison to Other HLS tools

More recently, there has been ample activity in the HLS research community, with a variety of HLS

tools available from both industry and academia. Although all HLS tools carry a common goal – making

hardware design easier – many of these tools differ in terms of their input languages, and the types of

features/optimizations they provide. This makes it challenging to compare HLS tools with one another,

and for this reason, there had been no prior work on evaluating the performance of different HLS tools.

Recognizing this, we conducted a study [56] in cooperation with two other academic institutions, the

Delft University of Technology and the Politecnico di Milano, each of which has their own HLS tool,

DWARV [57] and Bambu [61], respectively. Together, we used LegUp, DWARV, Bambu, as well as a

state-of-the-art commercial HLS tool, to compare the results across a common set of 17 C benchmarks.

For all of these benchmarks, each entire program was compiled to hardware, and we used LegUp 4.0,

released in 2015. Note that LegUp targeted an Altera FPGA (Stratix V), whereas the three other

HLS tools targeted a Xilinx FPGA (Virtex-7). Both FPGAs are fabricated using the 28 nm TSMC

technology.

Figure 2.7 shows the geometric mean performance results, in terms of clock cycles, Fmax, and wall-

clock time (cycles/Fmax), for the four HLS tools, where the results are normalized to the commercial

tool. Compared to the commercial tool, LegUp HLS produced circuits with 35% less clock cycles, and

7% higher clock period, leading to 32% better average wall-clock time. In addition, LegUp-generated

Chapter 2. Background 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

VivadoHLS Bambu DWARV LegUp

R
a

ti
o

:
To

o
l

/
C

o
m

m
e

rc
ia

l

Cycles

Fmax

Wall-clock

Commercial

Figure 2.7: Performance comparison of circuits generated by four HLS tools, including LegUp 4.0.

circuits also outperformed those produced by Bambu and DWARV, on average. LegUp used techniques

such as loop pipelining and multi-threading to generate these circuits, which significantly improved

performance. Although area results are also reported in [56], it was difficult to bring forth conclusions

due to the differences in the target FPGA architectures. Nevertheless, we showed that LegUp can

produce circuits which are competitive or superior to those of several other currently available HLS

tools.

2.5 Summary

In this chapter, we gave a high-level overview of a number of currently available HLS tools, with a

discussion on the different parallel programming models which are supported in the HLS tools. We also

explored a few cases studies which have compared the quality of HLS-generated hardware to human-

designed hardware. We also provided a brief overview of LegUp HLS, and noted some of its most

important features. Lastly, we highlighted a few comparative studies of LegUp with other HLS tools,

which showed encouraging results for LegUp HLS.

Chapter 3

From Software Threads to

Processor/Parallel-Accelerator

Hybrid System

3.1 Introduction

With the end of the clock frequency scaling in the last decade, single-thread performance has stopped im-

proving, necessitating the need for parallelization via multi-core processing. However, software compilers

have a limited ability to infer parallelism, and even auto-parallelizing compilers, which aim to relieve

programmers from the error-prone parallelization process, generally only work on loops that are struc-

tured in certain styles [93, 90]. As such, it is normally incumbent on the programmer to explicitly specify

coarse-grained parallelism within the code. Common parallelization approaches include using parallel

programming languages such as OpenCL [111] or CUDA [133], or the use of libraries like Pthreads [7]

and OpenMP [85].

A question that naturally arises then is, how does one specify parallelism to an HLS tool? Fine-

grained parallelism, such as instruction-level parallelism, or loop-level parallelism with loop pipelining,

are handled quite well by current state-of-the-art HLS compilers. What is lacking, however, is a standard

way in HLS to specify coarse-grained parallelism, such as at the thread-level or at the task-level. Coarse-

grained parallelism in HLS is often realized by using an HLS tool to synthesize a single hardware core,

and then manually instantiating multiple instances of the core in structural HDL – an approach which

21

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System22

requires knowledge of hardware design. Some HLS tools support the use of vendor-specific pragmas to

create parallel hardware, which while useful, is a non-standard methodology [144].

We believe the correct approach to parallelism specification is to bring forth a solution which is not

only vendor-agnostic, but also platform-agnostic – the same code which is used to execute in parallel in

software can be used to execute in parallel in hardware. To this end, we propose using Pthreads and

OpenMP, standard parallel programming methodologies that software engineers are already familiar

with, for the specification of hardware parallelism to an HLS tool. We provide an HLS framework

wherein the parallelism described in the software code is automatically synthesized into parallel hardware

accelerators that perform the corresponding computations concurrently. In this chapter, our research is

in the context of the MIPS processor-accelerator hybrid system, where threads are compiled to parallel

accelerators, and remaining (sequential) portions of the program are on the MIPS processor. Note that

the MIPS processor runs bare metal, without an OS. We describe support for using an ARM processor,

with and without an OS, in Chapter 4.

Writing deterministic parallel software often requires the use of synchronization constructs that, for

example, manage which threads may execute a given code segment at a given moment. Recognizing this,

we also provide HLS support for two key thread synchronization constructs in the Pthreads/OpenMP

library: mutexes and barriers. Our work represents a key step towards improving the performance of

hardware that can be created by an engineer who solely possesses software skills.

3.2 Background

Several prior works consider the use of OpenMP for FPGAs. The work in [29] implements an extension

to OpenMP so that computations can be off-loaded to an FPGA, although it was not in the context of

high-level synthesis and required the FPGA hardware to be designed manually using HDL. The work

in [31] describes a framework that generates Handel-C and VHDL from programs that use OpenMP,

where the generated code is implemented on an FPGA. Although the work bears some similarity to our

own, it has significant limitations, namely, it supports only the integer data type, the target hardware

has no memory subsystem, and the hardware FSM allows only one statement in each state, making

it impractical for use in a real system. Our framework does not have such limitations. The work

in [27] describes a source-to-source translator that accepts a C program that uses OpenMP as input,

and generates source files to be passed to an HLS tool. The authors do not provide the HLS capability

themselves, but instead use a commercial tool: Impulse CoDeveloper [123].

Concerning Pthreads, [68] describes a framework which employs Pthreads to generate hardware

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System23

accelerators at runtime by running an FPGA CAD tool on an embedded ARM processor with an OS,

also on the FPGA. However, the FPGA synthesis tool could not actually run on the embedded ARM

processor, hence their results are based on their own C++ simulator, rather than from cycle-accurate

simulation with ModelSim or on-board execution in silicon. Moreover, the work was done before ARM

SoC FPGAs were introduced, and thus, even the ARM software execution was simulated rather than

actual. In our work, we use cycle-accurate ModelSim simulation (and on-board execution in Chapter 4)

to obtain accurate runtimes. HybridThreads (hthreads) provides a library to execute threads on a hybrid

CPU/FPGA system [6]. While similar to Pthreads, hthreads is not a standard software library, thus

is not portable to other platforms. The works in [39, 46] provide OS abstractions for communication

between a CPU and hardware threads on an FPGA. Each provides their own thread APIs, neither

of which are standard software APIs, and they also do not provide the capability to compile software

threads to hardware.

It is also worthwhile to comment on the parallelization capabilities of the HLS tools offered by the

two main commercial FPGA vendors. Xilinx’s Vivado HLS [138] provides a rich set of features such

as pipelining, memory partitioning/restructuring, arbitrary precision types, as well as supports other

user-specified pragmas to control the generated hardware. Hardware knowledge is needed to fine-tune

the hardware using pragmas and there is currently no support for standard software APIs to specify

parallel execution. Altera’s OpenCL SDK [100] and Xilinx’s SDAccel [136] permit the compilation of

OpenCL kernels to FPGA hardware. Parallelism is explicitly specified by the programmer in OpenCL,

which is compiled to pipelined hardware units. Related to the Altera effort, [28] provides a source-to-

source compiler to translate CUDA code into annotated C code to be input into another HLS tool,

AutoPilot [30].

To our knowledge, there is no prior work that offers an open-source HLS tool with support for

parallelism expressed using the Pthreads or OpenMP standards.

3.3 Parallel Programming with Pthreads/OpenMP

This section briefly describes Pthreads and OpenMP and illustrates how they can be used to express

parallelism in software. We focus on the most widely-used aspects of the two parallelization approaches,

which are the same aspects we have selected for automated synthesis to hardware.

Consider the following code snippet that uses Pthreads:

// fork threads

for (i=0; i<N; i++) {

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System24

pthread_create(&threads[i], NULL, vector_add, &data[i]);

}

// join threads

for (i=0; i<N; i++) {

pthread_join(threads[i], NULL);

}

The example code forks N threads with pthread create, each of which executes the vector add

function, with a pointer to an element of the data array given as its argument. Multiple arguments

can be supplied to a function by aggregating them into structures (use the C struct datatype). The

N threads are joined with pthread join, which waits for the thread specified by its thread variable

(threads[i] in this case) to terminate. The return value from the threaded function can be retrieved

via the second argument of pthread join (NULL in this case).

In parallel programming, synchronization mechanisms are used to ensure correct execution of a multi-

threaded program, with locks and barriers being the most commonly used mechanisms. With Pthreads,

locks are specified with the pthread mutex lock and the pthread mutex unlock functions. A barrier

is used to synchronize threads at a specific point in a program. The pthread barrier init is used to

initialize the barrier with the number threads that must wait at a barrier. The pthread barrier wait

function is used to synchronize threads at a barrier.

Turning now to OpenMP, consider the following code segment:

#pragma omp parallel for num_threads(2) private(i)

for (i = 0; i < SIZE; i++) {

output[i] = A_array[i]*B_array[i];

}

The loop performs a dot product of two arrays, A array and B array. To parallelize this loop using

OpenMP, one simply puts an OpenMP pragma, omp parallel, before the loop, as shown in the example.

The num threads clause specifies the number of threads to execute the loop in parallel. In the example

code with two threads, the first thread computes the first half of the array; the second thread works on

the second half. The private clause privatizes one or more variables to each thread. In the example,

each thread has it own copy of the induction variable i. Note that the parallel pragma in OpenMP is

blocking – all threads executing the parallel section need to finish before the program can continue to

execute.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System25

Table 3.1: Pthreads/OpenMP support in LegUp.

Pthreads Functions Description
pthread create(..) Invoke thread
pthread join(..) Wait for thread to finish
pthread exit(..) Exit from thread, can be used to return data

pthread mutex lock(..) Lock mutex
pthread mutex unlock(..) Unlock mutex
pthread barrier init(..) Initialize barrier
pthread barrier wait(..) Synchronize on barrier object
OpenMP Pragmas Description

omp parallel Parallelize a section of code
omp parallel for Parallelize a for loop
omp master Parallel section executed by master thread only
omp critical Specify a critical section
omp atomic Specify an atomic section

reduction(operation: var) Reduce a var with operation
OpenMP Functions Description
omp get num threads() Get number of threads
omp get thread num() Get thread ID

OpenMP provides mutual exclusion capability with two pragmas: omp atomic and omp critical.

The atomic pragma permits the specification of a single-statement critical section, whereas a multiple-

statement critical section can be specified with the critical pragma. OpenMP also provides the

reduction pragma, which can be applied to perform a reduction operation.

As illustrated, OpenMP provides a simple high-level approach for parallelization. With a single

pragma, the user is able to parallelize a section of code without complicated code changes. Although the

OpenMP code above showed a simple example with a single statement inside the loop body, OpenMP

can also be used to parallelize more complex cases, such as a loop with a function call in the loop body,

in which case the called function is executed in parallel.

On the other hand, Pthreads requires explicit forks and joins of threads, requiring more work from

the programmer, but it also gives more fine-grained control. Also, forking threads in Pthreads is non-

blocking, which can be useful in many scenarios.

Table 3.1 shows all Pthread/OpenMP APIs that we support in our work, in the sense that we are

able to synthesize programs containing the listed constructs. It is worth noting that an input software

program using any of the functions/pragmas shown in the table can be synthesized to hardware as is,

without requiring any manual code changes by the user.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System26

3.4 Parallel Threads to Parallel Hardware

Prior to this work, LegUp HLS was only able to exploit instruction-level parallelism, and loop-level

parallelism via loop pipelining. The current work greatly expands the extent to which a user may

specify parallelism to the HLS tool. By default, LegUp creates as many hardware accelerators for a

Pthread function, or an OpenMP loop, as the number of threads.

In software, using Pthreads requires the POSIX library, whereas OpenMP requires the libgomp library,

and in both cases, an OS is used to manage threads at runtime. Since neither libraries exist in hardware,

and we do not use an OS on the MIPS processor, we need to implement our own custom logic to allow

Pthread functions and OpenMP loops to run in parallel in hardware. Out of the many steps that are

required for LegUp HLS to create a processor/parallel-accelerator system, two main steps pertain to

making the management of threads in hardware possible, the ParallelAPI and the SW Partitioning

compiler passes. The duo are custom LLVM compiler optimization passes that we have written, which

are run as part of the hybrid generation flow, as shown in the highlighted red boxes in Figure 3.1. The

ParallelAPI pass first transforms the Pthread/OpenMP functions in the LLVM IR into LegUp-specific

versions. After a series of other optimization passes, the resulting IR is read in by the SW Partitioning

pass, to generate the wrapper functions that call the Pthread/OpenMP hardware accelerators. The

combination of work done in the two compiler passes enable Pthreads and OpenMP kernels to become

concurrent hardware accelerators that execute in tandem with the MIPS processor, without an OS, and

without Pthread/OpenMP libraries. We elaborate on the flow below.

3.4.1 Generation of Thread-Handling Logic

As shown in Figure 3.1, the ParallelAPI pass is one of the compiler optimization passes run as part

of the IR Transformations step, as described in Chapter 2. It takes as input a program represented in

LLVM IR, and outputs a transformed program in LLVM IR. Although we only discuss the hybrid flow

in this chapter, the same code in the ParallelAPI pass is also used to enable the creation of parallel

hardware modules in the hardware-only flow (described in Chapter 5).

The ParallelAPI pass is responsible for two major tasks: 1) Remove the dependency on the Pthreads

and OpenMP libraries, and 2) creating logic to manage threads without an OS. For 1), the pass replaces

the calls to Pthread/OpenMP library functions, with direct calls to the threaded functions (functions

executed on threads). For instance, in the Pthread example shown in Section 3.3, pthread create is

used to execute the vector add function in parallel. In this case pthread create is replaced with a

direct call to vector add (i.e. pthread create(&threads[i], NULL, vector add, &data[i]) becomes vec-

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System27

C Program

Clang

LLVM IR

ParallelAPI

Optimization

Passes

Verilog for

accelerated

functions

Hardware

Backend

Optimization

Passes

Optimized IR

Modelsim

Simulation
FPGA

Synthesis

SW Partitioning

ARM/MIPS

toolchain

ARM/MIPS Binary

Processor

HW Accel

Complete System

Altera Qsys

System Integrator

SW IR

Memories

Inter-

connect

Tcl

commands

Optimization

Passes

Optimized SW IR

Figure 3.1: The ParallelAPI and the SW Partitioning compiler passes in the Processor-accelerator
hybrid flow.

tor add(&data[i])). Pthread join is replaced with legup pthreadpoll, which waits until its hardware

instance is finished, and retrieves its return value if needed.

For OpenMP, the frontend compiler1 transforms the OpenMP pragmas into OpenMP library function

calls. When the omp parallel pragma is used on a loop, the compiler outlines the body of the loop

to a separate function, and inserts a call to an OpenMP function, GOMP parallel start, invoking the

outlined function. The GOMP parallel start function marks the start of a parallel section. Its function

prototype is:

void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)

Here, fn is the outlined function to be executed in parallel, data is a pointer to a struct used to

communicate data into and out of the outlined function (passed in as its argument), and num threads

specifies the number of threads to execute the function in parallel [88]. GOMP parallel start is im-

mediately followed by a call to another OpenMP function, GOMP parallel end, which marks the end

of the parallel section. On a processor, this makes the program wait until all threads have finished

1Note that for OpenMP, we use the gcc frontend with dragonegg [72], a gcc plugin that allows the compiler to output
LLVM IR, as Clang did not support OpenMP at the time that this work was done. Since then, Clang has implemented
OpenMP support [84].

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System28

execution, creating the blocking behaviour of the omp parallel pragma. In LegUp, we transform

GOMP parallel start and GOMP parallel end function calls into direct calls to the outlined function

(with as many calls to the function as the number of threads), and insert polling logic immediately after

the last call, so the processor will wait until all hardware accelerators have finished execution (described

in the next section).

The Pthread/OpenMP mutex and barrier functions are also handled in a similar manner, where they

are replaced with calls to our own mutex and barrier functions. These functions communicate with our

hardware mutex/barrier cores via memory-mapped loads and stores. The hardware mutex core itself is

quite simple: it contains a register that holds the unique thread ID of the hardware accelerator that

holds the lock, and has a flag to indicate its state (locked/unlocked). The ParallelAPI pass replaces the

Pthread/OpenMP lock/unlock functions shown in Table 3.1 with legup lock and legup unlock. Our

lock/unlock functions perform memory-mapped reads and writes to acquire and release a lock. Both

functions have two arguments: the processing element ID, and the mutex index. The processing element

ID is a unique ID for the processing element accessing the mutex, which can be an accelerator or the

processor. We use the memory-mapped address of the processing element as its ID (described in the next

section). The mutex index is used to differentiate between multiple mutex cores, which is generated when

multiple mutex variables are used in the input software program. When a processing element calls the

lock function, it first tries to write its ID to the mutex core corresponding to the mutex index. If the mutex

is free, the write is successful and the ID is stored. If the mutex is already locked, the mutex core retains

the previously stored ID. After the write, the processing element reads from the mutex to check if the

stored ID matches its own ID. If there is a match, this indicates that the processing element has acquired

the lock and is free to enter the critical section. If the processing element fails to get the lock, it repeats

the locking procedure until it gets the lock (a behaviour akin to spin locks). In our unlock function, the

processing element again writes to the mutex core with its ID. If the mutex is locked with the matching ID,

this unlocks the mutex. Pthread barrier functions, pthread barrier init and pthread barrier wait,

are likewise automatically replaced with legup barrier init and legup barrier wait, which are used

to communicate with a hardware barrier core. The hardware barrier core contains a register, which

is used to hold the number of threads that must wait at the barrier. This register is initialized when

legup barrier init is called (pthread barrier init specifies the number of threads as its argument).

The barrier core also contains a counter, which is incremented each time a processing element reaches

the barrier. When legup barrier wait is called, the processing element first writes to the hardware

barrier core to increment its counter, then it keeps polling on the barrier core, which returns a 1 until

enough threads have reached the barrier. When the counter equals the number of threads, the barrier

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System29

core returns a 0, at which point the processing elements can continue to execute. The barrier core also

resets its counter to zero, so that it can be used again for the same barrier object.

The second task of the ParallelAPI pass is to generate logic to manage threads in hardware without

an OS. For OpenMP, the GOMP parallel start function call exists for every use of the omp parallel

pragma, and each use of the pragma creates a new outlined function (using the omp parallel pragma

on two different loops creates two different outlined functions). Hence, there is a one-to-one mapping

between a call to the GOMP parallel start function, and the outlined function to be executed in parallel.

Furthermore, GOMP parallel start explicitly specifies the number of parallel threads in its argument.

Consequently, for each omp parallel pragma, we know exactly how many accelerators to create, and

where the accelerators are called from (there is only one call site). This also aids in the handling of

omp get num threads() and omp get thread num(), which are OpenMP library functions that return

the total number of threads to execute a parallel section, and the thread ID for a particular thread.

The number of threads are explicitly given as an argument to GOMP parallel start (which we use to

create as many calls to the outlined function), hence, omp get num threads() can be directly replaced

with that value, and for each call to the outlined function, we statically assign a thread ID, from 0 to

num threads - 1, and pass it in as an additional argument into the outlined function. Hence, we create

a new thread ID argument for the outlined function, then replace all calls to omp get thread num()

with the new argument. Once all OpenMP library functions have been replaced, we do not need to

create additional logic to handle threads, other than the wrapper generation that is handled by the SW

Partitioning pass (described in the next section).

For Pthreads, the required machinery is more complicated, as there is no one-to-one mapping between

a call to pthread create and the function to be executed on the thread. There can be many calls to

pthread create, each of which executes the same or different functions, and even the calls to same the

function can reside in different parts of the program. More importantly, at compile time, pthread join

does not “know” which function it intends to join. This is determined at runtime based on the thread

variable passed in as its argument. Hence, we need a methodology where we can keep track, at runtime,

of which thread is accelerating which function, as well as which thread is running on which instance

of the hardware accelerator for that function (as in LegUp, by default, we create as many instances of

accelerators as the number of threads). To perform the needed bookkeeping, we propose using memories.

We create a global variable in the LLVM IR for each different Pthread function (i.e. a single variable is

created for vector add in the example code, but when two different Pthread functions are called, two

variables are created), which essentially acts as the thread ID counter for that function. Initialized to

zero, the thread ID is incremented each time after calling its Pthread function. The value of the thread

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System30

ID, along with its thread variable (i.e. threads[i] in the example code), is passed in as arguments to the

wrapper function which calls the Pthread accelerator. The thread ID permits tracking of which thread is

using a particular instance of a Pthread accelerator, and we store this information to the thread variable

from within the wrapper function. In essence, we make use of the existing thread variable in our system,

for the same purpose it was originally intended for use in software. This is described in more detail in

the next section. Legup pthreadpoll is also passed the thread variable as its argument, which is used

to determine the specific accelerator to poll.

3.4.2 Wrapper Function Generation for Parallel Accelerators

After all Pthread/OpenMP functions have been replaced, and the necessary logic to keep track of threads

has been created in ParallelAPI, the next part of the work is done in the SW Partitioning pass.

This pass generates wrapper functions for the MIPS processor to communicate with parallel hardware

accelerators. After generating the wrapper functions, the pass removes from the original definitions of

the accelerated functions from software, and replaces the calls to the original functions with calls to

the wrapper functions. In addition, the pass assigns a unique base memory-mapped address to each

hardware accelerator (whether it is a sequential, a Pthread, or an OpenMP function). From this base

address, each accelerator is assigned an address range, where a number of registers, associated with the

function, are memory-mapped to. The argument memory-mapped registers are used to transfer function

arguments, the status memory-mapped register is used to start the accelerator, and also to check if the

accelerator is done, and the data memory-mapped register is used to retrieve the return value.

For OpenMP, the pass generates a wrapper function for each function that was outlined due to the

OpenMP pragma. An OpenMP wrapper function is used to call all hardware accelerator instances which

belong to the same OpenMP function, as well as to wait for all of them to finish execution – analogous

to the behaviours of GOMP parallel start and GOMP parallel end in software. The pseudocode for

the generated wrapper function is shown below. Note that this wrapper is generated in LLVM IR and

not in C code2.

1: function legup_omp_wrapper (omp_argument)

2: for each accelerator_instance from i=0 to num_threads-1

3: base_memory_mapped_address of accelerator_instance at (i) =

base_memory_mapped_address of accelerator_instance at (i=0) + i * constant

4: status_register = base_memory_mapped_address of accelerator_instance at (i)

2The initial work in [14] generated C wrapper functions, but since then, we have moved to generating the wrappers
directly in LLVM IR, which is more robust and allows more optimizations.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System31

5: arg_register = status_register + constant_offset;

6: store omp_argument to arg_register

7: store 1 to status_register

8: end for

9:

10: for each accelerator_instance from i=0 to num_threads-1

11: base_memory_mapped_address of accelerator_instance at (i) =

base_memory_mapped_address of accelerator_instance at (i=0) + i * constant

12: status_register = base_memory_mapped_address of accelerator_instance at (i)

13: poll on status_register until it return 1

14: end for

15: end function

The OpenMP wrapper function has two loops, one to call its accelerators (calling loop, shown on lines

2–8), and one to poll to check if the accelerators are done (polling loop, shown on lines 10–14). The loop

bounds of the calling/polling loops are from the num threads argument given to GOMP parallel start,

and the induction variable i of the loops acts as the thread ID for the OpenMP function. The calling loop

iterates over each of its accelerators by offsetting the base memory-mapped address of the first accelerator

for this OpenMP function, with the thread ID (multiplied by a constant, where the value of the constant

depends on the memory-mapped range of an accelerator instance) (line 3). For each iteration of the loop,

the processor communicates with a different instance of an accelerator for an outlined OpenMP function.

There is a single wrapper function for all accelerators of an OpenMP function, rather than a wrapper for

each individual OpenMP accelerator. For each accelerator, the calling loop uses the argument register

to transfer its argument, then gives the start signal by writing a 1 to the status register (lines 4–7).

Note that in some cases, the thread ID itself may be needed on the accelerator side, in which case,

the induction variable i is passed in using another argument register. Immediately after the calling

loop, the polling loop commences, which again iterates over each accelerator, each time polling on the

status register to check if the accelerator is done its work (lines 10–14). An OpenMP function does not

have a return value, instead, any outputs can be written to the pointer argument (omp argument in the

pseudocode). When the polling loop exits and the wrapper function returns, it indicates that all parallel

accelerators for the outlined OpenMP function have finished execution.

For Pthreads, a wrapper function is generated for each different Pthread function (calling wrapper),

and a single wrapper function is created for the call to legup pthreadpoll (polling wrapper), used for

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System32

joining all Pthread accelerators. The calling wrapper invokes a single accelerator instance for a particular

Pthread function, whereas a call to the polling wrapper can poll on a single accelerator instance for any

Pthread function. This is also analogous to the behaviour of their software equivalents – a particular

call to pthread create is tied to a specific function (given as its argument), where as pthread join can

be used to join any threads, regardless of which function is executed by the thread. We show below the

pseudocode for a Pthread calling wrapper for vector add, as well as a polling wrapper.

1: function legup_pthread_call_wrapper_vector_add (

pthread_argument, thread_variable_ptr, thread_ID)

2: base_memory_mapped_address =

base_memory_mapped_address of vector_add + thread_ID * constant

3: status_register = base_memory_mapped_address

4: arg_register = status_register + constant_offset1

5: store pthread_argument to arg_register

6: store 1 to status_register

7: store base_memory_mapped_address to thread_variable_ptr

8: end function

9:

10: function legup_pthread_poll_wrapper (thread_variable_ptr)

11: load base_memory_mapped_address from thread_variable_ptr

12: status_register = base_memory_mapped_address

13: data_register = status_register + constant_offset2

14: poll on status_register until it returns 1

15: load accelerator return_val from data_register

16: return return_val

17: end function

As previously mentioned, the calling wrapper is passed in as its arguments a thread ID and a thread

variable, in addition to any arguments used by the Pthread function (line 1). Similar to the OpenMP

case, the memory-mapped address of an accelerator instance for a particular thread is calculated by

offsetting the base memory-mapped address of the Pthread function by the thread ID (line 2). Using

this address with its offset, the calling wrapper transfers the function arguments and gives the start

signal (lines 3–6). Then, it stores the calculated memory-mapped address of this accelerator instance

into the thread variable (line 7). This tracks the thread that corresponds to the hardware accelerator.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System33

Subsequently, the polling wrapper, which is also passed in a thread variable as its argument, loads from

the variable, which returns the memory-mapped address of the accelerator instance for the thread (lines

10–11). Reading from this address allows the processor to communicate with the particular accelerator

it needs to join. The polling wrapper then polls on the address until the accelerator is done, and retrieves

its return value, if necessary (lines 14–15).

Once the SW Partitioning pass has finished, we will have performed all necessary software transfor-

mations in LLVM IR to allow the processor to fork and join Pthreads and OpenMP hardware accelerators.

The transformed IR, shown as SW IR in Figure 3.1, is taken through a few more compiler optimization

passes, and finally compiled with the MIPS toolchain, generating the MIPS binary to be executed on

the processor.

3.4.3 Parallel Accelerator Instantiations

Now that the software binary is ready, we need to create the parallel accelerators and generate the overall

system. During its execution, the SW Partitioning pass gathers information on the total number of

accelerator instances needed for each Pthread/OpenMP function, and assigns a unique memory-mapped

address to each instance. The number of accelerators need to be determined at compile time, hence

if Pthread functions are called in a loop, the loop bound must be a compile time constant. The user

can also specify the number of accelerators that are instantiated for a function, which is described in

the next section. If mutexes or barriers are used, memory-mapped addresses are also assigned for the

mutex and barrier cores. This information is output as a script containing Tcl commands to be used

by Altera’s Qsys system builder (as shown on the right side of Figure 3.1). The Tcl commands also

specify the connections required between the components, such as the links between the MIPS processor

and hardware accelerators, links between processor/accelerators and mutex/barrier cores, as well as the

links from accelerators to memory.

As shown on the left side of Figure 3.1, the Hardware Backend generates hardware for each Pthread

and OpenMP function. For each accelerator, it also generates a top-level wrapper module, which contains

Avalon Interfaces to permit communication between the processor and the accelerator, as well as between

the accelerator and shared memories (on-chip cache backed by off-chip memory). Once the hardware

accelerator is created, the entire system is ready for generation.

Using the Tcl script, as well as the hardware accelerators, Qsys generates the complete processor-

accelerator system. It instantiates the processor, hardware accelerators, mutex/barrier cores, an on-chip

cache, and an off-chip memory controller, and creates the Avalon Interconnect to connect all components

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System34

together.

The entire flow, starting from parallel software that uses Pthreads/OpenMP, to generating a complete

processor/parallel-accelerator system is be done automatically by our framework, without requiring any

manual interactions from the user. In terms of runtimes, LegUp runs pretty quickly (i.e., typically less

than a minute, mostly on the order of seconds to tens of seconds depending on the size/complexity of the

input program), and Qsys generation takes around a few minutes, hence the entire SoC can be generated

in a short amount of time.

3.4.4 Sharing an Accelerator Across Threads

So far, we have described an automated synthesis flow where the number of generated accelerators, or

hardware cores, are exactly equal to the number of threads in software. However, for software executing

on a regular processor, a user can freely fork more threads than the number of available cores, with

the OS handling the scheduling and context switching of threads, allowing multiple threads to share a

core. This time multiplexing of cores may also be important for hardware, where for an area-constrained

design, the user may not always want to create as many accelerators as the number of threads. Also,

Pthreads in software may be forked and joined many times from different parts of the code to execute

the same function, in which case it would be inefficient to create as many hardware accelerators as the

number of threads each time. Recognizing this, we also provide an option where a user can constrain

the number of hardware accelerators created for a Pthread function. This can be specified with the

following Tcl parameter:

set_accelerator_function "function_name" --numAccels max_number_of_instances

With this parameter, LegUp will only create as many accelerators for function name as given by

max number of instances.

The required functionality is bundled into the ParallelAPI and the SW Partitioning compiler

passes. As previously described, the ParallelAPI pass generates thread ID counters for each Pthread

function. The value of the thread ID counter determines which accelerator instance the processor

communicates with. For example, when the thread ID is zero, the processor communicates with the

first accelerator for the particular Pthread function, and when the thread ID is incremented to one,

the processor communicates with the second accelerator for the same Pthread function. Hence, limiting

the maximum value of the thread ID limits the number of accelerator instances the processor can use.

Therefore, when the Tcl parameter is used, the ParallelAPI pass inserts LLVM instructions which resets

the thread ID counter to zero once it reaches max number of instances. This means that when there

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System35

are more calls to a Pthread function than the number of available hardware accelerators, the additional

calls will attempt to re-use the previously called hardware accelerators. If an accelerator being called

is already running, the processor waits until the accelerator completes its execution. The waiting logic

is generated by the SW Partitioning pass. As described in Section 3.4.2, the SW Partitioning pass

generates a calling wrapper for each Pthread function and a polling wrapper for all Pthread functions.

When sharing is enabled for a Pthread function, we modify its calling wrapper, so that before the

arguments are transferred to the accelerator, the processor polls on the accelerator to check if it is done

– just like the polling loop created inside the polling wrapper. If an accelerator to be called is already

running, the processor waits until the accelerator is available for use, and only then, it proceeds to call

the accelerator. Lastly, the Tcl commands generated in the SW Partitioning pass for Qsys are modified

to only create only as many accelerators as specified by max number of instances.

Note that there are a few caveats with sharing a Pthread accelerator across threads. First, a Pthread

accelerator that is shared cannot have a return value. This is because subsequent uses of the accelerator

can overwrite the previous return values, if the accelerator is invoked again before being joined by the

polling wrapper (which retrieves the return value). This, however, can be circumvented via software

changes alone, by storing the return value into memory instead. Secondly, for a particular execution,

a shared accelerator is unaware of the thread the execution is for (out of the threads that share the

accelerator), which would be problematic if the execution is thread dependant. This can be addressed

by passing in the thread ID as an argument into the accelerator. The thread ID is already passed in

when a mutex is used. Despite these limitations, we believe the above capability to share a hardware

accelerator across threads is useful in many scenarios.

3.4.5 System Architecture

The overall architecture of the generated system is shown in Figure 3.2, comprising the MIPS processor

and hardware accelerators sharing an on-chip data cache backed by off-chip memory. An accelerator

may also have local memories for data not shared with the processor or other accelerators. The local

memories are implemented in on-chip block RAMs instantiated within a hardware accelerator. Shared

data, on the other hand, is stored in off-chip memory, which can be fetched into the on-chip cache.

The components of the system communicate via the Avalon Interconnect, which is a point-to-point

network, allowing multiple independent transfers to occur simultaneously. When multiple components

are connected to a single component, such as the on-chip data cache, a round-robin arbiter is created by

Qsys to arbitrate among concurrent accesses. For memory-intensive applications, the default dual-port

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System36

MIPS Processor
Hardware

Accelerator

DDR2

SDRAM

Hardware

Accelerator

Hardware

Accelerator

On-Chip

Data Cache

Avalon Interconnect

Local

Mem

Local

Mem

Figure 3.2: MIPS processor-accelerator hybrid system architecture.

cache can be replaced with a multi-ported cache (controlled by a Tcl parameter), which allows multiple

accelerators to access the cache concurrently [17]. Note that, by default, LegUp generates a stall logic

for each module, which allows an accelerator to be safely stalled on a cache miss. In addition, even when

a module of an accelerator is stalled, other modules of the same accelerator can continue to execute

(described in the next section).

3.4.6 Parallel Accelerator Architecture

In this work, we also allow nested parallelism – threads forking threads. Consider the case of there

being multiple functions executed in parallel with Pthreads – a first level of parallelism. These functions

could have one or more loops, some of which could be parallelized with OpenMP – a second level of

parallelism. Currently, we only permit up to two levels of parallelism for automated hardware synthesis,

with Pthreads being the first level and OpenMP being the second. OpenMP can also be used as the

first level of parallelism, though we do not consider this case in the experimental study in this chapter.

We refer to the second-level accelerators as internal accelerators. The internal accelerators are created

inside their corresponding first-level accelerators. Internal accelerators can access the local variables of

their first-level accelerators, which are created in local RAMs, as well as global/stack variables stored in

the shared memory space.

Figure 3.3 shows the architecture of a hardware accelerator with internal accelerators. Internal

accelerators, corresponding to OpenMP threads, are instantiated multiple times, each of which executes

a portion of work in parallel. The internal accelerators are invoked simultaneously by an FSM, which

also controls the execution of the first-level accelerator. As parallelization with OpenMP is blocking,

after invoking the internal accelerators, the FSM waits until all of them have finished execution before

continuing on to the next state (adhering to the semantics of the GOMP parallel start/end). Note that

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System37

RAM1

RAM2

Arbiter

OpenMP1 OpenMP2 OpenMP3

Pthread Accel

Memory Controller

Avalon Interconnect

Figure 3.3: Nested accelerator architecture.

wrapper functions are not generated for internal accelerators, because they are invoked by the FSM (not

the MIPS).

Since internal accelerators can access memory, and because they execute in parallel, a round-robin

arbiter is created inside the first-level accelerator to arbitrate among internal accelerators as they access

memory. When an internal accelerator makes a memory request, if it is not granted access by the arbiter,

it stalls. Similarly, if an internal accelerator accesses shared memory and experiences a cache miss, it

has to wait until the data is fetched from off-chip memory; however, other internal accelerators which

are not accessing memory are free to execute. Hence, the internal accelerators do not execute in lockstep

but work independently of one another.

3.5 Experimental Study

Using the hybrid flow, we study the performance and area of several different hardware configurations,

each of which corresponds to a different parallelization scenario. The baseline configuration is the

sequential MIPS processor/accelerator hybrid system, with no accelerators that operate in parallel – the

processor and accelerators operate sequentially and the processor is stalled while an accelerator does its

work. This sequential MIPS hybrid system generation was implemented as part of my M.A.Sc thesis

work [18].

The parallel configurations fall into 3 classes: 1) a single-level of parallelization using Pthreads,

2) Pthreads combined with loop pipelining – a form of nested parallelism, and 3) Pthreads combined

with OpenMP – nested parallelism as described in the previous section. For class #1, the Pthreads may

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System38

execute the same function or different functions, depending on the benchmark. When executing the same

function, each accelerator performs a portion of the total work. Configurations in classes #2 and #3 can

be used when the first-level threads contain loops – such loops can be parallelized by loop pipelining or

OpenMP pragmas. Note that at the time this experiment was conducted, the loop pipelining capabilities

of the LegUp HLS tool were limited and could only be applied to loops with bodies that contain no

function calls or branches3. With the OpenMP support, however, loops with branches and function calls

can be parallelized.

For class #3 (Pthreads combined with OpenMP), we experiment with various numbers of Pthreads

and OpenMP internal accelerators, for a total of eight different configurations. The largest configuration

is with 30 Pthreads with four OpenMP internal accelerators, which means that there are a total of

120 accelerators. Note that it does not necessarily mean that all 120 accelerators are identical, as

the four OpenMP accelerators only parallelize the loop inside a Pthread function, and there can be

other operations done outside the loop. We label architecture configurations as follows: S denotes the

sequential baseline case, 4L1 denotes the 4 first-level Pthread accelerators architecture, 4L1-P denotes

the 4 first-level Pthread accelerators with loop pipelining, and nL1-mL2 denotes the architecture with n

first-level Pthread accelerators with m second-level OpenMP accelerators.

3.5.1 Benchmarks

We use a total of seven different benchmarks, each of which includes built-in inputs and golden outputs,

with the computed result checked against the golden output at the end of the program to verify correct-

ness. The inputs, golden outputs, and the computed results are held in global variables and stored in

the shared memory space (off-chip DDR2 SDRAM). The benchmarks are:

• Black-Scholes: performs options pricing via a Monte Carlo approach. Computations are done in

fixed-point.

• MCML: simulates light propagation from a point source in an infinite medium with isotropic

scattering. The benchmark has been adopted from the Oregon Medical Laser Centre [60] with the

computations done in fixed-point.

• Mandelbrot: an iterative mathematical benchmark which generates a fractal image.

• Line of Sight: uses the Bresenham’s line algorithm [8] to determine whether each pixel in a 2-

dimensional grid is visible from the source.

3Since then, we have implemented if-conversion, which can automatically remove branches by merging basic blocks,
allowing loop pipelining to be applied to more complex loops.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System39

• Division: performs integer division of two arrays.

• Hash: uses four different integer hashing algorithms to hash a set of numbers, and compares the

number of collisions caused by the four different hashes.

• dfsin: adopted from the CHStone benchmark suite [37], it implements a double-precision floating-

point sine function using 64-bit integers.

We synthesized each benchmark into each of the parallel architecture configurations and simulated the

synthesized circuit using ModelSim to extract the total number of execution cycles. Following the cycle-

accurate simulation, each benchmark was synthesized to the Altera Stratix IV (EP4SGX530KH40C2)

with Quartus II (ver. 11.1SP2) to obtain area and critical path delay (Fmax) numbers. Execution time

(wall-clock time) for each benchmark is computed as the product of execution cycles and post-routed

clock period.

3.5.2 Results

The performance results for all benchmarks and all architectures are presented in Tables 3.2 and 3.3, and

the area results are shown in Table 3.4. For those benchmarks where loop pipelining could not be used,

or those which could not be parallelized with more accelerators (due to resource limits on the Stratix IV

or due to the nature of the benchmark), the results are shown as “N/A”.

Tables 3.2 and 3.3 show the number of execution cycles it takes to execute each benchmark, the

Fmax, as well as the wall-clock time (in µs) based on the Fmax and clock cycles results. The speedups

and ratios of each parallel architecture relative to the sequential case are also shown. As expected,

performance generally improves as the degree of parallelism is increased, up to a certain point. For

most benchmarks, the total number of execution cycles decreases as more parallel accelerators are used.

For Black-Scholes, MCML, and Mandelbrot, which are computationally intensive rather than memory

intensive, the number of clock cycles scales well with the number of accelerators, especially up to the 4L1-

4L2 architecture (16 accelerators). For 4L1-4L2, Black-Scholes, MCML, and Mandelbrot show 15.2×,

15×, and 13.6× speedup, respectively. For other benchmarks, which are more memory intensive, such

as Line of Sight, Division, and Hash, the performance improvements are more modest. For the Line of

Sight and Division benchmarks, a 4-ported cache [17] was used, which allows higher memory bandwidth,

though it consumes more resources than the default cache, hence is not used for other benchmarks. For

the Hash benchmark, locks are used to prevent race conditions between the internal accelerators. With

more internal accelerators, the contention to access the mutex core increases, and thus the execution

cycles actually increase as the number of internal accelerators is increased from three to four. Similarly,

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System40

for other benchmarks, as the total number of accelerators is excessively increased (up to 120 accelerators

in Line of Sight), the reduction in clock cycles is either small, or the number of clock cycles increases.

With too many accelerators, the work assigned to each accelerator becomes smaller, yet the memory

contention increases, degrading performance.

C
h
a
p
t
e
r
3
.

F
r
o
m

S
o
f
t
w
a
r
e
T
h
r
e
a
d
s
t
o
P
r
o
c
e
sso

r
/
P
a
r
a
l
l
e
l
-A

c
c
e
l
e
r
a
t
o
r
H
y
b
r
id

S
y
st

e
m
41

Table 3.2: Performance results of all architectures for Black-Scholes, MCML, and Mandelbrot benchmarks.

Black-Scholes MCML Mandelbrot

Time (Speedup) Cycles (Speedup) Fmax (Ratio) Time (Speedup) Cycles (Speedup) Fmax (Ratio) Time (Speedup) Cycles (Speedup) Fmax (Ratio)
S 2058 (1) 437947 (1) 130.41 (1) 22317 (1) 1876187 (1) 84.07 (1) 18724 (1) 2523455 (1) 134.77 (1)

4L1 615 (3.9) 108654 (4.0) 127.39 (0.98) 6308 (3.5) 482855 (3.9) 76.55 (0.91) 4930 (3.8) 627059 (4.0) 127.18 (0.94)
4L1-P N/A N/A N/A N/A N/A N/A 4248 (4.4) 434533 (5.8) 102.28 (0.76)
4L1-2L2 488 (6.6) 56344 (7.8) 110.68 (0.85) 3613 (6.2) 246094 (7.6) 68.12 (0.81) 2849 (6.6) 355224 (7.1) 124.67 (0.93)
4L1-3L2 397 (6.9) 42410 (10.3) 87.3 (0.67) 3635 (6.1) 246094 (7.6) 67.71 (0.81) 1904 (9.8) 241805 (10.4) 127 (0.94)
4L1-4L2 364 (10.7) 28736 (15.2) 91.83 (0.7) 1961 (11.4) 125463 (15.0) 63.97 (0.76) 1455 (12.9) 185863 (13.6) 127.73 (0.95)
8L1-4L2 N/A N/A N/A N/A N/A N/A 1131 (16.6) 126828 (19.9) 112.17 (0.83)
12L1-4L2 N/A N/A N/A N/A N/A N/A 1089 (17.2) 113593 (22.2) 104.31 (0.77)

Table 3.3: Performance results of all architectures for Line of Sight, Division, Hash, and Dfsin benchmarks.

Line of Sight Division Hash Dfsin

Time (Speedup) Cycles (Speedup) Fmax (Ratio) Time (Speedup) Cycles (Speedup) Fmax (Ratio) Time (Speedup) Cycles (Speedup) Fmax (Ratio) Time (Speedup) Cycles (Speedup) Fmax (Ratio)
S 4146 (1) 556933 (1) 134.34 (1) 2947 (1) 407837 (1) 138.37 (1) 2654 (1) 325859 (1) 122.76 (1) 2058 (1) 265513 (1) 129.02 (1)

4L1 1672 (2.5) 197625 (2.8) 118.22 (0.88) 867 (3.4) 112466 (3.6) 129.7 (0.94) 696 (3.8) 86378 (3.8) 124.16 (1.01) 615 (3.4) 67507 (3.9) 109.78 (0.85)
4L1-P N/A N/A N/A 235 (12.5) 29457 (13.9) 125.13 (0.9) 635 (4.2) 83748 (3.9) 131.8 (1.07) N/A N/A N/A
4L1-2L2 1045 (4.0) 127471 (4.4) 121.94 (0.91) 560 (5.3) 67237 (6.1) 120.11 (0.87) 540 (4.9) 64588 (5.1) 119.67 (0.97) 488 (4.2) 47533 (5.6) 97.5 (0.76)
4L1-3L2 882 (4.7) 102313 (5.4) 115.98 (0.86) 473 (6.2) 51349 (7.9) 108.59 (0.78) 449 (5.9) 50917 (6.4) 113.3 (0.92) 397 (5.2) 34520 (7.7) 86.89 (0.67)
4L1-4L2 851 (4.9) 98708 (5.6) 115.97 (0.86) 400 (7.4) 46854 (8.7) 117.12 (0.85) 594 (4.5) 66219 (4.9) 111.56 (0.91) 364 (5.7) 27463 (9.7) 75.55 (0.59)
8L1-4L2 535 (7.6) 59361 (9.4) 111.05 (0.83) 276 (10.7) 27627 (14.8) 100.08 (0.72) N/A N/A N/A N/A N/A N/A
12L1-4L2 407 (10.2) 43540 (12.8) 106.87 (0.80) 239 (12.3) 23133 (17.6) 96.64 (0.7) N/A N/A N/A N/A N/A N/A
16L1-4L2 482 (8.6) 49664 (11.2) 102.94 (0.77) 458 (6.4) 42663 (9.6) 93.09 (0.67) N/A N/A N/A N/A N/A N/A
20L1-4L2 482 (8.6) 44036 (12.7) 91.37 (0.68) 697 (4.2) 57042 (7.2) 81.87 (0.59) N/A N/A N/A N/A N/A N/A
30L1-4L2 499 (8.3) 42558 (13.1) 85.34 (0.64) N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 3.4: Area results of all architectures for all benchmarks.

Black-Scholes MCML Mandelbrot Line of Sight Division Hash Dfsin

Logic Util M9K DSP Logic Util M9K DSP Logic Util M9K DSP Logic Util M9K DSP Logic Util M9K DSP Logic Util M9K DSP Logic Util M9K DSP
S 43474 140 88 38810 136 120 22111 134 28 23550 134 12 24527 134 8 31015 262 36 51763 136 52

4L1 111156 142 328 87874 150 456 26869 134 88 40385 134 24 43134 134 8 31210 262 36 138380 142 184
4L1-P N/A N/A N/A N/A N/A N/A 27208 138 56 N/A N/A N/A 43680 138 8 32414 278 36 N/A N/A N/A
4L1-2L2 198126 174 648 152660 166 904 34187 158 168 54926 158 40 79208 158 8 49550 326 64 276756 158 360
4L1-3L2 276243 174 968 264559 166 1020 37476 158 248 62988 158 56 98317 158 40 58328 326 92 387958 375 568
4L1-4L2 361327 443 1020 355873 419 1020 40890 158 328 70834 158 72 119359 158 72 69031 326 120 408169 451 776
8L1-4L2 N/A N/A N/A N/A N/A N/A 61251 182 648 108737 182 136 204230 182 136 N/A N/A N/A N/A N/A N/A
12L1-4L2 N/A N/A N/A N/A N/A N/A 81224 206 968 146380 206 200 275185 635 200 N/A N/A N/A N/A N/A N/A
16L1-4L2 N/A N/A N/A N/A N/A N/A N/A N/A N/A 181166 230 264 340888 1280 264 N/A N/A N/A N/A N/A N/A
20L1-4L2 N/A N/A N/A N/A N/A N/A N/A N/A N/A 214658 254 328 400613 1280 328 N/A N/A N/A N/A N/A N/A
30L1-4L2 N/A N/A N/A N/A N/A N/A N/A N/A N/A 310013 324 488 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Logic utilization is in terms of the number of half-ALMs, and DSPs are in terms of the number of used DSP blocks. There are a total of 424,960
half-ALMs, 1,280 M9Ks, and 1,024 DSP blocks on the device.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System42

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

S 4L1 4L1-P 4L1-2L2 4L1-3L2 4L1-4L2 8L1-4L2 12L1-4L2 16L1-4L2 20L1-4L2 30L1-4L2

S
p

e
e

d
u

p

Architecture

All

Division/Mandelbrot/Hash

Division/Mandelbrot/Line of Sight

Division/Line of Sight

Line of Sight

Figure 3.4: Geomean speedup ratios.

The Fmax of the systems is also affected as the degree of parallelism is varied. Overall, Fmax is

negatively impacted with more accelerators, mainly due to the arbitration and the stall logic, needed to

manage memory contention. Some benchmarks, such as dfsin, Black-Scholes, and MCML, exhibit more

rapid reductions in Fmax than others. We believe that, as the utilization of the Stratix IV becomes close

to full, the Quartus II synthesis tool has more difficulty optimizing the implementation. For example,

for the 4L1-4L2 architecture, dfsin showed 96% logic utilization, and Black-Scholes and MCML showed

85% logic utilization and used 100% of the Stratix IV DSP blocks. However, for the other benchmarks,

the Fmax reduction for 4L1-4L2 is ∼10% when compared to the baseline.

Figure 3.4 shows the geometric mean speedup (in wall-clock time) of the different architectures nor-

malized to the baseline case. Since not all parallelization configurations could be used for all benchmarks,

multiple lines are plotted, with each line showing the geometric mean speedup for a subset of circuits

in which the particular configuration could be used4. The legend shows which benchmarks are included

for each line on the graph. The geometric mean across all benchmarks (first line of the legend) shows

that the best speedup of 7.6× is observed with the 4L1-4L2 architecture. The 4L1-P configuration is

not included in this case, since loop pipelining could not be applied in all benchmarks.

For the benchmarks where loop pipelining could be used (Division/Mandelbrot/Hash), 4L1-P shows

6.17× speedup over baseline, and 4L1-4L2 still shows the best result with 7.51× speedup. There are

cases where loop pipelining can perform far better, however. For instance, for the Division benchmark,

Table 3.3 shows that 4L1-P outperforms all other architectures, even the 20L1-4L2 architecture which

has 80 accelerators. This is because a 32-bit division takes 32 cycles in LegUp, using Altera’s divider core

pipelined to achieve the highest-possible Fmax. Since the divider itself is pipelined, it can accept a new

4If we had used a single line, each data point would represent the average for potentially different sets of circuits.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System43

input every clock cycle, which is very well suited to loop pipelining. With 4 Pthread accelerators, each

of which has only one hardware instance of the loop body, this 4L1-P architecture shows 12.5× speedup

over the baseline architecture for the Division benchmark. The biggest speedup in Figure 3.4 is 12.9×

with the 12L1-4L2 architecture for three benchmarks. Mandelbrot shows the largest single benchmark

speedup with 17.2× with the 12L1-4L2 architecture, and 16.6× with the 8L1-4L2 architecture. Overall,

as the number of accelerators is increased excessively, the geometric mean speedups decrease due to

reductions in Fmax and diminishing returns in clock cycle reduction.

Table 3.4 shows the area results in terms of Stratix IV logic utilization, M9K blocks, and DSP blocks.

The logic utilization metric reported by Quartus II is an estimate of how full the device is, calculated from

the number of half-ALMs (adaptive logic modules) used in the design. M9Ks are Altera’s on-chip RAMs

which can hold up to 9 Kbits of data including parity bits [3]. M144Ks, which are much larger RAMs

that can hold up to 144 Kbits, are only used by one benchmark, Division, and hence are not shown on the

table for space reasons. Note that usage of M144K blocks is taken into consideration when calculating

the total area of the systems (see below). The area results presented in Table 3.4 are for the entire

system, which includes the MIPS processor, the on-chip cache, the DDR2 controller, the interconnection

network, as well as the hardware accelerators. In general, as expected, the area increases as parallelism is

increased, both in terms of Pthreads and OpenMP accelerators. Mathematically intensive benchmarks,

such as Black-Scholes, MCML, Mandelbrot, and dfsin, show significant increases in the number DSP

blocks. In fact, even though the logic utilization for Mandelbrot is only ∼19%, it could not be parallelized

more than 12L1-4L2, since DSP usage was at 95%. Note that, parallelization with Pthreads does not

necessarily increase circuit area if different functions are executed in parallel, compared to when the

same functions are executed sequentially. The accelerators consume the same amount area in both the

sequential and parallel cases. Thus, for the Hash benchmark, the circuit area is roughly the same for

the S and 4L1 architecture configurations.

Area-delay product is another important metric when evaluating the efficiency of different hardware

architectures. Calculating the total circuit area of an FPGA can be particularly challenging since modern

FPGAs consist of different types of blocks, such as logic blocks, memory blocks, DSP blocks, and routing,

each of which consumes different amount of chip area. To account for this fact, we use the data from

[149], which gives the chip tile area for each type of block5. Using this data and the results in Table 3.4,

we calculate the total circuit area for each architecture configuration for each benchmark. With this

area, and using the wall-clock time results from Tables 3.2 and 3.3, we computed the geometric mean

5Note that although [149] provides detailed area data for the types of tiles in Stratix III, Stratix IV contains the same
types of tiles, so we believe the data can be used for this relative area comparison.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System44

0

25

50

75

100

125

150

175

200

225

S 4L1 4L1-P 4L1-2L2 4L1-3L2 4L1-4L2 8L1-4L2 12L1-4L2 16L1-4L2 20L1-4L2 30L1-4L2

P
e

rc
e

n
ta

g
e

Architecture

All

Division/Mandelbrot/Hash

Division/Mandelbrot/Line of Sight

Division/Line of Sight

Line of Sight

Figure 3.5: Geomean area-delay ratios.

area-delay product, shown in Figure 3.5 as a percentage compared to the baseline architecture. Similar to

Figure 3.4, multiple lines are shown, each of which includes results for different architectures/benchmarks.

Looking at the geomean result for all benchmarks (first line of the legend), the 4L1 architecture shows

the best result with 53.5% area-delay product (1.87× improvement) of the baseline case, and the 4L1-2L2

and the 4L1-4L2 architectures follow with 58% (1.72× improvement) and 63% (1.59× improvement),

respectively. For the three benchmarks where loop pipelining could be used, 4L1-P shows the best

result with 20.8% (4.81× improvement) and 4L1 follows with 36.7% (2.72× improvement). For the

Division benchmark, 4L1-P showed 12% area-delay product (8.33× improvement) when compared to

the sequential case. Similar to the speedup results, as the degree of parallelism is excessively increased,

the area-delay product is also significantly increased, with the 20L1-4L2 architecture showing 206% vs.

the baseline for the Division/Line of Sight plot. Overall, for cases where loop pipelining can be used,

Pthreads combined with loop pipelining can be the most beneficial in terms of the area-delay product.

In summary, the results above demonstrate the capabilities of our HLS tool to synthesize circuits auto-

matically into a variety of architectures with dramatically different degrees of parallelization. Promising

results are observed in terms of execution time and area-delay product. It is worthwhile to reiterate that

with our approach, changing the parallelization configuration is straightforward, with Pthreads requir-

ing only a few lines of code changes, and OpenMP requiring a single number (num threads clause) to

be changed. This enables wide design space exploration with ease, which is certainly not feasible with

manually designed hardware. With our framework, exploring with different parallelization schemes in

hardware is no more difficult than the analogous exploration in software.

Chapter 3. From Software Threads to Processor/Parallel-Accelerator Hybrid System45

3.6 Summary

In this chapter, we presented a framework which can automatically compile software threads to paral-

lel hardware, targeting the MIPS processor-accelerator hybrid system. Two standard software paral-

lelization techniques, Pthreads and OpenMP, are used to generate hardware accelerators which execute

concurrently in a shared memory system. OpenMP allows a section of code, such as a loop, to be

automatically compiled to parallel accelerators, whereas Pthreads allow the same and/or different func-

tions to be synthesized to concurrently operating hardware accelerators. Our framework allows nested

parallelism, where Pthreads can invoke OpenMP threads to allow 2 levels of parallel accelerators. Loop

pipelining can also be used in conjunction with Pthreads. We also permit sharing a Pthread accelerator

between multiple threads, synonymous to sharing a CPU core across threads. This is a practice that is

often done in the software domain and thus could be expected by software engineers. A key advantage

of this work is that software engineers without hardware knowledge can use standard software APIs to

obtain significant speedup through parallel hardware systems.

The experimental study showed that, in geometric mean results over 7 benchmarks, using 4 Pthread

accelerators, each of which contains 4 OpenMP accelerators, provides the best performance results, with

7.6× speedup and 63% area-delay product when compared to the single-threaded systems. The highest

speedup was 17.2× in wall-clock time with the 12L1-4L2 architecture, and the best area-delay product

was 12% (over 8× improvement) with the 4L1-P architecture.

This chapter includes work which was published in the 2013 IEEE International Conference on

Field-Programmable Technology (FPT) [14], as well as improvements which have been made after the

publication.

Chapter 4

ARM Hard Processor System and

Direct Memory Access (DMA)

Support

4.1 Introduction

FPGAs have traditionally been difficult to use, and despite their apparent performance and power

benefits, their poor usability has deterred many from using the platform. One way to improve usability

is by providing a processor system on the FPGA, which can be controlled via software. This gives

access to FPGAs to those with only software skills, and for this reason, there have been numerous

implementations of soft processors, from both industry and academia [135, 105, 151, 41, 152]. Although

there are many different kinds of soft processors, with varying performance, area, and supported features,

soft processors are typically big and slow, making them difficult to be used in creating a high-performance

FPGA system that can, for example, outperform an x86 CPU. Recognizing this, FPGA vendors have

started to produce SoC FPGAs that have a hardened dual-core, or even a quad-core ARM processor, that

can run at well over 1 GHz [106, 140]. These SoC chips integrate the hard ARM processor on the same

die as the FPGA, allowing one to create a tightly-coupled high-performance system that takes advantage

of the broad applicability of a high-speed multi-core ARM processor, as well as the performance and

power-efficiency provided by the FPGA fabric.

To this end, we describe in this chapter our HLS support for using the ARM HPS (Hard Processor

46

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support47

System) on the Altera Arria V SoC FPGA to create a ARM hybrid SoC, where Pthread functions

are accelerated in hardware, and the remaining software segments are executed in software on the ARM

processor. Bringing up the ARM processor, especially in bare metal mode, is an onerous and troublesome

task for both software and hardware engineers. With this work, we provide an SoC system that has been

completely set up, so that the ARM processor can simply be programmed and used through makefile

targets. In addition to the bare metal system, the user can also choose to run the ARM processor with

a Linux OS, which is also provided with our framework.

A key architectural improvement discussed in this chapter is concerning the memory architecture

comprising a processor-accelerator hybrid system. In Chapter 3, the hybrid system was limited to a fixed

memory architecture of an on-chip cache backed by off-chip DDR memory. Although this architecture

provides cache coherent data to hardware accelerators, its memory bandwidth can be quite limited, as

only a single element of data can be accessed at a time through the cache. On a cache hit, the data is

returned with a low latency, but a cache miss causes the accelerator to be stalled for many cycles, until

the data is fetched from off-chip memory and into the cache, then returned to the accelerator. Repeated

cache misses can lead to significant performance degradations. Hence, this type of memory architecture

is typically unsuitable for pipelined hardware, where new input data can be required every clock cycle.

To mitigate this potential problem, we provide direct memory access (DMA) support, which allows a

large amount of data to be fetched in bursts from off-chip DDR3 memory to on-chip buffers (and vice

versa). This allows pipelined accelerators to continuously run with much less frequent memory stalls.

The DMA support is provided for both the ARM and MIPS hybrid systems. As an experimental study,

we investigate the performance, area, and energy-efficiency of several ARM and MIPS hybrid systems.

We also evaluate the speed and energy-efficiency one of the benchmarks, Black-Scholes, in three different

scenarios: 1) when it is executed on an ARM hybrid system, 2) when it is executed purely in software

on the ARM processor, and 3) when it is executed purely in software on two different x86 processors,

the Intel i7-4770K CPU and the Intel Xeon E5-1650 CPU. Note that the Intel i7-4770K is fabricated

on a 22 nm process, and the Xeon E5-1650 is fabricated on a 32 nm process, where as the Arria V SoC

FPGA is fabricated on a 28 nm process.

4.2 Background

Prior works which relate to compiling threads onto an FPGA, were discussed in Section 3.2. In this

section, we only focus on those which relate to providing HLS support for an ARM SoC FPGA. Perhaps

the tool which bears the most similarity to our own, is Xilinx’s SDSoC (Software-Defined System On

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support48

Chip) [137]. Just recently released in 2015, the SDSoC is used for implementing heterogeneous embedded

systems using the Zynq-7000 All Programmable SoC platform [141], which features a dual-core ARM

Cortex-A9 MPCore (the same kind is used on the Altera Arria V SoC FPGA). Designed for software

engineers, the SDSoC provides automated software acceleration and automated system connectivity

generation for the Zynq FPGA. To use the SDSoC, one first writes an application in C/C++, then

specifies a subset of the functions within the application to be compiled to hardware. The SDSoC system

compiler then compiles the application into hardware and software, to realize the complete embedded

system on a Zynq device [145].

In many ways, the SDSoC is similar to LegUp HLS, in that both tools allow the user to select a

portion of the code to be compiled to hardware, with the tool automatically handling software/hardware

partitioning and system generation. It is worth noting that the automated hybrid system generation

flow in LegUp was first established in 2011 [10]. Our support for targeting an ARM processor on an

SoC FPGA (Altera Cyclone V SoC FPGA) was first established by Blair Fort and Bain Syrowik in

2014 [32]. In any case, we believe that a key differentiator in LegUp HLS is the support for compiling

standard parallel software to parallel hardware accelerators. Conversely, the SDSoC uses a vendor-

specific pragma to create multiple hardware instances. Consider the following code snippet from the

SDSoC user guide [144].

#pragma SDS async(1)

mmult(A, B, C); // instance 1

#pragma SDS async(2)

mmult(D, E, F); // instance 2

#pragma SDS wait(1)

#pragma SDS wait(2)

The SDS async(id) pragma directs the tool to create a hardware instance that is referenced by the

id. It also makes the function call return, without waiting for the hardware function to finish execution,

similar to the behaviour of pthread create. The SDS wait(id) pragma makes the processor wait

until the hardware function specified via the id has finished execution, similar to the behaviour of

pthread join. In this example, SDSoC creates two hardware instances of of mmult, which are called to

execute in parallel, and synchronized afterwards with the SDS wait pragma.

Even though the use of these pragmas achieves creating parallel hardware, it is nevertheless a non-

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support49

standard solution. It is vendor-specific, and platform-specific. Compiling the code above with a standard

software compiler, such as gcc, simply creates two sequential calls to the mmult function, as the pragmas

will be ignored. This introduces behaviour that is only present in hardware, which makes debugging more

difficult. A typical HLS design flow is to first verify everything in software, then compile the software

to hardware. Making hardware behaviour different from software can introduce hardware bugs that

are invisible from software. These bugs are then only debuggable in hardware through RTL simulations

or via on-chip debugging, which are much more difficult and time-consuming than software debugging.

Another issue with using vendor-specific pragmas is that the pragmas are foreign to anyone who is

not familiar with the tool. The behaviours of the pragmas can be confusing, especially if they are not

verifiable in software. Our work does not suffer from such issues, as we use standard software parallel

programming techniques that are widely known and used by many software engineers, to create parallel

hardware, where both software and hardware execute in parallel. Behaviours that only arise from parallel

execution, such as synchronizing between threads, can be tested in software first, before compiling to

hardware.

Altera’s OpenCL SDK can also be used target an ARM SoC FPGA, such as the Cyclone V SoC [95].

The programming model, however, is different for OpenCL, where there is a clear division between the

host code, to be executed on the ARM processor, and the kernel code, to be compiled to hardware.

The user explicitly needs to make the separation, with the host code written in C/C++, and the kernel

code written in OpenCL, hence there is no automatic software/hardware partitioning involved. The two

parts also need to be compiled separately by the user, where the host code is compiled with a gcc cross-

compiler targeting the ARM, and the kernel is compiled with aocx, Altera’s HLS compiler. In OpenCL,

many things, such as allocating buffers, or transferring data between host and kernel, need to be handled

explicitly by the user through the use of OpenCL host APIs (some of which have many different possible

configurations). OpenCL is typically used for massively parallel applications, traditionally on GPUs and

now on some FPGAs. We believe that our methodology of using C with Pthreads and OpenMP is a

more intuitive approach for users targeting the embedded space.

4.3 Pthreads to ARM Processor-Accelerator Hybrid System

The generation flow for an ARM processor-accelerator hybrid system remains largely the same as what

was described for generating a MIPS hybrid system in Section 3.4. The choice between using the

soft MIPS processor, or the hard ARM processor, can be made via a Tcl configuration parameter.

When LegUp is invoked, the ParallelAPI pass transforms the Pthread library functions and creates

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support50

the thread managing logic, and the SW Partitioning pass partitions the program and generates the

necessary wrapper functions. The partitioned software is compiled to a binary using the ARM compiler

toolchain, then the Qsys System Integrator automatically generates the complete SoC with the ARM

HPS.

4.3.1 ARM Hybrid System Architecture

The system architecture of an ARM hybrid system, which consists of the ARM HPS (Hard Processor

System), hardware accelerators, and off-chip memory, is shown in Figure 4.1. The ARM HPS on the

Arria V SoC Development Board consists of a dual-core ARM Cortex-A9 MPCore, running at 1.05

GHz [107]. In addition to the ARM CPUs, the HPS includes 32KB L1 on-chip instruction and data

caches, a 512KB L2 on-chip cache, and an SDRAM controller which connects to an off-die (on-board)

1GB DDR3 memory. A number of different interfaces are provided to communicate between the HPS

and the FPGA, including the HPS-to-FPGA interface (denoted as H2F in the figure), and the FPGA-to-

HPS interface (denoted as F2H in the figure). The H2F is an AXI (Advance eXtensible Interface [109])

interface that allows the ARM processor to communicate with the hardware accelerators in a hybrid

system. To access the shared memory space, hardware accelerators access the F2H interface (also AXI),

which is connected to the Accelerator Coherency Port (ACP), which connects to on-chip caches in the

HPS to provide cache coherent data. The HPS also provides the FPGA-to-HPS SDRAM interface

(discussed in Section 4.4), allowing an FPGA component to directly access the HPS DDR3 memory

without going through the cache.

Note that the Arria V SoC Development Board has two different types of DDR3 memories: 1) the

HPS-side DDR3 memory, used by the ARM processor and can also be accessed from the FPGA via the

FPGA-to-HPS SDRAM interface, and 2) the FPGA-side DDR3 memory, which is used by components

implemented on the FPGA fabric only. The FPGA-side DDR3 memory is used if one choose to use the

MIPS hybrid system on the Arria V SoC.

The operation of the ARM hybrid system remains similar to that of MIPS, where the processor

invokes hardware accelerators via memory-mapped operations over the Avalon Interconnect, and the

accelerators access the shared memory space over the interconnect. However, since the on-chip cache

resides within the HPS and has to be accessed through layers of bridges/switches, in addition to crossing

clock domains (HPS runs much faster than the FPGA fabric), the memory latency is significantly higher

than accessing the on-chip cache in the MIPS system, where the cache is implemented on the FPGA

fabric. An accelerator can also have local memories within the accelerator, which can be accessed without

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support51

DDR3 SDRAM

Shared-local

RAM

Local

RAM

Replicated

ROM

HW Accelerator

Shared-local

RAM

Local

RAM

Replicated

ROM

HW Accelerator

ARM HPS

On-chip Cache

CPU0 CPU1

H2F F2H

Avalon

Interconnect

Figure 4.1: ARM processor-accelerator architecture.

going over the interconnect.

Improved Accelerator Memory Architecture

Since the work in Chapter 3, we have significantly improved the accelerator memory architecture by

adding support for a points-to analysis, a static code analysis technique that establishes which vari-

able/array a pointer can point to. With the points-to analysis we can localize more memories within

accelerators, and access more of these memories in parallel. In the prior work, we used a simple memory

partitioning algorithm, where only local arrays to the accelerated function (i.e., auto variables which

would be stored on the stack in software), were implemented as local memories within the accelerator.

Any other memories such as global variables/arrays, or local arrays of caller functions, were stored in

the shared memory space. Local memories within the accelerator also needed to be instantatiated inside

a single global memory controller, which provided steering logic to guide memory accesses to the correct

RAM at runtime. However, this limited memory accesses to two per clock cycle, since the specific RAM

to be accessed could only be determined at runtime (i.e., only a single RAM could be accessed at a

time), with each RAM being dual-ported [11]. The global memory controller is described in more detail

in Section 6.5.2. In our work in [15], which is described in Chapter 6, we implemented support in LegUp

for Andersen’s points-to analysis [5], which is one of the most well-known and accurate pointer analysis

techniques. The points-to analysis algorithm was implemented in LLVM by Jia Chen at the University

of Texas at Austin [89].

Using the points-to analysis, we can determine at compile time, which memory locations a pointer can

reference, and intelligently designate arrays for implementation in global, local, or shared-local memories.

An array is designated into a local or a shared-local memory if it is never referenced by a pointer that

points to multiple arrays. If such an array is only accessed by a single function, it is designated as

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support52

local memory. Otherwise, if it is referenced in multiple functions, it becomes a shared-local memory. A

local/shared-local memory is stored within an accelerator if it is only accessed by functions within the

accelerator. Otherwise, it is stored in the shared memory space (off-chip DDR3 memory). Each local and

shared-local memory stored within an accelerator is accessed through a dedicated set of memory ports,

allowing concurrent memory accesses among such local and shared-local memories. We automatically

create arbitration logic to handle memory contention for shared-local memories. An array is designated

as global if it is referenced by a pointer which can also point to another array. Again, if the array is only

referenced by pointers within the accelerator, we instantiate the memory inside the accelerator. In this

case, however, pointer aliasing must be resolved at runtime, hence we instantiate the memory inside the

global memory controller of the accelerator. It is worth noting that, for programs containing no dynamic

memory allocation, we found that most pointer references can be resolved at compile time, hence most

memories are not classified as global memories.

With the points-to analysis, we can also reason intelligently about variables/arrays which are not

declared as a local to the accelerated function in software. For example, if a global array is only

accessed by an accelerated function, it is implemented within the accelerator. Any arrays which are

accessed by both the processor and the accelerator, or accessed by multiple accelerators, are stored

in the shared memory space. However, constant memories, which are shared between threads, for

example, can also be replicated and localized to each hardware accelerator (replicated ROM). Within an

accelerator, all local and independent shared-local RAMs, as well as replicated ROMs, can be accessed

in parallel. This improved memory architecture is also implemented for MIPS hybrid systems, as shown

in Figure 4.21. The memory partitioning and the generation of the memory architecture is completely

automatic, without any specifications required from the user. The work on this improved memory

architecture is described in more detail in Chapter 6.

4.3.2 Operating System Support

Traditionally, getting an operating system to run on an FPGA system has been an arduous task. Soft

processors are generally slow, requiring a significant engineering effort for an OS to run on them. Even

when an OS successfully runs on a soft processor, its speed is typically quite slow, making it potentially

impractical for deployment in a real system. With the introduction of hard ARM processors on FPGAs,

the situation has changed. Multi-core ARM CPUs which can run at over 1 GHz can reliably boot an

OS, while providing sufficient performance for embedded tasks. A user can develop and compile code on

1Note that to improve system modularity, we have pulled out the instruction cache from inside the MIPS processor to
instantiate it as its own Qsys component.

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support53

MIPS

Processor

DDR3 SDRAM
On-Chip

Data Cache

Shared-local

RAM

Local

RAM

Replicated

ROM

HW Accelerator

Shared-local

RAM

Local

RAM

Replicated

ROM

HW Accelerator

On-Chip

Ins. Cache

Avalon

Interconnect

Figure 4.2: MIPS processor-accelerator architecture.

the processor itself, and even execute multi-threaded code, with the OS managing threads as necessary.

Having an ARM SoC FPGA with an OS opens many doors for FPGAs, where software engineers can

develop, compile, and execute code in an environment they are already familiar with, while having the

option of accelerating a critical portion of their code on the FPGA with an HLS tool. The OS also

comes pre-installed with all standard compilers and libraries.

We have set up the Linux OS flow for the Arria V SoC, where the hard ARM processor can boot the

OS from an SD card. RocketBoards.org [91], a website which provides documentation and references for

Altera SoC boards, gives instructions on how to boot the OS on the Arria V SoC, including generating

the preloader for the ARM HPS, creating an SD card image of the OS, setting up board jumpers, and

configuring a serial connection to allow communication between the ARM and the host PC. Although

the website also provides a pre-built SD card image of the OS, we have compiled the OS from source,

which allowed us to make additional configurations. We have verified this compiled OS on the Arria V

SoC, and its SD card image is provided on our website [74]. This work was done by Ruo Long Lian.

Using the Linux OS, the ARM HPS can be used to execute software which works in tandem with

hardware accelerators on the FPGA fabric. Note however that since the OS uses virtual addresses, we

need to map the physical addresses of the hardware accelerators (memory-mapped addresses in the the

Qsys system), to virtual addresses used in the OS. To do this, we use the mmap Linux system call [79],

which creates a mapping in the virtual address space. This maps the physical addresses of hardware

accelerators to virtual addresses seen by the software running on the OS, thus reading/writing to the

mapped virtual addresses is tantamount to communcation with hardware accelerators. Mmap can also

be used to map a contiguous non-cacheable region of physical memory, which is needed for performing

DMA transfers between accelerators and off-chip memory [96]. An example code for using the mmap

function to map a hardware accelerator is shown in Appendix A.

Note that although the generation of an ARM hybrid system is automatically done by LegUp, the

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support54

LegUp Hybrid System

Quartus

Synthesis

FPGA Bitstream (sof)

C Program

Modify with

mmap functions

quartus_cpf

FPGA Bitstream (rbf)

SD Card

Modified

C Program

Boot OS on

Arria V SoC

Compile C

Program

ARM Software Binary

Execute

SW Binary

Host PC

ARM

Figure 4.3: ARM hybrid flow with OS.

insertion of the mmap function calls is not yet automated. The user must edit the software to call the

mmap functions to map the hardware accelerators, and read/write to the relevant pointers to communicate

with the accelerators. Figure 4.3 shows the steps required to use an ARM hybrid system with an OS.

First the ARM processor-accelerator system is generated automatically with LegUp, and compiled with

Altera’s synthesis tool, Quartus II, to generate the FPGA programming bitstream. This bitstream,

in sof (SRAM Object File) format, needs to be converted to an rbf (Raw Binary File) format with

quartus cpf, Altera’s conversion tool. Then, the user needs to modify the original C code to map

hardware accelerators with mmap functions. Both the modified C code, and the rbf file are copied to

the SD card with the OS. All of these steps are performed on the host PC. Now, the OS can be booted

on the Arria V SoC from the SD card, and a serial connection program such as picocom [76] can be

used to establish the connection between the ARM and host PC. Through this connection, the user

can compile the C code with gcc on the ARM processor, then execute the binary, which invokes the

hardware accelerators.

4.3.3 Bare Metal Support

Although having an operating system provides many benefits, as the OS handles various complicated

tasks behind the scenes for a system to just work, it can also add overheads. If the role of the processor

is to simply set up components, configure and start up hardware accelerators, without requiring any

libraries or complex tasks such as multi-threading, it can also be beneficial to run the processor in bare

metal (no OS). To this end, we also provide bare metal support for the ARM HPS on the Arria V SoC

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support55

FPGA.

The biggest challenge to using a bare metal system is to bring up the system in the first place.

Everything from writing ARM assembly code to set up the memory management unit (MMU), L1/L2

caches, FPGA-to-SDRAM bridge, to writing a linker script that brings all of these together to work with

the software program, must be handled by the user. Essentially, in bare metal, much of what would be

handled automatically by an OS, must be set up manually by the user. This can require considerable

engineering effort, and is a non-trivial task for both software and hardware engineers. Recognizing this,

we provide with LegUp HLS a bare metal system where the ARM HPS is completely set up, so that

the user can simply use it via makefile targets to run applications on the ARM. A significant portion

of this work was done by Bain Syrowik for the ARM HPS on the Cyclone V SoC, where I had to make

additional modifications for the Arria V SoC.

One of the major modifications that was required was for the preloader. A typical way of running

software on an ARM HPS is to use the ARM Development Studio 5 Altera Edition (DS-5 AE) [101],

provided as part of Altera’s SoC Embedded Design Suite (EDS) [102]. The DS-5 provides an Eclipse-

based IDE, which allows the user to design software, debug and compile it, and download the software

binary onto the HPS off-chip memory to execute it on the ARM processor. However, the DS-5 cannot be

used as part of LegUp’s automatic hybrid generation flow. In addition, a paid license is required to use

the DS-5, further limiting its use even to those who simply just want to use the ARM HPS. To remove

the dependency on the DS-5, we had to implement our own functionality to boot up the ARM, which

required editing the preloader code. In one of many C files generated by the Embedded Design Suite,

we had to insert inline ARM assembly to the preloader code, to first switch the processor from Thumb

mode (which runs 16-bit Thumb instructions, used to reduce memory footprint), to ARM mode (which

runs 32-bit ARM instructions), then stop the boot sequence to run our start up code, which sets up the

ARM HPS, then executes the user application2. The step-by-step instructions are given in Appendix B.

We believe that this will be of tremendous help to anyone who wishes to simply download and execute a

software binary on the ARM HPS in the bare metal flow, without using the additional features provided

by the DS-5.

Figure 4.4 shows the flow for using a bare metal ARM hybrid system. Contrary to the ARM OS flow,

which currently requires the user to make minor changes to the C code to map hardware accelerators

in virtual memory, the bare metal flow is completely automated. The complete SoC can be compiled,

downloaded and executed on an FPGA with three makefile targets. The generated SoC can be compiled

2This method of editing the preloader code is used for the Altera Monitor Program for the DE1-SoC board with the
Cyclone V SoC FPGA (which also has the ARM HPS). We would like to thank Kevin Nam at the Altera University
Program for helping us with this change.

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support56

Program

FPGA

LegUp Hybrid System

Quartus

Synthesis

ARM Binary

make hybrid_compile

make program_board

make run_on_board
Execute on

FPGA

Figure 4.4: ARM hybrid flow with bare metal.

to a programming bitstream with make hybrid compile, and downloaded onto the FPGA with make

program board. Finally, the software binary, which has been automatically modified to call the hardware

accelerators, can be downloaded onto the HPS DDR3 memory and executed on the ARM processor

(which invokes the hardware accelerators) with make run on board. The ARM cross-compiler, which

creates the ARM binary, and quartus hps, which programs the HPS, are all set up to be used for the

Arria V SoC and executed under the hood via the Makefile targets. An SD card is not needed for bare

metal, as the software binary is stored in the HPS-side DDR3 memory. With this automated bare metal

flow, one can go from C code to an ARM hybrid system running on an SoC FPGA with only a handful

of commands.

4.4 Direct Memory Access (DMA) Support

In this section, we describe providing DMA support for our processor-accelerator hybrid systems, which

can significantly increase memory bandwidth and improve performance. First, a software library is

needed to control DMA operations from the processor. We have created an intuitive, easy-to-use software

library that can be used to start/reset a DMA operation, as well as make the processor wait until a

DMA transfer is done. Their function prototypes are shown in the code below.

// The main DMA function which configures a DMA core,

// and starts a DMA transaction.

void startDMA(

volatile unsigned long *DMA_ADDRESS,

volatile unsigned long *srcAddr,

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support57

volatile unsigned long *destAddr,

WORD_SIZE wordSize,

const unsigned bytes_to_transfer,

ADDRESS_INCREMENT_SCHEME addrIncrementing

);

// Wait until the DMA core is done with its transfer.

void pollDMA(volatile unsigned long *DMA_ADDRESS);

// Reset a DMA core.

void resetDMA(volatile unsigned long *DMA_ADDRESS);

// A wrapper function used to make a DMA transfer to a FIFO.

void startDMAtoFIFO(

volatile unsigned long *DMA_ADDRESS,

volatile unsigned long *srcAddr,

FIFO *fifoAddr,

const unsigned bytes_to_transfer

);

// A wrapper function used to make a DMA transfer from a FIFO.

void startDMAfromFIFO(

volatile unsigned long *DMA_ADDRESS,

FIFO *fifoAddr,

volatile unsigned long *destAddr,

const unsigned bytes_to_transfer

);

StartDMA is used to first configure a DMA core that is mapped at DMA ADDRESS, to read from srcAddr

and write to destAddr, bytes to transfer number of bytes, with the size of each word being wordSize.

Once these are configured, the DMA operation starts automatically. The WORD SIZE, which represents

the size of a single DMA transfer, is an enum type, which can either be a BYTE (1 byte), a HALF WORD (2

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support58

bytes), a WORD (4 bytes), a DOUBLE WORD (8 bytes), or a QUAD WORD (16 bytes). The WORD SIZE parameter

is used to configure the DMA core. ADDRESS INCREMENT SCHEME is also an enum, which specifies how

the source and destination addresses should or should not be incremented. An address should not

incremented, for instance, if we are writing to a FIFO, where the DMA keeps writing to one end of

the FIFO, which is mapped to a fixed address, with an accelerator taking data from the other end.

SRC DEST ADDR CONSTANT specifies that both addresses stay constant, SRC ADDR INCREMENT indicates

that the source address increments while the destination address stays constant, DEST ADDR INCREMENT

denotes that only the destination address increments, while SRC DEST ADDR INCREMENT means that both

addresses increment. The pollDMA function is used to wait until the DMA core mapped at DMA ADDRESS

has finished its DMA transfer, and resetDMA is used to reset the DMA core. startDMAtoFIFO and

startDMAfromFIFO are wrapper functions used to transfer data to/from a FIFO, both of which call the

startDMA function inside. The DMA functions read/write to memory-mapped registers of a DMA core

to control its operation. Our DMA library can be used by including legup/dma.h in the source code.

For the DMA core itself, we currently use Altera’s DMA Controller Core [99]. This DMA core offers

basic but sufficient functionality to transfer a large chunk of data in burst mode. With this core, Altera

also provides a DMA device driver that integrates into its HAL (Hardware Abstraction Layer) system

library used for NIOS II systems. However, we found this device driver to be overly complicated and

difficult to use, and impractical for non-NIOS II systems, thus we decided to write our own. We think

that the DMA core itself can also be easily replaced in the future with our own implementation.

We show an example of using our DMA functions to transfer data from an input array in off-chip

memory to an input buffer of an accelerator, then transfer data from an output buffer of the accelerator

to an output array in off-chip memory.

1: // get memory-mapped pointers for DMA core and accelerator input/output buffers

2: volatile unsigned long *DMA_addr =

(volatile unsigned long *) DMA_MEMORY_MAPPED_ADDR;

3: volatile unsigned long *input_buffer_addr =

(volatile unsigned long *) INPUT_BUFFER_MEMORY_MAPPED_ADDR;

4: volatile unsigned long *output_buffer_addr =

(volatile unsigned long *) OUTPUT_BUFFER_MEMORY_MAPPED_ADDR;

5: // cast pointers for input/output arrays

6: volatile unsigned long *input_addr =

(volatile unsigned long*) input_array;

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support59

7: volatile unsigned long *output_addr =

(volatile unsigned long*) output_array;

8: ...

9: // reset DMA core

10: resetDMA(DMA_addr);

11: // transfer data from input array in off-chip memory to

input buffer of accelerator

12: startDMA(DMA_addr, input_addr, input_buffer_addr, WORD,

NUM_BYTES, SRC_DEST_ADDR_INCREMENT);

13: // wait until the DMA transfer is complete

14: pollDMA(DMA_addr);

15: // invoke accelerator execution

16: // transfer data from output buffer of accelerator to

output array in off-chip memory

17: startDMA(DMA_addr, output_buffer_addr, output_addr, WORD,

NUM_BYTES, SRC_DEST_ADDR_INCREMENT);

18: // wait until the DMA transfer is complete

19: pollDMA(DMA_addr);

First we create memory-mapped pointers for the DMA core and the input/output buffers of an

accelerator, and cast the input/output arrays in off-chip memory (where the data is to be taken from

and to be stored to) to the type used by our DMA function (lines 1–7). After resetting the DMA core

(line 10), the DMA transfer from the input array in off-chip memory to the input buffer of the accelerator

is initiated by calling the startDMA function (line 12). The processor waits until the DMA transfer is

complete by calling the pollDMA function (line 14). Then, the data stored on the output buffer of the

accelerator can also be copied back to the output array in off-chip memory in the same manner (lines

17 – 19). Note that when an OS is used, the mmap function must be used to allocate space for the DMA

core, as well as to allocate contiguous non-cached off-chip memory regions for input/output arrays.

Figure 4.5 shows the hybrid ARM architecture with DMA support. For clarity, we only show the

connections related to DMA operations, although the connections between the processor and hardware

accelerators also exist, as shown previously. Within a hardware accelerator, there are on-chip RAMs,

which are used as input and output buffers. The accelerators consume data from their input buffers to

process, and store outputs to their output buffers. A DMA core is used to fill an input buffer with data

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support60

DDR3

SDRAM

Shared-local

RAM

Local

RAM

Replicated

ROM

HW Accel

ARM HPS

On-chip Cache

CPU0 CPU1

F2S F2S F2S F2S
Input

DMA

Output

DMA

Input

DMA

Output

DMA

Input

buffer

Output

buffer

Shared-local

RAM

Local

RAM

Replicated

ROM

HW Accel Input

buffer

Output

buffer

H2F

Figure 4.5: ARM hybrid architecture with DMA support.

from off-chip memory, and another DMA core is used to transfer data from an output buffer back to off-

chip memory. Such an architecture allows concurrent input and output transfers, which is beneficial when

overlapping data transfers with accelerator computations (i.e. the accelerator is continuously executing

while data is being moved in and out of input/output buffers). This requires double buffering which is

described below. If data transfers and computations are performed sequentially, it is also possible to

have a single DMA core which manages both the input and output buffers. The F2S interfaces shown in

Figure 4.5 denote the FPGA-to-HPS SDRAM interfaces, which connect directly to the DDR3 SDRAM

without going through the L3 interconnect (the interconnect within the ARM HPS), the ACP port,

or the caches, providing significantly higher memory bandwidth compared to accessing the cache. The

ARM HPS supports having up to six F2S interfaces, depending on their bitwidths. Since this direct

SDRAM interface does not go through the cache, it is not cache coherent. Therefore in the ARM hybrid

systems which use DMA, we turn off the data cache in the ARM HPS via the ARM start up assembly

code.

The sequence of operations for a hardware accelerator with DMA transfers works as follows: When

data transfer and accelerator computation are performed sequentially, all input data is transferred to an

input buffer first, then the accelerators starts to execute, storing all output data to an output buffer, then

the outputs are subsequently copied from the output buffer to off-chip memory. When the data set is too

large to be stored in input/output buffers at once, this operation can be divided into multiple iterations,

where each iteration works on a section of data at a time. In scenarios where not all input/output data

can be held in on-chip buffers at once, overlapping data transfers with computations becomes especially

useful, and this requires double buffering to be effective. Double buffering requires there to be two

instances of a buffer. For input double buffering, while a DMA core fills up input data to one of the

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support61

buffers, the accelerator consumes data from the other buffer. When the first buffer is completely filled

with data, the DMA switches to the second buffer, with the accelerator now taking data from the first

buffer. Similarly for output double buffering, the accelerator writes to one of the buffers, with the DMA

taking data from the other, and the accelerator and the DMA core switch buffers when they are each

done with their own. When both input and output are double buffered, and the system is in steady

state (both input and output data transfers, as well as accelerator computations are all concurrently

being done), DMA transfers operate as follows: If the accelerator is currently working on iteration i,

the input DMA is transferring data for iteration i+1 (to the input buffer not currently being used by the

accelerator), and the output DMA is taking data from iteration i-1 (from the output buffer not being

written to by the accelerator).

Figure 4.6 shows the architecture of a hardware accelerator where its output data is double buffered.

We provide the Double Buffering Module, which can simply be instantiated to use the double buffering

functionality. A hardware accelerator wrapper module, which normally instantiates the hardware ac-

celerator module (the compute core) and connects it to Avalon Interfaces, also instantiates the Double

Buffering Module. This self-contained Double Buffering Module internally provides the logic to switch

between buffers, thus its communicating modules (a DMA core and the accelerator module) do not need

to be aware of double buffering, meaning that no changes are required for those modules to use double

buffering. The DMA software functions called from the processor do not need to be modified either,

since externally, it behaves as a single buffer. Within the Double Buffering Module, there are two sets of

dual-ported RAMs, where the ports on one end connect to a DMA core, with the other end connecting to

the accelerator module. There also also two sets of counters, one counter keeping track of the number of

writes, and the other counter keeping track of the number of reads. When the number of writes reaches

the depth of the RAM, it switches the RAM being written to, and the write counter resets. When the

number of reads reaches the depth, the DMA reads are also steered to the other RAM, with the read

counter resetting to zero. The Double Buffering Module also provides stall logic, which is important if

the data rate for reads is not as fast as writes, and vice versa. The idea is that both the DMA core

and the accelerator cannot be reading and writing from/to the same buffer at the same time, which can

cause valid data to be overwritten. For example, for output double buffering, the accelerator module

first completely fills the first buffer, then starts to write to the second buffer, at which time the DMA

core starts to transfer data from the first buffer. If the DMA core cannot keep up with the accelerator

module, so that the accelerator module completely fills the second buffer and switches to write to the

first buffer again, the accelerator is stalled until the DMA core finishes transferring data from the first

buffer. Along the same lines, if the accelerator cannot write data as fast as it is being read by the DMA

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support62

HW Accel

Wrapper

Write

Counter

RAM0 RAM1

Double

Buffering

Module

HW Accel

Module

Read

Counter

Stall

Logic

Accelerator Stall Memory writing signals

Memory reading signals

DMA Core

DMA Stall

Avalon

Interconnect

Figure 4.6: Hardware accelerator with output data double buffered.

core, and the DMA core attempts to start reading data from the same buffer which is being written to

by the accelerator module, the DMA core is stalled until the accelerator module finishes writing to the

buffer.

Note that we can also implement the DMA support with double buffering for the MIPS hybrid

architecture, as shown in Figure 4.7. Again, the figure only shows those connections which relate

to DMA operations. For this architecture, we have also removed the on-chip data cache in order to

keep data coherent between the processor and accelerators (since accelerators write read/write directly

from/to off-chip memory via DMA transfers).

Overall, our DMA support with the software library and the Double Buffering Module provides a

method for transferring data in and out of hardware accelerators with high memory bandwidth – a

necessity in achieving high performance for pipelined architectures. Currently, the instantiations of the

DMA cores and the Double Buffering Module are not automatically handled by LegUp and need be done

manually by the user, but we have plans to automate this in the future.

4.5 Experimental Study

In this section, we study the performance, area, and energy-efficiency of the ARM system, in comparison

to the MIPS system, across six different benchmarks. For each type of system, we investigate four

different architectures, which are:

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support63

MIPS

Processor

DDR3 SDRAM

Shared-local

RAM

Local

RAM

Replicated

ROM

HW Accel

On-Chip

Ins. Cache

Input

DMA

Output

DMA

Input

buffer

Output

buffer

Shared-local

RAM

Local

RAM

Replicated

ROM

HW Accel Input

buffer

Output

buffer

Input

DMA

Output

DMA

Figure 4.7: MIPS hybrid architecture with DMA support.

• The processor-only architecture, which executes the entire program in software, without any hard-

ware accelerators, and without Pthreads (denoted as Arch. 0 in Section 4.5.2).

• The single-threaded processor-accelerator hybrid architecture, where the processor and a single

hardware accelerator execute sequentially (denoted as Arch. 1).

• The multi-threaded processor-accelerator hybrid architecture, where the program is parallelized

with Pthreads and compiled to three concurrent hardware accelerators (denoted as Arch. 2).

• Lastly, the multi-threaded and pipelined processor-accelerator hybrid architecture, where each con-

current hardware accelerator is also pipelined within (denoted as Arch. 3p).

Note that due to the structure of the benchmarks, not all of benchmarks were pipelinable, hence

for the results shown in Section 4.5.2, an architecture with the p postfix includes results for only those

benchmarks which could be pipelined (four out of six benchmarks). For the ARM/MIPS hybrid system,

Arch. 3p (multi-threaded and pipelined) uses DMA tranfers to move data in and out of hardware

accelerators (double buffering is not used in this case). All of the above systems (both processor-only

and hybrid) run bare metal, without an OS.

We also examine the performance and energy consumption of one of the benchmarks, Black-Scholes,

when running on a ARM hybrid system, versus when running purely in software on the ARM processor,

as well as two different x86 processors, the Intel Xeon E5-1650 and the Intel i7-4770K, where all of

these systems (ARM, ARM hybrid, x86) are running Linux on their processors. The Intel Xeon E5-1650

(released in 2012) is a 32 nm six-core (12 cores with Hyper-Threading [125]) CPU, running at 3.2 GHz

(3.8 GHz with TurboBoost) with 2 MB L2 and 12 MB L3 caches. It is running Ubuntu 14.04 and has 32

GB of DDR3 memory running at 1333 MHz. The Intel i7-4770K (released in 2013) is a 22 nm four-core

(eight cores with Hyper-Threading) CPU, running at 3.5 GHz (3.9 GHz with TurboBoost) with 1 MB

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support64

L2 and 8 MB L3 caches. It is also running Ubuntu 14.04 and has 32 GB of DDR3 memory running

at 1600 MHz. With this, we investigate the performance and energy consumption of the Black-Scholes

benchmark when running on one, two, and three threads, on the ARM processor-only, ARM hybrid, and

x86 systems. For the ARM hybrid systems, we pipeline the threads and use DMA transfers with double

buffering. For the x86 systems, we also investigate using as many threads as the number of logical cores

(number of cores seen with HyperThreading).

4.5.1 Benchmarks and Measurement Methodologies

We use a total of six benchmarks, each of which has a number of different variants. We create three

versions of each benchmark, a sequential version, a parallelized version with Pthreads, and a parallelized

version with Pthreads which uses DMA transfers. For running the Black-Scholes benchmark on the

ARM hybrid systems with Linux, we use the mmap functions described previously. The six benchmarks

are described below.

• Black-Scholes: Estimates the price of European-style options. It uses Monte Carlo simulation to

compute the price trajectory for an option using random numbers. Computations are done in

fixed-point.

• Dfdiv: Adopted from the CHStone benchmark suite [37], it computes double-precision floating-

point division using 64-bit integers.

• Dfsin: Adopted from the CHStone benchmark suite [37], it computes the Sine function for double-

precision floating-point numbers using 64-bit integers.

• Gaussian filter: As the first step of Canny edge detection, it is used to filter out noise by convolving

the Gaussian filter with the image.

• Hash: Runs four different hashing algorithms.

• Mandelbrot: An iterative mathematical benchmark which generates a fractal image.

Each benchmark includes built-in inputs and golden outputs, with the computed result checked

against the golden output at the end of the program to verify correctness. All input/output data reside

in off-chip DDR3 memory, and for the benchmarks with DMA operations, each transferred output data

from accelerators to off-chip memory is individually verified at the end of the program on the processor.

Out of the six benchmarks, Dfdiv and Dfsin were not pipelinable. We synthesize each hardware system

using Quartus 15.0 targeting the Altera Arria V SoC FPGA (5ASTFD5K3F40I3) to obtain area and

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support65

critical path delay (Fmax) numbers. For the MIPS systems, we use ModelSim to extract the total

number of execution cycles and compute the total execution time (wall-clock time) as the product of

the execution cycles and the post-routed clock period. To obtain power data, we use the post-synthesis

timing simulation to generate a VCD (Value Change Dump) file with ModelSim, which is used by the

Quartus PowerPlay Power Analyzer to get power numbers3. To get the execution time on ARM systems

running bare metal (processor-only and hybrid), we use the Performance Monitoring Unit on the ARM

processor [22] to get the processor cycle count, and divide this by the processor’s clock speed, 1.05 GHz,

to calculate the wall-clock time. We start the counter before starting the hardware functions, and stop

after they have returned, which also includes DMA configuration and transfer times for those systems

with DMA, but does not include the time to verify individual elements of transferred output data on

the processor. For measuring power on the ARM systems, we use the Power Monitor on the Arria V

SoC Development Kit Board [98], which measures real-time power consumption of both the HPS and

the FPGA fabric via their power rails, providing accurate real-time power measurements.

As previously mentioned, we also compare the Black-Scholes benchmark when running a single thread,

as well as on multiple threads, on the ARM processor-only, ARM hybrid, and x86 systems, with all

processors running Linux OS. We have made our best efforts to make this comparison as fair as possible.

Before measuring, we reboot the systems to start from a clean slate and kill any user spawned processes.

To compile the benchmark running purely in software, we use gcc with -O3 optimization and the

-pthread flag (on both ARM and x86). To obtain execution time, we use the gettimeofday function, a

Linux function that can be used to get the current wall-clock time. We call it before pthread create and

after pthread join (which includes DMA transfer times for the hybrid case) to get the total execution

time. With the OS, if the total runtime is very short, the thread start-up and stop times can be a

significant portion of the runtime, which puts the processor-only systems at a disadvantage. To avoid

this, we increase the total number of Black-Scholes simulations done to the maximum that could fit in

the 1GB HPS DDR3 memory, which was around 600 MB (each simulation output is stored in memory

to be verified on the processor at the end of the program). Also with the OS, runtime is not always

deterministic, so we execute the benchmark 100 times on all platforms and take the geometric mean.

On the x86 processors, we set the governor to performance, which allows the CPUs to run at maximum

speed with TurboBoost. To measure the effect of TurboBoost on CPU frequency, we use turbostat,

a Linux command-line utility which reports real-time stats such as frequency and temperature [81]. In

addition, to get more consistent results over runs, we also use taskset [75], a Linux command which

3This method of measuring power consumption via a post-synthesis timing simulation is frequently used, however, it is
reportedly to have a margin of error of about +/-10%.

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support66

allows binding a process to specific cores to avoid the process from jumping between different cores. We

use the first three cores on both the Xeon and the i7 CPUs. To measure power on the x86 processors, we

use Intel’s Performance Counter Monitor [147], which also has a utility to measure power consumption.

4.5.2 Results

Table 4.1 shows the geometric mean results for the MIPS processor-only system (Arch. 0/0p), where the

entire program is executed in software on the processor, as well as for the single-threaded (Arch. 1/1p),

multi-threaded (Arch. 2/2p), and multi-threaded and pipelined (Arch. 3p) hybrid architectures. The

complete circuit-by-circuit results are shown in Appendix C. We show four different types of metrics:

1) Performance, which includes total execution time (in ms), total clock cycles, and Fmax (in MHz),

2) area, which includes the number of ALMs (Adaptive Logic Modules), registers, DSPs, and M10Ks

(Altera’s memory blocks which can hold 10 Kbits), 3) power, which includes static and dynamic power

(in mW), as well as the sum of the two, and lastly, 4) efficiency, which include total energy consumption,

calculated as the product of total execution time and total power, and area-delay product. To calculate

the area-delay product, we first calculate the total chip area by using the data from [149, 64] (as was

done in Chapter 3), and multiply this with total execution time to obtain the area-delay product for

each architecture4. The last five lines of the table show relative ratios, comparing the results of each

architecture to the processor-only (Arch. 0/0p) and the single-threaded hybrid architectures (Arch.

1/1p).

When comparing to Arch. 0/0p, all architectures exhibit significant improvements in performance,

energy-efficiency, and area-delay product. With three concurrent cores (Arch. 2), we see a speedup of 53×

in wall-clock time, while being 45.5×more energy-efficient. Fmax stays relatively constant, as the critical

path is mostly limited by the on-chip cache and the interconnect in the processor system. As expected,

the most notable improvements come from Arch. 3p, which uses pipelining with DMA transfers (without

double-buffering). Compared to Arch. 0p, Arch. 3p shows 271.9× speedup and 212.4× energy-efficiency,

with 104.2× better area-delay product. With three parallel pipelined accelerators, DSP usage increases

notably by 17.6×, since the processor-only system only uses 6 DSP blocks. Other area elements also

increase by 2.14× ∼ 3.36×, and with this, Fmax drops by 13.4% and total power consumption increases

by 28%. In comparison to Arch. 1p, Arch. 3p shows improvements of 16.4×, 13.3×, 9.1× in wall-clock

time, energy-efficiency, and area-delay product, respectively. Area also increases by 1.5× ∼ 3.2× for the

4[149] provides detailed area data for Stratix III, which uses M9K memory blocks. We calculate the M10K area on Arria
V from the given M9K area by using the relative memory capacity ratio. For ALMs, we assume that the area remains the
same between Stratix III and Arria V. For DSP blocks, the Arria V uses Stratix V DSP blocks, hence we use the DSP
area data from [64], which show that a DSP block uses an equivalent amount area to 30 ALMs.

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support67

different types of blocks, with total power consumption going up by 24%. Compared to Arch. 2p, Arch.

3p shows increases in ALMs and registers, as well as many more M10Ks (2.99×), due to pipelining,

input/output buffers of accelerators, as well as DMA cores (which also use memory blocks). Overall, the

three pipelined hardware accelerators with much higher memory bandwidth via DMA transfers (Arch.

3p) show significant improvements in performance, at the expense of relatively moderate area increase.

Table 4.2 shows the geomean results for ARM processor-only and hybrid systems running bare metal.

The power consumption, obtained via the Power Monitor, is shown in terms of HPS power (which

includes power for the HPS core, HPS I/O, HPS DDR3, and HPS internal/peripheral devices [97]),

FPGA power (which includes power for FPGA core/clock, FPGA I/O, and FPGA internal/peripheral

devices), and total power (the sum of the two). We do not show area-delay product results since the

HPS area is unknown. All clock cycle numbers shown on this table are in terms of processor cycles,

and the execution times are obtained by dividing the number of clock cycles by the processor speed,

1.05 GHz. The Fmax results shown for Arch. 1 ∼ 3p are the frequencies of the PLLs that are driving

hardware accelerators’ clocks. The HPS processor-only system (Arch. 0), consumes a small amount of

FPGA area due to its peripherals such as JTAG UART, which is used by the processor to communicate

with host PC (using printf), as well as the interconnect. Note that the FPGA fabric also consumes

about 340 mW in this case, even when all processing is done on the HPS. With the hard ARM processor

running at over 1 GHz, the processor-only system can achieve fairly good performance. With this, in

addition to the limited memory bandwidth of accessing the on-HPS cache through the ACP port from

hardware accelerators, Arch. 1 shows a slow down of 2.19× compared to Arch. 0. With 4.4% more

total power consumption (31.3% more FPGA fabric power), energy consumption is also 2.28× of Arch.

0. This trend continues to Arch. 2, which exhibits 11.2% more runtime than Arch. 0, with 10.5% more

total power (63.2% more FPGA fabric power) and 22.8% more energy consumption. This shows that

non-pipelined hardware with limited memory bandwidth cannot outperform the hard ARM processor.

On the other hand, Arch. 3p, which has three pipelined hardware accelerators with direct access to

DDR3 via DMA, shows significant improvements over the ARM processor system. The architecture

shows 31.5× speedup in wall-clock time with 26.6× better energy-efficiency. The hybrid systems with

LegUp-generated hardware accelerators can significantly outperform a 1 GHz ARM processor in both

performance and energy-efficiency. When compared to Arch. 1p, Arch. 3p is 60.8× faster and 54× more

energy efficient.

C
h
a
p
t
e
r
4
.

A
R
M

H
a
r
d
P
r
o
c
e
sso

r
S
y
st

e
m

a
n
d
D
ir
e
c
t
M
e
m
o
r
y
A
c
c
e
ss

(D
M
A
)
S
u
p
p
o
r
t
68

Table 4.1: Geometric mean results for MIPS processor-accelerator hybrid systems.

Performance Area Power Efficiency
Architecture Time (ms) Cycles Fmax ALMs Registers DSPs M10Ks Static Power Dyn. Power Total Power (mW) Energy (mJ) Area-delay Product

Arch. 0 67.22 8,618,499.64 128.21 9,629.00 12,444.00 6.00 76.00 1,339.35 325.94 2,218.01 149.10 1,811.04
Arch. 0p 69.70 8,935,681.09 128.21 9,629.00 12,444.00 6.00 76.00 1,339.35 325.94 2,218.01 154.59 1,877.74
Arch. 1 3.36 420,025.54 124.93 14,683.81 23,363.61 55.20 80.13 1,340.18 466.13 2,314.93 7.78 139.86
Arch. 1p 4.22 527,468.28 125.12 13,711.87 21,310.13 49.39 79.22 1,339.96 443.61 2,290.03 9.65 164.47
Arch. 2 1.27 159,685.16 125.83 21,610.78 38,805.89 129.30 86.34 1,342.50 711.96 2,579.92 3.27 78.90
Arch. 2p 1.60 196,517.80 122.86 17,357.50 30,753.96 105.44 85.52 1,341.40 604.20 2,457.33 3.93 81.86
Arch. 3p 0.26 28,444.26 110.98 20,621.39 39,706.97 105.44 255.40 1,345.27 987.15 2,839.69 0.73 18.03

Arch. 1 / Arch. 0 Ratio 0.050 (19.99×) 0.049 (20.52×) 0.974 1.525 1.878 9.199 1.054 1.001 1.430 1.044 0.052 (19.16×) 0.077 (12.95×)
Arch. 2 / Arch. 0 Ratio 0.019 (52.97×) 0.019 (53.97×) 0.981 2.244 3.118 21.550 1.136 1.002 2.184 1.163 0.022 (45.54×) 0.044 (22.96×)

Arch. 3p / Arch. 0p Ratio 0.004 (271.93×) 0.003 (314.15×) 0.866 2.142 3.191 17.574 3.361 1.004 3.029 1.280 0.005 (212.40×) 0.010 (104.15×)

Arch. 2 / Arch. 1 Ratio 0.377 (2.65×) 0.380 (2.63×) 1.007 1.472 1.661 2.343 1.077 1.002 1.527 1.114 0.421 (2.38×) 0.564 (1.77×)
Arch. 3p / Arch. 1p Ratio 0.061 (16.44×) 0.054 (18.54×) 0.887 1.504 1.863 2.135 3.224 1.004 2.225 1.240 0.075 (13.26×) 0.110 (9.12×)

Table 4.2: Geometric mean results for ARM processor-accelerator hybrid systems.

Performance Area Power Efficiency
Architecture Time (ms) Cycles Fmax ALMs Registers DSPs M10Ks HPS Power FPGA Power Total Power (mW) Energy (mJ)

Arch. 0 1.50 1,578,439.36 1,050.00 1,650.00 2,551.00 0.00 4.00 1,754.73 340.73 2,095.59 3.15
Arch. 0p 2.20 2,305,313.96 1,050.00 1,650.00 2,551.00 0.00 4.00 1,756.03 339.87 2,096.10 4.60
Arch. 1 3.29 3,453,671.54 140.96 6,187.96 12,420.47 48.86 7.25 1,739.42 447.47 2,187.77 7.20
Arch. 1p 4.24 4,450,387.83 146.78 5,173.58 10,337.21 43.12 6.90 1,754.34 452.35 2,207.30 9.36
Arch. 2 1.67 1,754,443.41 125.66 13,904.07 30,795.08 122.05 13.14 1,755.17 556.22 2,314.79 3.87
Arch. 2p 1.78 1,869,232.14 127.29 10,417.79 23,748.90 98.28 12.54 1,749.68 511.65 2,262.07 4.03
Arch. 3p 0.07 73,167.36 144.57 15,501.36 33,486.58 98.28 121.43 1,767.26 716.93 2,484.79 0.17

Arch. 1 / Arch. 0 Ratio 2.188 (0.46×) 2.188 (0.46×) 0.140 3.750 4.869 48.858 1.812 0.991 1.313 1.044 2.284 (0.44×)
Arch. 2 / Arch. 0 Ratio 1.112 (0.90×) 1.112 (0.90×) 0.125 8.427 12.072 43.116 3.284 1.000 1.632 1.105 1.228 (0.81×)

Arch. 3p / Arch. 0p Ratio 0.032 (31.51×) 0.032 (31.51×) 0.144 9.395 13.127 122.050 30.357 1.006 2.109 1.185 0.038 (26.58×)

Arch. 2 / Arch. 1 Ratio 0.508 (1.97×) 0.508 (1.97×) 0.891 2.247 2.479 2.498 1.812 1.009 1.243 1.058 0.537 (1.86×)
Arch. 3p / Arch. 1p Ratio 0.016 (60.82×) 0.016 (60.82×) 0.985 2.996 3.239 2.280 17.596 1.007 1.585 1.126 0.019 (54.03×)

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support69

44.72

1.02 0.76

3.68

47.33

1.08
0.85

4.20

0.10

1.00

10.00

100.00

Arch. 0 Arch. 1 Arch. 2 Arch. 3p

F
D
F
D

Speedup Energy-efficiency

A
R

M
 /

 M
IP

S
 R

a
ti

o

Figure 4.8: Relative Speedup and energy-efficiency ratios comparing ARM to MIPS.

As all scenarios were implemented on the same FPGA, for the same set of benchmarks, it can be

interesting to contrast the results of the ARM and the MIPS systems. Figure 4.8 shows the relative

speedup and energy-efficiency ratios (in logarithmic scale) for each architecture, with the MIPS system

used as the baseline for each architecture. It can be seen that for Arch. 0, where the all computations

are performed in software, the ARM processor shows significant speedup and energy-efficiency compared

to the MIPS (44.72× and 47.33× respectively), showcasing the power of the hardened processor. When

most computations are moved to a single accelerator in Arch. 1, both systems exhibit close results.

When computations are parallelized with Pthread accelerators in Arch. 2, the ARM hybrid system

shows a slow down, as the memory latency, hence the number of cycles the accelerators are stalled due

to memory contention from concurrent accelerators attempting to access the cache, is larger for the

ARM hybrid architecture. However, the memory bandwidth is improved in Arch. 3p, since the HPS

offers multiple FPGA-to-HPS SDRAM interfaces, allowing the parallel accelerators to access the off-chip

memory concurrently. With this, the ARM hybrid systems for Arch. 3p show 3.68× speedup and 4.20×

energy-efficiency improvement over the MIPS hybrid systems5.

Table 4.3 shows the performance, power, and energy consumption results of the Black-Scholes bench-

mark when executing purely in software on the ARM (denoted as ARM SW), the Intel Xeon E5-1650

(Xeon SW), and the Intel i7-4770K (i7 SW), as well as when running on the ARM hybrid architecture

(ARM Hybrid). On each platform, we increase the number of threads from one (1T), to two (2T), to

three (3T). All architectures are running Linux on their processors and all hybrid systems are using

DMA transfers with double buffering. The table also shows the frequencies of the x86 processors with

5If memory bandwidth was the same in both cases, we think that the performance of the ARM and MIPS for Arch. 3p
would be close to each other (similar to Arch. 1), as most computations are off-loaded to accelerators in this case.

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support70

TurboBoost, measured with turbostat while the benchmark is being executed. All frequency values

fall within the range of their turbo bins provided by Intel, which indicate the frequency increases that

can be achieved with TurboBoost for each number of active cores [129]. In general, the table shows that

for each architecture, as the number of threads is increased, the performance improves, with increasing

power consumption. The results remain similar however, for ARM SW 2T to ARM SW 3T, as the ARM

processor has a dual -core CPU.

Table 4.3: Results for Black-Scholes on ARM processor-only, ARM hybrid, and x86 architectures.

Architecture Time (s) Power (W) Energy (J)

ARM SW 1T 50.717 2.128 107.921
ARM SW 2T 25.418 2.327 59.159
ARM SW 3T 25.870 2.337 60.453

ARM Hybrid 1T 1.184 2.301 2.725
ARM Hybrid 2T 0.642 2.529 1.622
ARM Hybrid 3T 0.484 2.683 1.297

Xeon SW 1T @ 3.75 GHz 3.312 55.214 182.878
Xeon SW 2T @ 3.75 GHz 1.668 69.699 116.273
Xeon SW 3T @ 3.65 GHz 1.144 79.234 90.640

i7 SW 1T @ 3.9 GHz 2.735 24.096 65.909
i7 SW 2T @ 3.9 GHz 1.372 26.504 36.355
i7 SW 3T @ 3.8 GHz 0.944 35.459 33.476

To make the comparisons between the architectures easier, we plot their relative ratios on Figures 4.9

and 4.10. The x-axis shows the different architectures, with increasing number of threads from left to

right, and the y-axis shows their ratios in logarithmic scale. Each plotted line shows the ratio values of

a single architecture when compared across all other architectures, and for readability, we only plot five

different architectures (out of 12) as shown in the legends. Figure 4.9 shows the speedup results for the

Black-Scholes benchmark, where the hybrid architecture speedups are highlighted in bold. First, when

comparing ARM Hybrid 3T to i7 SW 3T (running at 3.8 GHz), Xeon SW 3T (running at 3.65 GHz),

and ARM SW 3T (running at 1.05 GHz), we see speedups of 1.95×, 2.37×, 53.51× respectively. It is

also worth noting that ARM Hybrid 3T shows 104.9× speedup compared to ARM SW 1T. This speedup

is much larger than what was shown in Table 4.2 for Arch. 3p/1p mainly due to double-buffering.

Even with two concurrent hardware accelerators (ARM Hybrid 2T), we can still outperform the triple

threaded case of software, by 1.47× (i7 SW 3T), 1.78× (Xeon SW 3T), and 40.32× (ARM SW 3T). The

single hardware accelerator system (ARM Hybrid 1T) also runs faster than the single-threaded software

executing on the i7 (running at 3.9 GHz), the Xeon (running at 3.75 GHz), and the ARM (running at

1.05 GHz), by 2.31× (calculated from Table 4.3), 2.8×, and 42.84× respectively. The LegUp-generated

hardware systems can surpass the performance of Intel CPUs which are running much faster in clock

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support71

1.00	

2.00	 1.96	

42.84	

79.05	
104.90	

15.31	

30.40	
44.33	

18.54	

36.97	
53.72	

0.51	

1.02	 1.00	

21.85	

40.32	
53.51	

7.81	

15.51	
22.61	

9.46	

18.86	
27.40	

0.02	

0.04	 0.04	

0.80	

1.47	
1.95	

0.29	

0.57	
0.83	

0.35	

0.69	
1.00	

0.07	

0.13	 0.13	

2.80	

5.16	

6.85	

1.00	

1.99	
2.90	

1.21	

2.41	
3.51	

0.02	

0.05	 0.04	

0.97	

1.78	

2.37	

0.35	

0.69	
1.00	

0.42	

0.83	
1.21	

0.01	

0.1	

1	

10	

100	

ARM	 SW	

1T	

ARM	 SW	

2T	

ARM	 SW	 	 	 	 	

3T	

ARM	

Hybrid	 1T	

ARM	

Hybrid	 2T	

ARM	

Hybrid	 3T	

Xeon	 SW	 	 	 	

1T	

Xeon	 SW	 	 	 	

2T	

Xeon	 SW	 	 	 	

3T	

i7	 SW	 	 	 	 	 	 	 	 	

1T	

i7	 SW	 	 	 	 	 	 	 	 	

2T	

i7	 SW	 	 	 	 	 	 	 	 	

3T	

S
p
e
e
d
u
p
	 r
a
@
o
	 (
lo
g
	 s
ca
le
)	

Speedup	 vs.	 ARM	 SW	 1T	 Speedup	 vs.	 ARM	 SW	 3T	 Speedup	 vs.	 i7	 SW	 3T	

Speedup	 vs.	 Xeon	 SW	 1T	 Speedup	 vs.	 Xeon	 SW	 3T	

Figure 4.9: Speedup ratios for Black-Scholes on ARM processor-only, ARM hybrid, and x86 architec-
tures.

speeds (120 MHz vs. ∼4 GHz).

Energy-efficiency is also another strength of FPGAs, and this demonstrated in Figure 4.10, where all

hybrid systems exhibit at least an order of magnitude improvement in energy-efficiency compared to all

SW systems. Compared to i7 SW 3T, Xeon SW 3T, and ARM SW 3T, ARM Hybrid 3T shows 25.81×,

69.87×, 46.6× better energy-efficiency. The Xeon processor consumes considerable amount of power, so

the ARM Hybrid 3T is 140.98× more energy efficient than Xeon SW 1T. Even with a single accelerator

(ARM Hybrid 1T), we observe improvements of 12.29× and 33.27× compared to i7 SW 3T and Xeon

SW 3T, and 24.19× (calculated from Table 4.3) and 67.12× when compared to i7 SW 1T and Xeon

SW 1T. Again, this demonstrates that we can achieve significant improvements in energy-efficiency with

LegUp-generated ARM hybrid systems.

One may question, however, that there are unutilized cores on the Intel CPUs which can simply be

used by forking more threads. To investigate this, we modified the Black-Scholes benchmark to use as

many threads as the number of logical cores (number of cores with HyperThreading) for each Intel CPU.

Table 4.4 shows the result for the Xeon CPU when using 12 threads, and for the i7 CPU with 8 threads, as

well as their relative ratios compared to ARM Hybrid 3T. By utilizing more cores, both CPU frequencies

with TurboBoost have dropped as expected, in accordance to their turbo bin values. In terms of total

execution time, ARM Hybrid 3T still outperforms the Intel CPUs, by 4% compared to Xeon SW 12T, and

by 20% compared to i7 SW 8T. The power consumption of both CPUs also increase with more utilized

cores, thus we still see significant energy-efficiency improvements of 42.97× compared to Xeon SW 12T,

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support72

1.00	

1.82	 1.79	

39.61	

66.52	

83.20	

0.59	

0.93	
1.19	

1.64	

2.97	 3.22	

0.56	

1.02	 1.00	

22.19	

37.26	

46.60	

0.33	

0.52	 0.67	
0.92	

1.66	 1.81	

0.31	

0.57	 0.55	

12.29	

20.63	

25.81	

0.18	

0.29	
0.37	

0.51	

0.92	 1.00	

1.69	

3.09	 3.03	

67.12	

112.72	
140.98	

1.00	

1.57	
2.02	

2.77	

5.03	 5.46	

0.84	

1.53	 1.50	

33.27	

55.87	

69.87	

0.50	

0.78	
1.00	

1.38	

2.49	 2.71	

0.1	

1	

10	

100	

ARM	 SW	

1T	

ARM	 SW	

2T	

ARM	 SW	 	 	 	 	

3T	

ARM	

Hybrid	 1T	

ARM	

Hybrid	 2T	

ARM	

Hybrid	 3T	

Xeon	 SW	 	 	 	

1T	

Xeon	 SW	 	 	 	

2T	

Xeon	 SW	 	 	 	

3T	

i7	 SW	 	 	 	 	 	 	 	 	

1T	

i7	 SW	 	 	 	 	 	 	 	 	

2T	

i7	 SW	 	 	 	 	 	 	 	 	

3T	

E
n
e
rg
y
	 e
ffi
ci
e
n
cy
	 r
a
B
o
	 (
lo
g
	 s
ca
le
)	

Energy	 Efficiency	 vs.	 ARM	 SW	 1T	 Energy	 Efficiency	 vs.	 ARM	 SW	 3T	 Energy	 Efficiency	 vs.	 i7	 SW	 3T	

Energy	 Efficiency	 vs.	 Xeon	 SW	 1T	 Energy	 Efficiency	 vs.	 Xeon	 SW	 3T	

Figure 4.10: Energy-efficiency ratios for Black-Scholes on ARM processor-only, ARM hybrid, and x86

architectures.

and 20.49× compared to i7 SW 8T. Hence, the LegUp ARM hybrid system still provides substantial

benefits even when all Intel CPU cores are utilized. Moreover, additional hardware accelerators can be

instantiated in the ARM hybrid case as well, since the ARM Hybrid 3T only consumes about 10% of

logic and 7% of DSP blocks on the Arria V SoC FPGA. We expect that having more accelerators will

increase performance until it is limited by memory bandwidth (DMA to/from off-chip DDR3).

Table 4.4: Results for Black-Scholes on x86 processors when using as many threads as the number of
cores.

Architecture Time (s) Power (W) Energy (J)

Xeon SW 12T @ 3.5 GHz 0.504 110.560 55.740
vs. ARM Hybrid 3T 0.484 (1.04×) 2.68 (41.21×) 1.30 (42.97×)

i7 SW 8T @ 3.65 GHz 0.578 45.990 26.580
vs. ARM Hybrid 3T 0.484 (1.20×) 2.68 (17.14×) 1.30 (20.49×)

4.6 Summary

In this chapter, we described our support for using the ARM Hard Processor System on the Arria V SoC

to accelerate multi-threaded software applications. This significantly enhances the processor-accelerator

hybrid flow of LegUp, which was previously limited to using only the soft MIPS processor. With respect

to the ARM processor, we provide support for running bare metal (no OS), as well as running a Linux

OS. We also discussed our DMA software library and the Double Buffering Module, which can transfer

Chapter 4. ARM Hard Processor System and Direct Memory Access (DMA) Support73

large chucks of data in bursts to and from off-chip memory, essential for achieving high performance in

pipelined circuits.

Compared to software executing on the MIPS processor, our multi-threaded and pipelined hybrid

systems obtained over two orders of magnitude improvements in performance and energy-efficiency.

Compared to the ARM processor, however, our multi-threaded hybrid systems showed a slow-down,

due to the limited memory bandwidths of accessing the on-HPS cache memory. However, pipelining

the accelerators and enabling DMA data transfers improved the performance and energy-efficiency of

the hybrid systems to 31.5× and 26.6× of software executing on the ARM. Even compared to x86

processors, our ARM hybrid system running on a 28 nm FPGA, outperformed multi-thereaded software

running on a 22 nm Intel i7 CPU running at 3.8 GHz by ∼2×, and a 32 nm Intel Xeon CPU running

at 3.65 GHz by 2.4×, while consuming only 3.9% and 1.4% of their energy, respectively. Even when all

eight cores of the i7 CPU and all twelve cores of the Xeon CPU were utilized, the ARM hybrid system

outperformed the x86 processors, all the while consuming 4.9% and 2.3% as much energy as the CPUs.

The HLS framework can generate entire SoCs that can show significant benefits in term of speed and

energy-efficiency compared to the MIPS, the ARM, and the x86 processors.

This work is to be submitted to IEEE Transactions on Very Large Scale Integration Systems (TVLSI).

Chapter 5

Synthesis of Software Threads to

Parallel Hardware-only System

5.1 Introduction

In Chapters 3 and 4, we described our support for generating a processor-accelerator hybrid system

where parallel hardware accelerators can work in tandem with an embedded processor. This allows one

to benefit from the flexibility of a processor, while taking advantage of the performance and energy-

efficiency benefits offered by FPGA hardware. However, we note that for some applications, it may

be beneficial to compile the program to purely hardware, instead of using the processor-accelerator

hybrid system. ARM SoC FPGAs are still relatively nascent, with only a handful of SoC FPGAs on

the market, and soft processors can add significant area/power overheads. It is therefore desirable if

the Pthreads/OpenMP HLS support described previously can also be used without a processor. In this

chapter, we describe our support for the hardware-only flow, where a multi-threaded software program

can be compiled entirely to hardware, with parallel threaded modules executing concurrently within

a hardware system. By removing the processor requirement, we believe that our HLS support for

Pthreads/OpenMP can be applied to a wider range of applications.

The new flow is beneficial in a number of ways: 1) When the entire program is intended for imple-

mentation in hardware, 2) when having a processor is not practical due to limited area resources, or an

SoC board is not available, or 3) when the circuit is to be used as part of a larger framework where

it will be plugged in as a module. For 1), some applications domains, such as high frequency trading,

require very low latency computations. To meet low-latency requirements, all computations from inputs

74

Chapter 5. Synthesis of Software Threads to Parallel Hardware-only System 75

to outputs may need to be done in hardware. For 3), the hardware-only flow also allows the user to

specify a portion of the program, such as those computations executed in threads, to be compiled to

hardware, with the rest of the program acting as a testbench. This can be useful if the hardware is to

be used as a part of a larger framework. Note that this differs from the hybrid flow, which generates a

complete SoC, including the processor, on-chip caches, and interconnect.

Overall, the hardware-only flow with HLS support for Pthreads and OpenMP provides an efficient

and a convenient method to express hardware parallelism using software threads. We are unaware of any

other active HLS tools which support the synthesis of Pthreads and OpenMP into a purely hardware

architecture, where parallel threaded modules execute within a larger circuit.

5.2 Parallel Hardware-only System Generation

When synthesizing a parallel hardware-only system, two major steps are performed which differ from

those for generating a non-parallel sequential circuit. One of these steps, as shown in Figure 5.1, is

ParallelAPI, the same compiler pass used in the hybrid flow to handle Pthread/OpenMP library func-

tions and insert thread managing logic. Keeping a consistent flow with code re-use greatly improves the

maintainability and the modifiability of our framework, as we have many compiler passes and supported

features in LegUp HLS. The second major step that is different is performed in the Hardware Backend,

and is responsible for creating the parallel hardware modules. In the hardware-only flow, we do not use

Qsys, which allows one to flexibly generate an interconnection fabric, but it also adds substantial area

overhead. We believe such overhead to be unjustified when many of the useful features of the Avalon

Interconnect, such as memory-mapped communication, are not used in a hardware-only system. We have

built our own system generator, which can generate a custom interconnect allowing different components

in a hardware-only system to communicate and work together. The system generator is responsible for

instantiating multiple parallel hardware instances for a threaded module in a hardware-only system (by

default, it instantiates as many instances as the number of threads) and also creates necessary arbitration

logic to allow the parallel modules to share memories. The system generator is described in more detail

in Chapter 6.

Returning to the ParallelAPI pass, the majority of the work done in the pass remains the same

as in the hybrid flow, where the pass transforms the Pthreads/OpenMP library function calls to the

native function calls supported by LegUp. For OpenMP, the same code used for the hybrid flow is used

in the hardware-only flow to replace calls to GOMP parallel start with calls to the outlined OpenMP

functions (with as many calls to the outlined function as specified by the num threads argument in

Chapter 5. Synthesis of Software Threads to Parallel Hardware-only System 76

C Program

Clang

LLVM IR

ParallelAPI

Optimization

Passes

Frontend

Verilog

Hardware

Backend

Optimization

Passes

IR

Transformations

Optimized IR

Backend

Figure 5.1: Parallel hardware-only flow in LegUp HLS.

GOMP parallel start). As before, each outlined OpenMP instance is statically assigned a thread ID,

which is passed in as its argument. In the Hardware Backend, when we generate an FSM for the

module which invokes the parallel OpenMP modules, all calls to the parallel modules for the same

outlined OpenMP function are scheduled in the same state (occur in the same cycle), since we know

exactly which and how many OpenMP modules to invoke (due to the one-to-one mapping described in

Section 3.4). After starting the OpenMP modules, the FSM remains in the same state until all of the

OpenMP modules complete their work (analogous to the blocking behaviour of OpenMP).

Figure 5.2 shows the architecture of a hardware-only system generated for a program where the main

function invokes two OpenMP functions, omp 0 and omp 1, each of which runs on two threads. For an

OpenMP module, the same start signal is connected to all of its instances, as all instances are started at

the same time. The same argument signal (if one exists) is also connected to all instances of the same

OpenMP function, as OpenMP builds a struct that is passed in as a pointer to the function, with each

thread accessing a different field of the struct as its argument during execution. An outlined OpenMP

function does not have a return value; outputs are communicated through memory. All finish signals for

a particular OpenMP function are AND’ed, to make sure that all of its instances finish before the FSM

in the main module can continue to execute.

Note that parallel hardware instances can also access memories, which can be local to a thread (local

RAM), or shared between between multiple threads (shared-local RAM), where the points-to analysis

is used to determine which memories are accessed by which hardware modules. The system generator

automatically creates a round-robin arbiter for each shared-local RAM that is accessed by multiple

Chapter 5. Synthesis of Software Threads to Parallel Hardware-only System 77

omp0_0main

arb
shared-local

RAM

local

RAMFSM

omp1_0

Replicated

ROM0

omp1_1

Replicated

ROM1

omp0_start

omp0_arg

omp0_finish

omp0_0_start

omp0_0_arg

omp0_0_finishlogic
omp0_0_threadID = 0

omp0_1

local

RAM

omp0_1_start

omp0_1_arg

omp0_1_finish

omp0_1_threadID = 1

omp1_start omp1_finish

omp1_0_start

omp1_0_finish

omp1_0_threadID = 0

omp1_0_mem_port

omp1_1_start

omp1_1_finish

omp1_1_threadID = 1

omp1_1_mem_port

Figure 5.2: Hardware-only system architecture for OpenMP.

concurrent hardware modules (an OR gate is created when hardware modules execute sequentially).

For each shared-local RAM, a dedicated memory port is created from the accessing module, so that

independent memories can be accessed in parallel. As in the hybrid flow, we can also replicate read-only

memories across threads (Replicated ROM), which helps to reduce memory contention and improve

performance.

For Pthreads, there is considerable shared functionality with the hybrid flow in the ParallelAPI

pass, as well as new implementation specific to the hardware-only flow. As in the hybrid flow, a call

to pthread create is replaced by a direct call to the threaded function, and pthread join is replaced

with legup pthreadpoll. A global variable is created for each different Pthread to act as its thread

ID. When there is more than one Pthread function, we statically assign a function ID to each different

function. In the hybrid case, the memory-mapped address of the first accelerator for a Pthread function

was used as its function ID, as its subsequent accelerators were accessed by offsetting the base memory-

mapped address with the value of the thread ID. Since we do not have a memory-mapped interconnect

in a hardware-only system, we needed to create a memory-mapped-like feature, which can be used in

hardware to fork and join parallel modules. We again use the thread variable to achieve this. On a call

to a Pthread function, we store into the thread variable, its function ID, together with its thread ID.

We use the top 16 bits of the thread variable to store the function ID, with the bottom 16 bits storing

Chapter 5. Synthesis of Software Threads to Parallel Hardware-only System 78

the thread ID (i.e. function ID << 16 OR threadID). This allows us to use the existing thread variable

without having to create another storage element. Assigning 16 bits to store each portion limits the

maximum number of different Pthread functions, and the number of threads per Pthread function to

65,535, but we think this is more than enough for all practical purposes1. The thread variable is again

used in legup pthreadpoll to determine which parallel instance to be poll.

It is worth nothing that one of the advantages of using an LLVM pass to generate the function ID

and thread ID counters is that, in many cases, the compiler can determine the values of the IDs at

compile time, so that they simply become direct stores of constant values to the thread variable. For

instance, when two different functions with two threads are forked, LLVM can simply turn the storing of

(function ID << 16 OR threadID) into storing four constants: 0 (first thread of first function), 1 (second

thread of first function), 65536 (first thread of second function), and 65537 (second thread of second

function). This removes the need to load and increment a thread ID counter, which becomes a memory

load and an addition in hardware. However, even if the compiler is not able perform such optimizations,

due to control flow that cannot be resolved at compile time, our generated logic will work at runtime.

legup pthreadpoll (replaces pthread join) uses the thread variable to check whether its corre-

sponding parallel instance finishes execution, and retrieve its return value. Unlike in software wrapper

generation, we do not create a function definition for legup pthreadpoll, but we simply use the call to

legup pthreadpoll as a placeholder to determine when a parallel module needs to be joined. Before

a call to legup pthreadpoll, we create a load to retrieve the value of the thread variable. Then in

the Hardware Backend, the system generator creates multiplexers which can select between all Pthread

modules, and the value of the thread variable is used as the select signal of the multiplexers. The

multiplexers are used to check the finish signal of a Pthread module, and retrieve its return value.

Generating the multiplexers directly in the Hardware Backend produces a more efficient hardware im-

plementation (compared to generating LLVM IR that gets compiled to multiplexers), since we know

exactly what kind of hardware to create. This is similar to the hybrid case, where Qsys generates the

memory-mapped interconnect directly in hardware.

Figure 5.3 shows the hardware architecture created for a hardware-only system with two Pthread

functions, each of which uses two threads. As mentioned previously, each thread becomes an independent

hardware core by default. The solid arrows in the figure depict signals for calling and joining Pthread

modules; the dotted arrows indicate signals for memory. An FSM in the caller module (main in this

case) steps through hardware states to control the circuit, and invokes the Pthread hardware modules.

1If needed, the pass can be modified to allocate different number of bits to the function or thread IDs, or even create a
separate variable to store the function ID.

Chapter 5. Synthesis of Software Threads to Parallel Hardware-only System 79

add0main

arb
shared-local

RAM

HW

lock

local

RAM

arb

thread var0

thread var1

thread var2

thread var3

FSM

mult0

Replicated

ROM0

add1

local

RAM

mult1

Replicated

ROM1

add_start

add_thread_ID

add_arg

mult_start

mult_thread_ID

add0_start

add1_start

add0_arg

add1_arg

mult0_start

mult1_start

pthreadpoll

finish

pthreadpoll

return_val

add0_finish

add1_finishpthreadpoll

thread_ID

pthreadpoll

function_ID

mult0_finish

mult1_finish

mult0_return_val

mult1_return_val

logic

mult0_mem_port

mult0_mutex_port

mult1_mem_port

mult1_mutex_port

Figure 5.3: Hardware-only system architecture for Pthreads.

In a non-Pthreaded sequential circuit, when an FSM invokes a hardware module, it remains stalled in

the same state until the hardware module is done, analogous to the behaviour of sequential software

(as well as for OpenMP). However, the FSM is handled differently for Pthreads, as its behaviour is

non-blocking, where the program continues to execute after forking threads. Similarly in LegUp, the

FSM in the caller module continues to execute after invoking the parallel hardware instances. To start

and send arguments to a Pthread module, demultiplexers are generated to steer data to the correct

parallel instance, by using the thread ID as the select signals. This thread ID is the value of the global

variable created for the particular Pthread function. As shown in the figure, the thread ID is sent

out on an output port from the caller module to the demultiplexers used to select an instance of a

Pthread module. After invoking a parallel instance, the caller module stores the thread ID combined

with the function ID into the thread variable. The thread variables are stored in registers, residing in

the caller module. When the FSM reaches the state corresponding to legup pthreadpoll, it stalls until

the hardware instance corresponding to the value of the thread variable is done, matching the software

behaviour of pthread join. The caller module loads the value of the thread variable and sends out

the top 16 bits on the pthreadpoll function ID output port, with the bottom 16 bits driven on the

pthreadpoll thread ID output port. Multiplexers are also created, which uses the function/thread ID

values from their output ports to select the correct parallel instance. A multiplexer selects the finish

signal using the function/thread IDs, which is checked by the caller FSM. Once the finish is asserted, the

Chapter 5. Synthesis of Software Threads to Parallel Hardware-only System 80

caller FSM proceeds to retrieve the return value in the same manner, if one exists for the module. For

memories, Pthread modules can also have local/shared-local RAMs and replicated ROMs, as was shown

for the OpenMP architecture above. Parallel hardware instances (for both Pthread and OpenMP) can

also access hardware mutexes and barriers, where a round-robin arbiter is created for each mutex/barrier

module.

5.2.1 Sharing a Hardware Core Across Threads

As was described in Chapter 3 for the hybrid flow, we also support sharing a hardware core across

Pthreads. The same Tcl parameter used in the hybrid flow, set accelerator function "function name"

--numAccels max number of instances, can be used in the hardware-only flow to constrain the number

of parallel hardware instances created for a Pthread function. With this parameter, the system genera-

tor only creates as many hardware instances as given by max number of instances, and its thread ID

counter resets every time it reaches the maximum value, which forces any additional threads to re-use

existing hardware instances. Again, the function/thread IDs are stored into the thread variable to keep

track of which thread maps to which hardware instance. The main difference in the hardware-only flow

is that, since the memory-mapped interconnect does not exist, and wrapper functions are no longer

generated, the logic necessary to wait for a hardware instance to become available needs to be embedded

into the hardware itself. This is done by changing the FSM logic so that, before invoking a parallel

module that is shared, the FSM checks its finish signal first (similar to how the calling wrapper in the

hybrid case first polls on a shared accelerator to check if it is available for use). If the parallel instance

is already being used, the FSM remains stalled, and once the instance is available for use, the caller

invokes the instance, and the FSM continues to execute.

5.3 Experimental Study

In this section, we study the performance, area, and energy-efficiency of three different hardware-only

architectures, where we use the same architecture notations used in Section 4.5. Arch. 1 denotes a

sequential hardware-only system compiled from single-threaded software. Arch. 2 denotes a parallel

hardware-only system with three concurrently operating modules, compiled from a multi-threaded pro-

gram with Pthreads. Lastly, Arch. 3p denotes a multi-threaded and pipelined hardware-only system,

where each concurrent hardware core is also pipelined within. We use the same set of benchmarks de-

scribed in Section 4.5.1, where there were four out of six pipelinable benchmarks. We again use a p

subset for each architecture that includes the results for only the pipelinable benchmarks.

Chapter 5. Synthesis of Software Threads to Parallel Hardware-only System 81

5.3.1 Results

Tables 5.1 and 5.2 show the geometric mean results over all the benchmarks for the sequential (Arch. 1/1p),

multi-threaded (Arch. 2/2p), and multi-threaded and pipelined (Arch. 3p) architectures of the hardware-

only systems. The complete circuit-by-circuit results are presented in Appendix D. We report four met-

rics, in terms of performance, area, power, and efficiency, and the last three lines of both tables show

the relative ratios, comparing Arch. 2 to Arch. 1, Arch. 3p to Arch 1p, and Arch. 3p to Arch. 2p.

Looking at the ratios between the architectures in Table 5.1, we see significant improvements in

performance for Arch. 2 and especially for Arch. 3p, over Arch. 1. With three parallel cores, Arch. 2

shows 2.81× and 2.6× speedups in clock cycles and wall-clock time respectively, with area increasing by

2.70× for ALMs, 2.84× for registers, 2.50× for DSPs, and 1.77× for M10Ks. As was shown in previous

chapters, memory bandwidth is a crucial factor for performance. Thus for Arch. 3p, we partitioned

the input/output memories in C and also replicated constant memories across threads with LegUp

(described in Section 6.5.3) to minimize memory stalls. With memory partitioning/replication and three

pipelined cores operating concurrently, Arch. 3p shows vast speedups over Arch. 1p, where clock cycles

is improved by 125.5×, and wall-clock time is improved by 122.2×. Fmax stays relatively constant

compared to Arch. 1p, with the area increasing by 2.28× to 4.1× for the different types of FPGA blocks.

The ratio between Arch. 3p and Arch. 2p exhibits the performance benefits of combining pipelining

with memory partitioning/replication. Compared to having three non-pipelined cores, Arch. 3p shows

45.56× speedup in wall-clock time, although pipelining also increases register usage by 51.3%, and

memory partitioning/replication increases M10K usage by 2.52×.

Table 5.2 shows the power and efficiency (energy consumption and area-delay product) results of

the three architectures. The area-delay products were calculated in the same method described in

Section 4.5.2. With three parallel cores (Arch. 2), dynamic power consumption increases by 2.3×,

although total power consumption only increases by 4.2%, when compared to Arch. 1. In terms of

energy-efficiency, we see an improvement of 2.5×, but the area-delay product basically stays the same.

Comparing Arch. 3p to Arch. 1p, dynamic power consumption increases by 3.5× (total power by 7.5%),

but the large improvements in performance leads to 113.7× better energy-efficiency and 2.4% area-delay

product (41.7× improvement). Comparing Arch. 3p to Arch. 2p, we see a 71.2% increase in dynamic

power, but also 43.5× better energy-efficiency with 2.8% area-delay product (36.1× improvement).

Chapter 5. Synthesis of Software Threads to Parallel Hardware-only System 82

Table 5.1: Geometric mean performance and area results for hardware-only systems.

Performance Area
Architecture Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks

Arch. 1 2,064.10 342,846.46 166.10 3,931.72 7,987.11 48.86 5.83
Arch. 1p 2,669.84 481,973.16 180.53 2,880.20 5,909.52 43.12 7.03
Arch. 2 792.40 121,838.05 153.76 10,609.17 22,698.89 122.05 10.32
Arch. 2p 995.44 168,556.69 169.33 7,060.69 16,032.12 98.28 6.82
Arch. 3p 21.85 3,840.87 175.78 9,406.79 24,251.33 98.28 17.18

Arch. 2 / Arch. 1 Ratio 0.384 (2.60×) 0.355 (2.81×) 0.926 2.698 2.842 2.498 1.771
Arch. 3p / Arch. 1p Ratio 0.008 (122.19×) 0.008 (125.49×) 0.974 3.266 4.104 2.280 2.443
Arch. 3p / Arch. 2p Ratio 0.022 (45.56×) 0.023 (43.89×) 1.038 1.332 1.513 1.000 2.521

Table 5.2: Geometric mean power and efficiency results for hardware-only systems.

Power Efficiency
Architecture Static Power Dyn. Power Total Power (mW) Energy (µJ) Area-delay Product

Arch. 1 1,328.75 48.26 1,393.94 2,877.24 25,358.72
Arch. 1p 1,328.77 45.64 1,396.86 3,729.38 25,839.86
Arch. 2 1,329.24 111.13 1,452.28 1,150.78 25,454.88
Arch. 2p 1,329.03 93.37 1,432.48 1,425.95 22,398.69
Arch. 3p 1,329.65 159.86 1,501.21 32.80 620.43

Arch. 2 / Arch. 1 Ratio 1.000 2.303 1.042 0.400 (2.50×) 1.00 (1.00×)
Arch. 3p / Arch. 1p Ratio 1.001 3.503 1.075 0.009 (113.69×) 0.024 (41.65×)
Arch. 3p / Arch. 2p Ratio 1.000 1.712 1.048 0.023 (43.47×) 0.028 (36.10×)

5.4 Summary

In this chapter, we presented a hardware-only flow (processor-less) which allows one to compile a multi-

threaded software program with Pthreads and OpenMP to a purely hardware platform. By removing the

processor and the Qsys system builder requirements, we can create a completely generic parallel hardware

system. All of the generation of software and hardware needed to handle threads are done behind the

scenes, without requiring any interaction from the user. As in the hybrid flow, we also provide a method

to share a hardware core across multiple threads. Results show that the multi-threaded and pipelined

hardware with memory partitioning and replication can achieve more than two orders of magnitude

better performance and energy-efficiency compared to sequential hardware.

This work is to be submitted to IEEE Transactions on Very Large Scale Integration Systems (TVLSI),

along with the work presented in Chapter 4.

Chapter 6

Resource and Memory Management

Techniques for HLS of Parallel

Hardware

6.1 Introduction

In the previous chapters, we described our system-level implementations which allow one to compile

a multi-threaded software program to either a hardware-only system, or to a processor-accelerator hy-

brid system. In this chapter, we discuss architectural-level optimizations which pertain to generating

more efficient hardware. In particular, we describe resource and memory management techniques for

improving the performance and area of parallel hardware generated by HLS. One direction investigated

pertains to how modules in the HLS-generated parallel hardware should connect to one another: 1) with

a nested topology, or 2) with a flat topology. In the nested topology, hardware modules are created in

a hierarchical manner – modules are instantiated inside the modules that use them. Conversely, the

flat topology instantiates all hardware modules at the same level of hierarchy. For the flat topology, we

describe a system generator that automatically generates the required interconnect between all hardware

modules, as well as flexibly shares or replicates functions, functional units, and memories. In the pres-

ence of parallel threads (parallel hardware), the system generator also automatically inserts arbitration

and deadlock-prevention circuitry.

We also explore methods to reduce memory contention among hardware units that operate in parallel

83

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware84

by investigating three different memory architectures which use: 1) a global memory controller, 2) local

memories, and 3) shared-local memories. Local and shared-local memories are dedicated RAM blocks for

a single or a set of hardware modules, and help to increase memory bandwidth by allowing concurrent

memory accesses. We use a points-to analysis to determine, at compile time, which array a pointer

can reference, and use this information to designate memories as global, local, or shared-local. We also

describe how the points-to analysis can be used to improve our support for mutexes and barriers. Lastly,

we consider memory replication to localize memories in hardware modules, and convert small memories

to registers to further improve performance and memory usage.

6.2 Background

A number of prior works have focused on the architecture of HLS-generated circuits. In [69] and [35], the

authors investigated implementing efficient pipelined hardware for multi-threaded kernels. The works

in [31, 29], and [68] implement parallel hardware architectures with Pthreads and OpenMP using HLS.

Altera’s OpenCL compiler [100] also creates deeply pipelined hardware from massively parallel OpenCL

kernels. Vivado HLS [138] provides knobs for pipelining both entire functions and loops. Implementing

efficient loop pipelining hardware was investigated in [24, 153, 9, 55]. Such prior works pertain mainly

to the micro-architecture of the data-path produced by HLS. Conversely, our work considers the macro-

architecture, specifically, how functions, memories, and functional units can be connected together within

a larger surrounding circuit and how they can be shared or replicated between parallel modules. In fact,

the techniques proposed in this chapter are compatible with prior work on synthesis of pipelined hardware

modules.

In terms of resource sharing, [40] discusses sharing across call hierarchies using the flat topology,

but not in the context of parallel-operating hardware. Sharing resources were investigated in [19, 34],

but only within a module. In [44], resources are shared between loops for optimizing throughput. In

contrast, our work investigates resource sharing between parallel threads. To our knowledge, no other

work has analyzed the impact of circuit topology together with function, memory, functional unit sharing

and replication on the area and speed of parallel HLS-generated hardware.

6.3 Circuit Topology

Unlike software compilers, which target fixed processor architectures, HLS offers the freedom to evaluate

and choose the best architecture for a specific application. The circuit topology considered here is a

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware85

main

a b

c

d

e

(a) Call graph

a

main

c

b

c

d

e

(b) Circuit Architecture

Figure 6.1: A call graph and its circuit architecture using nested topology.

c

b
arg_A

logic
arg_B

return_val
logic FU

Figure 6.2: Internal architectures of module b and c.

dimension along which such a design’s architecture may be optimized. In this section, we describe two

circuit topologies, the nested topology and the flat topology. In the nested topology, each hardware

module is self-contained, meaning that, aside from data in memories, it does not rely on other hardware

modules outside of its own module hierarchy. Figure 6.1a shows a call graph of a program, and Figure 6.1b

shows the corresponding nested circuit architecture. As depicted, the architecture is hierarchical, with

main being the top-level module, and its hardware modules recursively instantiated inside. Note that

due to the hierarchical structure, there are two copies of module c. This is the default architecture used

by Vivado HLS, and was also used by LegUp before this work. The hierarchical approach precludes the

sharing of modules by other modules, potentially leading to higher area consumption.

Figure 6.2 shows the internal architectures of modules b and c. Observe that module c has a

functional unit (FU) instantiated within. In the nested topology, the arguments of a function become

input ports of its hardware module, and the return value (if any) becomes an output port of the module.

The advantage of the nested topology lies in its simplicity: connectivity between modules is entirely

local. Any modules used by another module are directly instantiated within the module itself and

connected inside. The hardware module interface is aligned to that of software (i.e. arguments passed

in become input ports, any data returned become output ports). Each hardware module is also self-

contained, so if one needs to re-use a particular module in a new hardware system, simply instantiating

the particular module is sufficient, as this will also bring with it all of its sub-modules.

However, the nested architecture is inefficient in a number of ways. In the input software, if a

function is called by multiple different functions, the nested topology replicates hardware, as was shown

in Figure 6.1b. Likewise, since functional units are instantiated within hardware modules, sharing is also

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware86

FU

a

d

main b

c

e

inter-

connect

Figure 6.3: Circuit in Figure 6.1 with flat circuit topology.

precluded for them. Given that dividers or floating-point units are generally large, this can considerably

increase overall circuit area, particularly if such functional units are used in many different modules.

With the architecture shown in Figure 6.1b, two instances of the functional unit are also created, since

there are two copies of module c in hardware. Not that this occurs even when the modules are running

sequentially (meaning that only one of the functional units will be utilized at a time), leading to an

unnecessary increase in circuit area.

Figure 6.3 shows the circuit architecture using the flat topology, for the same circuit shown in

Figure 6.1. In the flat architecture, all modules reside at the same level of hierarchy, which enables

sharing of functions and functional units. As shown, only one instance of module c is created, which is

shared by modules a and b. The system generator, described in the next section, automatically creates

the interconnect to directly connect or share functions, functional units, and memories in both sequential

and parallel-execution modes.

6.4 System Generator

For the flat circuit topology, we built a system generator to automatically connect all communicating

hardware components in the system. The system generator handles both sequential and parallel execu-

tion, generating a different interconnect optimized for each case. It is similar to other system generators,

such as Qsys, except that it is completely integrated into the HLS framework. As such, it requires no

additional input from the user; whereas, with Qsys, the user must specify which components connect to

which other components, through which type of interface.

Our system generator automatically creates the interconnect by traversing the function call graph

of the input program. All connections are point-to-point, allowing concurrent independent transfers.

Each connection is composed of a pair of interfaces, a master interface and a slave interface. A master

interface initiates a transfer, and a slave interface responds to the transfer. For instance, a function

accesses a memory through its master interface (composed of address, enable/write enable, read/write

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware87

memory

arg_A

arg_B

return_val

function

d

function

e

function

b

function

c

function

a

arbA

arbB

Figure 6.4: An example interconnect generated by system generator.

data ports), and the memory responds through its corresponding slave interface. A single module

can have multiple interfaces, allowing concurrent transfers (i.e. a function can have multiple interfaces

to access multiple memories simultaneously, as well as interfaces to call other functions, and access

functional units). The widths of the interfaces depend on the types of data that the interfaces are

used to carry. For example, for an argument interface of a function, its width is sized according to the

bitwidth of the argument data type. Similarly, for a memory interface, read/write data signals are sized

according to the width of data that the memory is holding. Control signals, such as enable and write

enable, are 1-bit wide. When multiple master interfaces are connected to a single slave interface, with

the master components executing sequentially, the system generator creates a simple OR gate to handle

contention efficiently. The OR suffices in this case, as long as inactive masters output logic-0 to their

corresponding OR inputs. When multiple parallel masters are connected to a slave, a round-robin arbiter

is automatically created. This differs from Altera’s Qsys, which creates a round-robin arbiter regardless

of whether the components are executing concurrently or sequentially, negatively impacting area and

Fmax. An example interconnect generated by the system generator is shown in Figure 6.4. In this case,

function a and b execute sequentially and share function c, and functions d and e run in parallel and

share a memory. Each memory is dual-ported, so we create a separate arbiter for each port to maximize

memory bandwidth.

The system generator is also responsible for selectively sharing or replicating common hardware mod-

ules, based on a user’s performance vs. area requirements. If a function is parallelized with threads, then

the system generator, by default, creates as many hardware instances of the function as the number of

threads in the input program (unless constrained via the Tcl command discussed in Section 5.2.1). If

the threaded function has descendant functions, it also replicates the descendant functions in hardware

to maximize throughput. For example, Figure 6.5 shows the circuit architecture where main forks two

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware88

FU

function

e0

function

d1

function

e1

function

d0

arb

function

main

(a) With functional
unit sharing.

FU

function

e0

function

d1

function

d0

function

main

FU

function

e1

(b) Without functional
unit sharing.

Figure 6.5: Parallel hardware with/without functional unit sharing.

threads to execute function d, which has a descendant function e1. Sharing (Figure 6.5a) vs. replication

(Figure 6.5b) of functional units or memories is controlled by a Tcl parameter. In the case of replica-

tion, the component is instantiated inside the module which uses it (Figure 6.5b), creating a dedicated

component for that module. Replication of memories is further discussed in Section 6.5.

6.4.1 Automatic Deadlock Prevention

As shown in Figure 6.4, arbiters are generated to handle concurrent accesses by multiple masters to

a shared resource. However, when multiple masters request access to multiple common slaves at the

same time, a deadlock can occur. This is illustrated in Figure 6.6a, where functions d0 and d1 request

access to both mem0 and mem1 in the same clock cycle (with each function have a dedicated memory

port to each memory). In the example, arb0 grants access to function d0, and arb1 grants access to

function d1. Both functions are not able to continue as they are both waiting to receive a grant for

the “other” memory – a deadlock2. To prevent deadlocks, our system generator automatically inserts

deadlock prevention modules where necessary.

There are two parts to the deadlock prevention module, the request module and the data receiver

module, denoted as rq and rx in Figure 6.6b. This set of deadlock prevention modules is created for

each dedicated memory interface for each function (rq/rx 0 and 1 are for function d0, and rq/rx 2 and

3 are for function d1 in Figure 6.6b). The request module handles the request for a master interface to

its connecting slave arbiter. It ensures that once a master interface has received a grant from its arbiter

(which allows the master to access the slave in the same cycle, and the slave, in this case memory,

1If the descendant function is only called once, it may be beneficial to inline the function, to allow additional compiler
optimizations. This can be controlled by the user through a Tcl parameter.

2A function’s FSM remains stalled as long as its stall signal is asserted. Its stall signal is a logical OR of all stalls for its
master interfaces from their arbiters.

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware89

mem0

function d1function d0

arb0

mem1

arb1

grant grant
stall

(a) A deadlock situation.

arb0 arb1

rq0rx0

mem0 mem1

function d1function d0

rx1 rq2 rq1 rx2 rx3rq3

(b) With deadlock prevention
modules.

Figure 6.6: Circuit architecture with/without deadlock prevention modules.

responds by returning its data after its latency amount of cycles), it does not make the same request

again (requests are state dependent, thus being stalled in the same state would keep the request signal

high continuously).

We re-illustrate the previously described deadlock scenario, this time with the deadlock prevention

modules. In the first clock cycle, both functions d0 and d1 request to access both mem0 and mem1, and

arb0 grants access to function d0, with arb1 granting access to function d1. When an access is granted,

the corresponding slave is accessed in the same cycle, hence in this case, function d0 accesses mem0 and

function d1 accesses mem1 in the first clock cycle. In this example, we assume that memories have a

one cycle access latency. In the next clock cycle, data is returned from mem0 to function d0, with the

data also being stored in rx0. Similarly, data is returned from mem1 to function d1, and is stored in

rx3. In the same clock cycle (i.e., second), the request modules lower the requests signals that have

been granted. Hence, rq0 lowers the request from function d0 to mem0, and rq3 lowers the request from

function d1 to mem1. Now only the requests from function d0 to mem1 and from function d1 to mem0

remain for arbitration, which are independent to each other, and thus a deadlock does not occur. Hence

the memories are again accessed, and in the subsequent cycle (i.e., third) the data is returned from mem1

to function d0, and from mem0 to function d1.

The circuit for the request module (i.e., rq) is simple, it contains a register which: 1) stores a 0

when the grant is given for a master interface, but the stall is still asserted for the function (due to

stalls for its other master interfaces), and 2) otherwise stores a 1. This register output is AND’ed with

the request from the master interface, preventing the request signal to the arbiter from being kept high,

once its grant is received. In the example above, rq0 is stored a 0 once the grant from arb0 is received,

hence AND’ing this with the request from function d0 lowers the request to arb0. The request modules

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware90

essentially ensure that after all of the requests have been granted once, the function is able to continue

to execute, and it can work for any number of requests.

Note that if concurrent requests from the same function reach their corresponding memories at

different clock cycles due to contention, the data from the memories also returns at different cycles. In

the example above, the data from mem0 to function d0, and the data from mem1 to function d1 returned in

the second clock cycle (the memories were successfully accessed in the first clock cycle, and we assumed

that memories have a one cycle access latency), but the data from mem1 to function d0 and the data

from mem0 to function d1 returned in the third clock cycle. This results in incorrect execution, since the

functions expected both data items at the same time (i.e., were requested in the same FSM state).

The purpose of the data receiver module is to ensure that the data returned to the master is received

correctly, by buffering the data, as appropriate. If there were no stalls, the data receiver passes through

the returned data directly, otherwise it returns the buffered data. Hence in the example, rx0 and rx3

return their buffered data, whereas rx1 and rx2 pass the data through directly. The circuit for the data

receiver is also straightforward: It contains a shift register, with its size equal to the latency of the slave,

and it shifts in 1 into the LSB when the grant is given from the arbiter. When the MSB of the shift

register contains a 1, it indicates that the slave is returning its data in that clock cycle. At this time,

the data receiver stores the returning data in its internal registers, but also passes it through directly

to the master (if the master was not stalled, the data is needed in that clock cycle). In subsequent

clock cycles, it returns the stored data, until the data is overwritten by new data. The data receiver

is parametrized to allow connecting to slaves with any latency and data width. For instance, it can be

connected to a divider, which has a latency equal to its bitwidth, as well as a multiplier or a memory,

which have shorter latencies. It can also work for variable latency operations (i.e. off-chip memory

access), by enabling the shift register only when the valid signal3 from the variable latency operation

is received. Although there are many prior works on implementing mechanisms to avoid deadlocks

(including [43, 42, 148]), our method of using the set of request and data receiver modules provide a

simple and modular approach, which do not require user code changes in software or modifications to

the internal architectures of hardware modules.

In summary, our system generator creates an efficient interconnect completely automatically, ben-

efiting from the integration within the HLS framework and access to the program’s call graph in the

compiler. It handles arbitration for sequential and parallel execution modes, allows flexible sharing or

replication of functions and functional units, and inserts dead-lock prevention modules when necessary.

3IP cores for variable latency operations, such as off-chip memory, have a valid signal to indicate that the data being
returned is valid in that cycle.

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware91

datapath

datapath

datapath

d

c

a

datapath

datapath

datapath

memory

c

b

main

(a) Sharing a memory in
nested topology.

memory

a

d

main

b

c

(b) Sharing a memory in
flat topology.

Figure 6.7: Memory sharing in nested/flat topology.

We believe these are unique features of our work.

6.4.2 Advantages of Flat Topology with the System Generator

The flat circuit topology enables the efficient sharing of modules. In the nested topology, to share a

memory between two modules, the accessing modules need connectivity to the module where the memory

is instantiated. If an accessing module is deep in the function hierarchy, memory ports must be created

and signals must be passed across all intermediate modules, as shown in Figure 6.7a (left side of figure).

In Vivado HLS (and with LegUp prior to this work), multiplexers are created at each level of hierarchy

(in the sequential case; i.e. when modules sharing the memory are not operating concurrently). The size

and the depth of the multiplexers grows linearly with the number of functions that access the memory

and the depth of the call hierarchy. Modules instantiated multiple times due to the nested topology also

increase the multiplexer size unnecessarily, as shown in Figure 6.7a for function c. This leads to poor

performance and area. Functions can be inlined to remove some multiplexers, but this may also increase

circuit area. In the flat topology, all shared modules are instantiated at the same hierarchy level, and

we zero out all memory signals when they are not being used, so that our system generator can simply

connect them through an OR gate (in the sequential case), as shown in Figure 6.7b. In the parallel case,

OR gates are replaced with arbiters, as is done with functional unit sharing described earlier. In Vivado

HLS, we were not able to share functional units across different functions4. As for Altera’s OpenCL

Compiler, it simply inlines all descendants functions of a kernel, eliminating the option to share functions

or functional units.

4The Vivado HLS user manual shows that the config bind configuration with the min op option can be used to share
functional units globally in a program. However, when we tried to share a divider in two separate functions, Vivado HLS
created a divider inside each of the functions.

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware92

d0

main

arb

global

memory

controller

shared local

mem 0

HW

lock

register

Replicated

ROM0

d1

Replicated

ROM1

local

mem

shared local

mem 1
arb

arb

arb

arb

Figure 6.8: Circuit using the different types of memories.

6.5 Memory Architectures

Memory architecture can play a critical role in any hardware system, and memory bandwidth is often the

limiting factor for performance. A key architectural feature of FPGAs is the availability of on-chip block

RAMs which provide low-latency memory accesses. Block RAMs are distributed throughout the chip,

and can be accessed in parallel. There are also an abundant number of registers, which can also be used

to store data. We therefore examine the different ways we can make use of the block RAMs and registers

to reduce memory contention, in the presence of parallel operating hardware. We first consider three

different memory architectures which use: 1) a global memory controller, 2) local memories, and lastly

3) shared-local memories. We use points-to analysis to designate arrays for implementation in global,

local, and shared-local memories. Shared-local memories are shared by multiple modules in a system,

hence require logic to handle contention, which may increase circuit area and latency. To mitigate

this, we investigate replicating constant (read-only) shared-local memories across parallel modules to

eliminate the overhead of arbitration logic. We also show how points-to analysis can be used to efficiently

implement locks and barriers for thread synchronization. Lastly, we consider converting small memories

to registers to lower memory usage and latency. An example circuit containing all of these features is

shown in Figure 6.8. In the figure, the functions main, d0 and d1 execute in parallel, and they share the

global memory controller, shared-local memories 0 and 1, a register module, as well as a hardware lock

module. For simplicity, only one port of memory is shown and the deadlock prevention modules are also

not shown. Each component is accessed through a set of dedicated ports, allowing concurrent accesses.

6.5.1 Points-to Analysis

To intelligently designate arrays for implementation in global, local, shared-local memories, we use a

points-to analysis, which determines which memory locations a pointer can reference. There have been

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware93

many points-to analysis algorithms developed by the compiler community. Andersen [5] described the

most accurate of these approaches, which formulates the points-to analysis problem as a set of inclusion

constraints for each program variable, which are then solved. Steensgaard [67] presented a less accurate

points-to analysis, which used a set of type constraints modeling program memory locations that can be

solved in linear-time. In this work, we use Andersen’s points-to analysis [5] which was implemented in

the LLVM compiler by [89]. For each memory access in a program, the points-to analysis returns a set,

which contains all the arrays the address can possibly point to. If it returns a set of size 1, it indicates

that the address can only point to a single array, which will be located in one logical hardware RAM by

the HLS tool. Otherwise, the address points to multiple arrays, and it needs to be resolved at run-time.

Points-to analysis algorithms have varying levels of accuracy and may be overly conservative, but for

programs without dynamic memory, recursion, and function pointers, most pointers are can be resolved

at compile time [66].

6.5.2 Global Memory Controller

The purpose of the global memory controller is to automatically resolve pointer ambiguity at run-time.

The global memory controller is only created if there are pointer references that cannot be resolved

at compile-time with the points-to analysis (i.e. pointers pointing to multiple arrays). Its architecture

is shown in Figure 6.9. For clarity, some of the signals are combined together in the figure. Even

though the figure depicts a single-ported memory, all memories are dual-ported by default. The memory

controller steers memory accesses to the correct RAM, by using a tag, which is assigned to each array

in the program by the HLS tool. A tag is set to be the top 9-bits (which can address up to 512 global

memories; this bitwidth is easily configurable) of an incoming address, and it is used to determine which

memory block to enable, with all other memory blocks disabled. The same tag is used to select the

correct output data between all memory blocks. The lower bits of the address are used to get the offset

into the RAM. Each block RAM has latency of one cycle, and the output of the multiplexer is also

registered (to improve Fmax), making a memory access two cycles by default.

The advantage of this memory controller is that it can support generic pointers and resolves pointer

references at run-time (by using the tags). This permits the support of a wider range of input pro-

grams, including those which may not be amenable to pointer analysis. However, there are a number

of drawbacks to this memory architecture, in terms of its performance and area. First, any memories

in the memory controller must be accessed sequentially. This is because the memory being accessed is

determined at run-time, and hence needs to be accessed through a shared set of memory ports. This

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware94

memA

memB

en

en

=

=
3

2

addr/data_in

en/write_en
tag

data_out

Figure 6.9: Global memory controller architecture.

limits memory accesses to two per cycle (owing to the underlying dual-ported memories). In addition,

the output multiplexer of the memory controller grows linearly in size with the number of RAMs. In-

creasing the number of global memories can hurt both the Fmax of the circuit as well as its area. The

performance and area deterioration becomes worse when using the global memory controller with the

nested circuit topology, as was shown in Figure 6.7a, due to the large amount of multiplexing required

to connect to the memory controller. Despite this, the memory controller ensures that the circuit can

handle all types of pointer accesses, and may be needed for some programs.

6.5.3 Local and Shared-local Memories

Using the points-to analysis, we can designate arrays in the program to implement in local and shared-

local memories. An array is designated into a local or a shared-local memory if the points-to analysis

can determine that it is never referenced by a pointer that points to multiple arrays. If such an array

is only accessed by a single function, it is designated as local memory. Otherwise, if it is referenced in

multiple functions, it becomes a shared-local memory. Each local and shared-local memory is accessed

through a dedicated set of memory ports, allowing concurrent memory accesses among the memories. A

local memory is instantiated inside the module which accesses it, hence connected directly, and a shared-

local memory is instantiated outside the module, with an arbitration unit created to handle memory

contention between its users. Because local and shared local memories have limited numbers of accessors,

the memory latency is set to one clock cycle. We have empirically found that this improves the overall

performance (the latency can also be easily configurable by the user). In Vivado HLS, memory access

latencies are set to two cycles for all memories. Within local and shared-local memories, we perform a

number of optimizations to improve performance. As described below, we replicate read-only memories,

and convert memories to registers. We can also implement synchronization constructs efficiently with

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware95

the points-to analysis.

Constant Array Replication

Constant arrays are implemented in read-only memories (ROMs), and as such, can safely be replicated in

each accessing module. Although replication increases memory usage, for memory-intensive applications,

where many threads contend for the same memories, it can be beneficial to create a dedicated memory

for each thread. By localizing the memory to each thread, we can improve performance by reducing

stalls due to contention, and also decrease area by removing the arbitration logic. Enabling this feature

is controlled through a Tcl parameter in our work.

Memory to Register Conversion

By default, LegUp HLS implements all arrays in block RAMs. However, for small arrays with few

elements, implementing them in registers may be beneficial to reduce memory usage. In LLVM, global

variables are treated the same way as global arrays. Therefore, a naive implementation would use an

entire RAM to store a single global variable. In LegUp, we detect when an array has a single element,

or if it is a global variable, and we store it in a register module. LLVM has an existing compiler pass

called mem2reg, which promotes memory to registers [78], however we found that the pass works only

in a very limited number of cases, necessitating this optimization. If the converted register is used by a

single module, we create the register inside the module, or if it is used by multiple modules, we create a

register module outside, with the system generator connecting it to all of its accessors. Similar to how we

had set the memory latency to 1 clock cycle for local and shared-local memories, we can actually set the

memory load latency for these registers to 0 clock cycles, further reducing memory latency. In addition,

since the load latency is 0, the register outputs are directly connected to the accessing modules, and do

not need to connect through the data receivers, reducing area.

As described, we can flexibly adjust the memory latencies of the different types of memories to

optimize performance, with global memories having 2 cycles, local/shared-local memories having 1 cycle,

and memories converted to registers having 0 cycle.

Handling Synchronization

With the points-to analysis we also improve our support for locks and barriers. Prior to this work, all

locks and barriers needed to be accessed through a set of shared memory ports, which were also shared

with memories. This not only limited concurrent accesses to different locks/barriers, but also limited

memory bandwidth. With the points-to analysis, we can access multiple locks and barriers concurrently,

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware96

and independently of other memories. To do this, we treat the synchronization variables as memory

variables, and classify them as a shared-local memory (since they are accessed by multiple modules).

Points-to analysis returns a list of functions which use the synchronization variable. Then, we create

dedicated ports from each function to each lock/barrier variable. When multiple locks are used in a

program, they each have dedicated ports and can be accessed concurrently. Again, the system generator

automatically creates arbiters and dead-lock prevention modules for each lock/barrier variable.

The actual operation of the locks and barriers remain mostly the same as what was described in

Section 3.4.1. With each lock/barrier variable replaced with a hardware lock/barrier module, the com-

munication with the modules is achieved through memory loads and stores.

6.6 Experimental Study

In this section, we study the impact of the different circuit and memory architectures on the performance

and area of parallel hardware. We consider in total 8 different architectures:

1. Nested topology with a global memory controller.

2. Flat topology with a global memory controller.

3. Architecture 2 plus divider sharing across threads.

4. Architecture 3 plus multiplier sharing across threads.

5. Architecture 4 plus local, shared-local memories (all memories have latency of 2 cycles).

6. Architecture 5 plus memory to register conversion (latency of local/shared-local memories set to

1 cycle, register module has latency of 0 cycle).

7. Architecture 6 plus constant memory replication across threads.

8. Architecture 7 minus multiplier sharing across threads.

With each successive architecture, we enable/disable a feature, allowing us to analyze its impact in

isolation. Architectures 1, 2, 3, and 4 have no local or shared-local memories. A global memory

controller can be used in any of the eight architectures, but is only created for benchmarks which require

it. Comparing architectures 1 and 2 reflects the utility of the flat architecture vs. the nested architecture.

With architectures 3 and 4, we can examine the impact of sharing functional units. Architecture 5

shows the impact of having dedicated memories with local and shared-local memories, and Architecture

6 illustrates the effect of reducing the memory access latencies. With, Architecture 7, we can investigate

the effect of memory replication on memory contention, and lastly, with Architecture 8, we analyze the

area/performance impact of disabling multiplier sharing across threads. For the rest of this chapter,

each architecture is referred to by its number (i.e. Arch. 1 = nested with global memory controller). We

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware97

use the hardware-only flow in this work, where the entire program is compiled to hardware.

6.6.1 Benchmarks

We use a total of 15 benchmarks, each of which is parallelized with Pthreads. Each benchmark is

described below.

• Alphablend: Alphabends two images.

• Barrier: An accumulation benchmark which uses a barrier.

• Blackscholes: Options pricing via a Monte Carlo approach.

• Box Filter: A convolution filter commonly used in image processing. C implementation of the filter

adopted from [2].

• DF: Adopted from the CHStone [37], it performs double-precision floating-point operations using

64-bit integers.

• Division: Integer division of two arrays.

• Dot Product: Dot product of two arrays.

• Hash: Four different hashing algorithms, with the number of collisions compared at the output.

• Histogram: Accumulates integers into 5 equally-sized bins.

• Line of Sight: uses the Bresenhams line algorithm [8] to determine whether each pixel is visible

from the source.

• Mandelbrot: An iterative mathematical benchmark which generates a fractal image.

• Matrix Multiply: matrix multiplication of two arrays.

• MCML: Adopted from the Oregon Medical Laser Centre [60], it simulates light propagation from

a point source in an infinite medium with isotropic scattering.

• Mutex: An accumulation benchmark which uses a lock.

• Vector Add: Performs vector addition of two arrays.

Other than the Mutex benchmark, Barrier and MCML benchmarks also use Pthread locks. Each

benchmark was synthesized, placed and routed into the Altera Stratix V FPGA (5SGSMD8K1F40C2)

with Quartus 15.0.

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware98

Time Execution Cycles Fmax Logic Util. DSPs M20Ks
262.86 45562.53 173.34 3727.72 11.03 39.38

Table 6.1: Geomean baseline results (Arch. 1).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Execution Cycles Fmax Logic Util. DSPs M20Ks

R
a

ti
o

 v
s.

 A
rc

h
.

1

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

Figure 6.10: Geomean performance and area results for each architecture.

6.6.2 Results

Table 6.1 shows the geometric mean results across all benchmarks for Arch. 1, and Figure 6.10 shows

the geometric mean results for each architecture relative to Arch. 1. The complete circuit-by-circuit

results are presented in Appendix E. There are three performance metrics (total wall-clock time (#

cycles × clock period), total number of clock cycles, and Fmax of the circuit) and three area metrics

(logic utilization, DSP blocks, and M20K blocks). M20Ks are Altera’s on-chip RAMs that can each hold

up to 20 Kbits of data.

The general trend is that, as we progress from Arch. 1, towards the Arch. 8, results improve in terms

of both performance and logic utilization. Comparing Arch. 1 and 2, both logic utilization and Fmax

improve slightly, owing to the previously described efficiency of the flat topology vs. the nested topology.

With the Fmax improvement, geomean wall-clock time improves by 4.7%. With divider sharing in

Arch. 3, logic utilization and M20K usage drop. Altera’s divider cores use M20Ks within, thus memories

are also saved in sharing dividers. There is virtually no impact on execution cycles (0.1% increase). This

is because in our system, threads are started in a staggered manner (i.e. one after another), and dividers

are pipelined (to the depth equal to the operand’s bitwidth). Thus, when sharing dividers across threads,

stalls caused by divider contention among threads are minimal. When sharing multipliers in Arch. 4,

DSP usage drops as expected, and execution cycles are again affected minimally. Logic utilization

does increase, however, due to multiplexers required on the inputs of the multipliers. In Arch. 3, logic

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware99

utilization decreased when sharing dividers only, since the decrease from sharing dividers exceeds the

increase from the added input multiplexers. Performance significantly improves in Arch. 5, owing to

the local and shared-local memories. Compared to Arch. 4, execution cycles and total execution time

improve by 14.3% and 32.6%, respectively. The local/shared-local memories also shrink the expensive

multiplexers in the global memory controller (as described in Section 6.5.2), improving logic utilization

and Fmax by 11.1% and 27.3%, respectively. M20K usage drops with local memories, since Quartus

is able to perform more optimizations, such as reducing a RAM block to registers, when memories

directly connected to the data-path. When RAMs are created inside the global memory controller,

behind multiplexers, Quartus is not able to perform such optimizations. However, Quartus cannot

automatically convert all small memories to registers, which we handle in Arch. 6.

With memory-to-register conversion, M20K usage decreases by 34.1% from Arch. 5, and logic utiliza-

tion decreases by 7.1%. We also reduce the memory-load latencies to 1 clock cycle for local/shared-local

memories and to 0 clock cycles for memories converted to registers. This improves both execution cycles

and wall-clock time by an additional 5.7%, compared to Arch. 5. In Arch. 7, we localize ROMs to

each thread through replication to reduce memory contention between threads. With this, execution

cycles and total execution time improve by 5.7% and 3.6% respectively, relative to Arch. 6. M20K usage

increases, however, by 1.97× due to replication. In Arch. 8, we disable multiplier sharing across threads,

as the input multiplexers can increase circuit area and lower Fmax. The execution cycles improves min-

imally, and the logic utilization improves by 10%, compared to Arch. 7. As expected, DSP usage also

increases significantly by 2×. Overall, Arch. 8 yields the best performance and logic utilization results

out of all architectures, with an improvement of 41.6% (wall-clock time) and 38.3% (logic utililization),

compared to Arch. 1.

We also calculate the area-delay product, again using the data from [64]. Figure 6.11 shows the

ratios of the geometric mean area-delay product for each architecture when compared to Arch. 1. As

seen in the figure, the area-delay product generally improves from Arch. 1 up to Arch. 6, at which

point it become worse in Arch. 7. This is because the performance generally improves up to Arch. 6,

with the area also significantly reduced by sharing functional units, reducing multiplexing logic, and

converting RAMs to registers. From Arch. 7, the performance continues to improve slightly, however,

area is increased significantly when replicating memories in Arch. 7. Area-delay product is slightly

improved in Arch. 8 (by 1.6%) from Arch. 7, as the total tile area is lower in Arch. 8 (the reduction

in area by eliminating the multiplexers required to share multipliers is more than the increase in area

by not sharing multipliers), and the performance is also better for Arch. 8. Overall, Arch. 6 shows the

best area-delay product, with an improvement of 60.9% over Arch. 1.

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware100

0

0.2

0.4

0.6

0.8

1

1.2

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

R
a

t
io

 v
s
.

A
rc

h
.

1

Figure 6.11: Geomean area-delay product for each architecture.

In summary, we observed that local/shared-local memories and memory-to-register conversion, to-

gether with reduced access latencies, significantly improve performance and area. Constant memory

replication also helps to reduce memory contention further, but degrades area-delay product. Sharing

functional units across threads had little impact on performance degradation, while producing consider-

able area savings. This is because Pthread modules are invoked at different clock cycles, making them

slightly “out-of-step” with one another, reducing contention.

6.7 Summary

In this work, we analyzed the impact of two circuit topologies with different memory management tech-

niques on the performance and area of parallel HLS-generated hardware. We considered the nested

topology, where hardware modules are instantiated in a hierarchical manner, and the flat topology,

other where modules are instantiated at the same level of hierarchy. We described a system generator,

integrated within HLS, to automatically create efficient interconnect between hardware modules, with

the ability to share/replicate functions, functional units, memories between functions/threads, as well

as insert deadlock-prevention modules for parallel operating hardware. Three different memory archi-

tectures were also investigated: the global memory controller, and local/shared-local memories. The

global memory controller handles memory accesses that are not amenable to points-to analysis. Local

and shared-local memories improve memory bandwidth by providing concurrent direct memory accesses,

and decrease area by reducing the multiplexing logic. Additional memory management techniques, mem-

Chapter 6. Resource and Memory Management Techniques for HLS of Parallel Hardware101

ory replication and memory-to-register conversion, were explored to reduce memory contention between

threads and also to reduce memory usage and latency.

This work has been published in the 2015 IEEE International Conference on Field-Programmable

Technology (FPT) [15].

Chapter 7

Inferring Streaming Hardware with

Pthreads

7.1 Introduction

In this chapter, we propose using software techniques to infer parallel streaming hardware in HLS.

Specifically, we use Pthreads to automatically generate multiple pipelined hardware modules, which

can continuously execute concurrently in a streaming fashion. In streaming hardware, there can be

multiple data items that are in flight, which are concurrently executed at different pipeline stages of the

hardware, similar to a pipelined processor. This contrasts with the work in previous chapters, where

each invocation of a thread executed a threaded module once until its completion (i.e. only a single data

item was in flight at a time).

In recent years, advances in compiler and HLS research have continued to improve the quality of

HLS-generated hardware. For some applications, it has been shown that HLS-generated circuits can

match the performance of hand-designed hardware [120]. HLS is also increasingly being used to design

commercial products, with Qualcomm using Catapult C HLS [114] to tape out a chip in production [36].

Despite this, HLS tools remains a hurdle to its broad uptake, particularly to those without hardware

skills. There are tasks, such as system integration, which remains a manual process for many HLS tools.

System integration can be a challenging task for many software engineers, and in our work described

in Chapters 3, 4, and 5, we have addressed this by providing completely automatic system generation

flows. We believe another major impeding factor to making HLS easy to use is the use of vendor-specific

pragmas, which are needed to drive the generation of HLS hardware. These pragmas are foreign to

102

Chapter 7. Inferring Streaming Hardware with Pthreads 103

software engineers, and even to hardware engineers who are not familiar with the vendor tool. Some

pragmas create hardware behaviour that is different from software behaviour, which can be difficult to

comprehend for users. To this end, we propose improving the usability of HLS by providing mechanisms

within HLS that permit widely used software techniques to be used to control hardware behaviour.

In multi-threaded parallel software programming, a popular development pattern is the producer-

consumer pattern, wherein concurrently operating threads continuously receive (consume) “work to do”

from other threads and also generate (produce) results that are then consumed by subsequent threads.

In a typical producer/consumer implementation, queues/buffers are used between the threads as staging

areas for work items that have been produced but not yet consumed. We observe an analogy between the

producer/consumer pattern in multi-threaded software and streaming kernels in hardware, i.e. hardware

modules interconnected by FIFO buffers that process their inputs in a pipelined manner and deposit

results into output FIFOs. Streaming hardware is popular in applications such as audio/video processing.

Commercial HLS tools, such as Xilinx Vivado HLS, create streaming hardware by using vendor-specific

pragmas embedded in the source. Conversely, we propose to automatically infer streaming hardware

behaviour by synthesizing instances of the producer-consumer pattern in software, running on Pthreads,

into streaming hardware. This methodology allows streaming hardware to be specified using a well-

known software methodology which creates software execution behaviour that closely aligns with the

hardware behaviour.

In our approach, each software thread is automatically synthesized into a streaming hardware module.

FIFOs between the hardware modules are automatically instantiated, corresponding to the work-queue

buffers in the producer/consumer pattern. Exploiting the spatial parallelism available on a large FPGA

becomes a matter of forking multiple threads. The proposed approach brings the added benefit that

the multi-threaded code can be executed in parallel fashion in both software and hardware. Debugging

and visualization can be done in software – software whose parallel execution matches closely with the

parallel hardware execution.

7.2 Background

There are a number of HLS tools that can generate streaming hardware. Altera’s OpenCL SDK [100]

automatically creates deeply pipelined hardware from OpenCL kernels, which can be connected via

streaming interfaces. Vivado HLS [138] and Impulse CoDeveloper [123] drive hardware generation with

the use of pragmas in the code. In Vivado HLS, an entire function can be compiled to a pipelined

hardware module by specifying the HLS pipeline pragma on the function. Data can be passed into the

Chapter 7. Inferring Streaming Hardware with Pthreads 104

kernel as a stream using a Xilinx-specific type from a library, which gets turned into a FIFO in hardware.

Impulse CoDeveloper can also pipeline a loop using its vendor pragma, CO PIPELINE. It also provides

its own APIs to stream inputs/outputs to the pipeline.

We compare our work mostly to Vivado HLS, since it bears the most similarity to LegUp HLS in

terms of its programming model and the input language. A code snippet is shown below for Vivado

HLS.

1: void func_A(hls::stream<int>& in, hls::stream<int>& temp) {

2: #pragma HLS pipeline II=1

3: // read from FIFO

4: int a = in.read();

5: // do work

6: ...

7: // output to FIFO

8: temp.write(b);

9: }

10: ...

11:

12: void top(hls::stream<int>& in, hls::stream<int>& out) {

13: hls::stream<int> temp1, temp2;

14: #pragma HLS dataflow

15: func_A(in, temp1);

16: func_B(temp1, temp2);

17: func_C(temp2, out)

18: ...

19: }

20:

21: int main() {

22: // declare FIFOs

23: hls::stream<int> in, out;

24: ...

25: for (i=0; i<SIZE; ++i) {

26: // write to input FIFO

Chapter 7. Inferring Streaming Hardware with Pthreads 105

27: in.write(in_array[i]);

28: // invoke top-level function

29: top(in, out);

30: // get result from the output FIFO

31: out_array[i] = out.read();

32: }

33: ...

34: }

This example creates a streaming circuit for the top-level function top, which calls three sub-

functions, func A, func B, and func C (lines 12–19). Although only the definition of func A is shown

(lines 1–9), each of the sub-functions are fully pipelined with an II (initiation interval) of 1 (line 2),

meaning that a new input is received and a new output is produced by the circuit every clock cycle when

it is in steady-state. The HLS dataflow pragma in the top function (line 14) makes the sub-functions

execute concurrently and in a pipelined fashion, rather than sequentially one after another (normal soft-

ware semantics). In other words, func A, func B, and func C operate in a dataflow style, commencing

execution as soon as their inputs are ready. There are also intermediate FIFOs (such as temp1 and

temp2 on line 13), which connect the sub-functions together. The main function pushes data into the

input FIFO, invokes top, then fetches results via the output FIFO (lines 27–31).

This methodology is simple and intuitive. However, there are a number of issues with this approach,

which make the software behaviour different from the generated hardware behaviour1. In hardware, a

streaming module is always running. It is not invoked a fixed number of times (SIZE as shown on line

25). A streaming module simply processes data whenever its input FIFO is non-empty. This differs

significantly from the semantics of the software code for Vivado HLS.

A larger discrepancy arises owing to the HLS dataflow pragma. This tool-specific feature internally

transforms sequential software to parallel hardware. Its parallel execution, however, cannot be compiled

or debugged using standard software toolchains, such as GCC or GDB (the software will just execute

sequentially, as it is written). This also means that any existing software needs to be re-written in

this style to exploit parallelism, which increases design time. The Xilinx-specific pragmas are foreign

concepts that are difficult to comprehend for software engineers, or even for hardware engineers who are

not familiar with the tool. Another discrepancy stems from the FIFOs. In Vivado HLS, streams are

1HLS tools typically introduce instruction-level parallelism, which allows multiple instructions to be executed in the
same cycle. Likewise, pipelined processors also execute multiple instructions at the same time, and out-of-order processors
can also re-order instructions. The behaviour that is of concern here is more coarse-grained, at the function/module-level,
which we believe is closer to the level of granularity that one uses to visualize software/hardware execution.

Chapter 7. Inferring Streaming Hardware with Pthreads 106

assumed to be of infinite size in software [146]. Therefore, it is not possible to validate in the C whether

a stream (FIFO) is full. When compiled to hardware, the FIFOs have a default size of 1, unless specified

otherwise by the user.

Broadly speaking, the Vivado HLS software streaming specification is different from the actual hard-

ware that is produced. These discrepancies can lead to hardware bugs that cannot be debugged using

software methodologies. It also makes the visualization of the generated hardware more difficult for a

designer. In our work, we propose a method of writing software for streaming hardware which more

closely models the hardware produced. We are not aware of any other HLS tools which, instead of

using vendor-specific pragmas/APIs, support the use of the producer-consumer pattern with Pthreads

to create streaming hardware.

7.3 Producer-Consumer Threads in Software

The producer-consumer programming pattern comprises a finite-size buffer and two classes of threads,

a producer and a consumer [87]. The producer stores data into the buffer and the consumer takes data

from the buffer to process. This decouples the producer from the consumer, allowing them to naturally

run at different rates, if necessary. The producer must wait until the buffer has space before it can store

new data, and the consumer must wait until the buffer is non-empty before it can take data. The waiting

is usually realized with the use of a software variable, semaphore. A semaphore is a POSIX standard [59],

which allows processes and threads to synchronize their actions. It has an integer value, which must

remain non-negative. To increment the value by one, the sem post function is used, and to decrement

the value by one, sem wait function is called [80]. If the value is already zero, the sem wait function

will block the process, until another process increases the semaphore value with sem post.

The pseudo-code below (taken from [122]) shows the typical producer-consumer pattern using two

threads.

1: producer_thread {

2: while (1) {

3: // produce something

4: item = produce();

5: // wait for an empty space

6: sem_wait(numEmpty);

7: // store item to buffer

8: lock(mutex);

Chapter 7. Inferring Streaming Hardware with Pthreads 107

9: write_to_buffer;

10: unlock(mutex);

11: // increment number of full spots

12: sem_post(numFull);

13: }

14: }

15:

16: consumer_thread {

17: while (1) {

18: // wait until buffer has data

19: sem_wait(numFull);

20: // get item from buffer

21: lock(mutex);

22: read_from_buffer;

23: unlock(mutex);

24: // increment number of empty spots

25: sem_post(numEmpty);

26: // consume data

27: consume(item);

28: }

29: }

In a producer-consumer pattern, the independent producer and consumer threads are continuously

running, thus they contain infinite loops (line 2 and 17). The buffer is implemented as a circular array.

Two semaphores are used, one to keep track of the number of spots available in the buffer (lines 6 and

25), and another to keep track of the number of items in the buffer (lines 12 and 19). Observe that

updates to the buffer are within a critical section – i.e. a mutex is used enforce mutual exclusion on

changes to the buffer itself (lines 8–10 and 21–23).

7.4 Producer-Consumer Threads in Hardware

As mentioned above, we believe that the producer-consumer pattern is an ideal software approach to

describe streaming hardware. Streaming hardware is always running, just as the producer-consumer

threads shown above. Different streaming hardware modules execute concurrently and independently,

Chapter 7. Inferring Streaming Hardware with Pthreads 108

as with the producer-consumer threads. To fork threads, we use Pthreads, which is a standard known

by many software programmers. Inputs and outputs are typically passed between streaming modules

through FIFOs. The circular buffer described above is essentially a FIFO, with the producer writing to

one end, and the consumer reading from the other end.

Using the producer-consumer pattern with Pthreads, we can re-write the example code shown for

Vivado HLS as below.

1: void *func_A(PTHREAD_FIFO *in, PTHREAD_FIFO *temp) {

2: ...

3: while (1) {

4: // read from FIFO

5: int a = pthread_fifo_read(in);

6: // do work

7: ...

8: // output to FIFO

9: pthread_fifo_write(temp);

10: }

11: }

12: ...

13: void top(PTHREAD_FIFO *in, PTHREAD_FIFO *out) {

14: ...

15: pthread_create(func_A, ...);

16: pthread_create(func_B, ...);

17: pthread_create(func_C, ...);

18: ...

19: }

20:

21: int main() {

22: // declare and size FIFOs

23: PTHREAD_FIFO *in =

pthread_fifo_malloc(/*width*/32, /*depth*/1);

24: PTHREAD_FIFO *out =

pthread_fifo_malloc(/*width*/32, /*depth*/1);

Chapter 7. Inferring Streaming Hardware with Pthreads 109

25: // invoke top-level function

26: top(in, out);

27: // fill up the input FIFO, as soon as the FIFO has data

28: // the hardware executes

29: for (i=0; i<SIZE; ++i) {

30: pthread_fifo_write(in, in_array[i]);

31: }

32: // get output from the output FIFO

33: for (i=0; i<SIZE; ++i) {

34: out_array[i] = pthread_fifo_read(out);

35: }

36: // free FIFOs

37: pthread_fifo_free(in);

38: pthread_fifo_free(out);

39: ...

40: }

The main differences here are the use of an infinite loop, Pthreads, and PTHREAD FIFOs2. The infinite

loop (line 3) keeps the loop body of the kernel function continuously running. We pipeline this loop, to

create a streaming circuit. The advantage of using loop pipelining, versus pipelining the entire function,

is that there can also be parts of the function that are not streaming (only executed once), such as for

performing initializations. The top function, which is called only once (line 26), forks a separate thread

for each of its sub-functions (lines 15–17). The user does not have to specify the number of times the

functions are executed – the threads automatically start executing when there is data in the input FIFO.

This closely matches the always running behaviour of streaming hardware. In this example, each thread

is both a consumer and a producer. It consumes data from its previous stage and produces data for its

next stage.

The PTHREAD FIFO functions provide users with a software API which they can use to create stream-

ing hardware in HLS. Pthread fifo malloc sizes the FIFOs in software to be the same as those

in hardware (lines 23–24). Pthread fifo write pushes data into one end of a FIFO (lines 9, 30);

previously stored data can be read from the other end with pthread fifo read (lines 5, 34). The

pthread fifo read/write functions provide the blocking capability with the use of semaphores. This is

2LegUp can also create streaming hardware using sequential C code without the use of Pthreads, similar to Vivado HLS,
and the keyword FIFO is reserved for the type of FIFOs used for this style of code.

Chapter 7. Inferring Streaming Hardware with Pthreads 110

described in more detail below. Pthread fifo free frees any memory allocated by pthread fifo malloc

(lines 37–38)3.

The multi-threaded code above can be compiled, concurrently executed, and debugged using standard

software tools. We believe that portability is an important design consideration, and that a design should

not be tied to a particular vendor, as is what happens when vendor-specific pragmas are required to

produce the desired hardware. Our method aims to keep the HLS source code as a standard software

program.

7.4.1 FIFO Details

This section describes how we create a PTHREAD FIFO and its associated functions. The PTHREAD FIFO

is defined as a struct :

typedef struct {

// bit-width of the elements stored in the FIFO

int width;

// the number of elements that can be stored

int depth;

// data array holding the elements

long long *mem;

// keeps track of where in the array to write to

unsigned writeIndex;

// keeps track of where in the array to read from

unsigned readIndex;

// keeps track of the number of occupied spots

sem_t numFull;

// keeps track of the number of empty spots

sem_t numEmpty;

// mutual exclusion for data array access

pthread_mutex_t mutex;

} PTHREAD_FIFO;

The elements of the struct are used to define the storage, its width/depth, and where to read/write

from/to in the storage. The data array is used as a circular buffer to create the FIFO behaviour.

3pthread fifo free is only used in software to prevent memory leaks. It is stripped away when compiled to hardware,
as is described in Section 7.4.2.

Chapter 7. Inferring Streaming Hardware with Pthreads 111

Its type is a long long, making it capable of handling the largest standard C data type, though it

can also be used to hold anything smaller. When compiled to hardware, the width variable is used to

parametrize the hardware FIFO, which can be of any arbitrary width. Semaphores are employed to

create the producer-consumer behaviour between threads and a mutex is used to ensure atomic access

to the shared storage. When pthread fifo malloc is called, it allocates the data array and initializes

all member variables, including the semaphores and the mutex. pthread fifo free frees all memories

which have been allocated.

Using the struct, pthread fifo write follows the logic described in the producer thread of

the pseudo-code in Section 7.3, and pthread fifo read follows the logic of the consumer thread.

Pthread fifo write first waits until there is an empty spot in the FIFO (using sem wait on the

numEmpty semaphore), then gets the lock, stores the data into the writeIndex position of mem, up-

dates writeIndex, releases the lock, and finally increments numFull. Pthread fifo read waits until

the FIFO is non-empty (using sem wait on the numFull semaphore), gets the lock, reads the data at

the readIndex position of mem, updates readIndex, releases the lock, and finally increments numEmpty.

7.4.2 Hardware Architecture

In hardware, a PTHREAD FIFO struct gets compiled to a hardware FIFO. Figure 7.1 shows the interfaces

between a FIFO and its producer, module A, and its consumer, module B. For a FIFO interface, mod-

ules use RVD (Ready, Valid, Data) signals, which is a typical hand-shaking interface used in streaming

architectures. The semaphores of the PTHREAD FIFO struct, which keep track of whether the FIFO is

full/empty in software, are simply turned into the not full and not empty signals in hardware. On

a call to pthread fifo write for module A, the not full signal is checked, and if it is high, the data

is written to the FIFO via the write data signal. If the not full signal is low, meaning the FIFO is

already full, the out ready signal of module A is de-asserted, which stalls module A. The stall logic is

described below in more detail in Section 7.4.4. For pthread fifo read from module B, the not empty

signal is checked, and if it is high, the data is returned via the read data signal. If the not empty signal

is low (FIFO is empty), the in valid signal is de-asserted, which stalls module B. This implementation

removes any additional hardware overhead for the semaphores/mutex, while still allowing software to be

executed like hardware.

Chapter 7. Inferring Streaming Hardware with Pthreads 112

FIFOwrite_en

out_ready

write_dataout_data

out_valid

not_full

in_valid

read_en

in_dataread_data

not_empty

in_ready

A B

Figure 7.1: FIFO interfaces.

7.4.3 Multiple Software Threads to Multiple Streaming Hardware Kernels

In a streaming architecture, multiple streaming modules may be chained together, transferring data

from one streaming module to the next, as shown in Figure 7.2a. This is a typical architecture used

in image/video processing applications. We can create this architecture by simply forking a thread for

each of A, B, and C, as described above, and passing in FIFO0 as an argument to A and B, and FIFO1

and FIFO2 to B and C. As per Pthread standards, multiple arguments to a thread must be passed by

creating a struct which contains all of the arguments, and then passing a pointer to that struct in the

pthread create() routine [7]. We use the points-to analysis to automatically determine which FIFOs

need to be connected to which hardware modules. The tool also determines whether a module writes

to the FIFO, or reads from the FIFO, and the integrated system generator automatically connects the

appropriate input/output FIFO ports to their corresponding streaming module ports.

With the producer-consumer threads, all processes, in both software and hardware, start executing as

early as possible (i.e. as soon as there is data in the input FIFO). As previously mentioned, the dataflow

pragma in Vivado HLS achieves a similar effect in hardware, but its parallel execution, which can often

be the source of bugs, cannot be debugged in software using standard debugging tools. Since we only

use standard software methodologies, all of our code, including the FIFO functions, can be compiled

with GCC and debugged with GDB. As such, most of the design effort can be spent at the software stage.

Another advantage of using Pthreads is that one can also easily replicate streaming hardware. In

LegUp, each thread is mapped to a hardware instance by default, hence forking multiple threads of the

same function creates replicated hardware instances. For instance, if the application shown in Figure 7.2a

is completely parallelizable (say data-parallel), one can exploit spatial hardware parallelism by forking

two threads for each function, to create the architecture shown in Figure 7.2b4. This methodology

therefore allows exploiting both spatial (replication) and pipelined hardware parallelism all from software.

We think that this is easier and more intuitive than manually instantiating a synthesized core multiple

times using HDL, or using a system generator tool such as the Vivado IP Integrator [143], which uses a

4It is not only limited to massively parallelizable architectures. Depending on the nature of the application, one can
select which function to parallelize.

Chapter 7. Inferring Streaming Hardware with Pthreads 113

A C

Testbench

FIFO0 B
FIFO1

FIFO2

(a) Multiple streaming modules.

C0

Testbench

FIFO0 B0

FIFO2

FIFO3

C1B1

FIFO4

FIFO5

A0

FIFO1A1

(b) Multiple replicated streaming modules.

FIFO

B

A C

D

(c) One-to-many streaming modules.

FIFO

A

DB

C

(d) Many-to-one streaming modules.

Figure 7.2: Multiple streaming modules connected through FIFOs.

schematic-like block design entry to connect modules by drawing wires and pins. Both approaches would

be foreign concepts to those coming from the software domain. Our methodology uses purely software

concepts to automatically create and connect multiple parallel streaming modules together.

Our approach is also able to handle more complex architectures, where multiple consumers receive

data from a single producer through a single FIFO, as shown in Figure 7.2c, and where multiple pro-

ducers can feed data to a single consumer through a single FIFO, as shown in Figure 7.2d. The former

architecture can be useful for applications with a work queue, where a producer writes to the work queue,

and multiple workers (consumers), when ready, take work-items from the queue to process. The latter

architecture can be used for applications such as mapReduce [25], where multiple mappers can map to

the same reducer. Both architectures can be created from software by giving the same FIFO argument

to the different threads. We automatically synthesize arbiters to handle contention that may occur when

multiple modules try to access the same FIFO in the same clock cycle – modules may stall if not given

immediate access. Code examples on how to create the architectures shown in Figures 7.2a, 7.2b, 7.2c,

and 7.2d, are presented in Appendix F. We believe this one-to-many, or many-to-one FIFO architecture,

with automatic synthesis of arbitration logic, is a unique aspect of our work, as both Vivado HLS and

Altera’s OpenCL SDK require there to be a sole single writer and a reader to/from a FIFO.

Chapter 7. Inferring Streaming Hardware with Pthreads 114

valid

bit
Constant

Argument

Input

FIFO1

Input

FIFO0

Output

FIFO0

logic

reg
en en

reg
en en

reg
en en

reg
en en

reg
en en

reg
en en

reg
en en

logic

Output

FIFO1

logic

~full ~full

B
a
ck
-p
re
ss
u
re

en

en

en

en

~empty

~empty

stall

logic

FIFO

signals

S0

S1

S2

S3

Figure 7.3: Streaming circuit data-path and stall logic.

7.4.4 Streaming Datapath and Stall Logic

The datapath and its stall logic for streaming hardware is shown in Figure 7.3. The figure illustrates

how we handle different types of inputs/outputs, which can be received/outputted at different pipeline

stages of a streaming circuit, as well as how our stall logic is used to only stall the pipeline stages that

absolutely need to stall. There are two input FIFOs, a non-FIFO argument input, and two output

FIFOs. The S’s denote pipeline stages, with registers at each stage to pipeline data. The valid bits are

used to indicate which stages of the pipeline contain valid data. The streaming circuit is a straight-line

datapath, without any control flow. Like other HLS tools, we remove any diverging branches with if-

conversion and back edges by unrolling any internal loops (those residing inside the while loop). Any

sub-functions called within the while loop are inlined. During if-conversion, we also predicate operations

with side effects or those that can cause memory contention (i.e. load/store, FIFO read/write) so that

they only trigger for the correct if/else conditions.

The stall logic ensures that the hardware can stall appropriately and produce a functionally correct

result. It directly impacts the QoR (quality-of-result) of the circuit, as stalls increase circuit latency,

and the stall logic affects circuit area and Fmax. It is desirable to stall only when necessary, and also to

Chapter 7. Inferring Streaming Hardware with Pthreads 115

minimize the stall circuitry. For the architecture shown in Figure 7.3, there are two scenarios wherein

the circuit can stall: 1) When any of the input FIFO becomes empty, and 2) when any of the output

FIFOs become full. In both cases, a stall does not necessarily stall the entire pipeline, but only those

pipeline stages which absolutely need to stall. For instance, in the case of Input FIFO0, its data is

required in S0 (pipeline stage 0). Consequently, if this FIFO becomes empty, only S0 stalls. Data from

Input FIFO1 is needed in S1, so if this FIFO is empty, S1 and S0 stall. S0 also needs to stall in this case

since its next stage is stalled (allowing it to continue would overwrite valid data in S1). Output FIFO0

is written from S2, hence when this FIFO is full, it stalls S2, S1, and S0. When Output FIFO1 is full,

the entire pipeline stalls. In general, a FIFO being full/empty stalls the first pipeline stage where its

data is written/read from, and all of the prior pipeline stages. This architecture allows the later pipeline

stages to continue making forward progress, even when a FIFO becomes empty/full. For instance, when

S0 stalls due to Input FIFO0 only, S1, S2, S3 can continue. When Output FIFO0 is full, valid data in

S3 can continue and be written to the Output FIFO1 (given that it is not full).

There are also scenarios where stall circuitry is unnecessary. For instance, a constant argument (such

as an integer value), is stored in registers when the module starts and remains unchanged during its

execution. We do not create any stall logic for this argument, as it will not be overwritten during the

execution. This helps to reduce circuit area and the fan-out of the stall signals, which can become large

when there are many FIFOs and pipeline stages.

In summary, there are three conditions for a pipeline stage to be enabled: 1) Its valid bit must be

asserted to indicate there is valid data, 2) any input FIFOs, from which its data is needed in this or a

downstream pipeline stage, must not be empty, and 3) any output FIFOs, which are written to from

this or a downstream pipeline stage, must not be full. A FIFO can also be shared between multiple

modules through an arbiter, as was shown in Figs. 7.2c and 7.2d. In such cases, we stall in the same

manner, depending on whether it is an input or an output FIFO5. It is worth noting that, although we

primarily discuss FIFO memories in this work, streaming hardware can also access non-FIFO RAMs,

with arbitration and stall logic created as described in Chapter 6.

7.5 Experimental Study

In this section, we first discuss the streaming benchmarks which use the producer-consumer pattern

with Pthreads, as well as their resulting hardware. We use four different applications from various fields,

including image processing, mathematics/finance and data mining. For each benchmark, we create two

5For an input FIFO, the grant signal from the arbiter is AND’ed with the not empty FIFO signal, and this output goes
to the stall logic. For an output FIFO, the grant signal is AND’ed with the not full FIFO signal.

Chapter 7. Inferring Streaming Hardware with Pthreads 116

versions, a pipelined-only version and a pipelined-and-replicated version. In the pipelined-only version,

there are one or more functions which are connected together through FIFOs, as in Figure 7.2a, but no

modules are replicated. For the pipelined-and-replicated version, we parallelize each benchmark with one

or more functions (modules) executing on multiple threads, yielding architectures similar to Figs. 7.2b

and 7.2d. In both versions, all kernel functions are fully pipelined with multiple pipeline stages, and

receive/output new data every clock cycle (II=1).

Each benchmark also includes golden inputs and outputs to verify correctness. Each generated

circuit was synthesized into the Altera Stratix V FPGA (5SGSMD8K1F40C2) with Quartus 15.0. For

performance and area comparison, we also use a commercial HLS tool to synthesize one of the pipelined-

only benchmarks, Canny, targeting the Xilinx Virtex 7 FPGA (XC7VX980TFFG1930-2). The Virtex

7 is on the same technology node as the Stratix V (28 nm) [139, 104], and both FPGAs have the

second fastest speed grade6. The commercial tool does not support replicating hardware from software,

thus none of the pipelined-and-replicated benchmarks were used for this tool. For both LegUp and

the commercial HLS tool, a 3ns (333MHz) clock period constraint was supplied, which can be given as

a configuration parameter to each tool (given as a setting in the GUI for Vivado HLS, and as a Tcl

parameter in LegUp). This is used by the scheduling stage of HLS create a circuit that aims to meet

the target frequency.

7.5.1 Benchmarks

Mandelbrot is an iterative mathematical benchmark which generates a fractal image. For each pixel

in a 512 × 512 image, it iteratively computes whether it is bounded (inside the Mandelbrot set) or

diverges to infinity (outside the Mandelbrot set), and displays its colour accordingly. Computations are

done in fixed-point for this benchmark. Each pixel is independent from others, hence this application is

easily parallelizable. In the pipelined-and-replicated version with four threads, each thread processes a

quadrant of the image.

The Black-Scholes benchmark estimates the price of European-style options. It uses Monte Carlo

simulation to compute the price trajectory for an option using random numbers. Ten thousand simu-

lations are conducted, with 256 time steps per simulation. The system diagram for the pipelined-only

version is shown in Figure 7.4 as a dot graph. This dot graph, automatically created by our system

generator, shows the different modules, as well as the connections between them. White boxes are

hardware modules; blue ovals are FIFOs; dark-blue overalls (appearing later) are memory blocks. This

6Altera and Xilinx may not have the same binning process used for deciding speed grades, however, this is the closest
comparison we could use.

Chapter 7. Inferring Streaming Hardware with Pthreads 117

random_init

option_pricing_0_1

option_pricing

random_generate

blackscholes

option_pricing_0_2

Figure 7.4: System diagram for the Black-Scholes option pricing benchmark for the pipelined-only
architecture.

random_init_0

option_pricing_preheader6_0

option_pricing

random_init_1 random_init_2 random_init_3

random_generate

blackscholes_0 blackscholes_1 blackscholes_2 blackscholes_3

option_pricing_preheader6_2 option_pricing_preheader6_4 option_pricing_preheader6_6

option_pricing_preheader6_1 option_pricing_preheader6_3 option_pricing_preheader6_5 option_pricing_preheader6_7

Figure 7.5: System diagram for the Black-Scholes option pricing benchmark for the pipelined-and-
replicated architecture.

benchmark consists of three kernel functions, random init, random generate, and blackscholes, and

the wrapper function, option pricing, which creates the necessary intermediate FIFOs between the

kernel functions and forks their threads. The random init and random generate are an implementa-

tion of the Mersenne twister [130], which is a widely used pseudo-random number generator. These

two kernels were adapted from [108], originally written in OpenCL. The init function initializes the

random number generator in the generate function. The blackscholes function uses the random numbers

to price a European option using the Black-Scholes formula. In the pipelined-and-replicated version,

shown in Figure 7.5, we parallelize the initialization and the Black-Scholes functions, each with four

threads. For the generate function, we modify its logic so that it can receive four initializations from the

initialization threads, and generate four random numbers concurrently. Each random number is used by

an independent Black-Scholes’ thread, with four threads concurrently computing four prices.

Chapter 7. Inferring Streaming Hardware with Pthreads 118

The Canny benchmark implements the well-known Canny edge detection algorithm [12] for a 512×512

image. The multi-stage algorithm is implemented with four kernel functions, gaussian filter, sobel

filter, nonmaximum suppression, and hysteresis, as well as its wrapper function canny, as shown

in Figure 7.6. The Gaussian filter first smooths the input image to remove noise. The Sobel filter then

finds the intensity gradients. The non-maximum suppression removes pixels not considered to be part

of an edge. Then finally, hysteresis finalizes the edges by suppressing all the other weak edges. Every

clock cycle, each kernel receives a new pixel from the previous kernel stage and outputs a pixel to its

next-stage kernel.

In the pipelined-and-replicated version, we parallelize each kernel function with four threads. We

again divide the image into four sections (this time with 128 rows each), with each section to be processed

by a set of replicated modules (i.e. rows 0–127 are processed by a first set of copies of the Gaussian,

Sobel, non-maximum suppression, and hysteresis kernel modules). The data required by each set of

modules, however, is not completely mutually exclusive, since each kernel uses either a 5× 5 or a 3× 3

filter. For instance, the Gaussian filter, which uses a 5 × 5 filter, requires up to two rows outside of

its assigned section. For example, when working on row 127, values of pixels in rows 128 and 129 are

needed, which belong to the next section of rows. To manage this, pixel values for border rows are

communicated between adjacent copies of the kernels. Moreover, to minimize stall time arising from

needed data in border rows, even-numbered sections (containing rows 0–127 and rows 256–383) proceed

from the bottom row to the top; odd-numbered sections (containing rows 128–255 and rows 384–511)

proceed from the top row to the bottom. The architecture for this parallelized version is shown in

Figure 7.7

The k-means benchmark implements the k-means clustering algorithm [47] used in data mining. It

partitions n data points into one of k clusters defined by centroids. Our version has 1,000 data points

with four clusters. We use the mapReduce programming paradigm to implement k-means. A mapper

iteratively maps each data point to a cluster, and a reducer updates the centroids with each data point.

In the pipelined-only version, there is a single mapper and a single reducer. The mapper maps all data

points to one of the clusters, and the reducer updates the centroids for all clusters. In the pipelined-

and-replicated version, there are four mappers and four reducers. Each mapper maps to a single cluster,

and each reducer updates the centroid for a single cluster. The architecture for the parallelized version

is shown in Figure 7.87. The figure shows nine hardware modules (four mappers, four reducers, and the

wrapper function), eight memories (four x and y centroid coordinates stored in registers), and many

7The purpose of showing the dot graphs is to illustrate the general architecture and the complexity of the benchmarks.
Details such as the names of the modules are not significant.

Chapter 7. Inferring Streaming Hardware with Pthreads 119

gaussian_filter

canny_0_1

canny

sobel_filter

nonmaximum

hysteresis

canny_0_2

canny_0_3

Figure 7.6: System diagram for the Canny benchmark for the pipelined-only architecture.

FIFOs. These FIFOs are used to send data inputs to each mapper, pass data from each mapper to each

reducer (each mapper can write to any of the reducer FIFOs using the architecture shown in Figure 7.2d),

and also indicate when a mapper or a reducer is done computing for an iteration. For each iteration, a

mapper needs to know when all reducers have finished (updated the centroids), so that it can start the

next iteration using the updated centroids, and a reducer also needs to know when all mappers have

finished so that it can average the accumulated centroid value. We use a 1-bit-wide depth-of-1 FIFO,

which is implemented in registers, to send the done signal. Although the figure looks very complicated,

the actual source code is a standard mapReduce algorithm, which is pretty simple. All of the modules,

memories, and FIFOs are automatically generated and connected, which is the beauty of using HLS.

C
h
a
p
t
e
r
7
.

In
f
e
r
r
in
g

S
t
r
e
a
m
in
g

H
a
r
d
w
a
r
e
w
it
h
P
t
h
r
e
a
d
s

120

gaussian_filter0

kernel_wrapper_0_1 kernel_wrapper_0_2

kernel_wrapper

gaussian_filter1 gaussian_filter2 gaussian_filter3

sobel_filter0 sobel_filter1 sobel_filter2 sobel_filter3

nonmaximum_startingFromBottom0 nonmaximum0 nonmaximum_startingFromBottom1 nonmaximum1

hysteresis0 hysteresis1 hysteresis2 hysteresis3

kernel_wrapper_0_10kernel_wrapper_0_11 kernel_wrapper_0_12 kernel_wrapper_0_19 kernel_wrapper_0_20kernel_wrapper_0_21 kernel_wrapper_0_28kernel_wrapper_0_29

kernel_wrapper_0_4 kernel_wrapper_0_5 kernel_wrapper_0_13kernel_wrapper_0_14 kernel_wrapper_0_15 kernel_wrapper_0_22 kernel_wrapper_0_23kernel_wrapper_0_24 kernel_wrapper_0_31kernel_wrapper_0_32

kernel_wrapper_0_7 kernel_wrapper_0_8 kernel_wrapper_0_16kernel_wrapper_0_17 kernel_wrapper_0_18 kernel_wrapper_0_25 kernel_wrapper_0_26kernel_wrapper_0_27 kernel_wrapper_0_34kernel_wrapper_0_35

Figure 7.7: System diagram for the Canny benchmark for the pipelined-and-replicated architecture.

mapper_hw_0

wrapper_kernels_preheader18_3

hw_centroids_x0 hw_centroids_y0

hw_centroids_x1hw_centroids_y1

hw_centroids_x2hw_centroids_y2 hw_centroids_x3 hw_centroids_y3

wrapper_kernels_preheader18_0

wrapper_kernels_preheader18_5wrapper_kernels_preheader18_10 wrapper_kernels_preheader18_15

wrapper_kernels_preheader18_1

wrapper_kernels_preheader18_2

wrapper_kernels_preheader18_4

wrapper_kernels

mapper_hw_01

mapper_hw_02

mapper_hw_03

reducer_hw0_0

reducer_hw1_0

reducer_hw2_0

reducer_hw3_0

wrapper_kernels_preheader18_6

wrapper_kernels_preheader18_7

wrapper_kernels_preheader18_8

wrapper_kernels_preheader18_9

wrapper_kernels_preheader18_11

wrapper_kernels_preheader18_12

wrapper_kernels_preheader18_13 wrapper_kernels_preheader18_14

wrapper_kernels_preheader18_16 wrapper_kernels_preheader18_17wrapper_kernels_preheader18_18 wrapper_kernels_preheader18_19

wrapper_kernels_preheader18_20 wrapper_kernels_preheader18_21wrapper_kernels_preheader18_22

wrapper_kernels_preheader18_23

wrapper_kernels_preheader18_24wrapper_kernels_preheader18_25wrapper_kernels_preheader18_26 wrapper_kernels_preheader18_27

wrapper_kernels_preheader18_28wrapper_kernels_preheader18_29

wrapper_kernels_preheader18_30

wrapper_kernels_preheader18_31

wrapper_kernels_preheader18_32wrapper_kernels_preheader18_33wrapper_kernels_preheader18_34 wrapper_kernels_preheader18_35

Figure 7.8: System diagram for the k-means benchmark for the pipelined-and-replicated architecture.

Chapter 7. Inferring Streaming Hardware with Pthreads 121

Table 7.1: Performance and area results for pipelined-only benchmarks for LegUp HLS.

Benchmark Time (µs) Cycles Fmax(MHz) ALMs Registers DSPs M20Ks
Mandelbrot 738.6 262208 355 1101 2746 112 0
Black-Scholes 16736.7 2560714 153 8575 28963 45 5

Canny 787.95 264752 336 1246 2415 0 10
K-means 70.4 20908 297 8499 20681 16 115
Geomean 910.01 246910.57 271.33 3162.11 7938.86 16.85 8.71

Table 7.2: Performance and area results for Canny benchmark for a commercial HLS tool.

Benchmark Time (µs) Cycles Fmax (MHz) LUTs Registers DSP48s BRAMs
Canny 792.64 264743 334 1427 1948 0 5

Ratio vs. LegUp 1.006 (0.994×) 1.00 (1.00×) 0.99 1.15 0.81 1 0.5

7.5.2 Results

Table 7.1 shows the performance and area results for all the pipelined-only benchmarks compiled with

LegUp HLS. There are three performance metrics (total wall-clock time (# cycles × clock period),

total number of clock cycles, and Fmax) and four area metrics (number of ALMs, registers, DSPs, and

M20Ks). As previously mentioned, all circuits have an II=1, and were given a clock period constraint

of 3ns (333 MHz), except for Black-Scholes, which was given 6ns (167 MHz). All circuits run roughly

within +/-10% of the target frequency. For Black-Scholes, due to a recurrence in the benchmark, we

had to lower the clock period constraint supplied to LegUp to meet II=1.

Table 7.2 shows the commercial HLS tool’s result for the Canny benchmark. The performance

results are nearly identical to that of LegUp HLS, with the total wall-clock time 0.6% higher than

LegUp. Targetting the Virtex 7 FPGA, the area is reported in terms in LUTs, registers, DSP48s, and

18KB Block RAMS. The circuit generated by the commercial tool uses 15% more LUTs, but it also

uses 19% less registers and half the number of RAMs. For this performance/area comparison, we note

that there are differences in the FPGA architectures and the vendor FPGA CAD tools that can lead to

different results. For example, although Virtex 7 and Stratix V are fabricated in the same 28 nm TSMC

process, Stratix V uses fracturable 6-LUTs that are more flexible than Virtex 7’s fracturable 6-LUTs.

Likewise, we expect that two vendor’s FPGA CAD tools employ different RTL/logic synthesis, place-

and-route algorithms. Despite these potential sources of error, the similarity in the performance results

for the Canny benchmark gives us confidence that LegUp HLS produces a reasonably good-quality

implementation. In LegUp’s case, this is achieved through software-only methodologies requiring no

special pragmas.

Table 7.3 shows the results for LegUp HLS, for the pipelined-and-replicated benchmarks. Compared

to pipelined-only, we see a geometric mean speedup of 2.8× in terms of total wall-clock time. Clock cycle

Chapter 7. Inferring Streaming Hardware with Pthreads 122

Table 7.3: Performance and area results for pipelined-and-replicated benchmarks for LegUp HLS.

Benchmark Time (µs) Cycles Fmax (MHz) ALMs Registers DSPs M20Ks
Mandelbrot 231.8 65606 283 4192 11006 448 0
Black-Scholes 4297 640252 149 19182 55843 180 20

Canny 264.8 70706 267 7396 14232 48 76
K-means 42.2 10712 254 11218 25919 64 120
Geomean 324.81 75102.66 231.25 9037.68 21820.8 125.46 20.25

Ratio vs. Table 7.1 0.36 (2.80×) 0.30 (3.29×) 0.85 2.86 2.75 7.45 2.32

improvement is higher with 3.29×, but Fmax drops 15% on average, due to higher resource utilization

and more complex hardware architectures. On a per benchmark basis, Black-Scholes shows close to

linear speedup in wall-clock time: 3.89×. Mandelbrot also shows linear speedup in clock cycles, but

Fmax drops due to the use of 448 DSP blocks. Canny shows 3.74× speedup in clock cycles, and 2.98×

speedup in wall-clock time. For k-means, the work load for each mapper/reducer, and thus the speedup

from parallelization, is dependant on the initial coordinates of the centroids and the data points. We

initialize each centroid to be at the centre of each quadrant of the entire x/y space, and randomly

generate the initial data point coordinates. With this, the four mappers/reducers obtain 1.95× speedup

in clock cycles and 1.67× in wall-clock time.

In terms of area, the pipelined-and-replicated benchmarks show average increases of 2.86×, 2.75×,

7.45×, and 2.32×, in ALMs, registers, DSPs, and M20Ks, respectively. For DSP usage, all benchmarks

increased linearly by a factor of four, with the exception of Canny. In the pipelined-only case, the

compiler was able to optimize multiplications with constant filter coefficients to shifts and adds, however

this optimization did not occur in the replicated case, due to the structural code changes, utilizing 48

DSP blocks. For ALMs, the biggest relative increase was with Canny, which again, for the replicated

scenario, the compiler was not to optimize the program as effectively as the pipelined-only, and we also

had added additional logic and FIFOs to allow communication of the border rows. The smallest relative

increase was with k-means, where most of the ALMs and M20Ks were used by eight dividers, used to

average the x and y coordinates for the four centroids. Eight dividers were also needed in the pipelined-

only case to meet II=1. In the pipelined-and-replicated case, each reducer handled one cluster, with two

dividers each, thus the total number of dividers remained the same.

Overall, our methodology allows the synthesis of a diverse space of streaming hardware architectures

that can be pipelined or pipelined and replicated, all from software. For massively parallel applica-

tions, replication of streaming hardware is as easy as forking multiple software threads. For the Canny

benchmark, our streaming hardware showed very competitive results to that of a commercial tool. Our

pipelined-only circuits provide high throughput, with an II=1, while the pipelined-and-replicated circuits

further improve performance, at the expense of FPGA resources.

Chapter 7. Inferring Streaming Hardware with Pthreads 123

7.6 Summary

In this chapter, we discussed our methodology that allows standard software techniques to specify pipeline

and spatial FPGA hardware parallelism. Our work allows software-threaded programs to model stream-

ing hardware more accurately than the existing solution from Vivado HLS. The closer alignment between

software and hardware allows a designer to better understand the generated hardware. It also enables

more debugging to happen in software, which is much less difficult and time consuming than hardware

debugging. Using Pthreads can open up many options, such as creating multiple streaming kernels

that work concurrently. Our work also permits the creation of circuit architectures that are not feasi-

ble to realize in other HLS tools, such as a FIFO with multiple writers, where the arbitration is also

automatically generated.

This work has been published in the 2016 IEEE International Conference on Application-specific

Systems, Architectures and Processors (ASAP) [16].

Chapter 8

Conclusions

8.1 Summary of Contributions

With the end of CPU clock speed scaling, multi-core processing has become a necessity for achieving

higher performance in software. There has been considerable effort in the software domain on provid-

ing efficient methods to harness the power of multi-cores, via new programming languages, standards,

libraries, and compilers. On the contrary, there has been comparatively little work on providing a stan-

dard approach to exploit parallel custom hardware. Much of it still remains a manual process, requiring

an engineer to understand and specify the parallelism in hardware. Some advancements have been made,

with a select few tools providing vendor-specific annotations to drive the generation of parallel hardware.

Such approaches, however, add another level of complexity and perplexity to a process that is already

overwhelming to those not familiar with hardware or HLS.

We believe that the correct approach to specifying hardware parallelism from software in HLS is

to use a standard software parallel programming methodology that is already widely known and used

by many engineers, such as Pthreads and OpenMP. With both standards being in use for almost two

decades, Pthreads and OpenMP are intuitive to use and understood by even relatively novice software

engineers. This dissertation presents new methodologies that allow one to use Pthreads and OpenMP

to perform multi-core processing in hardware on an FPGA. All of our work is implemented within the

LegUp HLS framework. We summarize our contributions below.

Chapter 3 described the synthesis of a multi-threaded software program with Pthreads and OpenMP

to a processor/parallel-accelerator hybrid platform, where threads are compiled to concurrent acceler-

ators, with the sequential portion of software executed on a soft MIPS processor. We described the

124

Chapter 8. Conclusions 125

automated generation of an SoC that allows one to create an entire system from software, with tasks

such as software/hardware partitioning, off-chip memory setup, and interconnect generation, all handled

by LegUp. This enables those without hardware knowledge to benefit from multi-core processing in

hardware, and with its ease-of-use, even hardware engineers can take advantage of significantly reduced

design time. As multi-threaded programming often requires synchronization of threads, we also described

our HLS support for mutexes and barriers. This work has been published in the IEEE International

Conference on Field-Programmable Technology (FPT) [14].

Chapter 4 discussed the support for using the hard ARM processor on the Altera Arria V SoC

FPGA, which improves the performance and the applicability of our processor-accelerator hybrid systems

by harnessing the power of the 1.05 GHz dual-core CPU. We outlined the flow of using the ARM

processor with and without an OS. We also discussed our support for enabling DMA transfers between

hardware accelerators and off-chip memory, with the option of using our Double Buffering Module to

further improve performance and memory bandwidth. We showed that our ARM hybrid systems can

significantly outperform the MIPS, the ARM, and even two other x86 processors. This work is to be

submitted to IEEE Transactions on Very Large Scale Integration Systems (TVLSI).

Chapter 5 showed that we can also create a parallel hardware system without requiring a processor in

the system. In the hardware-only flow of LegUp, the entire multi-threaded software program is compiled

to hardware, with parallel-threaded modules executing concurrently within a larger hardware system.

We believe this flow to be beneficial for designs that are either constrained by FPGA resources, or for

cases where all computations need to be performed in hardware. We showed that this methodology can

bring significant benefits in speed, power, and area-delay product, compared to sequential hardware.

This work is to be submitted to IEEE Transactions on Very Large Scale Integration Systems (TVLSI),

along with the work in Chapter 4.

Chapter 6 investigated two different circuit topologies, the nested topology and the flat topology,

as well as three different memory architectures. We showed that the flat topology, together with our

system generator, enables efficient sharing of modules, memories, and functional units. We also discussed

the dead-lock prevention logic automatically inserted by our system generator, which allows concurrent

hardware modules to execute properly without deadlocks. For the memory architectures, we described

the global, local, and shared-local memories, with additional options available for memory replication

and memory-to-register conversion. We showed that the flat topology combined with the improvements

to the memory architecture can yield substantial performance and area benefits. This work has been

published in the 2015 IEEE International Conference on Field-Programmable Technology (FPT) [15].

Chapter 7 detailed one of our efforts to improve the usability of HLS in the context of parallel

Chapter 8. Conclusions 126

hardware by providing support for using a commonly known multi-threaded programming method to

infer streaming hardware. Specifically, we showed that we can use the producer-consumer pattern with

Pthreads to create streaming hardware in LegUp. This allows us to use standard software to produce par-

allel hardware, where the software execution behaviour closely models the generated hardware behaviour.

This contrasts to other HLS tools, which employ vendor-specific pragmas to transform sequential soft-

ware to streaming hardware under the hood. Our methodology allows one to compile and debug the

parallel execution behaviour in software using standard software tools, making it possible for more of the

design and debugging to happen in the software abstraction layer. By using Pthreads, creating multiple

streaming hardware modules becomes a matter of forking more threads, and we showed that we can cre-

ate more complex parallel hardware structures than what are currently supported by other HLS tools.

As a point of comparison, we showed that the performance of our streaming hardware generated with

the producer-consumer pattern with Pthreads can match the performance of streaming hardware gener-

ated by a state-of-the-art commercial HLS tool. We also showed that by replicating streaming hardware

modules with multiple threads, we can achieve higher performance. This work has been published in

the 2016 IEEE International Conference on Application-specific Systems, Architectures and Processors

(ASAP) [16].

8.2 Future Work

8.2.1 Automated DMA Hardware Generation

As shown in Chapter 4, using DMA transfers between hardware accelerators and off-chip memory can

greatly improve memory bandwidth, making it possible for FPGA hardware to outperform CPUs that

are running more than an order of magnitude faster in clock frequencies than the FPGA hardware. In

LegUp, although the generation of a hybrid system is currently automated, the instantiations of DMA

cores and the Double Buffering Module remain a manual process. This can be a burdensome task for

software engineers and we would like to automate this process in the future. This automation would

work very similar to the current hybrid SoC generation flow. One would start by using the functions

in our DMA software library in the user program. Then when the program is compiled to LLVM IR

with Clang, LegUp can examine the IR and detect the DMA functions to determine how many DMA

cores are needed, and which DMA cores need to be connected to which accelerators. This information

can then be passed as Tcl commands to Qsys, to generate the complete SoC, including the DMA cores.

The user can use a Tcl parameter to specify double buffering for an accelerator, which can be detected

Chapter 8. Conclusions 127

in LegUp’s Hardware Backend, to instantiate the Double Buffering Module.

8.2.2 Direct Accelerator-to-Accelerator communication

Currently in a hybrid system, an accelerator cannot communicate with another accelerator without

going through the processor or the shared memory space (on-chip cache/off-chip memory). However,

for streaming architectures, such as those shown in Chapter 7, direct communication links between

accelerators may be needed. For instance, there can be a hybrid system with multiple streaming hardware

accelerators, where data is directly streamed from one accelerator to the next, with the processor handling

tasks such as setting up the accelerators. If data needs to be written to memory from one accelerator

and read back by the next accelerator every time, the system would quickly become memory bandwidth

limited. To create a high-performance system where multiple streaming accelerators which are connected

together can continuously execute, the first accelerator should perform burst DMA transfers (possibly

with double buffering) to receive a large chunk of data from off-chip memory, process the data, and pass it

directly to the next accelerator by way of a streaming interface, such as a FIFO, or an Avalon Streaming

Interface [4]. The next accelerator can then continuously receive, process, and transfer the data in the

same manner, with the last streaming accelerator writing the output data back to off-chip memory

via burst DMA transfers (possibly with double buffering). This proposed system can be thought of as

combining the hybrid system with DMA transfers described in Chapter 4, with the multiple streaming

kernels connected through FIFOs, which was described in Chapter 7. This new hybrid architecture would

allow LegUp-generated hybrid systems to be applied to more complex streaming-style applications, such

as those in video/image processing, which can require many filters to be applied to an image one after

the next.

8.2.3 Peripheral Component Interconnect Express (PCIe) Support

LegUp’s processor-accelerator hybrid systems are currently limited to architectures where the both the

processor and accelerators reside on the FPGA. For high-performance computing, however, an x86

processor connected to the FPGA over PCIe can be a more suitable platform. Previously, the LegUp

research group had built a prototype application which involved an x86 processor communicating with

LegUp-generated hardware accelerators over PCIe. While the PCIe support worked for this particular

application, and it showed that our accelerators can work with an x86 processor, additional effort is

required to make the PCIe support high-performance and robust. Having a PCIe support that is robust

and readily available will allow LegUp to be used for a wider range of applications, such as those that

Chapter 8. Conclusions 128

are used in data centres. With the PCIe support, we can also compare the performance and power

consumption of LegUp-generated accelerators with GPU implementations.

8.3 Closing Remarks

We believe that much can be learned from looking at the past trends in software and hardware design. For

example, in the past, engineers programmed microprocessors with assembly code. Nowadays however,

compilers have matured to the extent that programming in assembly is typically only necessary for

certain limited circumstances, such as for handling interrupts or communicating with I/Os. Even though

hand optimizing assembly could lead to better performance, it is simply too cumbersome and time

consuming to do. In the hardware domain, manually laying out transistors nowadays is only done for

high-performance chips with extremely high volumes, such as Intel processors. Even in these chips, only

the most critical parts of the chip are manually laid out. Although a full-custom chip could provide

higher performance, it is simply too costly to do. In both cases, which are at very different abstraction

layers, the level of design abstraction has migrated higher, to make software/hardware design more easier

and efficient, even at the cost of some performance/area degradations.

We believe that HLS compilers are also on the same trajectory. With continuous improvements in

HLS technologies, leading to better quality-of-results and ease-of-use, we are already seeing an increasing

adaption of HLS in the hardware design community. The holy grail of HLS, is to replace HDL design, or

to minimize the need for it to certain limited applications – just as software compilers minimized the need

for assembly programming. We think that for this to become a reality, we must improve the usability

of HLS. One must be able to use software to create a complete working system, without concerning

over tasks such as setting up peripherals or off-chip memory interfaces. One must also be able to create

high-performance hardware using a methodology that is intuitive and can be easily understood by even

those without hardware knowledge.

This dissertation provided two key steps towards improving the usability of HLS, which allows one to:

1) create not just a core, but an entire SoC from software, and 2) use standard multi-threaded program-

ming methodologies to create high-performance parallel hardware. Exploiting hardware parallelism on

an FPGA is crucial for achieving high performance, just as multi-core processing is essential for modern

CPUs. We have implemented all of our work within the LegUp high-level synthesis framework, which

is open-source and freely downloadable by researchers around the world. With this dissertation, we are

optimistic that our work will make a positive contribution for HLS to achieve its grand goal of replacing

manual hardware design.

Appendix A

A Sample Code for Using MMAP to

Map a Hardware Accelerator in

Linux

This appendix provides an example code to illustrate how to use the mmap function to map and unmap

a hardware accelerator in a Linux environment.

1: #include <sys/mman.h>

2: // open memory device file

3: fd = open("/dev/mem", O_RDWR | O_SYNC);

4: if (fd < 0) {

5: perror("open");

6: exit(EXIT_FAILURE);

7: }

8: ...

9: // map physical address to virtual address

10: void *accel_mmap_ptr = mmap(NULL, accel_addr_size, PROT_WRITE, MAP_SHARED,

fd, accel_physical_addr);

11: // check if the mapping succeeded

12: assert(accel_mmap_ptr != MAP_FAILED);

13: // cast pointer to the proper type to be used for communicating with accelerator

129

Appendix A. A Sample Code for Using MMAP to Map a Hardware Accelerator in Linux130

14: volatile unsigned long *accel_addr = (volatile unsigned long*) accel_mmap_ptr;

15: ...

16: // free the mapping

17: if (munmap(accel_mmap_ptr, accel_addr_size) < 0) {

18: perror("munmap");

19: }

20: // close memory device file

21: close(fd)

The example maps to virtual memory an accelerator which has a memory-mapped address of

accel physical addr, and is taking up accel addr size of memory-mapped space (the status, data,

and argument memory-mapped registers described in Section 3.4.2 are mapped within this range). To

use mmap, one must first open the memory device file to get the file descriptor (line 3), and it should be

checked that this operation has succeeded (lines 4–7). This file descriptor is given to mmap, along with

the starting physical address (accel physical addr), and the size of memory in bytes to be mapped

(accel addr size) from the starting address (line 10). PROT WRITE is an argument for describing the

desired memory protection of the mapping, where it indicates that pages may be written for the mapping.

MAP SHARED is a flag indicating that this mapping is to be shared, so that updates to the mapping are

visible to other processes that map to the same memory device file. Again, one should check that the

mmap call has succeeded (line 12), then cast the mapped pointer to the proper type to be used for

reading/writing to the accelerator (line 14). Any mapping done with mmap should be unmapped with

munmap, and it also is recommended to check that this operation has succeeded (line 18). Finally, the

device file should also be closed (line 21).

Appendix B

The Arria V SoC Preloader

Generation and Modification

Procedures for Bare Metal

Execution

This appendix describes the steps required to generate and modify the preloader, so that one can use

the ARM HPS on the Arria V SoC FPGA in bare metal mode.

When using the stock preloader, the ARM boot sequence attempts to find the bootloader in the

SD card, but using the SD card requires lots of user intervention, as described in the RocketBoard

tutorial [92], and most importantly, the bare metal tutorial with the SD card does not work properly

(also noted in the tutorial itself as with issues). Thus we needed to edit the preloader so that the ARM

HPS can execute an application downloaded onto the HPS DDR3 memory in a much more streamlined

fashion.

The preloader is generated by the bsp-editor, which is part of the Altera SoC EDS tool. First, down-

load and install the SoC EDS tool from Altera. Once it is installed, run the embedded command shell.sh

script inside the installation directory (altera/quartus version/embedded/). Then open up bsp-editor,

and click on File, New HPS BSP, then select the preloader directory, which is in our case is in:

design_directory/Qsys_project_directory/hps_isw_handoff/legup_system_Arm_A9_HPS/

Use the default settings for the preloader, but check off everything in spl.boot (BOOT FROM QSPI/

131

Appendix B. The Arria V SoC Preloader Generation and Modification Procedures for Bare Metal Execution

SDMMC/NAND/RAM), and enable checking SDRAM SCRUBBING, then click Generate. Once it is

generated, go to the software/spl bsp directory and type make. This generates a bunch of the preloader

code and some of the preloader code must be changed in order to get the baremetal ARM working.

Special thanks to Kevin Nam at the Altera University Program for helping with this. The steps are

described below.

1. Open ./software/spl_bsp/uboot-socfpga/arch/arm/cpu/armv7/socfpga/spl.c

This file is generated inside the Quartus project directory where the

bsp-editor was run.

2. Find where it says, "puts("\nNo boot device selected. Just loop here...\n");"

3. Before that line (also above the #if statements) put the following assembly code.

// Switch to ARM mode then break

asm volatile("mov r1,pc\n" : :);

// This instruction is duplicated for padding purposes

asm volatile("mov r1,pc\n" : :);

asm volatile("bx r1\n" : :);

asm volatile(".code 32\n" : :);

asm volatile("stop:\n" : :);

asm volatile("bkpt\n" : :);

asm volatile("bkpt\n" : :);

This will switch the processor from THUMB mode to ARM mode. The break instructions

(bkpt) do not actually have any functionality, but are used later to find the point

in the preloader where the preloader is done and the software application can start to

execute.

4. Compile the preloader code again by first running "make clean" then "make"

inside ./software/spl_bsp, which will generate "u-boot-spl" inside

software/spl_bsp/uboot-socfpga/spl

5. The "u-boot-spl" file needs to be converted to the binary format (.srec) that can be used

by quartus_hps and the ARM processor. The conversion can be done by running the following:

Appendix B. The Arria V SoC Preloader Generation and Modification Procedures for Bare Metal Execution

arm-altera-eabi-objcopy -O srec u-boot-spl u-boot-spl.srec

6. Now, "u-boot-spl" file needs to be disassembled to find the address of the "bkpt"

instruction that was added above. Get the disassembly by running:

arm-altera-eabi-objdump -D u-boot-spl > u-boot-spl.src

Open u-boot-spl.src, and find the bkpt instruction. Get the address of the

second bkpt instruction.

This is the address we give as the --preloaderaddr

argument to quartus_hps, the hps programmer.

We have now described all steps which are necessary to generate and modify the preloader. The

ARM HPS can then be configured to execute a software binary with the following:

quartus_hps --cable=JTAG_CABLE -o GDBSERVER --gdbport0=PORT_NUM

--preloader=u-boot-spl.srec --preloaderaddr=BKPT_ADDR --source=SW_BINARY.srec

This invokes quartus hps to use the JTAG CABLE to download the preloader u-boot-spl.srec to the

FPGA and execute it on the HPS. The value of JTAG CABLE can be obtained by running jtagconfig (on

DE1-SoC, we used DE-SoC [3-4]). Quartus hps then stalls the HPS at the preloader address specified

by BKPT ADDR, which is the address found above from the preloader disassembly. To execute the software

binary SW BINARY.srec, one must connect remotely to the ARM HPS with gdb using the port specified

by PORT NUM to give the continue command. This allows the ARM HPS to start executing the software

binary. In LegUp this is handled by a script, so that the process downloading the software binary and

executing it on the HPS can be done with a single makefile target.

Appendix C

The Complete Benchmark Results

for Chapter 4

This appendix presents the complete circuit-by-circuit results for Chapter 4 described in Section 4.5.2.

Table C.1: Benchmark results for the MIPS processor-only architecture (Arch. 0).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks Static Power Dyn. Power Total Power (mW) Energy (nJ)
Hash 209,972.96 26,920,633 128.21 9,629 12,444 6 76 1,339.35 325.94 2,218.01 465,722,121.52
Mandelbrot 37,393.44 4,794,213 128.21 9,629 12,444 6 76 1,339.35 325.94 2,218.01 82,939,024.85
Option Pricing 55,401.22 7,102,991 128.21 9,629 12,444 6 76 1,339.35 325.94 2,218.01 122,880,470.07
Gaussian Filter 54,243.15 6,954,514 128.21 9,629 12,444 6 76 1,339.35 325.94 2,218.01 120,311,844.61
Dfsin 113,031.20 14,491,730 128.21 9,629 12,444 6 76 1,339.35 325.94 2,218.01 250,704,329.28
Dfdiv 34,596.90 4,435,669 128.21 9,629 12,444 6 76 1,339.35 325.94 2,218.01 76,736,277.97

Geomean 67,221.74 8,618,499.64 128.21 9,629 12,444 6 76 1,339.35 325.94 2,218.01 149,098,497.70

Table C.2: Benchmark results for the MIPS single-threaded processor-accelerator hybrid architecture
(Arch. 1).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks Static Power Dyn. Power Total Power (mW) Energy (nJ)
Hash 2,201.61 271,326 123.24 21,814 34,171 46 76 1,340.23 477.08 2,323.35 5,115,102.74
Mandelbrot 9,953.37 1,249,646 125.55 11,333 16,627 70 81 1,339.79 422.52 2,268.34 22,577,634.47
Option Pricing 2,229.01 284,243 127.52 12,575 20,015 33 79 1,340.00 449.32 2,295.37 5,116,396.29
Gaussian Filter 6,465.85 803,188 124.22 11,371 18,135 56 81 1,339.83 427.59 2,273.46 14,699,853.41
Dfsin 2,256.78 273,183 121.05 19,715 32,782 88 84 1,341.25 595.22 2,442.51 5,512,203.30
Dfdiv 2,025.95 259,666 128.17 14,383 24,058 54 80 1,339.97 445.01 2,291.03 4,641,512.02

Geomean 3,361.97 420,025.54 124.93 14,684 23,364 55 80 1,340.18 466.13 2,314.93 7,782,738.66

Table C.3: Benchmark results for the MIPS multi-threaded processor-accelerator hybrid architecture
(Arch. 2).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks Static Power Dyn. Power Total Power (mW) Energy (nJ)
Hash 837.30 102,990 123 20,814 35,131 46 76 1,340.09 461.17 2,307.30 1,931,902.29
Mandelbrot 3,710.40 422,984 114 14,919 24,888 198 91 1,341.70 645.18 2,492.92 9,249,730.37
Option Pricing 785.60 98,198 125 19,244 35,253 87 85 1,342.18 703.65 2,551.86 2,004,741.22
Gaussian Filter 2,681.90 348,647 130 15,190 29,022 156 91 1,341.63 636.52 2,484.18 6,662,322.34
Dfsin 794.40 106,443 134 42,125 75,650 252 88 1,345.71 1112.1 2,963.84 2,354,474.50
Dfdiv 803.40 104,439 130 26,640 50,463 150 88 1,343.69 878.79 2,728.52 2,192,092.97

Geomean 1,269.07 159,685.16 125.83 21,611 38,806 129 86 1,342.50 711.96 2,579.92 3,274,099.39

134

Appendix C. The Complete Benchmark Results for Chapter 4 135

Table C.4: Benchmark results for the MIPS multi-threaded and pipelined processor-accelerator hybrid
architecture (Arch. 3p).

Benchmark Time (us) Cycles Fmax ALMs Registers DSPs M10Ks Static Power Dyn. Power Total Power (mW) Energy (nJ)
Hash 169.19 20,010 118.27 19,242 28,542 46 289 1,345.04 954.16 2,805.24 474,616.15
Mandelbrot 339.57 40,619 119.62 17,813 35,284 198 321 1,346.09 1,058.88 2,911.01 988,482.82
Option Pricing 112.81 12,200 108.15 22,708 46,299 87 273 1,345.72 1,035.69 2,887.45 325,722.52
Gaussian Filter 665.81 66,015 99.15 23,233 53,313 156 168 1,344.22 907.47 2,757.74 1,836,129.16

Geomean 256.30 28,444.26 110.98 20,621.39 39,706.97 105.44 255.40 1,345.27 987.15 2,839.69 727,806.05

Table C.5: Benchmark results for the ARM processor-only architecture (Arch. 0).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks HPS Power FPGA Power Total Power (mW) Energy (nJ)
Hash 2,158.58 2,266,507 1,050 1,650 2,551 0 2,048 1,666.20 334.30 2,000.50 4,318,235.48
Mandelbrot 3,013.07 3,163,725 1,050 1,650 2,551 0 2,048 1,789.61 354.83 2,144.43 6,461,335.71
Option Pricing 955.53 1,003,310 1,050 1,650 2,551 0 2,048 1,758.39 340.34 2,098.72 2,005,401.30
Gaussian Filter 3,738.87 3,925,811 1,050 1,650 2,551 0 2,048 1,813.55 330.53 2,144.08 8,016,425.45
Dfsin 387.93 407,323 1,050 1,650 2,551 0 2,048 1,762.32 341.60 2,103.92 816,165.96
Dfdiv 1,280.32 1,344,337 1,050 1,650 2,551 0 2,048 1,741.97 343.29 2,085.26 2,669,807.05

Geomean 1,503.28 1,578,439.36 1,050.00 1,650 2,551 0 2,048 1,754.73 340.73 2,095.59 3,150,248.68

Table C.6: Benchmark results for the ARM single-threaded processor-accelerator hybrid architecture
(Arch. 1).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks HPS Power FPGA Power Total Power (mW) Energy (nJ)
Hash 2,561.71 2,689,792 130 9,988 20,241 40 4 1,713.40 467.10 2,180.50 5,585,801.39
Mandelbrot 7,311.97 7,677,564 170 3,684 6,702 64 9 1,742.32 444.85 2,187.17 15,992,486.96
Option Pricing 1,978.35 2,077,272 140 5,031 10,094 27 7 1,788.20 482.90 2,271.10 4,493,040.42
Gaussian Filter 8,708.97 9,144,415 150 3,870 8,339 50 9 1,774.40 417.27 2,191.67 19,087,177.13
Dfsin 2,142.86 2,249,999 130 11,504 22,821 82 8 1,649.57 462.01 2,111.58 4,524,822.68
Dfdiv 1,831.15 1,922,704 130 6,812 14,089 48 8 1,772.54 414.99 2,187.54 4,005,702.19

Geomean 3,289.21 3,453,671.54 140.96 6,188 12,420 49 7 1,739.42 447.47 2,187.77 7,196,046.44

Table C.7: Benchmark results for the ARM multi-threaded processor-accelerator hybrid architecture
(Arch. 2).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks HPS Power FPGA Power Total Power (mW) Energy (nJ)
Hash 907.47 952,841 125 10,063 20,090 40 4 1,679.34 472.21 2,151.55 1,952,462.59
Mandelbrot 3,896.76 4,091,593 120 11,730 31,003 192 25 1,801.19 534.02 2,335.21 9,099,761.20
Option Pricing 660.44 693,459 140 12,193 25,827 81 13 1,665.28 534.42 2,199.70 1,452,761.09
Gaussian Filter 4,300.61 4,515,640 125 8,184 19,775 150 19 1,860.57 508.54 2,369.11 10,188,635.46
Dfsin 1,537.84 1,614,728 120 32,649 65,641 246 13 1,789.99 694.10 2,484.09 3,820,120.22
Dfdiv 1,408.95 1,479,394 125 18,788 40,845 144 16 1,742.71 622.55 2,365.26 3,332,531.83

Geomean 1,670.90 1,754,443.41 125.66 13,904 30,795 122 13 1,755.17 556.22 2,314.79 3,867,785.49

Table C.8: Benchmark results for the ARM multi-threaded and pipelined processor-accelerator hybrid
architecture (Arch. 3p).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks HPS Power FPGA Power Total Power (mW) Energy (nJ)
Hash 40.80 42,845 130 15,477 24,069 40 794,366 1,756.87 665.86 2,422.73 98,858.75
Mandelbrot 139.18 146,143 160 12,143 28,022 192 562,916 1,779.02 757.58 2,536.60 353,053.05
Option Pricing 25.39 26,659 140 16,591 38,283 81 229,022 1,662.20 658.10 2,320.30 58,911.31
Gaussian Filter 163.52 171,691 150 18,518 48,699 150 699,338 1,877.58 795.78 2,673.36 437,135.15

Geomean 69.68 73,167.36 144.57 15,501.36 33,486.58 98.28 517,317.47 1,767.26 716.93 2,484.79 173,147.96

Appendix D

The Complete Benchmark Results

for Chapter 5

This appendix presents the complete circuit-by-circuit results for Chapter 5 described in Section 5.3.1.

Table D.1: Benchmark results for the single-threaded hardware-only system (Arch. 1).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks Static Power Dyn. Power Total Power (mW) Energy (nJ)
Hash 1,606.51 227,353 141.52 7,356 10,098 40 51 1,329.71 167.31 1,502.31 2,413,472.90
Mandelbrot 6,322.08 1,228,569 194.33 1,626 3,506 64 4 1,328.45 30.28 1,364.01 8,623,374.68
Option Pricing 1,737.86 273,417 157.33 3,132 6,569 27 3 1,328.42 27.79 1,361.50 2,366,091.94
Gaussian Filter 2,878.62 706,587 245.46 1,837 5,244 50 4 1,328.51 30.82 1,364.62 3,928,227.62
Dfsin 1,764.88 248,248 140.66 10,309 19,689 82 4 1,328.69 58.71 1,392.69 2,457,930.52
Dfdiv 862.44 121,233 140.57 5,207 10,812 48 4 1,328.74 49.57 1,383.59 1,193,261.48

Geomean 2,064.10 342,846.46 166.10 3,931.72 7,987.11 48.86 5.83 1,328.75 48.26 1,393.94 2,877,236.28

Table D.2: Benchmark results for the multi-threaded hardware-only system (Arch. 2).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks Static Power Dyn. Power Total Power (mW) Energy (nJ)
Hash 542.06 76,821 141.72 7,151 14,670 40 1 1,329.48 159.97 1,494.73 810,236.05
Mandelbrot 2,150.06 409,543 190.48 5,366 11,494 192 12 1,328.91 84.21 1,418.40 3,049,641.91
Option Pricing 677.45 92,180 136.07 9,778 21,061 81 9 1,328.83 75.62 1,409.73 955,015.15
Gaussian Filter 1,243.62 278,335 223.81 6,624 18,603 150 20 1,328.92 74.62 1,408.82 1,752,039.30
Dfsin 801.22 99,263 123.89 35,507 66,849 246 10 1,329.60 169.12 1,504.00 1,205,033.11
Dfdiv 314.67 40,825 129.74 16,158 30,972 144 56 1,329.70 146.49 1,481.47 466,170.90

Geomean 792.40 121,838.05 153.76 10,609.17 22,698.89 122.05 10.32 1,329.24 111.13 1,452.28 1,150,782.13

Table D.3: Benchmark results for the multi-threaded and pipelined hardware-only system (Arch. 3p).

Benchmark Time (µs) Cycles Fmax ALMs Registers DSPs M10Ks Static Power Dyn. Power Total Power (mW) Energy (nJ)
Hash 21.97 3,155 144 8,246 17,490 40 3 1,328.98 93.41 1,427.67 31,366.98
Mandelbrot 52.50 9,695 185 6,699 16,813 192 17 1,329.77 188.81 1,523.87 80,001.73
Option Pricing 7.43 1,124 151 11,986 30,708 81 57 1,330.02 202.98 1,538.31 11,432.56
Gaussian Filter 26.59 6,330 238 11,826 38,305 150 30 1,329.85 182.44 1,517.58 40,355.74

Geomean 21.85 3,840.87 175.78 9,406.79 24,251.33 98.28 17.18 1,329.65 159.86 1,501.21 32,802.37

136

Appendix E

The Complete Benchmark Results

for Chapter 6

This appendix presents the complete circuit-by-circuit results for Chapter 6 described in Section 6.6.2.

Table E.1: Benchmark results for Arch. 1.

Benchmark Time (µs) Cycles Fmax (MHz) Logic Util. DSPs M20Ks
Mutex 55.7 10,090 181 1,474 0 46
Barrier 326.8 64,052 196 1,076 0 12
MCML 2,895.9 474,924 164 18,752 388 76
Alphablend 10.6 2,038 193 1,883 0 18
Black Scholes 556.8 99,662 179 20,082 260 76
Box Filter 800.6 161,716 202 2,581 48 34
DF 384.3 59,186 154 22,531 142 68
Division 529.6 90,034 170 4,556 0 140
Dot Product 48.3 9,036 187 1,607 8 44
Hash 504.3 87,756 174 3,380 14 28
Line of Sight 1,085.2 207,276 191 4,362 8 26
Mandelbrot 4,328.9 839,810 194 2,792 160 20
Matrix Multiply 16.8 2,054 122 2,360 44 16
Histogram 369.4 49,504 134 4,398 0 97
Vector Add 54.9 10,040 183 1,823 0 46

Geomean 262.86 45,562.53 173.34 3,727.72 11.03 39.38

137

Appendix E. The Complete Benchmark Results for Chapter 6 138

Table E.2: Benchmark results for Arch. 2.

Benchmark Time (µs) Cycles Fmax (MHz) Logic Util. DSPs M20Ks
Mutex 47.8 10,090 211 1,247 0 46
Barrier 297.9 64,052 215 1,012 0 12
MCML 2,810.2 474,924 169 21,827 388 76
Alphablend 10.0 2,040 204 1,746 0 18
Black Scholes 559.9 99,660 178 20,056 260 76
Box Filter 804.6 161,716 201 2,500 48 34
DF 391.8 59,158 151 22,384 142 68
Division 481.5 90,036 187 4,763 0 140
Dot Product 48.6 9,036 186 1,475 8 44
Hash 464.4 87,764 189 3,086 14 28
Line of Sight 1,050.9 207,022 197 4,142 8 26
Mandelbrot 4,396.9 839,810 191 2,698 160 20
Matrix Multiply 17.0 2,060 121 2,199 44 16
Histogram 330.3 49,538 150 4,071 0 97
Vector Add 47.8 10,038 210 1,620 0 46

Geomean 250.37 45,570.97 182.00 3,563.40 11.03 39.38

Table E.3: Benchmark results for Arch. 3.

Benchmark Time (µs) Cycles Fmax (MHz) Logic Util. DSPs M20Ks
Mutex 47.8 10,090 211 1,247 0 46
Barrier 297.9 64,052 215 1,012 0 12
MCML 3,025.0 474,924 157 11,144 388 35
Alphablend 10.0 2,040 204 1,746 0 18
Black Scholes 600.4 99,662 166 9,436 260 35
Box Filter 804.6 161,716 201 2,500 48 34
DF 386.7 59,160 153 21,462 142 113
Division 466.5 90,036 193 2,473 0 92
Dot Product 48.6 9,036 186 1,475 8 44
Hash 525.5 87,764 167 1,993 14 28
Line of Sight 1,050.9 207,022 197 4,142 8 26
Mandelbrot 4,396.9 839,810 191 2,698 160 20
Matrix Multiply 17.0 2,060 121 2,199 44 16
Histogram 330.3 49,538 150 4,071 0 97
Vector Add 47.8 10,038 210 1,620 0 46

Geomean 254.10 45,571.14 179.33 3,004.11 11.03 35.72

Appendix E. The Complete Benchmark Results for Chapter 6 139

Table E.4: Benchmark results for Arch. 4.

Benchmark Time (µs) Cycles Fmax (MHz) Logic Util. DSPs M20Ks
Mutex 47.8 10,090 211 1,247 0 46
Barrier 297.9 64,052 215 1,012 0 12
MCML 2,913.6 474,924 163 13,786 97 35
Alphablend 10.0 2,040 204 1,746 0 18
Black Scholes 579.5 99,666 172 10,779 65 35
Box Filter 812.6 161,716 199 3,234 8 34
DF 389.2 59,164 152 22,320 44 113
Division 466.5 90,036 193 2,473 0 92
Dot Product 46.8 9,036 193 1,631 2 44
Hash 504.4 87,764 174 2,149 10 28
Line of Sight 1,145.6 207,360 181 4,264 2 26
Mandelbrot 4,263.0 839,814 197 2,932 40 20
Matrix Multiply 16.9 2,060 122 2,785 20 16
Histogram 330.3 49,538 150 4,071 0 97
Vector Add 47.8 10,038 210 1,620 0 46

Geomean 252.65 45,576.44 180.39 3,247.12 5.29 35.72

Table E.5: Benchmark results for Arch. 5.

Benchmark Time (µs) Cycles Fmax (MHz) Logic Util. DSPs M20Ks
Mutex 42.6 10,044 236 1,236 0 44
Barrier 61.9 16,038 259 748 0 10
MCML 2,845.2 472,304 166 13,379 97 32
Alphablend 6.2 1,782 289 1,337 0 12
Black Scholes 569.5 99,658 175 9,184 65 30
Box Filter 301.4 79,878 265 2,972 8 26
DF 339.2 59,016 174 21,235 44 100
Division 326.2 90,030 276 2,273 0 90
Dot Product 31.6 9,032 286 1,444 2 42
Hash 348.0 82,824 238 1,848 10 26
Line of Sight 794.1 207,266 261 4,004 2 17
Mandelbrot 4,263.0 839,810 197 2,505 40 10
Matrix Multiply 10.0 2,042 205 2,170 12 14
Histogram 235.7 49,500 210 4,307 0 94
Vector Add 37.9 10,034 265 1,467 0 43

Geomean 170.30 39,079.69 229.66 2,885.29 5.11 29.72

Appendix E. The Complete Benchmark Results for Chapter 6 140

Table E.6: Benchmark results for Arch. 6.

Benchmark Time (µs) Cycles Fmax (MHz) Logic Util. DSPs M20Ks
Mutex 38.3 10,036 262 1,010 0 36
Barrier 65.4 20,016 306 563 0 2
MCML 2,740.2 471,322 172 13,194 97 26
Alphablend 4.9 1,532 312 1,270 0 6
Black Scholes 533.6 99,254 186 9,001 65 24
Box Filter 233.6 61,912 265 2,872 8 17
DF 341.7 57,740 169 21,092 44 94
Division 338.0 87,530 259 2,195 0 84
Dot Product 27.6 7,530 273 1,365 2 36
Hash 425.9 79,224 186 1,758 10 20
Line of Sight 703.0 191,210 272 4,011 2 11
Mandelbrot 4,220.1 839,808 199 2,443 40 4
Matrix Multiply 8.0 1,650 207 2,112 12 8
Histogram 217.2 44,082 203 3,365 0 75
Vector Add 41.1 10,030 244 1,387 0 35

Geomean 160.48 36,858.47 229.71 2,680.04 5.11 19.59

Table E.7: Benchmark results for Arch. 7.

Benchmark Time (µs) Cycles Fmax (MHz) Logic Util. DSPs M20Ks
Mutex 31.8 7,536 237 879 0 132
Barrier 65.4 20,016 306 563 0 2
MCML 3,184.6 471,322 148 13,075 97 38
Alphablend 4.9 1,532 312 1,270 0 6
Black Scholes 522.4 99,254 190 8,986 65 30
Box Filter 239.0 61,912 259 2,507 8 92
DF 387.5 57,740 149 20,924 44 105
Division 338.0 87,530 259 2,195 0 84
Dot Product 28.6 7,530 263 1,174 2 132
Hash 425.9 79,224 186 1,758 10 20
Line of Sight 703.0 191,210 272 4,011 2 11
Mandelbrot 4,220.1 839,808 199 2,443 40 4
Matrix Multiply 7.8 1,640 211 2,051 24 20
Histogram 219.0 40,956 187 3,061 0 430
Vector Add 24.3 6,034 248 1,208 0 159

Geomean 156.10 34,771.55 222.74 2,556.74 5.35 36.12

Appendix E. The Complete Benchmark Results for Chapter 6 141

Table E.8: Benchmark results for Arch. 8.

Benchmark Time (µs) Cycles Fmax (MHz) Logic Util. DSPs M20Ks
Mutex 31.8 7,536 237 879 0 132
Barrier 70.2 20,016 285 568 0 2
MCML 3,163.2 471,322 149 10,300 388 38
Alphablend 4.8 1,532 322 1,263 0 6
Black Scholes 506.4 99,254 196 7,585 260 30
Box Filter 197.8 61,912 313 1,746 48 92
DF 395.5 57,742 146 20,142 142 105
Division 324.2 87,530 270 2,190 0 84
Dot Product 26.8 7,530 281 1,011 8 132
Hash 430.6 79,224 184 1,583 14 20
Line of Sight 667.5 190,894 286 3,860 8 11
Mandelbrot 4,351.3 839,806 193 2,202 160 4
Matrix Multiply 8.0 1,640 205 1,388 48 20
Histogram 219.0 40,956 187 3,061 0 430
Vector Add 24.3 6,034 248 1,208 0 159

Geomean 153.54 34,767.79 226.56 2,299.00 11.09 36.12

Appendix F

Code Examples for Creating

Streaming Hardware with LegUp

This appendix provides code examples that illustrate how one can use LegUp to create the different

streaming hardware architectures described in Section 7.4.3.

1. Creating streaming hardware modules with two kernels, A and B, which are connected together

via two FIFOs, fifo0 and fifo1. The data flows from A to B. This is similar to the architecture shown

in Figure 7.2a.

// create the FIFOs

PTHREAD_FIFO *fifo0 = pthread_fifo_malloc(/*width*/32, /*depth*/2);

PTHREAD_FIFO *fifo1 = pthread_fifo_malloc(/*width*/32, /*depth*/2);

// store FIFOs in a struct (Pthreads require multiple arguments to be passed in as a struct)

// kernel_data is a struct type that we assume to have defined already

kernel_data data;

data.fifo0 = fifo0;

data.fifo1 = fifo1;

// fork the kernels

pthread_t threadA, threadB;

pthread_create(&threadA, NULL, A, (void *)&data);

pthread_create(&threadB, NULL, B, (void *)&data);

142

Appendix F. Code Examples for Creating Streaming Hardware with LegUp 143

2. Creating replicated streaming hardware modules with two kernels, A and B, where each kernel

executes on two threads. Fifo0 and fifo1 are used to connect the first instance of A and B, and fifo2

and fifo3 are used to connect the second instance of A and B. The data flows from the first instance

of A to the first instance of B, and also flows from the second instance of A to the second instance of B.

This is similar to the architecture shown in Figure 7.2b

#define NUM_FIFOS 4

#define NUM_INSTANCES 2

// create the FIFOs

PTHREAD_FIFO *fifo[NUM_FIFOS];

for (i=0; i<NUM_FIFOS; ++i) {

fifo[i] = pthread_fifo_malloc(/*width*/32, /*depth*/2);

}

// store FIFOs in structs

kernel_data data[NUM_INSTANCES];

data[0].fifo0 = fifo[0];

data[0].fifo1 = fifo[1];

data[1].fifo0 = fifo[2];

data[1].fifo1 = fifo[3];

// fork the kernels

pthread_t threadA[NUM_INSTANCES], threadB[NUM_INSTANCES];

for (i=0; i<NUM_INSTANCES; ++i) {

pthread_create(&threadA[i], NULL, A, (void *)&data[i]);

pthread_create(&threadB[i], NULL, B, (void *)&data[i]);

}

3. Creating a one-to-many architecture with three kernels, A, B, and C, which are connected via a

common FIFO, fifo. The data flows from A to fifo, which can be accessed by both B and C. This

is similar to the architecture shown in Figure 7.2c. Here we also show a code snippet of the kernel

functions.

void top() {

Appendix F. Code Examples for Creating Streaming Hardware with LegUp 144

...

// create the FIFO

PTHREAD_FIFO *fifo = pthread_fifo_malloc(/*width*/32, /*depth*/2);

// fork the kernels

pthread_t threadA, threadB, threadC;

pthread_create(&threadA, NULL, A, (void *)&fifo);

pthread_create(&threadB, NULL, B, (void *)&fifo);

pthread_create(&threadC, NULL, C, (void *)&fifo);

}

// kernel A, which writes to the FIFO

void *A(void *arg) {

...

while (1) {

...

// write data to the fifo that was passed in as the argument

pthread_fifo_write(fifo, data);

}

}

// kernel B, which reads from the FIFO

void *B(void *arg) {

...

while (1) {

// read data from the fifo that was passed in as the argument

data = pthread_fifo_read(fifo);

...

}

}

// kernel C, which also reads from the FIFO

void *C(void *arg) {

Appendix F. Code Examples for Creating Streaming Hardware with LegUp 145

...

while (1) {

// read data from the fifo that was passed in as the argument

data = pthread_fifo_read(fifo);

...

}

}

LegUp automatically determines which kernel writes to the FIFO, or reads from the FIFO, and

automatically create arbitration logic as necessary. In this example, LegUp finds that A writes to the

FIFO, and both B and C reads from the FIFO, hence an arbiter is created to handling read contentions

from B and C.

4. Creating a many-to-one architecture with three kernels, A, B, and C, which are connected via a

common FIFO, fifo. The data flows from both A and B to fifo, which can be accessed by C. This

is similar to the architecture shown in Figure 7.2d. Here we also show a code snippet of the kernel

functions.

void top() {

...

// create the FIFO

PTHREAD_FIFO *fifo = pthread_fifo_malloc(/*width*/32, /*depth*/2);

// fork the kernels

pthread_t threadA, threadB, threadC;

pthread_create(&threadA, NULL, A, (void *)&fifo);

pthread_create(&threadB, NULL, B, (void *)&fifo);

pthread_create(&threadC, NULL, C, (void *)&fifo);

}

// kernel A, which writes to the FIFO

void *A(void *arg) {

...

while (1) {

...

Appendix F. Code Examples for Creating Streaming Hardware with LegUp 146

// write data to the fifo that was passed in as the argument

pthread_fifo_write(fifo, data);

}

}

// kernel B, which writes to the FIFO

void *B(void *arg) {

...

while (1) {

...

// write data to the fifo that was passed in as the argument

pthread_fifo_write(fifo, data);

}

}

// kernel C, which reads from the FIFO

void *C(void *arg) {

...

while (1) {

// read data from the fifo that was passed in as the argument

data = pthread_fifo_read(fifo);

...

}

}

In this example, LegUp finds that A and B write to the FIFO, and C reads from the FIFO, hence an

arbiter is created to handling write contentions from A and B.

Bibliography

[1] Mohamed S. Abdelfattah, Andrei Hagiescu, and Deshanand Singh. Gzip on a Chip: High Perfor-

mance Lossless Data Compression on FPGAs Using OpenCL. In Proceedings of the International

Workshop on OpenCL, IWOCL ’14, pages 4:1–4:9, New York, NY, USA, 2014. ACM.

[2] Algorithm and Programming. Box Filtering. (http://tech-algorithm.com/articles/boxfiltering/).

[3] Altera, Corp., San Jose, CA. TriMatrix Embedded Memory Blocks in Stratix IV Devices, 2011.

[4] Altera, Corp., San Jose, CA. Avalon Interface Specifications, 2015.

[5] L. O. Andersen. Program analysis and specialization for the c programming language. In Ph.D.

Thesis. University of Cophenhagen, 1994.

[6] E. Anderson et al. Enabling a uniform programming model across the software/hardware boundary.

In IEEE FCCM, pages 89–98, April 2006.

[7] B. Barney. POSIX Threads Programming. Lawrence Livermore National Laboratory, Auguest 13,

2015.

[8] J. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal, 4, 1965.

[9] A. Canis, S.D. Brown, and J.H. Anderson. Modulo SDC scheduling with recurrence minimization

in high-level synthesis. In IEEE FPL, pages 1–8, Sept. 2014.

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.H. Anderson, S.D. Brown, and

T. Czajkowski. LegUp: high-level synthesis for FPGA-based processor/accelerator systems. In

ACM/SIGDA FPGA, pages 33–36, 2011.

[11] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz Cza-

jkowski, Stephen D. Brown, , and Jason H. Anderson. Legup: An open source high-level synthesis

tool for fpga-based processor/accelerator systems. ACM TECS, 2012.

147

BIBLIOGRAPHY 148

[12] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, PAMI-8(6):679 – 698, November 1986.

[13] Y. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accelerator

for deep convolutional neural networks. In 2016 IEEE International Solid-State Circuits Conference

(ISSCC), Jan 2016.

[14] J. Choi, S. Brown, and J. Anderson. From software threads to parallel hardware in high-level

synthesis for fpgas. In IEEE FPT, pages 270–277, December 2013.

[15] J. Choi, S. Brown, and J. Anderson. Resource and memory management techniques for perfor-

mance and area of parallel hardware in high-level synthesis for fpgas. In IEEE FPT, December

2015.

[16] J. Choi, R. Lian, S. Brown, and J. Anderson. A unified software approach to specify pipelineand

spatial parallelism in fpga hardware. In IEEE International Conference on Application-specific

Systems, Architectures and Processors (ASAP), July 2016.

[17] J. Choi, K. Nam, A. Canis, J.H. Anderson, S.D. Brown, and T. Czajkowski. Impact of cache

architecture and interface on performance and area of FPGA-based processor/parallel-accelerator

systems. In IEEE FCCM, pages 17–24, 2012.

[18] Jongsok Choi, Stephen Brown, and Jason Anderson. Enabling hardware/software co-design in

high-level synthesis. In M.A.Sc dissertation, Electrical and Computer Engineering, University of

Toronto, Toronto, Canada, Nov. 2012.

[19] J. Cong and W. Jiang. Pattern-based behavior synthesis for fpga resource reduction. In

ACM/SIGDA FPGA, pages 107–116, 2008.

[20] J. Cong and Z. Zhang. An efficient and versatile scheduling algorithm based on sdc formulation.

In ACM DAC, volume 43, pages 433–438, 2006.

[21] J. Cong and Y. Zou. FPGA-based hardware acceleration of lithographic aerial image simulation.

ACM Trans. Reconfigurable Technol. Syst., 2(3):1–29, 2009.

[22] Cortex-A9 Technical Reference Manual (Revision: r3p0). Chapter 11: Performance Monitoring

Unit.

[23] P. Coussy, G. Lhairech-Lebreton, D. Heller, and E. Martin. GAUT a free and open source high-level

synthesis tool. In IEEE DATE, 2010.

BIBLIOGRAPHY 149

[24] S. Dai, M. Tan, K. Hao, and Z. Zhang. Flushing-enabled loop pipelining for high-level synthesis.

In DAC, pages 1–6, San Francisco, CA, June 2014.

[25] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, January 2008.

[26] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger.

Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual International

Symposium on Computer Architecture, pages 365–376, 2011.

[27] A. Cilardo et. al. Efficient and scalable OpenMP-based system-level design. In Design, Automation

& Test in Europe Conference & Exhibition (DATE), pages 988 – 991, 2013.

[28] A. Papakonstantinou et. al. FCUDA: Enabling efficient compilation of CUDA kernels onto FPGAs.

In IEEE Symposium on Application Specific Processors, pages 35–42, 2009.

[29] D. Cabrera et. al. OpenMP extensions for FPGA accelerators. In IEEE Systems, Architecture,

Modeling and Simulation (SAMOS), pages 17–24, 2009.

[30] J. Cong et. al. High-level synthesis for fpgas: From prototyping to deployment. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 30(4):473–491, 2011.

[31] Y.Y Leow et. al. Generating hardware from OpenMP programs. In IEEE FPT, pages 73–80, 2006.

[32] B. Fort, A. Canis, J. Choi, N. Calagar, R. Lian, S. Hadjis, Y. T. Chen, M. Hall, B. Syrowik,

T. Czajkowski, S. Brown, and J. Anderson. Automating the design of processor/accelerator em-

bedded systems with legup high-level synthesis. In Embedded and Ubiquitous Computing (EUC),

2014 12th IEEE International Conference on, pages 120–129, Aug 2014.

[33] M. Gort and J. H. Anderson. Range and bitmask analysis for hardware optimization in high-level

synthesis. In Design Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific, pages

773–779, Jan 2013.

[34] S. Hadjis, A. Canis, J.H. Anderson, J. Choi, K. Nam, S.D. Brown, and T. Czajkowski. Impact

of FPGA architecture on resource sharing in high-level synthesis. In ACM/SIGDA FPGA, pages

111–114, 2012.

[35] Robert J. Halstead and Walid Najjar. Compiled multithreaded data paths on fpgas for dynamic

workloads. In IEEE Compilers, Architectures and Synthesis for Embedded Systems, 2013.

BIBLIOGRAPHY 150

[36] D. Hansen, J. Li, S. Balatsos, and X. Liu. Calypto White Paper: Designing ASIC IP at Higher

Level of Abstraction. https://www.mentor.com/hls-lp/success/qualcomm-inc.

[37] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and quantitative analysis of the CH-

Stone benchmark program suite for practical C-based high-level synthesis. Journal of Information

Processing, 17:242–254, 2009.

[38] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S.D. Brown, and J.H. Anderson. The effect of

compiler optimizations on high-level synthesis for FPGAs. In IEEE FCCM, pages 89–96, Seattle,

WA, 2013.

[39] A. Ismail et al. Fuse: Front-end user framework for o/s abstraction of hardware accelerators. In

IEEE FCCM, pages 170–177, May 2011.

[40] D. Ku and G. D. Micheli. High Level Synthesis of ASICs under Timing and Synchronization

Constraints. Kluwer Academic Publishers, Norwell, MA, 1992.

[41] C. E. LaForest, J. Anderson, and J. G. Steffan. Approaching overhead-free execution on fpga soft-

processors. In Field-Programmable Technology (FPT), 2014 International Conference on, pages

99–106, Dec 2014.

[42] Jaehwan Lee. Hardware/software deadlock avoidance for multiprocessor multiresource system-on-

a-chip. In Ph.D dissertation, School of Electrical and Computer Engineering, Georgia Institute of

Technology, Toronto, Canada, Nov. 2004.

[43] Jaehwan Lee and Vincent John Mooney. A novel deadlock avoidance algorithm and its hard-

ware implementation. In Proceedings of the 2nd IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, CODES+ISSS ’04, pages 200–205, 2004.

[44] Peng Li, Peng Zhang, Louis-Noel Pouchet, and Jason Cong. Resource-aware throughput optimiza-

tion for high-level synthesis. In ACM/SIGDA FPGA, pages 200–209, 2015.

[45] W. Lo et al. Hardware acceleration of a monte carlo simulation for pdt treatment planning. J.

Biomed. Opt., 14(1), Jan-Feb 2009.

[46] E. Lubbers and M. Platzner. A portable abstraction layer for hardware threads. In IEEE FPL,

pages 17–22, Sept 2008.

https://www.mentor.com/hls-lp/success/qualcomm-inc

BIBLIOGRAPHY 151

[47] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. Pro-

ceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of Cal-

ifornia Press., pages 281 – 297, 1967.

[48] A. Martin, D. Jamsek, and K. Agarwal. FPGA-Based Application Acceleration: Case Study with

GZIP Compression/Decompression Streaming Engine. In Interational Conference on Computer-

Aided Design (ICCAD), Nov. 2013.

[49] G. Martin and G. Smith. High-level synthesis: Past, present, and future. IEEE Design Test of

Computers, 26(4):18–25, July 2009.

[50] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal, S. Hsu, G. Chen, and

R. Krishnamurthy. 340 mv x2013;1.1 v, 289 gbps/w, 2090-gate nanoaes hardware accelerator with

area-optimized encrypt/decrypt gf(2 4) 2 polynomials in 22 nm tri-gate cmos. IEEE Journal of

Solid-State Circuits, 50(4):1048–1058, April 2015.

[51] Microsoft, http://download.microsoft.com/download/8/2/9/8297F7C7-AE81-4E99-B1DB-D65A01F7A8EF/

Microsoft_Cloud_Infrastructure_Datacenter_and_Network_Fact_Sheet.pdf. Microsoft’s

Cloud Infrastructure: Datacenters and Network Fact Sheet, June, 2015.

[52] S. Mochizuki, K. Matsubara, K. Matsumoto, C. L. P. Nguyen, T. Shibayama, K. Iwata, K. Mizu-

moto, T. Irita, H. Hara, and T. Hattori. 4.4 a 197mw 70ms-latency full-hd 12-channel video-

processing soc for car information systems. In 2016 IEEE International Solid-State Circuits Con-

ference (ISSCC), pages 78–79, Jan 2016.

[53] C. Moore. Data processing in exascale-class computing systems. In Salishan Conference on High

Speed Computing, April, 27 2011.

[54] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, pages 114–

117, April 19 1965.

[55] A. Morvan, S. Derrien, and P. Quinton. Efficient nested loop pipelining in high level synthesis

using polyhedral bubble insertion. In IEEE FPT, pages 1–10, Dec. 2011.

[56] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y.T. Chen, H. Hsiao, S. Brown,

F. Ferrandi, J. Anderson, and K. Bertels. A survey and evaluation of fpga high-level synthesis

tools. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, PP(99),

December 2015.

http://download.microsoft.com/download/8/2/9/8297F7C7-AE81-4E99-B1DB-D65A01F7A8EF/Microsoft_Cloud_Infrastructure_Datacenter_and_Network_Fact_Sheet.pdf
http://download.microsoft.com/download/8/2/9/8297F7C7-AE81-4E99-B1DB-D65A01F7A8EF/Microsoft_Cloud_Infrastructure_Datacenter_and_Network_Fact_Sheet.pdf

BIBLIOGRAPHY 152

[57] R. Nane, V.M. Sima, J. van Someren, and K.L.M. Bertels. Dwarv: A hdl compiler with support

for scheduling custom ip blocks. In DAC, San Diego, USA, June 2011.

[58] R. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from High-Level Specifications. In

IEEE/ACM MEMOCODE, pages 69–70, 2004.

[59] The Open Group. POSIX.1 FAQ, October 5, 2011.

[60] Oregon Medical Laser Center. Monte Carlo Simulations. (http://omlc.ogi.edu/software/mc/),

2007.

[61] C. Pilato and F. Ferrandi. Bambu: A modular framework for the high level synthesis of memory-

intensive applications. In FPL, pages 1–4, 2013.

[62] Fred J. Pollack. New Microarchitecture Challenges in the Coming Generations of CMOS Pro-

cess Technologies. In Proceedings of the 32nd Annual ACM/IEEE International Symposium on

Microarchitecture, MICRO 32, pages 2–, Washington, DC, USA, 1999. IEEE Computer Society.

[63] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-

maeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Y.

Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger.

A reconfigurable fabric for accelerating large-scale datacenter services. In 2014 ACM/IEEE 41st

International Symposium on Computer Architecture (ISCA), pages 13–24, June 2014.

[64] R. Rashid, J. G. Steffan, and V. Betz. Comparing performance, productivity and scalability of the

tilt overlay processor to opencl hls. In Field-Programmable Technology (FPT), 2014 International

Conference on, pages 20–27, Dec 2014.

[65] D. Salomon, G. Motta, and D. Bryant. Data Compression: The Complete Reference. Springer,

molecular biology intelligence unit edition, 1992.

[66] L. Semeria and G. De Micheli. Spc: synthesis of pointers in c application of pointer analysis to

the behavioral synthesis from c. In IEEE/ACM ICCAD 98. Digest of Technical Papers., pages

340–346, November 1998.

[67] B. Steensgaard. Points-to analysis in almost linear time. In ACM SIGPLAN-SIGACT Symposium

on Principles of programming languages, pages 32–41, 1996.

[68] G. Stitt and F. Vahid. Thread warping: a framework for dynamic synthesis of thread accelerators.

In IEEE/ACM CODES+ISSS, pages 93–98, 2007.

BIBLIOGRAPHY 153

[69] Mingxing Tan, Bin Liu, Steve Dai, and Zhiru Zhang. Multithreaded pipeline synthesis for data-

parallel kernels. ICCAD, 2014.

[70] United States Bureau of Labor Statistics. Occupational Outlook Handbook 2010-2011 Edition,

2010.

[71] University of Cambridge, http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html.

The Tiger ”MIPS” processor., 2010.

[72] http://dragonegg.llvm.org/. DragonEgg - Using LLVM as a GCC backend.

[73] http://international.download.nvidia.com/pdf/kepler/TeslaK80-datasheet.pdf. Nvidia

Tesla GPU Accelerators.

[74] http://legup.eecg.utoronto.ca/wiki/doku.php?id=running_linux_os_on_arm-based_soc_

fpgas. LegUp wiki: Linux OS on ARM SoC FPGAs.

[75] http://linuxcommand.org/man_pages/taskset1.html. Linux Users Manual : TASKSET.

[76] http://linux.die.net/man/8/picocom. picocom(8) - Linux man page.

[77] http://llvm.org/. The LLVM Compiler Infrastructure.

[78] http://llvm.org/docs/Passes.html. LLVMs Analysis and Transform Passes, 2015.

[79] http://man7.org/linux/man-pages/man2/mmap.2.html. Linux Programmer’s Manual :

MMAP.

[80] http://man7.org/linux/man-pages/man7/sem_overview.7.html. Linux Programmer’s Man-

ual.

[81] http://manpages.ubuntu.com/manpages/xenial/man8/turbostat.8.html. Ubuntu Manuals :

turbostat.

[82] http://news.synopsys.com/index.php?item=123168. Synopsys Acquires High-level Synthesis

Technology from Synfora, Inc.

[83] http://nvidianews.nvidia.com/news/nvidia-delivers-massive-performance-leap-for-

deep-learning-hpc-applications-with-nvidia-tesla-p100-accelerators. NVIDIA Deliv-

ers Massive Performance Leap for Deep Learning, HPC Applications With NVIDIA Tesla P100

Accelerators, April 5 2013.

http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html
http://dragonegg.llvm.org/
http://international.download.nvidia.com/pdf/kepler/TeslaK80-datasheet.pdf
http://legup.eecg.utoronto.ca/wiki/doku.php?id=running_linux_os_on_arm-based_soc_fpgas
http://legup.eecg.utoronto.ca/wiki/doku.php?id=running_linux_os_on_arm-based_soc_fpgas
http://linuxcommand.org/man_pages/taskset1.html
http://linux.die.net/man/8/picocom
http://llvm.org/
http://llvm.org/docs/Passes.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man7/sem_overview.7.html
http://manpages.ubuntu.com/manpages/xenial/man8/turbostat.8.html
http://news.synopsys.com/index.php?item=123168
http://nvidianews.nvidia.com/news/nvidia-delivers-massive-performance-leap-for-
deep-learning-hpc-applications-with-nvidia-tesla-p100-accelerators

BIBLIOGRAPHY 154

[84] http://openmp.llvm.org/. OpenMP: Support for the OpenMP language.

[85] http://openmp.org/wp/. The OpenMP API specification for parallel programming.

[86] https://community.cadence.com/cadence_blogs_8/b/ii/archive/2014/02/18/

cadence-acquisition-of-forte-boosts-high-level-synthesis. How Cadence Acquisi-

tion of Forte Boosts High-Level Synthesis.

[87] https://docs.oracle.com/cd/E19455-01/806-5257/sync-31/index.html. Oracle: Multi-

threaded Programming Guide.

[88] https://gcc.gnu.org/onlinedocs/gcc-4.2.4/libgomp/Implementing-PARALLEL-construct.

html. Implementing PARALLEL construct.

[89] https://github.com/grievejia/andersen. Andersen’s inclusion-based pointer analysis re-

implementation in LLVM.

[90] https://msdn.microsoft.com/en-us/library/hh872235.aspx. Auto-Parallelization and Auto-

Vectorization.

[91] https://rocketboards.org/. RocketBoards.org.

[92] https://rocketboards.org/foswiki/view/Documentation/

SoCSWWS1IntroToAlteraSoCDevicesLab3BareMetalApplication. SoC SW WS1: Intro To Altera

SoC Devices - Lab 3 - Bare Metal Application.

[93] https://software.intel.com/sites/default/files/m/d/4/1/d/8/4-1-ProgTools_-_

Automatic_Parallelization_with_Intel_C2_AE_Compilers.pdf. Automatic Paralleliza-

tion with Intel Compilers.

[94] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/

backgrounder/spectra-q-engine-backgrounder.pdf. Spectra-Q Engine.

[95] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/

opencl-sdk/aocl_c5soc_getting_started.pdf. Altera SDK for OpenCL Cyclone V SoC

Getting Started Guide.

[96] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/

opencl-sdk/ug_aocl_c5soc_devkit_platform.pdf. Altera SDK for OpenCL: Cyclone V SoC

Development Kit Reference Platform Porting Guide.

http://openmp.llvm.org/
http://openmp.org/wp/
https://community.cadence.com/cadence_blogs_8/b/ii/archive/2014/02/18/cadence-acquisition-of-forte-boosts-high-level-synthesis
https://community.cadence.com/cadence_blogs_8/b/ii/archive/2014/02/18/cadence-acquisition-of-forte-boosts-high-level-synthesis
https://docs.oracle.com/cd/E19455-01/806-5257/sync-31/index.html
https://gcc.gnu.org/onlinedocs/gcc-4.2.4/libgomp/Implementing-PARALLEL-construct.html
https://gcc.gnu.org/onlinedocs/gcc-4.2.4/libgomp/Implementing-PARALLEL-construct.html
https://github.com/grievejia/andersen
https://msdn.microsoft.com/en-us/library/hh872235.aspx
https://rocketboards.org/
https://rocketboards.org/foswiki/view/Documentation/
SoCSWWS1IntroToAlteraSoCDevicesLab3BareMetalApplication
https://software.intel.com/sites/default/files/m/d/4/1/d/8/4-1-ProgTools_-_Automatic_Parallelization_with_Intel_C2_AE_Compilers.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/4-1-ProgTools_-_Automatic_Parallelization_with_Intel_C2_AE_Compilers.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/backgrounder/spectra-q-engine-backgrounder.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/backgrounder/spectra-q-engine-backgrounder.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_c5soc_getting_started.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_c5soc_getting_started.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/ug_aocl_c5soc_devkit_platform.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/ug_aocl_c5soc_devkit_platform.pdf

BIBLIOGRAPHY 155

[97] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/

manual/rm_av_soc_dev_board.pdf. Arria V SoC Development Board Reference Manual.

[98] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_

av_soc_dev_kit.pdf. Arria V SoC Development Kit User Guide.

[99] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_

embedded_ip.pdf. Embedded Peripherals IP User Guide.

[100] https://www.altera.com/products/design-software/embedded-software-developers/

opencl/overview.html. Altera SDK for OpenCL.

[101] https://www.altera.com/products/design-software/embedded-software-developers/

soc-eds/ds-5-toolkit.html. ARM DS-5 Altera Edition.

[102] https://www.altera.com/products/design-software/embedded-software-developers/

soc-eds/overview.html. Altera’s SoC Embedded Design Suite (EDS).

[103] https://www.altera.com/products/design-software/fpga-design/quartus-prime/

features/qts-qsys.html. Qsys - Alteras System Integration Tool.

[104] https://www.altera.com/products/fpga/stratix-series/stratix-v/overview.

highResolutionDisplay.html. Stratix V FPGAs.

[105] https://www.altera.com/products/processors/overview.html. Nios II Processor: The

World’s Most Versatile Embedded Processor.

[106] https://www.altera.com/products/soc/overview.html. Altera SoC Overview.

[107] https://www.altera.com/products/soc/portfolio/arria-v-soc/overview.html. Altera Ar-

ria V SoC.

[108] https://www.altera.com/support/support-resources/design-examples/

design-software/opencl/black-scholes.html. Monte Carlo Pricing of Asian Options

on FPGAs Using OpenCL.

[109] https://www.arm.com/products/system-ip/amba-specifications.php. AMBA Specifications.

[110] https://www.cadence.com/content/cadence-www/global/en_US/home/tools/

digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html. Stratus

High-Level Synthesis.

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_av_soc_dev_board.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_av_soc_dev_board.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_av_soc_dev_kit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_av_soc_dev_kit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/soc-eds/ds-5-toolkit.html
https://www.altera.com/products/design-software/embedded-software-developers/soc-eds/ds-5-toolkit.html
https://www.altera.com/products/design-software/embedded-software-developers/soc-eds/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/soc-eds/overview.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
https://www.altera.com/products/fpga/stratix-series/stratix-v/overview.highResolutionDisplay.html
https://www.altera.com/products/fpga/stratix-series/stratix-v/overview.highResolutionDisplay.html
https://www.altera.com/products/processors/overview.html
https://www.altera.com/products/soc/overview.html
https://www.altera.com/products/soc/portfolio/arria-v-soc/overview.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/black-scholes.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/black-scholes.html
https://www.arm.com/products/system-ip/amba-specifications.php
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html

BIBLIOGRAPHY 156

[111] https://www.khronos.org/opencl/. The open standard for parallel programming of heteroge-

neous systems.

[112] https://www.maxeler.com/products/software/maxcompiler/. MaxCompiler.

[113] https://www.mentor.com/company/news/mentor-acquires-calypto-design-systems. Men-

tor Graphics Acquires Calypto Design Systems.

[114] https://www.mentor.com/hls-lp/catapult-high-level-synthesis/. Catapult High-Level

Synthesis.

[115] https://www.mentor.com/hls-lp/success/google-inc. Google Develops WebM Video Decom-

pression Hardware IP Using Technology Independent Sources and High-Level Synthesis.

[116] https://www.mentor.com/products/fpga/handel-c/dk-design-suite/. DK Design Suite.

[117] https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/

SynphonyC-Compiler.aspx. Synphony C Compiler.

[118] http://www.ace.nl. ACE - Associated Compiler Experts. CoSy.

[119] http://www.bdti.com/InsideDSP/2011/02/28/Xilinx. Xilinx Buys AutoESL, Securing High-

Level Synthesis Capabilities.

[120] http://www.bdti.com/Resources/BenchmarkResults/HLSTCP/AutoPilot. BDTI Certified Re-

sults for the AutoESL AutoPilot High-Level Synthesis Tool.

[121] http://www.bluespec.com. Bluespec: The Synthesizable Modeling Company.

[122] http://www.csee.wvu.edu/~jdm/classes/cs550/notes/tech/mutex/pc-sem.html. A

Semaphore Solution to the Producer-Consumer Problem.

[123] http://www.impulseaccelerated.com. Impulse CoDeveloper – Impulse accelerated technologies.

[124] http://www.intc.com/releasedetail.cfm?ReleaseID=915707. Intel to Acquire Altera.

[125] http://www.intel.com/content/www/us/en/architecture-and-technology/

hyper-threading/hyper-threading-technology.html. Intel Hyper-Threading Technology.

[126] http://www.intel.com/content/www/us/en/high-performance-computing/

high-performance-xeon-phi-coprocessor-brief.html. Intel Xeon Phi Product Family:

Product Brief.

https://www.khronos.org/opencl/
https://www.maxeler.com/products/software/maxcompiler/
https://www.mentor.com/company/news/mentor-acquires-calypto-design-systems
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/success/google-inc
https://www.mentor.com/products/fpga/handel-c/dk-design-suite/
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx
http://www.ace.nl
http://www.bdti.com/InsideDSP/2011/02/28/Xilinx
http://www.bdti.com/Resources/BenchmarkResults/HLSTCP/AutoPilot
http://www.bluespec.com
http://www.csee.wvu.edu/~jdm/classes/cs550/notes/tech/mutex/pc-sem.html
http://www.impulseaccelerated.com
http://www.intc.com/releasedetail.cfm?ReleaseID=915707
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html

BIBLIOGRAPHY 157

[127] http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html.

The Story of the Intel 4004: Intel’s First Microprocessor.

[128] http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.

html. Intel Xeon Processor E7 Family.

[129] http://www.intel.com/content/www/us/en/support/processors/000005523.html. Intel

Turbo Boost Technology Frequency Table.

[130] http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html. Mersenne Twister Home

Page.

[131] http://www.nec.com/. NEC: Orchestrating a brighter world.

[132] http://www.nec.com/en/global/prod/cwb/index.html. Cyberworkbench: Pioneering C-based

LSI Design.

[133] http://www.nvidia.ca/object/cuda_home_new.html. CUDA Parallel Computing Platform.

[134] http://www.prnewswire.com/

news-releases/cadence-announces-stratus-high-level-synthesis-platform-300038873.

html. Cadence Announces Stratus High-Level Synthesis Platform.

[135] http://www.xilinx.com/products/design-tools/microblaze.html. MicroBlaze Soft Proces-

sor Core.

[136] http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html. SDAccel

Development Environment.

[137] http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html. SDSoC Devel-

opment Environment.

[138] http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

Vivado High-Level Synthesis.

[139] http://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html. Virtex-7.

[140] http://www.xilinx.com/products/silicon-devices/soc.html. Expanding the All Pro-

grammable SoC Portfolio.

[141] http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable.

Zynq-7000 All Programmable SoC.

http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://www.intel.com/content/www/us/en/support/processors/000005523.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.nec.com/
http://www.nec.com/en/global/prod/cwb/index.html
http://www.nvidia.ca/object/cuda_home_new.html
http://www.prnewswire.com/
news-releases/cadence-announces-stratus-high-level-synthesis-platform-300038873.html
news-releases/cadence-announces-stratus-high-level-synthesis-platform-300038873.html
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
http://www.xilinx.com/products/silicon-devices/soc.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable

BIBLIOGRAPHY 158

[142] http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf. Xilinx: Xcell Journal,

Issue 86, 2014.

[143] http://www.xilinx.com/publications/prod_mktg/vivado/Vivado_IP_Integrator_

Backgrounder.pdf. Vivado IP Integrator: Accelerated Time to IP Creation and Integration.

[144] http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/

ug1027-intro-to-sdsoc.pdf. SDSoC Environment User Guide, 2015.

[145] http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/

ug1185-sdsoc-release-notes.pdf. SDSoC Development Environment Release Notes, July 26,

2015.

[146] http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/

ug902-vivado-high-level-synthesis.pdf. Xilinx: Vivado Design Suite User Guide -

High-Level Synthesis, November 2015.

[147] www.intel.com/software/pcm. Intel Performance Counter Monitor - A better way to measure

CPU utilization.

[148] Yin Wang, Terence Kelly, Manjunath Kudlur, Stephane Lafortune, and Scott Mahlke. Gadara:

Dynamic deadlock avoidance for multithreaded programs. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation, pages 281–294, Berkeley, CA, USA,

2008.

[149] Henry Wong, Vaughn Betz, and Jonathan Rose. Comparing fpga vs. custom cmos and the impact

on processor microarchitecture. In Proceedings of the 19th ACM/SIGDA International Symposium

on Field Programmable Gate Arrays, pages 5–14, New York, NY, USA, 2011.

[150] Y Explorations (XYI), San Jose, CA. eXCite C to RTL Behavioral Synthesis 4.1(a), 2010.

[151] P. Yiannacouras, J. G. Steffan, and J. Rose. Exploration and customization of fpga-based soft

processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

26(2):266–277, Feb 2007.

[152] Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. Vespa: Portable, scalable, and flexible

fpga-based vector processors. In Proceedings of the 2008 International Conference on Compilers,

Architectures and Synthesis for Embedded Systems, CASES ’08, pages 61–70, 2008.

http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf
http://www.xilinx.com/publications/prod_mktg/vivado/Vivado_IP_Integrator_Backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/vivado/Vivado_IP_Integrator_Backgrounder.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1027-intro-to-sdsoc.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1027-intro-to-sdsoc.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1185-sdsoc-release-notes.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1185-sdsoc-release-notes.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug902-vivado-high-level-synthesis.pdf
www.intel.com/software/pcm

BIBLIOGRAPHY 159

[153] T. Yuki, A. Morvan, and S. Derrien. Derivation of efficient fsm from loop nests. In IEEE FPT,

pages 286–293, Kyoto, Japan, December 2013.

[154] W. Zhang, V. Betz, and J. Rose. Portable and scalable fpga-based acceleration of a direct linear

system solver. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 5(1):6–1–

6–26, March 2012.

	Introduction
	Motivation
	Thesis Contributions
	Thesis Organization

	Background
	An Overview of Active High-Level Synthesis Tools
	Parallel Programming Languages in High-Level Synthesis
	High-Level Synthesis vs. Hand-coded RTL
	LegUp High-Level Synthesis Framework
	Key Features
	Software-to-Hardware Results
	Comparison to Other HLS tools

	Summary

	From Software Threads to Processor/Parallel-Accelerator Hybrid System
	Introduction
	Background
	Parallel Programming with Pthreads/OpenMP
	Parallel Threads to Parallel Hardware
	Generation of Thread-Handling Logic
	Wrapper Function Generation for Parallel Accelerators
	Parallel Accelerator Instantiations
	Sharing an Accelerator Across Threads
	System Architecture
	Parallel Accelerator Architecture

	Experimental Study
	Benchmarks
	Results

	Summary

	ARM Hard Processor System and Direct Memory Access (DMA) Support
	Introduction
	Background
	Pthreads to ARM Processor-Accelerator Hybrid System
	ARM Hybrid System Architecture
	Operating System Support
	Bare Metal Support

	Direct Memory Access (DMA) Support
	Experimental Study
	Benchmarks and Measurement Methodologies
	Results

	Summary

	Synthesis of Software Threads to Parallel Hardware-only System
	Introduction
	Parallel Hardware-only System Generation
	Sharing a Hardware Core Across Threads

	Experimental Study
	Results

	Summary

	Resource and Memory Management Techniques for HLS of Parallel Hardware
	Introduction
	Background
	Circuit Topology
	System Generator
	Automatic Deadlock Prevention
	Advantages of Flat Topology with the System Generator

	Memory Architectures
	Points-to Analysis
	Global Memory Controller
	Local and Shared-local Memories

	Experimental Study
	Benchmarks
	Results

	Summary

	Inferring Streaming Hardware with Pthreads
	Introduction
	Background
	Producer-Consumer Threads in Software
	Producer-Consumer Threads in Hardware
	FIFO Details
	Hardware Architecture
	Multiple Software Threads to Multiple Streaming Hardware Kernels
	Streaming Datapath and Stall Logic

	Experimental Study
	Benchmarks
	Results

	Summary

	Conclusions
	Summary of Contributions
	Future Work
	Automated DMA Hardware Generation
	Direct Accelerator-to-Accelerator communication
	Peripheral Component Interconnect Express (PCIe) Support

	Closing Remarks

	A Sample Code for Using MMAP to Map a Hardware Accelerator in Linux
	The Arria V SoC Preloader Generation and Modification Procedures for Bare Metal Execution
	The Complete Benchmark Results for Chapter 4
	The Complete Benchmark Results for Chapter 5
	The Complete Benchmark Results for Chapter 6
	Code Examples for Creating Streaming Hardware with LegUp
	Bibliography

