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Abstract

The goal of source separation is to detect and extract the individual signals present
in a mixture. Its application to sound signals and, in particular, to music signals,
is of interest for content analysis and retrieval applications arising in the context
of online music services. Other applications include unmixing and remixing for
post-production, restoration of old recordings, object-based audio compression and
upmixing to multichannel setups.

This work addresses the task of source separation from monaural and stereo-
phonic linear musical mixtures. In both cases, the problem is underdetermined,
meaning that there are more sources to separate than channels in the observed mix-
ture. This requires taking strong statistical assumptions and/or learning a priori
information about the sources in order for a solution to be feasible. On the other
hand, constraining the analysis to instrumental music signals allows exploiting spe-
cific cues such as spectral and temporal smoothness, note-based segmentation and
timbre similarity for the detection and extraction of sound events.

The statistical assumptions and, if present, the a priori information, are both
captured by a given source model that can greatly vary in complexity and extent of
application. The approach used here is to consider source models of increasing levels
of complexity, and to study both their implications on the separation algorithm, and
the type of mixtures they are able to handle.

The starting point is sparsity-based separation, which makes the general assump-
tion that the sources can be represented in a transformed domain with few high-
energy coefficients. It will be shown that sparsity, and consequently separation, can
both be improved by using nonuniform-resolution time–frequency representations.
To that end, several types of frequency-warped filter banks will be used as signal
front-ends in conjunction with an unsupervised separation approach aimed at stereo
signals.

As a next step, more sophisticated models based on sinusoidal modeling and
statistical training will be considered in order to improve separation and to al-
low the consideration of the maximally underdetermined problem: separation from
single-channel signals. An emphasis is given in this work to a detailed but com-
pact approach to train models of the timbre of musical instruments. An important
characteristic of the approach is that it aims at a close description of the temporal
evolution of the spectral envelope. The proposed method uses a formant-preserving,
dimension-reduced representation of the spectral envelope based on spectral inter-
polation and Principal Component Analysis. It then describes the timbre of a given
instrument as a Gaussian Process that can be interpreted either as a prototype curve
in a timbral space or as a time–frequency template in the spectral domain. Such
templates will be used for the grouping and separation of sinusoidal tracks from the
mixture.

A monaural separation method based on sinusoidal modeling and on the men-
tioned timbre modeling approach will be presented. It exploits common-fate and
good-continuation cues to extract groups of sinusoidal tracks corresponding to the
individual notes. Each group is compared to each one of the timbre templates on
the database using a specially-designed measure of timbre similarity, followed by a



Maximum Likelihood decision. Subsequently, overlapping and missing parts of the
sinusoidal tracks are retrieved by interpolating the selected timbre template. The
method is later extended to stereo mixtures by using a preliminary spatial-based
blind separation stage, followed by a set of refinements performed by the above
sinusoidal modeling and timbre matching methods and aiming at reducing interfer-
ences with the undesired sources.

A notable characteristic of the proposed separation methods is that they do not
assume harmonicity, and are thus not based on a previous multipitch estimation
stage, nor on the input of detailed pitch-related information. Instead, grouping and
separation relies solely on the dynamic behavior of the amplitudes of the partials.
This also allows separating highly inharmonic sounds and extracting chords played
by a single instrument as individual entities.

The fact that the presented approaches are supervised and based on classifica-
tion and similarity allows using them (or parts thereof) for other content analysis
applications. In particular the use of the timbre models, and the timbre matching
stages of the separation systems will be evaluated in the tasks of musical instrument
classification and detection of instruments in polyphonic mixtures.



Kurzfassung

Das Ziel der Quellentrennung ist die Erkennung und Extraktion der einzelnen Si-
gnale, die in einer Mischung vorhanden sind. Ihre Anwendung auf Audiosignale und
im Besonderen auf Musiksignale ist von großem praktischen Interesse im Rahmen
der inhaltsbasierten Analyse für neue Online-Musikdienste und Multimediaanwen-
dungen. Quellentrennung findet auch Einsatz in Studio-Nachbearbeitung, Wieder-
herstellung alter Aufnahmen, objektbasierter Audiocodierung und beim Erstellen
neuer Mischungen für mehrkanalige Systeme.

Die vorliegende Dissertation befasst sich mit der Aufgabe, Quellen aus linearen
Mono- und Stereomusikmischungen zu extrahieren. In beiden Fällen ist die Aufga-
benstellung unterbestimmt, d.h., es gibt mehr Quellen zu trennen als Kanäle in der
Mischung vorhanden sind. Dies verlangt starke statistische Annahmen, bzw. das A-
priori-Erlernen von Information über die Quellen. Andererseits erlaubt die Anwen-
dung auf Musiksignale, spezifische Eigenschaften auszunutzen, wie etwa spektrale
und zeitliche Glattheit, notenbasierte Segmentierung und Ähnlichkeit der Klangfar-
be, um die einzelnen Klangereignisse zu erkennen und zu trennen.

Sowohl die statistischen Annahmen als auch das eventuelle Vorwissen werden von
einem bestimmten Quellenmodell erfasst. Ein solches Modell kann stark in Komple-
xität und Anwendbarkeit variieren. Der verwendete methodische Ansatz bestand
daraus, verschiedene Quellenmodelle wachsender Komplexität zu betrachten und
ihre jeweiligen Auswirkungen auf die Trennungsalgorithmen und auf den Typ von
Mischungen, die sie verarbeiten können, zu studieren.

Der Ausgangsspunkt ist die Trennung basierend auf dünnbesetzten (sparse) Si-
gnalen, in welchem Fall angenommen wird, dass die Quellen in einem bestimmten
transformierten Bereich mit wenigen energiereichen Koeffizienten dargestellt werden
können. Es wird gezeigt, dass sparsity, und folglich Trennung, durch die Verwen-
dung von Zeit–Frequenz Darstellungen nicht-linearer Auflösung verbessert werden.
Zu diesem Zweck werden verschiedene Arten von frequenzverzerrten Filterbänken als
Front-End im Zusammenhang mit einer unüberwachten Stereo-Trennungsmethode
ausgewertet.

Als nächster Schritt werden komplexere Modelle, basierend auf sinusoidaler Mo-
dellierung und statistischem Lernen, in Betracht gezogen. Sie erlauben, die maximal
unterbestimmte Situation zu behandeln, nämlich die Trennung aus einer einkanali-
gen (monophonen) Mischung. Ein besonderer Schwerpunkt wird auf das Lernen eines
detaillierten, wenngleich kompakten Modells der Klangfarbe von Musikinstrumenten
gelegt. Die vorgeschlagene Methode benutzt eine formantenerhaltende, dimensions-
reduzierte Darstellung der spektralen Hüllkurve, die auf spektraler Interpolation
und auf Hauptkomponentenanalyse beruht. Eine wichtige Eigenschaft des Ansatzes
ist die detaillierte Beschreibung des zeitlichen Verlaufs der Hüllkurve. Das resultie-
rende Modell beschreibt die Klangfarbe eines Instrumentes entweder in Form einer
Prototypkurve im Klangfarbenraum oder als eine Zeit–Frequenz-Schablone im spek-
tralen Bereich. Solche Schablonen werden für die Gruppierung und Trennung der im
Spektrum vorhandenen Partialtöne verwendet.

Im Anschluss wird ein Ansatz für monophone Trennung, die auf solchen Klang-
farbenmodellen basiert, vorgestellt. Er gruppiert die Partialtöne anhand von ge-



meinsamen dynamischen Eigenschaften. Jede Gruppe wird mit den erlernten Zeit–
Frequenz-Schablonen verglichen, unter Benutzung eines speziell entworfenen Maßes
von Klangfarbenähnlichkeit, gefolgt von einer Maximum-Likelihood -Entscheidung.
Die überlappenden und unvollständigen Anteile werden vom Modell mittels Interpo-
lation gewonnen. Diese Methode wird anschließend für Stereomischungen erweitert.
Dafür wird ein Modul für blinde Stereoquellentrennung als Vorverarbeitungsstufe
eingesetzt, gefolgt von einer Reihe Verfeinerungen, die durch die erwähnten sinusoi-
dalen Methoden realisiert werden.

Eine besondere Eigenschaft der vorgestellten Trennungmethoden ist, dass keine
Harmonizität angenommen wird. Die Trennung basiert also nicht auf einer vorhan-
denen Analyse der Grundfrequenzen in der Mischung und verlangt keine Eingabe
von Information über die vorhandenen Tonhöhen. Stattdessen beruht die Gruppie-
rung und Trennung der Partialtöne lediglich auf dem dynamischen Verhalten ihrer
Amplituden. Dies erlaubt ebenfalls die Trennung disharmonischer Klänge und die
einheitliche Extraktion von Akkorden.

Die Tatsache, dass die vorgeschlagenen Methoden überwacht sind und dass sie
auf Klassifizierung und Ähnlichkeitsmessungen basieren, erlaubt ihre Verwendung
für andere inhaltsbasierte Anwendungen. Somit werden die entwickelten Klangfar-
benmodelle in monophonen und polyphonen Klassifizierungsaufgaben ausgewertet.



Resumen

El objetivo de la separación de fuentes es detectar y extraer las distintas señales
presentes en una mezcla. Su aplicación a señales de audio y, en particular, a señales
musicales, es de elevado interés para aplicaciones del análisis y la recuperación de
datos basadas en el contenido, tales como las que han surgido recientemente a ráız
de los nuevos servicios de distribución de música por Internet. Otras aplicaciones
incluyen, por ejemplo, la separación y remezcla en postproducción, la restauración
de grabaciones antiguas, la compresión de audio basada en objetos y la conversión
automática a formatos multicanal.

El presente trabajo se centra en la separación de mezclas lineales monoaurales
y estereofónicas. En ambos casos, el problema es de tipo subdeterminado, lo cual
significa que hay más fuentes que canales en la mezcla observada. En este caso,
para que la solución sea factible, es necesario asumir ciertas hipótesis estad́ısticas
restrictivas, o bien llevar a cabo un aprendizaje basado en información disponible
a priori. Por otro lado, el hecho de restringir el análisis al caso musical permite
aprovechar elementos espećıficos, tales como la uniformidad espectral y temporal, la
segmentación a nivel de nota y la similitud t́ımbrica, para la detección y separación
de los eventos sonoros.

Las hipótesis estad́ısticas y, dado el caso, la información a priori, se ven refleja-
das en un modelo de fuente cuya complejidad y campo de aplicación puede variar
sustancialmente. El enfoque metodológico sobre el que se basa el presente trabajo
consiste en ir considerando modelos de complejidad creciente, y en ir estudiando
en cada caso las implicaciones sobre el algoritmo de separación y sobre el tipo de
mezclas que son capaces de abordar.

El punto de partida es la separación basada en la premisa de escasez (sparsity),
la cual supone que las fuentes pueden representarse mediante un número reducido
de coeficientes no-nulos, al menos en un cierto dominio transformado. Se demuestra
que la escasez, y por lo tanto la separación, pueden mejorarse mediante el uso de
representaciones tiempo–frecuencia de resolución no uniforme. Para ello, se estudian
varios tipos de bancos de filtros no uniformes en la fase de representación de la señal,
combinándolos con un algoritmo de separación no supervisada destinado a mezclas
estereofónicas.

A continuación se consideran modelos más sofisticados basados en modelos si-
nusoidales y aprendizaje estad́ıstico, con el fin de mejorar la separación y permitir
la toma en consideración de la situación más subdeterminada posible: la separa-
ción de mezclas monocanal. Este trabajo otorga especial atención al desarrollo de
un modelo detallado pero compacto del timbre de instrumentos musicales, el cual
puede ser usado como información a priori en el proceso de separación. El método
propuesto usa una representación de baja dimensionalidad de la envolvente espec-
tral que preserva los formantes y se basa en interpolación espectral y Análisis de
Componentes Principales. Se hace especial énfasis en la descripción detallada de la
evolución temporal de la envolvente espectral. De esta forma se obtiene una descrip-
ción del timbre de un determinado instrumento en forma de un Proceso Gaussiano
que puede interpretarse como una curva prototipo en un espacio t́ımbrico, o bien
como un patrón tiempo–frecuencia en el dominio espectral. Dichos patrones se usan



como gúıa al agrupar y separar las trayectorias sinusoidales presentes en la mezcla.
El primer método de separación supervisada propuesto está destinado a mez-

clas monocanal y se basa en modelos sinusoidales y en los mencionados modelos
t́ımbricos, previamente entrenados. Analiza los indicios psicoacústicos de destino
común y buena continuación para extraer parcialmente grupos de trayectorias sinu-
soidales correspondientes a notas individuales. Cada grupo de trayectorias es com-
parado con cada patrón t́ımbrico presente en la base de datos mediante el uso de una
medida de similitud t́ımbrica diseñada a tal efecto, a lo cual sigue una decisión de
máxima verosimilitud. Los fragmentos ausentes o solapados de las sinusoides se rege-
neran interpolando el patrón t́ımbrico seleccionado en el paso anterior. Este método
es ampliado a continuación al caso estereofónico mediante la inclusión de una etapa
previa de separación ciega basada en la distribución espacial de las fuentes, seguida
de una serie de refinamientos llevados a cabo por los anteriores métodos sinusoidales
y t́ımbricos, y destinados a reducir las interferencias con las fuentes no deseadas.

Cabe destacar que ninguno de los métodos propuestos presupone la armonici-
dad de las fuentes, y por lo tanto no se basan en una etapa previa de transcripción
polifónica, ni necesitan información detallada sobre las alturas de las notas. El agru-
pamiento y separación están basados únicamente en el comportamiento dinámico de
las amplitudes de los parciales. Esto implica que es posible separar sonidos altamen-
te inarmónicos, o extraer un acorde tocado por un solo instrumento como una sola
entidad.

El hecho de que los procedimientos propuestos sean supervisados y se basen en
la clasificación y en medidas de similitud permite su uso en el contexto de otras
aplicaciones basadas en el contenido. En concreto, los módulos de comparación y
aprendizaje t́ımbrico serán evaluados en tareas de clasificación y detección de in-
strumentos musicales en muestras individuales o en mezclas polifónicas.
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1
Introduction

Since the introduction of digital audio technologies more than 35 years ago, comput-
ers and signal processing units have been capable of storing, modifying, transmitting
and synthesizing sound signals. The later development and refinement of fields such
as machine learning, data mining and pattern recognition, together with the increase
in computing power, gave rise to a whole new set of audio applications that were able
to automatically interpret the content of the sound signals being conveyed, and to
handle them accordingly. In a very broad sense, such new content-based applications
allowed not only the extraction of global semantic information from the signals, but
also the detection, analysis and further processing of the individual sound entities
constituting an acoustic complex.

Source separation is the task of extracting the individual signals from an observed
mixture by computational means. This works focuses on the separation of audio
signals, and more specifically of music signals, but source separation is useful applied
to many other types of signals, such as image, video, neural, medical, financial or
radio signals. Source separation is a challenging problem that began to be addressed
in the mid 1980’s. It was first formulated within a statistical framework by Hérault
and Jutten [72]. With the introduction of Independent Component Analysis (ICA)
and related techniques in the early 1990’s [46], its theoretical study and practical
deployment rapidly accelerated.

In the specific case of sound signals, several psychoacoustical studies, and most
notably the 1990 work Auditory Scene Analysis by Bregman [25], provided the
basis for the computational implementation of algorithms mimicking the sound seg-
regation capabilities of the human hearing system. These developments opened
two alternative approaches to acoustic separation: biologically-inspired and statis-
tical/mathematical approaches. As it will be seen throughout the present work,
more recent developments are based on a combination of both. Another important
milestone that helped sound separation was the development of advanced spectral
models such as sinusoidal modeling, first presented in 1984 by McAulay and Quatieri
[107].

The ability of the human auditory system and associated cognitive processes to
concentrate the attention on a specific sound source from within a mixture of sounds
has been coined the cocktail party effect . First described in 1953 by Cherry [43], the
cocktail party effect refers to the fact that a listener can easily follow a conversation
with a single talker in a highly noisy environment, such as a party, with many other

1
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interfering sound sources like other talkers, background music, or noises. This is even
the case when the energy of the interfering sources, as captured by microphones at
the listener’s position, is close to the energy of the source on which the attention
is focused. A perhaps more appropriate allegory, when applied to computational
source separation, refers to the legend that Japanese prince Shōtoku could listen and
understand simultaneously the petitions by ten people [118]. Indeed, some systems
performing source separation have been called Prince Shōtoku Computers, since they
usually do not concentrate on a single source, but output a set of separated channels.
Note that both allegoric references imply an extra step of semantic understanding
of the sources, beyond mere acoustical isolation.

The difficulty of a source separation problem is mainly determined by two fac-
tors: the nature of the mixtures and the amount of information about the sources,
or about the mixture, available a priori. A detailed discussion of these criteria and
their implications will be presented in the next chapter. Here, only the most im-
portant concepts and terms are introduced. Source separation is said to be blind if
there is little or no knowledge available before the observation of the mixture. The
term Blind Source Separation (BSS) has become the standard label to denote such
kind of statistical methods. Strictly speaking, however, there exists no real fully-
blind systems, since at least some general probabilistic assumptions must be taken,
most often related to statistical independence and sparsity. It is therefore more ap-
propriate to state that the blindness refers to the complexity of the exploited signal
models.

There is no generalized consistent assignment between methodological labels and
degree of knowledge. In the present work, the following conventions will be used.
BSS will refer to problems in which relatively simple statistical assumptions about
the sources are made. This includes ICA and sparsity-based methods such as norm-
minimization and time–frequency masking methods. Semi-blind Source Separation
(SBSS) will be applied to methods based on more advanced models of the sources
such as sinusoidal models or adaptive basis decompositions. A subgroup of SBSS
methods are supervised separation methods, in which a set of source models are learnt
beforehand from a database of sound examples. Finally, non-blind source separation
will refer to systems that need as input, besides the mixture, detailed, high-level
information about the sources, such as the musical score or a MIDI sequence.

Another crucial factor is the proportion between number of mixture channels and
number of original sources. Separation is easier if the observed mixture has more
channels, or the same number of channels, than there are sources to separate. These
cases are named, respectively, over-determined and even-determined (or determined)
source separation. For this reason, the first practical approaches that appeared on
the literature were related to applications involving arrays of microphones, sensors or
antennas. Mixtures with less channels than sources are said to be underdetermined
and pose additional difficulties that must often be addressed by means of stronger
assumptions or a larger amount of information. Also, the separation difficulty will
depend on the level of reverberation and noise contained in the mixture. As will
be seen in detail in Chapter 2, each set of source and mixture characteristics has a
corresponding mathematical formulation in the form of a mixing model.
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1.1 Applications of audio source separation

As mentioned, the sound segregation capabilities of the auditory system have been an
important motivation and driving force for research in source separation. It can be
argued, however, that actually no real, full separation takes place in the inner ear, nor
in the auditory cortex. In fact, we do not really hear separate instruments or voices;
sound localization and segregation more appropriately refers to a selective weighting
of sound entities in such a way that a differentiated semantical characterization is
possible.

In this context, applications of sound source separation can be divided into
two broad groups, which Vincent et al. [162] call Audio Quality Oriented (AQO)
applications and Significance Oriented (SO) applications. AQO approaches aim at
an actual full unmixing of the individual sources with the highest possible quality;
in this case, the output signals are intended to be listened to. In contrast, the less
demanding SO methods require a separation quality that is just high enough for the
extraction of high-level, semantic information from the partially-separated sources.
Obviously, separation methods capable of reaching AQO quality will be useful in an
SO context as well.

A similar, albeit more general, paradigmatic typology is proposed by Scheirer
[135]. He makes the distinction between an understanding-without-separation and
a separation-for-understanding paradigm. In the former, it is the mixture itself
that is subjected to feature extraction in order to gain semantical and behavioral
information about the constituent sound entities. This is the most common ap-
proach in pattern recognition and content analysis applications. The latter corre-
sponds to the above mentioned SO scenario. This taxonomy can be expanded with
two further paradigms that correspond to the AQO approach: separation-without-
understanding, equivalent to BSS, and understanding-for-separation, equivalent to
SBSS and supervised separation.

In the following subsections, a selection of audio-related applications of source
separation, together with their characterization within the above paradigmatic frame-
works, will be presented. A final subsection will very briefly mention non-audio
applications.

Music Information Retrieval and music transcription

As far as Audio Content Analysis (ACA) [28] applications are concerned, source
separation is useful under the SO paradigm. In this context, the goal of source
separation is to facilitate feature extraction. In most situations, it is easier to analyze
partially separated tracks with respect to timbre, pitch, rhythm, structure, etc. than
to analyze the mixture itself.

An obvious example is polyphonic transcription [91]. To automatically extract
the music score from a digital music signal is an extraordinarily demanding task.
There exist robust systems for pitch detection and transcription of single instruments
or melodies [74], and some success has been achieved with polyphonic content of two
or three voices. However, when it comes to a larger degree of polyphony, the prob-
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lem remains unsolved, and it is a matter of debate if it can be achieved in the near
future. The problems are common with those of source separation: the overlapping
of spectral partials belonging to different voices or instruments, the tonal fusion that
occurs when several instruments play a voice together, which is then perceived as
a single sound entity, and temporal overlaps in rhythmically regular music, which
hinder the detection of simultaneous transients or onsets. Most approaches to poly-
phonic music transcription follow the understanding-without-separation paradigm,
and are said to perform multipitch estimation [90, 144]. An alternative is to use
source separation to obtain the constituent voices, and then perform a more robust
monophonic transcription on each of the voices. This is the transcription-related
interpretation of the separation-for-understanding paradigm.

The same applies to other Music Content Analysis (MCA) and Music Informa-
tion Retrieval (MIR) applications such as musical instrument detection and classifi-
cation, genre classification, structural analysis, segmentation, query-by-similarity or
song identification. It should be noted that, in some cases, using source separation
to facilitate these kind of applications involves the derivation of a joint characteri-
zation from a set of individual source characterizations. An example of separation-
for-understanding system aimed at polyphonic instrument recognition will be the
subject of Sect. 4.8.

Viewed from the opposite angle, MCA and MIR techniques applied on the mix-
ture can help (and in some cases, will allow) separation. This corresponds to the
understanding-for-separation scenario. For example, detecting the musical instru-
ments present in a mixture can be used to more effectively assign the notes of
the mixture to the correct separated sources. All separation systems proposed in
Chapters 5 and 6 of this dissertation fall under the understanding-for-separation
paradigm.

Unmixing and remixing

Some AQO applications aim at fully unmixing the original mixture into separated
sources that are intended to be listened to. This is the most demanding application
scenario, and in the musical case is equivalent to generating a multitrack recording
from a final mix as contained in the CD release. Ideally, the separated tracks should
have a similar quality than they would have had if recorded separately. This can
be interesting for archival, educational or creative purposes, but remains largely
unfeasible.

A related type of AQO applications concerns the elimination of sources consid-
ered undesired. Examples of these include the restoration of old recordings, and
denoising for hearing aids or telecommunications. Also belonging to this group is
automatic elimination of the singing voice for karaoke systems or of the instrumental
soloist for so-called “music-minus-one” recordings aimed at performance practising.

Closely related to the AQO paradigm, and probably more attractive from the
practical point of view, is another subset of applications aimed at remixing the
original mixture. I.e., once a set of separated tracks have been obtained, they are
mixed again, with different gains, spatial distributions or effect processings than
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the original mixture. This is less demanding than the fully-separated AQO case,
since remaining artifacts on the partially separated signals will to a great extent be
masked by the other sources present in the remixed version. Examples of remix-
ing applications include the enhancement of relevant sources for hearing aids [125],
robot audition [113], upmixing of recordings (e.g., from mono to stereo [94] or from
stereo to surround [8]), post-production of recordings when a multitrack recording
is not available [180], creative sound transformations for composition, and creation
of remixes as cover versions of original songs. A first commercial product using
source separation techniques for music post-production (an extension to the Melo-
dyne editor called Direct Note Access) has been announced for release during the
first quarter of 2009 by the company Celemony [41]. As of September 2008, no
detailed information has been published concerning the capabilities of such a sys-
tem to separate different instruments (it is primarily intended for the correction or
modification of notes within a single-instrument chord), and to what extent it will
be able to perform full separation rather than remixing.

Even if not capable of achieving CD-quality separated tracks, all methods aiming
at unmixing and remixing can be considered having AQO-separation as an ideal goal,
with the lack of quality arising from the limitations of the method. For any given
system, the closeness to the AQO scenario will depend on the nature of the mixture
with respect to polyphony, reverberation, number of channels, etc.

Audio compression

High-quality lossy audio compression techniques, such as MP3 and AAC, which orig-
inated the explosion of online music distribution, exploit psychoacoustical cues to
avoid the transmission and storage of masked components of the signals. A new,
still experimental, approach to audio coding, named Structured Audio Coding (SAC)
or Object-based Audio Coding [156], has the potential of attaining much lower bi-
trates for comparable sound qualities. The idea is to extract high-level parameters
from the signals, transmit them, and use them at the decoder to resynthesize an ap-
proximation to the original signal. Such parameters can be either spectral (such as
amplitude and frequency of constituent sinusoids, time and spectral envelopes, spec-
tral shape of noise components), in which case Spectral Modeling Synthesis (SMS)
[138] or related methods will be used at the decoder, or parameters controlling the
physical processes involved in the sound generation, in which case Physical Modeling
Synthesis (PMS) [145] will be used for reconstruction.

The difficulty of such approaches for the case of complex signals is immediately
apparent. Recent, successful research results that report enormous reduction of bi-
trates, are possible only with simple signals, such as solo passages of single-voiced
instruments (see, e.g., the work by Sterling et al. [148]). More complex and realistic
sound mixtures, much in the same way as for musical transcription, are far more dif-
ficult to reduce to a set of spectral or physical parameters. This is again the context
in which pre-processing by means of source separation can help in the extraction of
such parameters, and thus the extension of the applicability of object-based audio
coding to a further level of signal complexity [165].
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Non-audio applications

Although not covered by the present work, it is worth mentioning that other appli-
cations, unrelated to audio, have arisen in a wide variety of science and engineer-
ing fields. For instance, source separation techniques have been applied for image
restoration [111], digital communications [47, 129], optical communications [93], elec-
troencephalography (EEG) [45], magnetoencephalography (MEG) [151], analysis of
stock markets [9] and astronomical imaging [37].

1.2 Motivations and goals

This dissertation focuses on separation of musical mixtures as an application do-
main. The main motivation is the use of source separation as a powerful tool in the
context of content-analysis applications. Content-based processing lies at the heart
of a wide range of new multimedia applications and web services. In the case of
audio data, content analysis has traditionally been concentrated on the recognition
of single-speaker speech signals. The phenomenal growth of music distribution on
the World Wide Web has motivated the extension of Audio Content Analysis to the
more challenging field of music signals. Since most music signals are mixtures of
several underlying source signals, their semantical characterization poses additional
challenges to traditional feature extraction methods. Some authors have reported
a “glass ceiling” in performance when extracting traditional speech and music fea-
tures such as Mel Frequency Cepstral Coefficients (MFCC) and using traditional
pattern recognition methods such as Gaussian Mixture Models (GMM) in applica-
tions involving the analysis of complex, mixed signals, such as genre classification or
clustering according to musical similarity [7]. Source separation might be the way
to break such a barrier.

The fact that most musical mixtures are underdetermined (monaural or stereo,
with more than two instruments present) requires taking strong assumptions and/or
making simplifications in order for the separation problem to be feasible. On the
other hand, constraining the analysis to music allows exploiting several music-specific
characteristics, such as spectral envelope smoothness, canonical note-wise temporal
envelope shapes (in the form of an Attack-Decay-Sustain-Release envelope), well-
defined onsets, rhythmical structure, etc., as cues for the assignment of sound events
to separated sources. Both considerations point at the importance of applying an
appropriate level of information in the form of source models to help facilitate, and
in some cases to even make feasible, musical source separation. Source modeling
will be the primary guideline of this dissertation.

In this context, the main objective of this work is to contribute new methods for
the detection and separation of monaural (single-channel) and stereo (two-channel)
linear1 musical mixtures. The followed approach is to consider source models with
increasing level of complexity, and to study both their implications on the separa-
tion algorithm and the degree of separation difficulty they are able to cope with.

1The distinction between linear, delayed and convolutive mixtures will be detailed in Sect. 2.1.
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The starting point is sparsity-based separation, which makes a generalist statistical
source assumption (not necessarily circumscribed to music). Firstly, the improve-
ment margin that is achievable by optimizing the sparsity of the time–frequency
representation of the mixture is investigated. A second level of modeling complexity
arises from the combination of a detailed and highly sparse spectral representation
(namely, sinusoidal modeling) with novel supervised learning methods aimed at pro-
ducing a library of models describing the timbre of different musical instruments.
As useful by-products of such model-based separation approaches, several MIR ap-
plications of the developed methods will be presented: instrument classification of
individual notes, polyphonic instrument detection, onset detection and instrument-
based segmentation.

1.3 Overview of the thesis

The thematic relationships between the present work’s chapters are schematized in
Fig. 1.1. Chapter 2 is a comprehensive overview of source separation principles
and methods. It starts by presenting a global framework organized according to
the nature of the sources and the mixture to be separated, and to the corresponding
various degrees of difficulty. Afterwards, it concentrates on the specific case this work
will address: underdetermined separation from linear, noiseless mixtures. Although
many of the methods presented in that chapter can be applied to a wide range of
signal types, an emphasis is made on audio applications.

Chapter 3 takes an unsupervised (blind) approach and concentrates on evaluating
the improvement in separation that is achievable by using nonuniform time and
frequency resolutions in the signal representation front-end. In particular, auditory
frequency warpings are used as a means of improving the representation sparsity, in
combination with a separation system based on stereo spatial diversity.

Chapters 4 and 5 explore a different, complementary conceptual path. They
follow the supervised (model-based) scenario, in which some higher-level a priori
knowledge about the sources is available. In this work, such knowledge takes the
form of a collection of statistical models of the timbre of different musical instru-
ments. Chapter 4 presents and evaluates the novel modeling approaches proposed
to that end. A salient characteristic of the modeling technique is its detailed con-
sideration of the temporal evolution of timbre. Although originally intended for
source separation applications, the proposed models can be useful to other content
analysis applications. In that chapter, they are indeed subjected to evaluation for
two non-separation purposes: musical instrument classification and detection of in-
struments in polyphonic mixtures. The chapter also introduces several important
spectral analysis techniques on which the models are based, in particular, sinusoidal
modeling and spectral envelope estimation. Chapter 5 exploits all these techniques
and the developed models and presents a system aiming at the most demanding
separation scenario: separation from a single-channel (monaural) mixture.

In Chapter 6, several ideas from both unsupervised and model-based scenarios
are combined to develop hybrid systems for the separation of stereo mixtures. More
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Chapter 2

Audio source separation: 

overview and principles

Chapter 3

Frequency-warped 

blind stereo separation

Chapter 4

Source modeling for 

musical instruments

Chapter 5

Monaural separation 

based on timbre models

Chapter 6

Extension to stereo mixtures

Chapter 7

Conclusions and outlook

Figure 1.1: Chart of thematic dependencies.

specifically, sparsity-based separation is used to exploit the spatial diversity cues,
and sinusoidal and timbre modeling are used to minimize interferences and thus im-
prove separation. Finally, Chapter 7 summarizes the results and contributions, and
proposes several directions to further develop the different modeling and separation
methods, and to adapt them for other sound analysis or synthesis applications.

Several sound examples resulting from the experiments performed throughout
the present work are available online2. All algorithms and experiments reported in
this work were implemented using MATLAB.

2http://www.nue.tu-berlin.de/people/burred/phd/



2
Audio source separation: overview and

principles

Source separation from sound mixtures can arise in a wide variety of situations under
different environmental, mathematical or practical constraints. The present work
addresses a specific problem of audio source separation, namely that of separation
from instantaneous musical mixtures, either mono or stereo. It is however useful
to consider first a panoramic overview, so that the implications, requirements and
utility of the particular problem considered can be put into context. Tables 2.1 and
2.2 show a classification of audio source separation tasks according to the nature of
the sources, and to the amount of available a priori knowledge, respectively. The
entries in each column are sorted by decreasing separation difficulty.

Obviously, separation is more difficult if sources are allowed to move, which re-
quires an additional source tracking stage. By far, most systems assume that the
sources are static. The mixing process can be either instantaneous (the sources add
linearly), delayed (the sources are mutually delayed before addition) or echoic (con-
volutive) with static or changing room impulse response. The last case represents
the most natural and general situation. However, under controlled recording con-
ditions in a studio or with appropriate software, the simpler models are applicable.
Each mixing situation corresponds to a different mathematical model, all of which
will be introduced later on the chapter.

A crucial factor determining the separation difficulty is the number of sources re-
lated to the number of available mixtures. Separation is said to be underdetermined
or degenerate if there are more sources than observed mixtures, overdetermined if
there are more mixtures than sources and even-determined or simply determined if
there are the same number of sources than mixtures. The underdetermined case is
the most difficult one since there are more unknowns than observed variables, and
the problem is thus ill-posed. Also, noise-free separation will obviously be easier
than noisy.

The last two columns in Table 2.1 concern musical mixtures, which have several
distinctive features that are decisive in assessing how demanding the separation will
be. A crucial factor is musical texture, which refers to the overall sound quality as
determined mainly by the mutual rhythmic features between constituent voices. The
most difficult musical texture to separate is multiple-voiced monody or monophony ,
in which several parallel voices exactly follow the same melody, sometimes separated

9
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by one or more octaves. This situation obviously implies the largest degree of spectral
and temporal overlapping. A paradigmatic example of monodic music is Gregorian
chant.

The next texture by decreasing degree of overlapping is heterophony . Like mon-
ody, it basically consists of a single melody. However, different voices or instruments
can play that same melody in different ways, for example by adding melodic or rhyth-
mic ornamentation. Heterophonic textures appear, for example, in western medieval
music and in the musical tradition of several Asian countries.

The homophonic or homorhythmic texture denotes a set of parallel voices that
move under the same or very similar rhythm, forming a clearly defined progression of
chords. Examples of homophonic music include anthems and chorales. Homophony
is said to be melody-driven if there is a pre-eminent voice that stands out of the
ensemble, with the rest constituting a harmonic accompaniment. Melody-driven
homophony is the most usual texture in songs, arias, and in most genres of popular
western music, such as pop and rock. In general, homophony is difficult to separate
because of the high degree of temporal overlapping and, in the case of tonal music,
also because of frequency-domain overlapping.

Polyphonic or contrapuntal textures correspond to highly rhythmically indepen-
dent voices, such as in fugues. In this case, the probability of overlaps will be
obviously lower. Finally, for the sake of completeness, single-voiced monody has
been included in the table, although it has just a single source and is thus trivial for
separation.

The other important musical factor is harmony, which refers to the mutual rela-
tionships between simultaneously-sounding notes. In tonal music, concurrent pitches
are most often in simple numerical relationships, corresponding to the most conso-
nant intervals, such as octaves, fifths, fourths and thirds. Western classical mu-
sic, from Gregorian chant to the early 20th century, and most popular music are
pre-eminently tonal. Such harmonic relationships between pitches makes separation
more difficult, since the harmonic components of a note will often overlap with those
of other concurrent notes. Atonal music, consisting mainly of dissonant intervals,
will in contrast be easier to separate.

Like with any other kind of analysis, the more information about the problem
is available beforehand, the easier the separation becomes (Table 2.2). The mixing
process, which as will be seen is mathematically described by a mixing matrix,
is assumed to be unknown in almost all separation approaches. In fact, in the
very usual even-determined situation, source separation equals to the problem of
estimating the mixing matrix, as will be discussed in Sect. 2.7. Sometimes, a
statistical model of the mixing matrix is assumed. Note that the mixing process
reflects the position of the sources, and thus knowing the mixing process amounts to
knowing the source positions. The term “blind” in Blind Source Separation (BSS)
refers mainly to the fact that the mixing process is unknown.

To improve separation, and sometimes to make it actually possible, statistical
features of the temporal or spectral nature of the signals are exploited. Statistical
independence is almost always assumed in even-determined separation scenarios and
sparsity, a stronger concept, in underdetermined ones. At the cost of being signal-
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specific (and thus no longer fully “blind”), many algorithms use more sophisticated
signal models that describe more closely the perceptual, rhythmic or timbral features
of the signals to be separated. This is especially useful, and in some cases absolutely
necessary, in highly underdetermined situations, such as separation from single-
channel mixtures. These models can even be trained beforehand on signal example
databases. Signal modeling for source separation plays a central role in the present
work, and it will be a recurrent topic throughout all the chapters. Finally, it is
obvious that knowing the number of sources and their type (e.g., which musical
instruments are present) will facilitate separation.

Again, the last two columns of the table concern musical features. Several ap-
proaches need a detailed knowledge about either the note onsets (i.e., their temporal
starting points), their pitches, or both, to make separation reliable in highly under-
determined and overlapping mixtures. This knowledge takes often the form of a
previously available MIDI score.

Within this problem classification, the approaches developed and reported in the
present work address the separation from static, instantaneous, underdetermined,
noiseless musical mixtures. The source positions, onset times and pitches will always
be assumed unknown. Different signal models will be addressed, most importantly
sparse and trained source models. Depending on the context and on the particular
experiment, the number and type of sources will be known beforehand or assumed
unknown.

The present chapter introduces the basic principles of BSS and provides an
overview of the approaches most directly related to the context of this work. Sec-
tions 2.1 to 2.4 cover a general theoretic framework. In Sect. 2.1 all mixing models
that can be encountered in a BSS problem are presented: the linear, delayed and
the convolutive mixing models, as well as their reformulation when noise is present.
Section 2.2 presents the real-world stereo mixing and recording situations in which
the different mixing models can be applied. Section 2.3 reviews signal decompo-
sitions and transformations within a common framework, including the Discrete
Fourier Transform (DFT), the Short Time Fourier Transform (STFT), Principal
Component Analysis (PCA) and sparse representations. The most basic of them are
obviously not specifically intended for source separation, but greatly facilitate the
process, as will be seen in detail. Indeed, many of the signal models presented in
that section are polyvalent, and will be used for different purposes throughout the
present work. Section 2.4 focuses on the close relationship between the problems of
source separation and signal decomposition and provides a general framework that
combines both, and upon which the presented methods are based.

Sections 2.5 to 2.8 constitute a state-of-the-art review of linear, noiseless and
underdetermined separation methods. Section 2.5 illustrates the most general ap-
proach to it: the joint estimation of the mixing matrix and of the sources, and
presents its limitations. Methods following the alternative approach of sequentially
estimating the mixing matrix in the first place and the sources in the second place
are presented in the next two sections. In particular, Sect. 2.6 covers the most im-
portant methods for mixing matrix estimation, including Independent Component
Analysis (ICA), clustering methods, phase-cancellation methods and methods from
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image processing. Approaches to re-estimate the sources once the mixing conditions
are known are presented in Sect. 2.7, with special emphasis on norm-minimization
algorithms, which are the most important ones and also the ones that will be used
throughout this work. Finally, Sect. 2.8 provides a short overview of approaches
arising from the fields of psychoacoustics and physiology, referred to globally as Com-
putational Auditory Scene Analysis (CASA). Comprehensive overviews of methods
for audio source separation can also be found in O’Grady et al. [117] and Vincent
et al. [164].

2.1 Mixing models

When two or more sound waves coincide in a particular point in space and at a
particular time instant, the displacement1 of the resulting mixed wave is given by
the sum of the displacements of the concurrent waves, as dictated by the principle
of superposition. In the most general case, the interfering waves can propagate
in different directions, and thus the net displacement must be obtained by vector
addition.

When a microphone transduces a sound wave into an electrical oscillation, the
information about the propagating directions gets lost and the wave is reduced to
the pattern of vibration of the capturing membrane, modeled as a one-dimensional,
time domain signal x(t). At most, the direction of impingement will affect the overall
amplitude of the transduced signal, according to the directionality pattern of the
microphone (see Sect. 2.2). However, once in the electrical domain, signals always
interfere unidimensionally, and thus the net displacement of a signal mixture x(t)
of N signals yn(t), n = 1, . . . , N is given by scalar addition of the corresponding
instantaneous amplitudes:

x(t) =
N
∑

n=1

yn(t). (2.1)

It should be noted that the signals yn(t) to which such a universally valid linear mix-
ture formulation refers are the vibration patterns at the point in which the actual
mixing takes place, i.e., either the microphone membrane or an (often conceptual)
point in the electrical system where signals are artificially added. In source sepa-
ration, however, the interest lies in retrieving the constituent signals as they were
at the point they were produced, i.e., at the sources. The different mixing condi-
tions are thus reflected in the way the source signals sn(t) are transformed into their
source images yn(t), before being added to produce a particular mixture. According
to these mixing conditions, three mathematical formulations of the mixing process
can be defined: the linear, the delayed and the convolutive mixing models. All three
will be introduced in this section, while the next section will illustrate to which
real-world situations each of the models can apply. The linear mixing model, being
the one the present work is based on, will be covered more in depth.

1Not to be confused with the amplitude, which is the maximum displacement during a given
time interval, usually a cycle of a periodic wave. Displacement can also be called instantaneous
amplitude.
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All signals considered here are discrete, making the academic distinction between
continuous (t) and discrete [n] independent time variables unnecessary. The notation
(t) has been chosen for clarity. Source signals will be denoted by s(t) and indexed by
n = 1, . . . , N . Mixture signals will be denoted by x(t) and indexed by m = 1, . . . ,M .
The term “mixture” will refer to each individual channel xm(t), in contrast with the
audio engineering terminology, where “mix” refers to the collectivity of channels (as
in “stereo mix”, “surround mix”).

2.1.1 Instantaneous mixing model

The linear or instantaneous mixing model assumes that the only change on the
source signals before being mixed has been an amplitude scaling:

xm(t) =
N
∑

n=1

amnsn(t), m = 1, . . . ,M. (2.2)

Arranging this as a system of linear equations:










x1(t) = a11s1(t) + a12s2(t) + . . . + a1NsN (t)
...

xM (t) = aM1s1(t) + aM2s2(t) + . . . + aMNsN (t)

, (2.3)

a compact matrix formulation can be derived by defining the M×1 vector of mixtures
x = (x1(t), . . . , xM (t))T and the N × 1 vector of sources s = (s1(t), . . . , sN (t))T :











x1(t)
x2(t)

...
xM (t)
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a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aM1 aM2 . . . aMN











·











s1(t)
s2(t)

...
sN (t)











, (2.4)

obtaining
x = As, (2.5)

where A is the M ×N mixing matrix whose generic element amn is the gain factor,
or mixing coefficient, from source n to mixture channel m. Alternatively, the signal
vectors can be represented as matrices of individual samples of size M ×T or N ×T ,
where T is the length of the signals in samples, resulting in the notation X = AS.
The notation x = As will be referred to as instantaneous notation, and X = AS
will be referred to as explicit notation.

Such formulations are called generative or latent variable models since they ex-
press the observations x as being generated by a set of “hidden”, unknown variables
s. Note that both expressions can also be interpreted as a linear transformation
of the signal vector or matrix into the observation vector or matrix, in which A is
the transformation matrix and its columns, denoted by an, are the transformation
bases.

The goal of linear source separation is, given the observed set of mixtures x, to
solve such a set of linear equations towards the unknown s. However, in contrast to



2.1.2 Delayed mixing model 15

basic linear algebra problems, the system coefficients amn are also unknown, which
makes it a far more difficult problem which, as will be shown, must rely on certain
signal assumptions.

In linear algebra, a system with more equations than unknowns is called overde-
termined, and has often no solution, even if the coefficients are known. A system
with less equations than unknowns is called underdetermined , and will mostly yield
an infinite number of solutions if no further a priori assumptions are met. A system
with the same number of equations than unknowns is said to be determined or even-
determined and will most likely have a single solution with known coefficients. In
BSS this terminology has been retained for problems where there are more mixtures
than sources (M > N , overdetermined BSS), less mixtures than sources (M < N ,
underdetermined) and the same number of sources than mixtures (M = N , even-
determined).

2.1.2 Delayed mixing model

The delayed generative model, sometimes called anechoic, is valid in situations where
each source needs a different time to reach each sensor, giving rise to different source-
to-sensor delays δmn:

xm(t) =

N
∑

n=1

amnsn(t − δmn), m = 1, . . . ,M. (2.6)

A matrix formulation can be obtained by defining the mixing matrix as

A =







a11δ(t − δ11) . . . a1Nδ(t − δ11)
...

. . .
...

aM1δ(t − δM1) . . . aMNδ(t − δMN )






, (2.7)

where amn are the amplitude coefficients and δ(t) are Kronecker deltas2, and rewrit-
ing the model as

x = A ∗ s, (2.8)

where the operator ∗ denotes element-wise convolution.

2.1.3 Convolutive mixing model

A convolutive generative model applies if there is a filtering process between each
source and each sensor. The impulse response that models the filtering between
source n and mixture m will be denoted by hmn(t). In order to employ the previous
notation of amplitude coefficients and deltas, each filter can be written out as

hmn =

Kmn
∑

k=1

amnkδ(t − δmnk), (2.9)

2The Kronecker delta is defined as δ(t) =



1 if t = 0
0 if t 6= 0

.
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where Kmn is the length of that particular impulse response (FIR filters are as-
sumed). Then, the mixture at each sensor is given by

xm(t) =
N
∑

n=1

hmn(t) ∗ sn(t) =
N
∑

n=1

Kmn
∑

k=1

amnksn(t − δmnk), m = 1, . . . ,M. (2.10)

and the mixing matrix is in effect a matrix of FIR filters

A =







h11(t) . . . h1N (t)
...

. . .
...

hM1(t) . . . hMN (t)






, (2.11)

that can be used again in a convolutive formulation of the form x = A ∗ s.
The most typical application of this model is to simulate room acoustics in

reverberant environments, the reason for which it is often called reverberant or
echoic mixing model. In such a situation, the length of the filters Kmn correspond
to the number of possible paths the sound can follow between source and sensor,
and amnk and δmnk to their corresponding attenuations and delays, respectively.
Note that the delayed mixing model is a particular case of the convolutive model for
which Kmn = 1 for all m, n.

2.1.4 Noisy mixture models

All the above mixing models can be adapted to the case where additive noise is
present by adding a noise vector of the same dimensions as the mixture vector. For
instance, in the linear case this will be denoted by

x = As + n (2.12)

or by the explicit notation X = AS + N. The noise is often assumed to be white,
Gaussian, and uncorrelated, i.e., having a diagonal covariance matrix of the form
σ2I, where σ2 is the variance of one of its M components. Furthermore, the noise
is assumed to be independent from the sources.

All separation approaches throughout the present work are modeled as noise-
free. However, the noisy mixture model will be useful to illustrate the derivation of
the general probabilistic framework for BSS in Sect. 2.5.

2.2 Stereo recording techniques

A brief overview of stereo recording and mixing techniques will help to assess the
usefulness of each of the models defined in the previous section, and their corre-
spondence and applicability to real-world situations. To date, stereophony is still
the most common format for sound recording and reproduction. Although multi-
channel3 techniques, most typically 5.1 surround speaker systems for playback and

3 “Multichannel” will be used to denote any system with more than 2 channels. Stereo will not
be considered multichannel.
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L R

Phantom source

Figure 2.1: Ideal stereo reproduction setup with azimuth angle.

DVDs for storage, are increasingly affordable and widespread, they still have not
superseded two-channel systems. The long-standing success of stereo (the first com-
mercial stereo recording, on vinyl disk, was released in 1958) can be explained by
its appropriate trade-off between cost and spatial fidelity, and, especially nowadays,
by its suitability for headphone listening. The vast majority of CDs, compressed
formats such as MP3 or AAC, FM radio broadcasts, as well as many analogue and
digital TV broadcasts, are in stereo.

Technically, any recording technique aiming at simulating the spatial conditions
in the recording venue can be termed “stereophonic”. The word was derived from a
combination of the Greek words “stéreos” (meaning “solid”) and “phōnē” (“sound”),
by analogy with stereoscopic or three-dimensional imaging. Although more modern
multichannel techniques like surround systems and Wave Field Synthesis (WFS) [20]
are capable of much more realistic spatial simulations, the word “stereo” has been
relegated by common usage only to two-channel systems. The term is also applied to
any two-channel synthetic mix, even if not necessarily aimed at resembling natural
spatial conditions.

Stereo reproduction is based on the fact that, if a particular source is appropri-
ately scaled and/or delayed between the left and right channels, it will appear to
originate from an imaginary position (the so-called phantom sound source) along the
straight line connecting both loudspeakers (the loudspeaker basis). The azimuth α
is the angle of incidence of the phantom sound source to the listener, and it depends
on the relative position of the listener to the loudspeakers (see Fig. 2.1). To perceive
the correct direction, the listener must be on the vertex completing an equilateral
triangle with the loudspeakers, the so-called sweet spot . In this ideal case, the az-
imuth, measured from the center, can lie on the range α = [−30◦, 30◦]. To make the
source position indication independent from the position of the listener, left to right
level ratios are used instead, such as denoting a “hard-right” source with 100%R, a
middle source with 0% and a “hard-left” source by 100%L. Another possibility uses
the polar coordinates convention and assigns 0◦ degrees or 0 radians to hard-right
and 180◦ or π radians to hard-left. This is the most appropriate approach for source
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Figure 2.2: Instantaneous stereo recording techniques.
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Figure 2.3: Delayed stereo recording techniques.
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Figure 2.4: Convolutive stereo recording techniques.
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separation algorithms (see Sect. 2.6), and is the one that will be used in this work. It
should be noted that, although being an angular magnitude, it does not correspond
to the perceived angle of incidence, except if the listener is located exactly between
both loudspeakers (as in the case of headphone listening). Although technically
inaccurate, the term azimuth has been also used to denote stereo source locations
independent from the position of the listener, such as in [13].

A general distinction will be made between natural mixtures and synthetic mix-
tures. Natural mixing refers to recording situations in which the mixing parameters
are determined by the relative positions of a set of acoustic sound sources and the
microphones. In contrast, synthetic mixing consists of artificially combining a set of
perfectly or near-perfectly separated sound sources using a mixing desk or mixing
software. Traditionally, natural techniques are preferred for classical music to en-
sure a truthful reflection of intensity proportions between instruments and of room
acoustics, whereas artificial techniques are most common in popular genres, in which
studio post-processing effects play a crucial role.

It should be noted that the distinction between natural and synthetic mixtures
does not necessarily correspond to the distinction between live and overdub-based4

studio recordings. An ensemble can play live in a studio in separated isolation
booths, or using directional microphones placed closely to the instruments, or in the
case of electrical instruments, directly connected to the mixing desk. On the other
hand, overdubs can be made of performers playing at different positions relative
to a microphone pair. These are certainly not the most common situations, but
are possibilities to be considered. Also, both kinds of methods can obviously be
combined in a final musical production. However, for the sake of clarity, it will be
supposed here that each mixture is based on a single technique.

Intensity stereophony: XY and MS techniques

As mentioned, a linear stereo (M = 2) mixing model (Sect. 2.1.1) applies in the
case where the sources are multiplied by a scalar before being added. Thus, stereo
localization results solely from the difference in intensity between both channels,
which is termed Interaural or Inter-channel Intensity Difference (IID). Several nat-
ural and synthetic scenarios fulfill this. One of them is intensity stereophony, which
is a natural mixing method involving a pair of microphones whose membranes are
located at the same spot. In such an arrangement, the stereo effect is obtained
by exploiting the directionality properties5 of the microphones. The most common
approaches of intensity stereophony are XY stereophony and MS stereophony [52].

With the XY technique, both microphones are directional and the stereo effect
is achieved by mutually rotating them to a certain angle, usually 90◦. This setup is
represented graphically on Fig. 2.2(a), where the directivity patterns of the micro-

4Overdubbing refers to the process of adding a new track to a set of previously recorded tracks.
5The directionality or polar pattern of a microphone indicates its sensitivity to sound pressure

as a function of the angle of arrival of the waves. If a microphone is most sensitive to a particular
direction, it is termed directional. Bidirectional microphones are equally sensitive in two diametrally
opposed directions. Omnidirectional ones are equally sensitive to any direction.
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phones are denoted by the dashed circles. The sources’ direct sound waves, arriving
from different directions and distances, will be picked up with different intensities,
depending on the angle of impingement.

The MS (for Mid/Side) technique employs one bidirectional and one directional
(alternatively omnidirectional) microphone at the same place arranged such that
the point of maximum directivity of the directional microphone lies at an angle of
90◦ from either bidirectional maximum (see Fig. 2.2(b)). In this way, a central
channel xM and a lateral channel xS are obtained, which are then transformed into
the left/right channels by

xL =
1√
2
(xM + xS), (2.13)

xR =
1√
2
(xM − xS). (2.14)

An advantage of the MS system is its total compatibility with mono reproduction:
the middle signal directly corresponds to the mono signal, avoiding possible phase
cancellations and level imbalances that can appear when adding two separated stereo
channels. Assuming ideal anechoic conditions, both XY and MS approaches can be
described by the linear mixing model, since direction and distance of the sources
result both only in gain differences.

Close miking and direct injection

If several highly directional microphones are located close to the instruments, and
again good acoustic absorption of the recording environment is assumed, then the
source signals can be considered to be nearly perfectly separated and susceptible
of being synthetically mixed (see Fig. 2.2(c)). Obviously, electrical and electroa-
coustic instruments, as well as any other kind of electronic sound generators such
as samplers, synthesizers and computers running synthesis software, can be directly
connected to the mixing unit, offering perfect a priori separation6 (Fig. 2.2(d)). A
perfectly separated source can be also obtained by recording the instrument in an
isolation booth, as it is often done with singers.

These two recording methods are most useful for the evaluation of source sep-
aration performance, since the perfectly separated original sources are available a
priori and can be then used as a baseline for comparison.

Panning

Mixing desks and their software counterparts operate by attenuating and panning
each channel independently before being added. Panning, a term referring to the
panoramic potentiometer that implements it, means to assign an artificial stereo
position to a particular channel. This is achieved by sending two differently scaled
versions of the input channel to the output left and right channels. By choosing

6A notable exception are electrical guitars, which are often recorded by placing a microphone
very close to the amplifier in order to capture a richer sound.
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the appropriate scaling ratios, a source can be perceived as originating from an
imaginary position lying on the line connecting both loudspeakers, thus emulating
the conditions of natural recording. An attenuation of around 3 dB should be
performed on sources intended to appear near the middle position in order to keep
a constant global power level. In effect, panning acts as an additional stage of
amplitude scaling, which justifies the applicability of the linear model.

Time-of-arrival stereophony

The delayed mixing model must be used if the sources arrive at the sensors at
different times. Thus, not only the IID determine the stereo position, but also the
so-called Interaural or Inter-channel Phase Differences (IPD). In natural recording
setups, this happens when the microphones are separated from each other. This is
the case of time-of-arrival stereophony, whose basic microphone arrangement is the
AB technique. In this case, two (usually omnidirectional) microphones are placed in
parallel a certain distance apart. The sources will arrive with different amplitudes
and with different delays to each one of them (see Fig. 2.3(a)).

The same applies to the so-called mixed stereophony techniques, where the
separation of the microphones is combined with the orientation at a given an-
gle, thus exploiting principles from both intensity and time-of-arrival methods (see
Fig. 2.3(b)). Examples of this approach are the ORTF (Office de Radiodiffusion-
Télévision Française), OSS (Optimal Stereo Signal) and NOS (Nederlandse Omroep
Stichting) stereo microphone arrangements.

All such delayed stereo techniques allow a more realistic spatialization than
intensity-based methods, but have the drawback of adulterating mono downmixes
due to phase cancellations. In synthetic mixing environments, the time-of-arrival
differences can be simulated by delay units (Figs. 2.3(c) and 2.3(d)).

Recording setups involving convolution

The convolutive mixing model is applicable if the sources get filtered before being
mixed. The most common situation is natural recording in a reverberant environ-
ment, in which case the filters correspond to the impulse responses of the recording
room, evaluated between each possible source and each microphone. All of the
previously mentioned natural stereo techniques should be approximated by the con-
volutive model as long as there is an important effect of room acoustics on the
recording (Fig. 2.4(a)).

Another relevant convolutive technique is binaural recording7, which refers to
the use of a “dummy head” that simulates the acoustic transmission characteristics
of the human head. It contains two microphones that are inserted at the location
of the ears (Fig. 2.4(b)). Binaural recordings offer excellent spatial fidelity as
long as they are listened on headphones. The signals arrive at each microphone
not only with intensity differences and delays, but also filtered by the head. The

7The word “binaural” is often incorrectly used as a synonym for “stereo”, probably because of
its analogy with the term “monaural”.
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corresponding transfer functions are called Head Related Transfer Functions (HRTF)
and, if appropriately measured, can be used to simulate binaural recordings via
software using a conventional microphone pair.

Finally, any spatial effect introduced in a synthetic mixing process (most typically
artificial reverbs) makes the mixture convolutive (Figs. 2.4(c) and 2.4(d)).

2.3 Basic signal models

Nearly all digital signal processing techniques rely on the assumption that the signals
can be approximated by a weighted sum of a set of expansion functions. In the time
domain, such an additive expansion or decomposition can be expressed as

s(t) =

K
∑

k=1

ckbk(t), (2.15)

where K is the number of expansion functions, ck are the expansion coefficients and
bk(t) are the time-domain expansion functions. The usefulness of such kind of model
arises from the superposition property of linear systems, which allows evaluating how
a system T transforms a signal by separately computing the outputs of the system
to the more simple constituent decomposition functions:

T

{

K
∑

k=1

ckbk(t)

}

=
K
∑

k=1

ckT{bk(t)}. (2.16)

The choice of the decomposition functions will depend on the application context.
As it will be introduced in detail in Sect. 2.3.3, and often referred throughout this
work, crucial to source separation is the criterion of sparsity, which aims at finding
a set of decomposition functions in such a way that a reasonable approximation of
the signal is possible with most of the expansion coefficients equal or close to zero.

Most well-known signal transformations and analysis methods are specific cases
of the discrete additive model of Eq. 2.15. The trivial case is the interpretation
of that equation as the sifting property of discrete signals [146], by using shifted
impulses as the expansion functions: bk(t) = δ(t−k). The coefficients ck correspond
then to the sample amplitude values. Basic discrete spectral transforms such as
the Discrete Fourier Transform (DFT) and the Discrete Cosine Transform (DCT)
are additive expansions with a finite set of frequency-localized expansion functions
fixed beforehand. If the decomposition functions are also localized in time, the
result is a time–frequency representation, such as offered by the Short-Time Fourier
Transform (STFT) and the Discrete Wavelet Transform (DWT), as well as any
arbitrary decimated filter bank arrangement, such as the ones used for frequency-
warped representations.

If the set of expansion functions is not fixed beforehand, and depends on the
signal to be analyzed, the expansion is said to be adaptive or data-driven. There
are several ways in which such an adaptivity can be implemented. One possibility
is to define a fixed collection of basis functions, called a dictionary, and select out
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of it the bases that best match the observed signal. This is the principle behind
overcomplete and sparse decomposition methods, such as Basis Pursuit [42] and
Matching Pursuit [104]. Another possibility is to extract the expansion functions
directly from the signal, resulting in adaptive transforms like PCA [82] and ICA
[79]. An even more sophisticated approach consists in considering time-varying
expansion functions whose parameters are to be extracted from temporal segments
of the input signal. This is the case of sinusoidal modeling and its variants, which
will be thoroughly reviewed in Chapter 4. An excellent overview of all these types
of modeling approaches, considered under a common mathematical framework, can
be found in Michael Goodwin’s PhD thesis [65].

A different family of modeling approaches approximate a given signal by pre-
diction, rather than by expansion: they assume that the current output has been
generated in some way from the previous outputs. The most basic model of this
type, the autoregressive (AR) model plays an important role in the estimation of
spectral envelopes, and will be introduced within that context in Sect. 4.1.

In this section, basic fixed (STFT) and data-driven (PCA) expansions relevant
to the present work will be introduced. More advanced models will be introduced in
subsequent chapters: frequency-warped representations in Sect. 3.1, sinusoidal mod-
eling and trained models in Chapter 4, and other source-specific advanced models
for musical signals in Sect. 5.1.

2.3.1 Basis decompositions

If the discrete signal to be modeled and the expansion functions are constrained
to a finite-length interval t = 0, . . . , T − 1 and, using the vector notation s =
(s(0), . . . , s(T − 1))T for the signal and c = (c1, . . . , cK)T for the coefficients cor-
responding to the K expansion functions bk(t) = bk = (bk(0), . . . , bk(T − 1))T , it is
possible to express Eq. 2.15 in matrix notation:

s = Bc, (2.17)

where B is a T × K matrix whose columns are the functions bk. This can be
interpreted as a linear transformation from the coefficient space to the signal space,
with B as the transformation matrix and bk as the transformation bases. Note that
such a linear decomposition model is of the same form than the linear mixing model
of Eq. 2.5. In fact, there is a strong analogy between source separation and signal
decomposition, as will be addressed more in detail in Sect. 2.4.

For multidimensional signals of N dimensions (or equivalently, for sets of N
different signals of the same length T ), the already introduced explicit notation will
be used, with the following convention: variables will be arranged as rows and their
realizations (samples) will correspond to the columns. Thus, the formulation of basis
decomposition will be of the form S = CBT , with the N signals and coefficient
vectors arranged as the rows of matrices S (size N × T ) and C (size N × K),
respectively.

If T = K and the columns of B are linearly independent, then the set of expan-
sion functions constitutes a basis of the signal space, meaning that each signal vector
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s can be represented as a linear combination of the bk’s, which are then called basis
functions. In this case, the basis decomposition is said to be complete. If, however,
T < K, the matrix B contains linearly dependent vectors and the representation is
said to be overcomplete [65].

In the complete case, the transformation matrix is invertible, and the expansion
coefficients can be readily obtained by

c = B−1s. (2.18)

In the context of signal transformations, Eq. 2.18 is called the analysis equation
and Eq. 2.17 is called the synthesis equation. By convention, the analysis equation
is considered the direct transformation and the synthesis equation is considered the
inverse transformation.

A further simplification is possible if the basis is orthogonal8, in which case the
coefficients are directly given by projecting the signal upon each one of the basis
functions:

ck = 〈bk, s〉 = bH
k s, (2.19)

where 〈·〉 denotes the scalar (or dot) product and H the Hermitian (complex con-
jugate) transpose, or, in matrix notation, c = BHs. This results in an expansion of
the form

s =

K
∑

k=1

〈bk, s〉bk, (2.20)

which is called the orthogonal projection of s onto the set of bases bk.
Throughout the present work, basis decomposition methods will appear within

several different contexts. The DFT is the fundament of the STFT and, as such,
of sinusoidal modeling. PCA, an adaptive basis decomposition, will be applied to
obtain compact spectral representations in Chapter 4. ICA is closely related to the
angular clustering method for estimating the mixing matrix used in Chapters 3 and
6. The DFT and PCA will be briefly introduced in the remainder of the present
section, and ICA will be presented as a method for source separation in Sect. 2.6.1.

The Discrete Fourier Transform (DFT)

The DFT is the most popular orthogonal discrete transformation with invariant
bases. Its basis functions are complex exponentials of the form bk(t) = ej 2π

T
kt. The

analysis equation (Eq. 2.19) then yields the following DFT coefficients (the usual
notation for the DFT is ck = S(k)):

S(k) =
T−1
∑

t=0

s(t)e−j 2π
T

kt, k = 0, . . . , T − 1. (2.21)

The quantities |S(k)| and 6 S(k) constitute the magnitude and phase spectrum,
respectively, of the signal. Recall that, since the DFT is a complete basis decompo-
sition, T = K. The DFT can be efficiently computed by the Fast Fourier Transform
(FFT) algorithm [121].

8Orthogonality implies 〈bi,bj〉 = δ(i − j) or, in matrix form, B−1 = BH .
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2.3.2 Time–frequency decompositions

Spectral transforms like the DFT are frequency-localized : their basis functions have
a definite position in frequency. The frequency support of the DFT, i.e., the set
of positions in frequency of the basis functions, is given by fk = k

T fs, where k =
1, . . . ,K and fs is the sampling rate, or by their normalized counterparts ωk = 2π

T k.
However, the time support t = 0, . . . , T − 1 is the same for all basis functions and
furthermore equals the time support of the signal to be analyzed. This means that
every time-localized event in the original signal (such as an impulse or a quick change
in amplitude) will not be appropriately represented in the transformed domain, and
its features will appear spread throughout the whole time support. The DFT can
thus have unlimited frequency resolution (proportional to T = K), but no time
resolution inside the considered signal excerpt.

If the analyzed signal is highly non-stationary (which is the case of speech and
music signals), a certain time granularity is required to obtain a useful represen-
tation. This is especially important to fulfill the sparsity requirements of underde-
termined source separation: higher time localization leads to higher time resolution
and thus to higher temporal sparsity, since each meaningful temporal component of
the signal will be represented by only one or few coefficients. The same applies for
frequency localization.

As will be explained later, there is a trade-off relationship between time and
frequency resolution. Music and general audio signals are not stationary and are
thus both time- and frequency-localized to a certain degree. Thus, choosing an
appropriate balance will determine the suitability of a certain signal representation
for the separation task. This issue will be thoroughly addressed in Chapter 3.

A general time–frequency decomposition is a generalization of the basic additive
model of Eq. 2.15 with a set of expansion functions both localized in time (index r)
and frequency (index k):

s(t) =

R
∑

r=1

K
∑

k=1

crkbrk(t). (2.22)

Two different notational conventions will be used to denote time–frequency rep-
resentations, each one being more convenient within its corresponding context. In
discussions where keeping the two-dimensional time–frequency meaning is impor-
tant, such as in time–frequency masking (Sect. 2.7.3) and in spectral basis decom-
positions (Sect. 4.5.1), a time–frequency transformed signal will be denoted either
by an element-wise notation with explicit indexing of the form S(r, k) ∀r, k, or by
a time–frequency matrix S(r, k). To avoid confusion with the multi-source matrices
of the mixing model X = AS (with time-domain signals as the rows), the time–
frequency indices (r, k) will be explicitly indicated in the latter case, even if the
whole bin matrix is denoted.

The other convention will be used in those cases where keeping the time–frequency
ordering is not necessary, such as in measuring sparsity (Sect. 2.3.3) and in mixing
matrix estimation by clustering (Sects. 2.6.2 and 3.4). In that case, all bins of the
time–frequency representation corresponding to a single signal will be grouped into
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a coefficient vector c of concatenated representation frames, of size (RK) × 1:

c = (c11, . . . , c1K , c21, . . . , c2K , . . . , cR1, . . . , cRK)T . (2.23)

The total number of coefficients will be denoted by C = RK. A vector concatenated
in this way is said to follow a lexicographic ordering . When using multi-signal matrix
explicit notation with time–frequency representations, coefficient matrix C will have
as its rows the lexicographically ordered coefficient vectors cn corresponding to the
transformed sources.

The Short-Time Fourier Transform (STFT) and Gabor expansions

In practice, time resolution can be obtained by dividing the input signal into a
sequence of analysis frames and performing a spectral analysis on each one of them.
This corresponds to sequentially shifting the input signal s(t) by steps of H samples
(called the hop size), then multiplying the first chunk of size L ≥ H with an analysis
window w(t) of the same size, and finally computing a spectral transform of size T ≥
L from each frame. When the used spectral transform is the DFT, this procedure
results in the Short-Time Fourier Transform (STFT) [121], given in frame r and
frequency bin k by

S(r, k) =

L−1
∑

t=0

s(rH + t)w(t)e−j 2π
T

kt, (2.24)

where r = −∞, . . . ,+∞ and k = 0, . . . , T − 1 (again, T = K). The matrix |S(r, k)|
is called the spectrogram of the signal, and is the most widely used time–frequency
representation.

Viewed from the time domain, as formulated by Eq. 2.22, the STFT amounts to
a decomposition of the signal s(t) into a set of expansion functions both localized in
time and in frequency and weighted by the STFT coefficients S(r, k) given by the
previous equation:

s(t) =
+∞
∑

r=−∞

T−1
∑

k=0

S(r, k)w(rH + t)ej 2π
T

kt. (2.25)

The expansion functions are now of the form brk(t) = w(rH + t)ej 2π
T

kt. Time
localization is provided by the finite-length “hopping window” w(t), and frequency

localization by the modulating complex sinusoid ej 2π
T

kt. This formulation is also
known as Gabor expansion, and in this context, the brk(t) functions are called time–
frequency atoms.

Uncertainty principle

Inherent to any kind of time–frequency decomposition is a trade-off between time
and frequency resolution. Intuitively, long time windows are needed in order to re-
solve low frequency components, with longer periods. Inversely, short time windows
offering better time resolution can only resolve frequency components whose periods
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are shorter than the time interval they span. Denoting the time distance between
two time frames as ∆t and the normalized frequency distance between two frequency
bins as ∆ω, there is a lower bound [65] given by

∆t∆ω ≥
√

π

2
. (2.26)

This is the uncertainty principle in signal analysis, and is one of the instances of
Heisenberg’s uncertainty principle originally formulated between position and mo-
mentum in the field of quantum physics. The area delimited by segments ∆t and
∆ω is referred to as a time–frequency tile.

2.3.3 Sparse decompositions

A signal approximated by the general additive model of Eq. 2.15 or its time–
frequency counterpart (Eq. 2.22) is said to be sparse if most of its expansion coeffi-
cients ck or crk are zero or close to zero. In the following, the coefficients of a given
representation will be considered organized as the elements of a lexicographic coef-
ficient vector c (Eq. 2.23). Notation ci will be used to denote a generic coefficient
of the concatenated vector, and c without index will be used in those cases where it
will be more useful to consider the coefficient vector as a random variable.

The reason why high sparsity of the source representations is desired in source
separation problems is straightforward: the less coefficients are needed to adequately
describe a particular source signal, and the less energetic they are, the less degree
of overlapping will occur when mixed with other signals. The only exception will
happen if the sources have exactly the same probability distribution, which is rather
unlikely in a realistic situation.

An explicit sparsity assumption is not needed in simple BSS problems such as
instantaneous and determined BSS. Its paradigmatic approach, ICA, does not rely on
sparsity but on statistical independence of the sources, which is a weaker assumption
(although closely related, as will be seen). Also, it is a method in the time domain,
where general audio signals have a very low sparsity (see Sect. 3.2.1). However,
it is crucial in most underdetermined situations. This is the truer the less a priori
information is available, and the higher is the ratio between the number of sources
and mixtures.

A sparse random variable will have a pronounced peak around the mean in its
probability density function (pdf). The higher the sparsity, the sharper will be that
peak. In order to characterize sparsity by means of the pdf, consider first the family
of generalized exponential power distributions, expressed by

p(c) = αe−β|c−µ|ν , (2.27)

where µ is the mean and α is a scaling factor to ensure a pdf with unit area. The
parameter ν determines the peakedness of the distribution, and β the width of the
peak. For ν = 2, and setting the appropriate α and β for unit area, a Gaussian (or
normal) distribution is obtained:

p(c) =
1√

2πσ2
e−

(c−µ)2

2σ2 . (2.28)
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Figure 2.5: Comparison of Laplace and normal probability density functions for two dif-
ferent variances.

For ν = 1, the result is a Laplacian distribution:

p(c) =
λ

2
e−λ|c−µ|. (2.29)

The variance of the Laplace distribution is 2/λ2. The Laplacian distribution is
especially important as a model for sparsity because of its simplicity. As will be
seen, it constitutes the basic sparsity assumption in a wide range of separation
algorithms. Figure 2.5 shows a comparison between a Gaussian distribution and
a Laplace distribution with zero means and two different values for the variance.
Thinner peaks correspond to most values being close to zero, and thus to higher
sparsity. It can be seen that, for the same variance, the Laplace density is sparser.

Even higher sparsity is obtained with impulse-type distributions, which corre-
spond to 0 < ν < 1. In general, exponential power distributions with 0 < ν < 2
are called supergaussian (sharper than Gaussian), and distributions with ν > 2 are
called subgaussian (flatter than Gaussian). The extreme subgaussian case is the
uniform distribution, which is obtained for ν → ∞.

Measures of sparsity

The most common way of measuring the sparsity ξ of a signal representation is by
means of the ℓp norm of its coefficient vector with the constraint 0 ≤ p ≤ 1:

ξ = ‖c‖p =

(

C
∑

i=1

|ci|p
)1/p

, 0 ≤ p ≤ 1. (2.30)

The ℓ0 norm gives the number of non-zero elements of c:

‖c‖0 = #{i, ci 6= 0}, (2.31)
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where #{·} denotes the counter operator. This norm is rarely used since it is highly
sensible to noise: a slight addition of noise will make a representation completely
nonsparse. Instead, a modified, threshold-based version can be used, called the ℓǫ

norm:

‖c‖ǫ = #{i, |ci| ≥ ǫ}. (2.32)

However, determining a reasonable noise threshold ǫ for unknown signals is a difficult
task [84] and thus this measure also lacks robustness.

The most common norm of this family is the ℓ1 norm, obtained for p = 1:

‖c‖1 =

C
∑

i=1

|ci|. (2.33)

It arises naturally in many separation approaches that assume that the sources are
Laplacian, as will be seen in Sect. 2.7.2. The ℓ2 norm ‖ · ‖, for which the order
index is usually omitted, corresponds to the traditional Euclidean norm, and to the
square root of the energy.

In general, it is important to center and normalize according to variance before
measuring sparsity. If coefficient vectors of different lengths are to be compared,
the ℓp norms should also be normalized by the number of coefficients, in which
case they will be denoted by ℓ̄p. Also, it should be noted that such norms are in
reality measures of non-sparsity : they are larger the more high-energy coefficients
are present. They must be inverted (−ℓp) in order to directly correspond to sparsity.

A more general family of sparsity measures is given by the expectation of non-
quadatric functions g(c), which in practical cases is approximated by the empirical
average (see [79], p. 374):

ξ = E{g(c)} =
1

C

C
∑

i=1

g(ci). (2.34)

Choosing g(x) = |x| results in the ℓ1 norm normalized by the number of coefficients.
Another important particular case thereof (apart from scaling and additive fac-

tors) is the kurtosis, given for centered variables by

κ4 = E{c4} − 3[E{c2}]2 (2.35)

and the normalized kurtosis

κ̄4 =
E{c4}

[E{c2}]2 − 3. (2.36)

If the coefficients are assumed to be whitened9, then E{c2} = 1 and both definitions
become equivalent:

κ4 = E{c4} − 3. (2.37)

9A random variable is said to be white when it has zero mean (i.e., it is centered) and its
covariance matrix is diagonal and of unit variances (Σ = I).
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Kurtosis is a well-known measure of the nongaussianity of a distribution. It is
positive for supergaussian densities, negative for subgaussian densities and equals
zero for Gaussian densities. In this context, supergaussian densities are also called
leptokurtic and subgaussian ones platykurtic. Exponential densities are the more
supergaussian the more peaked around the mean, and thus kurtosis will grow with
sparsity.

Several other, more sophisticated measures of sparsity have been devised in the
literature, including logarithmic and hyperbolic functions, negentropy [79], entropy
diversity measures and the Gini index [128], which was originally developed to mea-
sure the distribution of wealth in society. Several studies deal with the effect of
using different sparsity measures for several optimization purposes [84, 128]. Kar-
vanen and Cichoki show in [84] that in the case of noisy signals with non-symmetric
or multimodal densities, different sparsity measures can lead to completely opposite
optimization results.

Basic sparse decompositions

Simple signal transformations often result in an enormous gain in representation
sparsity. Provided the transformation is linear and perfectly or near-perfectly in-
vertible, the instantaneous mixing model of Eq. 2.5 is applicable, and separation
algorithms can be performed in the transformed domain. As a basic example, a
1-second tone of T samples consisting of three static sinusoidal partials10 will need
T ≫ 3 coefficients for a perfect representation in the time domain, and only three
(the amplitudes of the partials) for a perfect representation in the magnitude spec-
trum.

In the context of underdetermined source separation, the transformation most
widely used to increase sparsity is the STFT. Further possibilities include multires-
olution techniques such as the DWT and Wavelet Packets. Other signal transforma-
tions that are aimed at compact representations, such as dimensionality reduction
techniques, lossy audio compression codecs, spectral front-ends like Mel Frequency
Cepstral Coefficients (MFCC) or any other kind of feature extraction methods, are
indeed highly sparse, but inappropriate to source separation since they loose lots of
information and cannot be inverted for an accurate signal reconstruction.

Figure 2.6 shows a comparison of basic representations of a sound segment in
the time domain, in the frequency domain (DFT magnitude spectrum) and in the
time–frequency domain (spectrogram). The examples correspond to a melody frag-
ment played by an alto saxophone. The normalized logarithmic histograms for the
corresponding representation coefficients are shown to the right of each representa-
tion plot, and the corresponding normalized ℓǫ, ℓ1 and kurtosis sparsity measures are
shown in Table 2.3. The DFT and the spectrogram representation are much sparser
than the time-domain signal, as can be observed from the measures and from the
peakedness of the respective histograms. As can be seen, the increase in sparsity

10Partials or overtones are the predominant sinusoidal components of a sound. It is a more
general term than harmonics, which denotes the special case in which the frequencies of the partials
are integer multiples of the fundamental frequency.
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Figure 2.6: Example of sparsity properties of basic signal representations.

greatly varies between the different measures. The DFT was computed by taking the
whole clip at a time: i.e., it is a completely frequency-localized representation. Even
if in this case it objectively achieves a higher sparsity than the spectrogram time–
frequency representation, it is not usable in practical applications, mainly because
all methods require a certain time granularity, as provided by the time–frequency
representations, and because of the high computational requirements of computing
large DFTs. Note that both the DFT and the spectrogram magnitudes are plot-
ted logarithmically, whereas linear magnitudes are used for separation and sparsity
measurement.

In the present work, Chapter 3 will be devoted to the evaluation of the use of
frequency-warped time–frequency representations as sparse decompositions for un-
derdetermined BSS. A thorough experimental setup will be used to test the sparsity
properties of frequency-warped sources and mixtures.

Overcomplete decompositions

As already introduced, a signal decomposition is said to be overcomplete if the
dictionary of expansion functions is redundant, i.e., the T × K matrix B in the ex-
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Measure −ℓ̄ǫ −ℓ̄1 κ̄4

Time -0.667 -0.207 0.11
DFT -0.009 -0.009 284.44

Spectrogram -0.039 -0.025 53.41

Table 2.3: Sparsity measures corresponding to the signals in Fig. 2.6.

pansion model s = Bc is unsquare with T < K. The representation problem is thus
no longer invertible and the general analysis equation 2.18 is no longer applicable.
If an overcomplete dictionary consists of time- and frequency-localized functions
that represent a wide range of atomic audio events, the resulting representation
can achieve high levels of sparsity. Given a dictionary and an input signal, the de-
composition algorithm searches the bases according to a sparsity-related objective
function. Commonly used dictionaries include Gabor atoms, damped sinusoids and
wavelet packets.

Examples of overcomplete decomposition methods are Basis Pursuit [42], Min-
imum Fuel Neural Networks (MFNN) [178] and the method of frames [49]. In the
context of audio time–frequency processing, the most popular however is the Match-
ing Pursuit method, proposed by Mallat and Zhang [104]. Due to its sequential
nature it is able to obtain highly refined and sparse results. Basically, it consists of
projecting the input signal onto each of the dictionary atoms and to measure their
correlation; the most correlated atom gets then subtracted from the signal and the
steps are iterated under a stopping condition is met. Endelt and La Cour-Harbo
[58] perform a comparison of different overcomplete decomposition methods for the
purpose of musical signal representation. Matching Pursuit obtained the best overall
performance in terms of sparsity measured by the ℓ1 norm.

2.3.4 Principal Component Analysis

Principal Component Analysis (PCA) [82], also called Karhunen-Loève Transform
(KLT), is a linear, orthogonal adaptive transform whose goal is to decorrelate a
set of input random vectors. Geometrically, it finds the orthogonal directions of
maximum variance in the data scatter plot. No assumptions about the probability
distributions, or of generative models of the vectors are needed; it is enough to
estimate the first and second order statistics from the input samples. The main
application of PCA is dimensionality reduction. Since it plays an important role in
the scope of the present work (as a method for compaction of the timbre models
introduced in Chapter 4), it will be introduced here in detail.

The following explicit notation for the direct PCA transformation (analysis equa-
tion) will be used:

Y = PTX (2.38)

and for the inverse transformation (reconstruction or synthesis equation):

X = PY. (2.39)
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X and Y are the N × L input and output data matrices, respectively, consisting
of L vectors from an N -dimensional space. This can be interpreted as a set of L
realizations (i.e., observed samples) of a set of N random variables, or of an N -
dimensional random vector. For instance, in a time-domain context, N would be
the number of signals and L the number of time samples. P is the N ×N orthogonal
(P−1 = PT ) PCA matrix11. Its columns (denoted by pi) are the PCA bases. The
rows of Y are the principal components of the data.

The motivation of PCA is to find a transformation that minimizes the recon-
struction error when using less basis vectors than N . In this case, the result is an
orthogonal projection from M < N basis vectors (columns) out of the full N × N
matrix, or, in matrix notation, a reduced M × N transformation matrix PT

ρ . For a
single vector x (one column of X), and using instantaneous notation and Eq. 2.20,
the following reconstructed vector is obtained12:

x̂ =

M
∑

i=1

〈pi,x〉pi =

M
∑

i=1

(pT
i x)pi (2.40)

and using matrix notation for all L vectors:

X̂ = PρYρ = PρP
T
ρ X. (2.41)

In other words, we seek a reduced-dimension representation Yρ (in a space spanned
by a subset of M bases pi) of the input data X so that the most information
is retained. Note that the M × N matrix PT

ρ is no longer orthogonal, and thus

PρP
T
ρ 6= I.

Thus, the reconstruction error or residual is to be minimized, which is given by

ǫ = X − X̂. (2.42)

Equivalently (and, as will be seen, more conveniently), the mean square magnitude
thereof, which yields the Mean Square Error (MSE) criterion, can be subjected to
minimization:

JMSE = E{‖x − x̂‖2} = E{(x − x̂)T (x − x̂)}. (2.43)

Note that the expectation is performed along all L sample vectors.

Using the previous equations, assuming that the bases are orthonormal (pT
i pi = 1

and pT
i pj = 0 if i 6= j), and taking into account the linearity of the expectation op-

erator, the following is obtained:

11Note that, since only real coefficients are considered here, PT = PH .
12The hat notation (ˆ) will be used in this work to denote reconstruction or estimation.
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=
N
∑

i=M+1

E
{

(pT
i x)(xTpi)

}

(2.46)

=
N
∑

i=M+1

pT
i E
{

xxT
}

pi =
N
∑

i=M+1

pT
i Rxpi (2.47)

where Rx = E{xxT } = 1
L−1XXT is the N × N correlation matrix of the N × L

input data matrix13.
This expression can be minimized using the Lagrange method with an orthonor-

mality constraint, which yields the Lagrangian function

L(p1, . . . ,pN , λ1, . . . , λN ) =

N
∑

i=M+1

pT
i Rxpi +

N
∑

i=M+1

λi(1 − pT
i pi). (2.48)

Setting the derivative to zero finally yields the relationship

Rxpi = λipi, (2.49)

which shows that the searched bases pi are the eigenvectors of the correlation matrix,
giving a closed solution for PCA. Furthermore, if this expression is replaced into the
criterion definition, the result is

JMSE =
N
∑

i=M+1

pT
i λipi =

N
∑

i=M+1

λi. (2.50)

That is, in order to minimize the error, the N − M smallest eigenvalues λi must
be left out. In other words, the M eigenvectors pi corresponding to the M largest
eigenvalues must be retained in the final, reduced transformation matrix.

The eigenvector equation 2.49 can be rewritten as

RxP = PΛ, (2.51)

where Λ is a diagonal matrix containing the eigenvalues: Λ = diag(λ1, . . . , λN ). In
this case, P is invertible and P−1 = PT , so it is possible to write

Rx = PΛPT . (2.52)

13E{xxT } = 1
L−1

XXT is the unbiased estimator of the correlation matrix. The biased estimator

is E{xxT } = 1
L
XXT . In this work, unbiased estimators will be used.
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This is the standard formulation of the eigenvalue problem for square matrices, called
Eigenvalue Decomposition (EVD). It is solved using numerical algorithms, one of the
most popular being the QR algorithm. Note that since Rx is a symmetric matrix,
its eigenvectors are mutually orthogonal, which is coherent with the orthonormality
constraint imposed to the Lagrange solution to PCA.

PCA can alternatively be computed by means of Singular Value Decomposition
(SVD). It it easy to show that an EVD of the correlation matrix corresponds to
performing an SVD on the input data X and taking the left singular vectors and the
square of the singular values as the eigenvectors and eigenvalues, respectively. The
advantages of using SVD instead of EVD is that it is a more reliable and precise
algorithm, and that it avoids computing the correlation matrix of the data.

There exists a slightly different definition of PCA, which approximates a projec-
tion of the form

x̂ =

M
∑

i=1

〈pi,x〉pi +

N
∑

i=M+1

cipi. (2.53)

That is, instead of the truncated projection of Eq. 2.40, where the last N −M basis
vectors are ignored, they are fixed with some constant scalars ci. An analogous
derivation leads to the PCA bases being given by the unit-length eigenvectors of the
covariance matrix

Σx = E{(x − E{x})(x − E{x})T }, (2.54)

instead of the correlation matrix Rx. However, both definitions are equivalent if the
input data has zero mean. To avoid confusion regarding which definition is used,
the input data is usually first centered as a previous step before PCA:

Xc = X − E{X}. (2.55)

In the following, it will be always assumed that the input data has been centered.
The derivation using the MSE criterion is just one possibility to obtain the PCA

bases. The same result is obtained if the criterion is to retain the largest variance
in the kept dimensions. In this context, it can be shown that the variance of the
i-th principal component equals the eigenvalue λi corresponding to the (normalized)
eigenvector pi:

σ2
Yi

= E{y2
i } = λi. (2.56)

Also, from Eq. 2.52,
Ry = PTRxP = Λ. (2.57)

Thus, the data yielded by PCA is fully uncorrelated (E{yiyj} = 0, i 6= j).

Whitening

The purpose of whitening is to decorrelate a centered random vector x and to make
the variances of their elements equal to unity, by transforming it into a random vector
z that fulfills Σz = I. Whitening can be performed using PCA as the decorrelation
stage, followed by eigenvalue scaling to normalize the variances:

Z = Λ−1/2PTX = VX, (2.58)
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(a) Original data and found
PCA bases

(b) Projected data (c) Whitened data

Figure 2.7: Example of PCA and whitening of a bivariate normal distribution.

where V = Λ−1/2PT is the whitening matrix. Note that the square root is in this
case an element-wise operation.

Figure 2.7 shows the effect of applying the successive stages of decorrelation by
PCA and whitening to a two-dimensional, normally distributed random vector. The
figure depicts the scatter plots of the joint distribution after each transformation
step. Note that PCA, as an orthogonal transformation, corresponds geometrically
to a rotation of the axes. Whitening, however, is not an orthogonal operation.

2.4 Analogy between signal decomposition and source sep-

aration

As introduced in the previous sections, both source separation from linear mixtures
and linear signal decompositions can be formulated as linear transformations. The
notation X = AS has been used for linear source separation, S = CBT for general
basis expansions and X = PY for PCA. In fact, separation of a linear mixture can
be viewed as a basis decomposition problem in which the columns of the mixing
matrix an are the bases and the sources s are the transformed coefficients. An
underdetermined mixing matrix A of size M × N (M < N) corresponds thus to an
overcomplete expansion matrix B of size T × K (T < K).

There are many examples in the literature that offer such a dual point of view.
For instance, ICA has been both used as a BSS method [79] and as a basis de-
composition method aimed at feature extraction (see [16] and Chapter 21 in [79]).
Also, it has been shown that, under a sparsity criterion, underdetermined source
separation and adaptive basis decomposition are equivalent problems [98]. As an
example, the results in [58] show that the bases obtained by adaptive decomposition
methods such as Basis Pursuit closely correspond to the separated sources building
the sound mixture.

There are however some conceptual differences that should be taken into account.
In the instantaneous mixing model, as well as in the PCA formulation, vector x
denotes a single observation of an M -dimensional random vector. In contrast, vector
s in the decomposition model denotes T observations of a single random variable.
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In the time-domain case, T is the number of time samples, which will most certainly
fulfill T ≫ M , T ≫ N and T ≤ K. As a consequence, time will be conveyed in the
decomposition basis matrix B, giving rise to time-domain expansion functions as its
columns. In contrast, the bases in A and P do not represent time-domain functions,
and are best interpreted as the directions of the new coordinates in the transformed
space.

It is also possible to combine both signal decomposition and source separation as
a sequence of processes into a common framework [182]. This gives rise to separation
systems that work in the transformed domain. In such methods, a set of signals is
first transformed into a sparse representation, for which the multi-signal notation
S = CBT must be used. Using the linear model X = AS, the separation problem
turns into a joint separation/decomposition problem formulated by

X = ACBT . (2.59)

If the mixture is subjected to linear decomposition using the same basis as the
sources:

X = YBT , (2.60)

then it is possible to ignore the basis altogether and perform separation only in the
transformed domain, by solving the transformed linear mixing model

Y = AC. (2.61)

Under these conditions, any equation involving original-domain matrices X and S
will be equally valid replacing them with their transformed-domain counterparts
Y and C. All approaches considered in the present work are of this type, and
separation in the transformed domain will be the central topic throughout Chapter
3.

2.5 Joint and staged source separation

In Sect. 2.1.1, instantaneous source separation was formulated as a solution to the
system of linear equations X = AS, where both the variables (sources) and the
coefficients (mixing matrix) are unknown. This and the next two sections introduce
how this can be solved. It is worth emphasizing that all following derivations are
equally valid in the transformed domain by substituting X and S by Y and C,
respectively.

The most general way to approach a solution is to define a minimization problem
based on some cost function of the error X−AS. For example, using the MSE and
instantaneous notation, this yields the optimization problem

min
A,s

E{‖x − As‖2}. (2.62)

The equivalent using explicit notation is the minimization of the Frobenius norm of
the error matrix:

min
A,S

‖X − AS‖2
F . (2.63)



38 2.5 Joint and staged source separation

The Frobenius norm is given by

‖X‖F =

√

∑

i,j

x2
ij . (2.64)

Approaches formulated in this way are termed joint source separation methods, since
they estimate both unknown quantities, S and A, at the same time.

The general formulation of Eq. 2.63 has infinitely many solutions given by ma-
trices US and AU−1 for any invertible matrix U. Thus, the problem needs to be
further constrained. One possible way to do it is to assume certain probability dis-
tributions for the variables involved, and to tackle the problem from a probabilistic
point of view [182]. In a Bayesian context a Maximum A Posteriori (MAP) for-
mulation can be applied, aimed at maximizing the posterior probability P (A,S|X).
According to Bayes’ theorem, and assuming that A and S are statistically indepen-
dent (P (A,S) = P (A)P (S)) this posterior is given by

P (A,S|X) =
P (X|A,S)P (A)P (S)

P (X)
∝ P (X|A,S)P (A)P (S). (2.65)

If A is assumed to be uniformly distributed (i.e., all mixing weights are equally
probable), then P (A) will not have an influence on the optimization, and thus the
problem reduces to

max
A,S

P (A,S|X) ∝ max
A,S

P (X|A,S)P (S). (2.66)

It will be now assumed that the sources and their samples are statistically indepen-
dent, and thus the joint prior P (S) is factorial:

P (S) =
∏

n,t

pn(sn(t)), (2.67)

where pn is the pdf of source sn(t). To compute the remaining likelihood factor
P (X|A,S) it is convenient to consider the noisy linear model (Eq. 2.12) with white
Gaussian noise of covariance σ2I. In that case, since A and S are considered fixed for
the likelihood, the only source of uncertainty is the noise. The probability is then
given by the Gaussian distribution of the noise matrix N = X − AS. Assuming
again statistical independence, the following is obtained:

P (X|A,S) ∝
∏

m,t

exp

(

−(xm(t) − (AS)mt)
2

2σ2

)

, (2.68)

where (AS)mt =
∑N

n=1 amnsn(t). Substituting Eqs. 2.68 and 2.67 into 2.66, taking
the logarithm, and inverting the sign, the following MAP cost function is finally
obtained:

min
A,S

{

1

2σ2
‖X − AS‖2

F −
∑

n,t

ln(sn(t))

}

, (2.69)
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Figure 2.8: Diagram of a general staged Blind Source Separation system.

where ln are the log-densities (logarithm of the probability densities) of the sources.
The first term on the cost function is the reconstruction error. The second term is
a penalty for sparsity.

The advantage of such a joint MAP formulation to BSS is its generality: it
is valid for any number of sources and mixtures, and thus it has been used in
underdetermined separation [182] or overcomplete decomposition scenarios [119].
However, it is extremely computationally demanding and unstable with respect to
convergence [182]. For this reason, rather than a joint optimization, most separation
methods follow a staged approach in which the mixing matrix and the sources are
estimated successively in two separate steps. Such approaches will be referred to
as staged source separation methods. As will be seen, they offer great algorithmic
simplification, and flexibility in the system design, since the approaches for mixing
matrix and source estimation can be freely combined. The staged approach has
been described under a formalized framework by Theis and Lang [153], where the
mixing matrix estimation stage was called Blind Mixing Model Recovery (BMMR)
and source estimation was called Blind Source Recovery (BSR).

Figure 2.8 shows a block diagram of a general staged source separation system,
with additional transformation blocks so that the separation is performed in a sparse
domain, and indicating the relevant variables. The following two sections will provide
an overview of methods that have been proposed to solve the separate tasks of mixing
matrix estimation (Sect. 2.6) and source estimation or resynthesis (Sect. 2.7). All
methods reviewed in the following sections and chapters follow the linear mixing
model, unless otherwise noted. It is out of the scope of the present work to consider
delayed and convolutive methods. The interested reader is referred to [79, 117, 164]
for overviews covering that type of approaches. Also, note that all methods presented
here are fully blind and solely relying on spatial information. Semi-blind methods or
approaches based on a higher degree of a priori knowledge about the sources, such
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(a) Even-determined mixture (b) Underdetermined mixture

Figure 2.9: Scatter plot in two-channel mixture space for statistically independent and
sparse sources.

as methods using advanced signal models or previous training, will be introduced in
Sect. 5.1 in the context of monaural separation and in Sect. 6.1 in the context of
stereo and multichannel separation.

2.6 Estimation of the mixing matrix

The first step in a staged BSS method is to estimate the mixing matrix A from
the mixture matrix X. Under certain circumstances, it is possible to graphically
illustrate the general ideas and the goals of the process. The M signals in the
mixture matrix (its rows) can be considered the dimensions of an M -dimensional
random vector. Their empirical joint distribution can be thus represented by means
of a scatter plot, as has been done in Sect. 2.3.4 to illustrate PCA. Each point on the
scatter plot lies on the position defined by the value proportion of that particular
signal sample or coefficient between the mixture channels.

In the context of source separation, the scatter plot of X corresponds to the
mixture space, which in general will contain complex elements. Denoting the columns
of the mixing matrix by an, it is possible to rewrite the linear mixing model x = As
as

x =

N
∑

n=1

ansn. (2.70)

This equation is valid for each sample sn(t) of the time-domain signals or for each
coefficient ci of the transformed signals. It becomes apparent that, if each mixture
sample or coefficient is contributed only by one source (i.e., sn 6= 0 and sj = 0 for
all j 6= n), the point x will lie on the direction defined by vector an in the complex
mixture space. In a more realistic scenario, each mixture channel contains contribu-
tions from all sources, and thus the points corresponding to each source will deviate
from the direction an. However, if the sources are sufficiently sparse, and assumed to
be statistically independent, the scatter plot will show the points corresponding to
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(a) Mixture and found PCA
bases

(b) Projected mixture (c) Whitened mixture

Figure 2.10: Application of PCA to an even-determined mixture of two statistically inde-
pendent and sparse sources.

a particular source concentrating around its direction. Thus, the mixing directions
correspond to the columns of the mixing matrix. This direction clustering phe-
nomenon will be the more clear the higher is the sparsity of the sources. Although
many algorithms do not strictly require the clustering to be visually perceptible, it
can help to understand how they work for simple mixing setups. For convenience,
unit-length mixing directions will always be assumed: ‖an‖ = 1.

As an example, Fig. 2.9 shows two scatter plots in mixture space corresponding
to an even-determined and an underdetermined mixture of independent and identi-
cally distributed (i.i.d.) sources generated from impulse-type distributions (ν = 0.6
in Eq. 2.27). The vectors corresponding to the columns of the mixing matrix are
superimposed on the scatter plots. It can be seen than, with the same sparsity,
increasing the number of sources decreases the clustering effect, and thus mixing
matrix estimation becomes more difficult.

As a consequence, from a geometrical point of view, the goal of a mixing matrix
estimation algorithm is to find the mixing directions an from the mixture scatter
plot. Can this be achieved by PCA or whitening? A simple example will serve as
illustration. Consider again the two-channel mixture of Fig. 2.9(a). When subjected
to PCA, its directions of maximum variance are found (Fig. 2.10(a)). However, it
can be seen in the figure that they do not correspond to the mixing directions. This
would only be the case if the mixing matrix happened to be orthogonal. Thus,
uncorrelation alone is not enough for source separation. This demonstrates that not
only covariance-related (second order) statistics, but higher-order statistics need to
be exploited, and that assumptions stronger than uncorrelation need to be adopted.
These are the motivations underlying Independent Component Analysis (ICA).

2.6.1 Independent Component Analysis

Returning to Fig. 2.10, it is possible to observe an interesting effect that whitening
had on the scatter plot: it has turned the mixing directions orthogonal (Fig. 2.10(c)).
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Analytically, the application of PCA and whitening (Eq. 2.58) to a mixture gives

Z = VX = VAS. (2.71)

Since the sources are i.i.d., they are also uncorrelated and white, and thus E{ssT } =
1

T−1SST = I. Therefore,

E{zzT } = VAE{ssT }(VA)T = VA(VA)T = I, (2.72)

which shows that the “modified mixing matrix” VA is orthogonal. Thus, to find the
mixing directions, a further orthogonal transformation (a rotation) can be applied to
the whitened data. The goal of ICA [79] is to find that additional rotation. Graph-
ically, statistical independence corresponds to the signal data clouds being aligned
with the scatter plot axes. A successful application of ICA to Fig. 2.9(a) will give
the depicted mixing vectors an. Figure 2.9(b) shows however that whitening and
rotation will not be helpful in finding the 3 sources, and thus it is possible to antic-
ipate that ICA will not be applicable to underdetermined mixtures. Although not
mandatory for all ICA algorithms, pre-processing the data by PCA and whitening
greatly simplifies the analysis due to the created orthogonality.

It is important to emphasize at this point that independence is a stronger re-
quirement than uncorrelation. Two uncorrelated random variables x and y fulfill
E{xy} = E{x}E{y}, whereas two independent variables fulfill

E{g(x)h(y)} = E{g(x)}E{h(y)} (2.73)

for any absolutely integrable functions g(·) and h(·). Uncorrelation is thus a special
case of independence for variables transformed by linear functions. Independence
holds for any kind of linear or nonlinear functions. The property of Eq. 2.73 allows
regarding independence as nonlinear uncorrelation.

The mentioned rotation to align the axes can thus be expressed as an orthogonal
transformation

Y = WZ (2.74)

that maximizes the statistical independence of the variables contained in Y, which
are then called independent components. ICA employs numerical optimization al-
gorithms to search for a matrix W that maximizes a criterion function objectively
measuring the degree of independence. Then, Y ≈ S and since Y = WVAS, the
estimated mixing matrix will be given by Â = (WV)−1. If the mixture is assumed
to be whitened beforehand, then V = I and Â = W−1 = WT .

An important requirement in order for ICA to work is that the sources must
be nongaussian, i.e., either supergaussian or subgaussian, as are any of the sparse
distributions introduced in Sect. 2.3.3. The graphical explanation for this is that a
whitened (and thus orthogonal) mixture of Gaussian sources would correspond to
a hypersphere in mixture space (such as in Fig. 2.7(c)). Then, no definite mixture
directions would be identifiable, and an optimization would fail to converge.

This can also be shown analytically. The multivariate Gaussian density is given
by

ps(s) =
1

(2π)n/2(detΣ)1/2
exp

(

−1

2
(s − µ)TΣ−1(s − µ)

)

, (2.75)
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where Σ is the covariance matrix, µ is the mean vector and n is the dimensionality.
Assume now that the sources are centered (µ = 0) and i.i.d. (Σ = I), reducing the
above to

ps(s) =
1

(2π)n/2
exp

(

−‖s‖2

2

)

. (2.76)

In general, the density of a random variable transformed by the linear and invertible
transform matrix A is given by

px(x) =
1

|detA|ps(A
−1x). (2.77)

Applying this to the previous equation, and noting that due to the orthogonality
A−1 = AT , |detA| = 1 and ‖ATx‖2 = ‖x‖2, the following joint distribution for the
mixture is obtained:

px(x) =
1

(2π)n/2|detA| exp

(

−‖ATx‖2

2

)

=
1

(2π)n/2
exp

(

−‖x‖2

2

)

. (2.78)

It can be seen that the distributions of the sources and of the mixture are identical. In
other words, no information about the mixing is conveyed by the mixture, and thus
its identification will be impossible. Consistent with this is the fact that uncorrelated
Gaussian variables are also independent, which implies that they can already be fully
described by second-order statistics.

ICA methods are characterized by the strategy they employ to objectively define
statistical independence, and by the used optimization algorithm. One important
family of algorithms relies on the central limit theorem, which states that the sum of
i.i.d. random variables tends towards a Gaussian distribution. This can be applied
to each row of the ICA model of Eq. 2.74 because it is a linear combination of the
sources of the form yn = bTAs. Therefore, a component yn will be more Gaussian
than any of the sources sn, unless it equals one of them. In other words, maximizing
nongaussianity allows obtaining Y ≈ S. As has been introduced in Sect. 2.3.3,
kurtosis is an appropriate measure of nongaussianity. Sometimes, negentropy is
used instead of kurtosis as a nongaussianity measure, because of the sensitivity of
the latter to outliers. Both of them can be used as an objective function measured
on Y in combination with an optimization algorithm such as a gradient descent
method, to perform ICA. A popular algorithm of this class is FastICA [78], which
uses an optimized fixed-point search based on either kurtosis or negentropy. Note
that the source separation/sparse decomposition analogy arises again in this context:
ICA separates maximizing independence as measured by nongaussianity which, in
turn, can be used as a measure of sparsity. In fact, ICA can be used for sparse
coding applications (see [79], p. 396).

Other methods were motivated by principles of information theory and consider
mutual information as a measure of statistical dependence. It has been shown that
minimizing the mutual information of the yn amounts to maximizing the sum of
their nongaussianities, and thus leads to exactly the same criteria and algorithms
as above. Information-theoretic optimization was one of the first ICA methods
proposed [46].
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Another possible formulation of ICA arises in a probabilistic context by consid-
ering the probability distribution of the mixture given in Eq. 2.77 as a likelihood
function p(X|W) with W = A−1 as the parameters, and performing a Maximum
Likelihood (ML) estimation. Proposed ML methods include the Bell-Sejnowski (BS)
algorithm [15] and the natural gradient algorithm [3]. FastICA can be also adapted
to a ML context. ICA by ML is equivalent to maximizing the output entropy of a
neural network, which is referred to as the Infomax principle [15].

Worth mentioning is finally the group of tensorial methods, which are formulated
as a generalization of decorrelation for higher-order statistics. Cumulant tensors can
be considered as high-order generalizations of the covariance matrix. High-order
decorrelation can be obtained by making the cumulants zero, in much the same
way as forcing zero covariances leads to whitening. A basic method of this kind
is Fourth-Order Blind Identification (FOBI) [35]. A generalization thereof, called
Joint Approximate Diagonalization of Eigenmatrices (JADE) [36] is probably the
most widely used tensorial ICA method.

2.6.2 Clustering methods

Clustering methods rely on a direct geometrical analysis of the scatter plot to detect
the mixing directions. Thus, in contrast to ICA, a strong sparsity is required, the
stronger the higher is the sources/mixtures ratio (see Fig. 2.9). Thus, it is crucial
in order for most of these methods to be applicable, that the mixture has been
transformed into a sparse domain beforehand, usually using Fourier or Wavelet
transforms.

A possible way to apply clustering on the data points in mixture space is to
project them onto a hypersphere and use a standard clustering algorithm on the
projection. The centers of the found clusters will then correspond to the mixing
directions. Only half of the hypersphere must be considered, since each mixing
direction actually corresponds to two clusters, one at each side of the mixture space
origin. This approach was used by Zibulevsky et al. [182] based on fuzzy C-means
clustering.

Rather than projecting onto a (hyper-)sphere, the Hard-LOST (Line Orienta-
tion Separation Technique) algorithm presented by O’Grady and Pearlmutter [115]
searches for the directions by means of a modified k-means clustering algorithm in
which cluster centres and distances to cluster centres have been replaced by line
orientations and distances to lines. The term “hard” on the algorithm’s name refers
to the hard assignment of data points to each cluster, meaning that each point is
univocally associated to one cluster, such as in traditional k-means methods. In con-
trast, “soft” assignment refers to describing the degree of cluster membership of each
point in a fractional way, such that each point has a list of probabilities of belonging
to each one of the clusters. Within this context, a Soft-LOST version of the above
mentioned method, based on Expectation-Maximization (EM), was introduced in
[116].

Other methods employ density-based clustering, which consists in estimating the
underlying probability density in mixture space and locating the directions at the



2.6.3 Other methods 45

peaks of the density function. They are usually based on kernel density estimation,
also called Parzen window estimation, which allows obtaining an estimated density
without making any a priori probabilistic assumptions. Kernel estimation defines
the estimated density as a sum of local kernel functions assigned to each one of the
C data points xi:

p̂(x) =
1

hC

C
∑

i=1

K

(

x − xi

h

)

, (2.79)

where K(·) is some kernel or potential function and h is a smoothing parameter.
Parzen windowing has been applied to mixing matrix estimation by Erdoğmuş et al.
[59]. Another method of this type is the one presented by Bofill and Zibulevsky in
[23] and [24], which uses a weighted triangular function as the kernel. This is the
method of choice here for estimating the mixing matrix in the experiments involving
stereo mixtures. Thus, in Sect. 3.4 it will be addressed in more detail.

A related approach by van Hulle [155] applies density-based clustering not di-
rectly on the data points, but on a topographic map trained from the data via a
kernel-based Maximum Entropy learning Rule (kMER). Gaussian kernels are then
centered at the weights of the map, and added to estimate the density. A particu-
larity of this approach is that, for speech signals, it is capable of working in the time
domain, due to its considerable degree of time sparsity (see also Sect. 3.2.1).

2.6.3 Other methods

The ADRess (Azimuth Discrimination and Resynthesis) system proposed by Barry
et al. [13] is intended for linear stereo mixtures and exploits the fact that the
phase of the sources remains unchanged when scaled for stereo location applying
IID. Assuming a source has the same level on both channels, its contribution will
disappear from the difference between the channels due to phase cancellation. A
linear range of scaling factors is applied to each DFT frame of one channel before
being subtracted from the other channel until a cancelling out of amplitudes reveals
the correct scaling factor, and thus the corresponding source position. An efficient
implementation of this algorithm was presented in [48].

The application of image processing methods to the scatter plot has been pro-
posed by Lin et al. [99]. In that work, the data bins are first subjected to edge
detection by selecting the regions with the highest density of data points, according
to a given threshold. This will ideally yield a set of lines crossing at the origin and
approximately corresponding to the mixing directions. The edge image is then sub-
jected to a Hough transform, which is a classical image feature extraction technique
used to detect straight lines. The peaks of the Hough transform correspond to the
most data-populated line directions, and thus to the columns of the mixing matrix.

2.7 Estimation of the sources

In the even-determined case, and if each source is at a different position, the mixing
matrix is square and invertible. Thus, once the mixing matrix A has been estimated
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as Â, the estimated sources can be readily obtained by

Ŝ = Â−1X. (2.80)

This means that no real source estimation stage is needed, and that in this case,
source separation amounts to identification of the mixing matrix. This is for instance
the case of ICA, which is a mixing-matrix-estimation-only approach to BSS.

In over- and underdetermined situations, the mixing matrix is rectangular of size
M × N and thus not invertible. An overdetermined situation (M > N , more mix-
tures/equations than sources/unknowns) can be reduced to an even-determined one
just by ignoring some mixtures or by applying dimensionality reduction techniques
such as PCA [153]. The underdetermined case (M < N) is however not trivial since
the equation system is ill-posed and infinite solutions are possible, which calls for
the usage of some other search method.

2.7.1 Heuristic approaches

Vielva et al. [158] present some heuristic approaches to invert the underdetermined
problem. The simplest one, which is called 1-D in that work, consists in selecting
the estimated mixing direction ân closer to a given data point x, and then projecting
the data upon that direction to get its contribution to the given mixture: sn = âT

nx.
This hard-assignment method assumes that, at each time or time–frequency point,
each mixture is contributed by a single source, which is only approximately valid for
highly sparse signals (see Sect. 3.3). Hard assignment of mixing directions was also
used for separation by Lin et al. [99].

The second approach, M-D (M > 1), selects M mixing directions for each
x according to a given criterion, and then inverts the problem by means of a
M × M square reduced mixing matrix Âρ with the selected vectors as its columns:

sn = Â−1
ρ x. If the criterion is to select the columns that minimize the ℓ1 or ℓ2 norms

of the projection, the M-D approach is equivalent to the methods presented in the
next section.

2.7.2 ℓ1 and ℓ2 minimization

A more formal solution to mixing matrix estimation can be derived from the general
MAP formulation of Eq. 2.69. When Â is known beforehand, it reduces to the more
tractable problem

Ŝ = argmin
X=ÂS

{

1

2σ2

∥

∥

∥X − ÂS
∥

∥

∥

2

F
−
∑

n,t

ln(sn(t))

}

. (2.81)

In the noise-free case, it is now possible to omit the first term, in contrast with the
joint optimization problem, in which the term was needed to include the mixing
information in the minimization process. Thus, the problem further reduces to

Ŝ = argmin
X=ÂS

{

−
∑

n,t

ln(sn(t))

}

, (2.82)
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i.e., to minimize the contribution of the negative log-densities of the sources evalu-
ated at the data points (either time samples or transformation coefficients).

If the sources are assumed to be Gaussian (i.e., non-sparse), the log-densities
take the form ln ∝ −sn(t)2 and the problem becomes

Ŝ = argmin
X=ÂS

{

∑

n,t

sn(t)2

}

(2.83)

which, assuming the samples/coefficients are real, equals to minimizing the Eu-
clidean (ℓ2) norm of the signals. It can be shown [153, 158] that there is a closed
solution to this problem, given by

Ŝ = Â+X, (2.84)

where Â+ is the Moore-Penrose pseudoinverse, computed as

Â+ = ÂT (ÂÂT )−1. (2.85)

If the sources are however assumed to be sparse, which is more appropriate for the
purposes of the present work, and which corresponds more closely to the character-
istics of sound data transformed into the time–frequency domain, the pseudoinverse
solution is not optimal. Particularly, if the sources are assumed to be Laplacian,
then ln ∝ −|sn(t)| and the formulation

Ŝ = argmin
X=ÂS

{

∑

n,t

|sn(t)|
}

(2.86)

becomes an ℓ1 norm minimization problem, which can be solved by linear program-
ming techniques. ℓ1 minimization and its equivalent geometrical interpretation, the
shortest path algorithm, are usual methods of choice in underdetermined staged
source separation [23, 24, 98, 150, 182]. It is also the method chosen for the stereo
separation cases in the present work, and therefore will be further detailed in Sect.
3.5.

Takigawa et al. [150] perform a thorough performance evaluation of ℓ1-norm
minimization solutions, as well as their comparison with the results obtained by the
pseudoinverse solution. It was experimentally observed that ℓ1 solutions are better
(i.e., closer to the original sources) than pseudoinverse solutions for highly sparse
signals, and that both methods are nearly equivalent in respect of performance if
the sources are not sparse. Similar results were reported by Vielva et al. [158].

2.7.3 Time–frequency masking

When working in the time–frequency domain, an intuitive way of performing sep-
aration is to consider a set of time–frequency masks, one for each source/mixture
pair, such that they approximately produce the separated sources when bin-wise
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multiplied with the mixture. Formally, the n-th time–frequency source Ŝn(r, k) is
produced from the m-th mixture Xm(r, k) by

Ŝn(r, k) = Mmn(r, k) ◦ Xm(r, k) (2.87)

where 0 ≤ Mmn(r, k) ≤ 1,∀r, k and the ◦ operator denotes the Hadamard (element-
wise) product. Note that this corresponds to filtering the mixture with a set of
time-varying frequency responses. The solution to the separation problem consists
in deriving the masks from the mixture.

Binary time–frequency masking is the special case in which Mmn(r, k) can only
take the values 0 or 1. Binary masks are the basis of the DUET (Degenerate Unmix-
ing Estimation Technique) system for the separation of delayed mixtures, proposed
by Yilmaz and Rickard [181], which has shown good performance with stereo mix-
tures of up to 6 sources. The amplitude and delay mixing parameters are estimated
as the peaks of a histogram (thus, the algorithm also includes a mixing matrix es-
timation stage) and the binary masks are constructed by selecting the bins close to
the histogram peaks. DUET is an efficient algorithm that can be implemented in
real time [11]. Although the DUET method is not applicable in the present work be-
cause it assumes delayed rather than instantaneous mixtures, some of its principles
will be used in the next chapter to compare sparsity properties of time–frequency
representations (Sect. 3.3).

A disadvantage of binary masking is that it often produces highly audible “mu-
sical noise” artifacts due to its unnatural, discrete nature [164]. This effect can
be reduced by using non-binary time–frequency masking methods such as adaptive
Wiener filtering [18], which can be used without any spatial information to separate
single-channel mixtures.

2.8 Computational Auditory Scene Analysis

All the previously introduced methods address the separation problem from a purely
mathematical point of view by observing and exploiting statistical properties of the
sources or the mixtures. There is an alternative approach that seeks to imitate the
human mechanisms of hearing with the hope of understanding our ability to perceive
sound objects present in a mixture as separate entities. This cognitive process was
called Auditory Scene Analysis (ASA) by psychologist Albert Bregman [25]. In
the cited work, Bregman proposes five grouping principles which the brain uses to
isolate and detect sound events: proximity, similarity, good continuation, closure
and common fate. The grouping principles refer to the temporal and frequency
parameters of perceived sounds, and can be ascribed to the ideas of the Gestalt
psychology [55], which explains the perception of objects as a whole rather than as
a sum of constituent parts.

Computational Auditory Scene Analysis (CASA) [132, 177] refers to the set of
algorithms developed with the aim of simulating ASA processes. It proposes a range
of computational models that mimic the stages of psychoacoustical perception, from
acoustical processing in the outer and inner ear, to neural and cognitive processes
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in the brain. Such models are used to produce a time–frequency signal front-end
upon which Bregman’s grouping principles are applied. In contrast to BSS methods,
CASA employs at most two mixture channels to simulate binaural localization.

Auditory model front-ends include as the first stage an auditory filter bank that
simulates the nonuniform frequency resolution of the basilar membrane, and in ad-
vanced models also the mechanical characteristics of the vibrating hair cells. This
results in a time–frequency representation with nonuniform resolution that is called
a cochleagram. Sometimes, a second stage consisting of computing the autocorre-
lation on each channel is performed, yielding a 3-dimensional (time–frequency–lag)
front-end called correlogram that is useful to examine periodicities [53].

CASA methods can be divided into two groups according to how they implement
the grouping rules: data-driven (or bottom-up) and prediction-driven (or top-down)
methods. The earliest CASA systems were data-driven [108, 26]: they detect local
features on the front-end and systematically apply grouping. This approach was
later criticized [57, 142] as lacking robustness and failing to model the importance of
non-local information. To overcome this, prediction-driven methods were proposed
[57], in which a set of object models are defined a priori. A set of hypotheses
about which objects constitute the observed signal is evaluated. A hypothesis score
measures how well the predicted objects fit the observation, and the hypothesis
corresponding to the highest score is selected. Note that the objects are defined as
generic sound events that do not necessarily correspond to a semantic entity such
as a word, a phoneme or a musical note. For instance, Ellis [57] uses three types
of generic objects: noise clouds, transient clicks and wefts (which group all time–
frequency bins having common periodicity properties). Prediction-driven analysis
can be further extended by providing source-specific a priori information, such as in
the music analysis system proposed by Kashino and Murase [86].

Van der Kouwe et al. [154] perform a comparison of BSS and CASA methods for
the task of speech separation. BSS was represented by two different ICA methods
and CASA by a data-driven method. An overall better performance with BSS under
noisy conditions was obtained, but this result can be hardly generalized because of
the specific algorithms and test corpora used. The main advantage of CASA against
BSS is its easier applicability to more realistic mixtures that do not comply with the
strict statistical constraints of BSS. In this context, the convenience of combining
both approaches in the form of hybrid BSS/CASA systems was pointed out.

Several methods in this work have been inspired by CASA and psychoacoustics.
Frequency warpings approximating auditory resolutions are used to improve spar-
sity and separation quality in Chapter 3. The separation approaches proposed in
Chapters 5 and 6 exploit both common-fate and good-continuation grouping prin-
ciples, in combination with pre-trained spectral models that estimate instruments
and overlapping partials in a prediction-driven fashion.

2.9 Summary

This introductory chapter provided a comprehensive overview of the principles and
methods for blind separation, for which only very generic statistical properties of
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the sources can be assumed a priori. Although several methods developed in later
chapters (especially chapters 4 and 5) make use of source-dependent modeling, and
are thus in effect non-blind, they rely on the basic ideas that have been discussed.
Special emphasis has been made on the particular separation scenario this work
deals with: underdetermined separation of instantaneous mixtures.

Possible formulations of the separation problem as either a linear, delayed or
convolutive mixing model, have been presented, together with a survey on stereo
recording techniques that showed the applicability of each model. A discussion
on basic signal models put emphasis on two methods that play a central role in
the present work: sparse transformations and Principal Component Analysis. The
generic staged architecture for source separation, consisting of a mixing matrix es-
timation and a source resynthesis stage, was presented, followed by a review of
previously proposed methods covering those two separation problems, including In-
dependent Component Analysis and clustering methods for the mixing matrix esti-
mation stage, and norm-minimization and time–frequency masking methods for the
source estimation stage. Finally, the alternative methodology offered by Computa-
tional Auditory Scene Analysis, relying on psychoacoustics and cognitive processes,
rather than on statistics, was introduced.



3
Frequency-warped blind stereo separation

Most algorithms for underdetermined separation are based on the assumption that
the signals are sparse in some domain. Sparse decompositions were briefly introduced
in Sect. 2.3.3, and an example was given that demonstrated the enormous gain
in sparsity when moving from the temporal to the frequency or time–frequency
domains. Similar observations have been made in several works [23, 24, 181]. In
most cases, the sparser the sources, the less they will overlap when mixed (i.e., the
more disjoint their mixture will be), and consequently the easier their separation
will be. The only situation in which this affirmation does not hold is the unlikely
worst-case scenario in which the sources have identical probability distributions and
spatial positions.

The most widely used transform for the purpose of sparsification in the context
of BSS has been the STFT [5, 12, 18, 21, 23, 24, 83, 122, 181]. However, the uniform
frequency and time resolutions it offers are disadvantageous for the task of speech or
music separation. There are several reasons for this. One is that speech and music
signals concentrate most of their energy in the middle-low part of the spectrum, and
therefore overlaps are more likely to occur in that area. Also, musical notes follow a
logarithmic frequency relationship that does not correspond with the linearly spaced
subbands of an STFT spectrogram. Notes in the lower range often fall into the same
subbands and will thus overlap. A final and important aspect to note is that, for
music signals, different time granularities at different frequencies are more likely to
better represent the signals. It is natural in music that melodies at low pitches
tend to move more slowly (such as a bass line providing the harmonic base), and
high-pitched melodies to change more quickly (such as an ornamented melody line).

To overcome this, the application of multiresolution analysis to source separation
has been proposed, in particular through the use of wavelets [88, 182]. The standard
wavelet transform provides a constant-Q, non-uniform time–frequency representa-
tion (sometimes called scalogram), with high frequency resolution for low frequencies
and high time resolution for high frequencies. This decomposition is adequate for
music signals and resembles human auditory perception. In the cited works, it was
shown to improve sparsity and therefore separation when compared to the STFT.

A different approach comes from the CASA field (Sect. 2.8), in which the several
stages of auditory perception (from the acoustical processing in the ear to the neural
and cognitive processes in the brain) are more closely imitated in order to charac-
terize mixtures and perform sound separation. Such systems employ more sophis-
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ticated, non-constant-Q frequency warpings derived from psychoacoustical scales,
usually implemented as nonuniform auditory filter banks.

The convenience of combining such auditory simulations with the mathematically
formal framework of blind separation, in the form of hybrid BSS/CASA systems,
has recently been pointed out [154]. In this context, the motivation that led to
the developments reported in the present chapter was to explore to what extent a
representation front-end more closely related to the human hearing system than the
standard spectrogram or wavelets can improve separation when applied to purely
statistical spectral BSS. In other words, the purpose is to objectively evaluate the
potential for improvement of the use of nonuniform-resolution representations as the
sparse transformation stage of the general staged separation architecture of Fig. 2.8.

To that end, an experimental framework to measure in detail several aspects rel-
evant to separation was set up and applied to 5 different time–frequency representa-
tions: the STFT as uniform-resolution baseline for comparison, a constant-Q (CQ)
logarithmic frequency warping and three representations in which the frequency
resolution has been warped according to the Bark, Equal Rectangular Bandwidth
(ERB) and Mel psychoacoustical scales. A general definition for frequency-warped
representations, together with the individual characteristics of each mentioned rep-
resentation, will be introduced in Sect. 3.1. The experiments that were performed
can be divided into two types, according to the general aspect they are intended to
measure:

• Intrinsic (algorithm-independent) properties of warped representa-
tions. The goal here was to measure how the representations can facilitate
separation from a general point of view, involving measures that are based
on the characteristics of the representations themselves, rather than on final
separation quality results, which inevitably depend on the particular separa-
tion algorithm used. These experiments involve measuring both the source
sparsity and the disjointness of the mixtures. The latter is a more powerful
concept that takes into account the degree of overlapping that occurs during
the mixing process. Sparsity tests will be reported in Sect. 3.2, and the results
of the disjointness experiments, together with the related objective measure of
W-Disjoint Orthogonality, will be discussed in Sect. 3.3.

• Evaluation of the separation quality in the context of a practical
separation algorithm. From a practical point of view, the definitive im-
provement measure is the quality of the separated signals. To evaluate it, a
staged separation algorithm was implemented and adapted to admit general-
ized temporal and frequency resolutions. The relevant quality aspects eval-
uated are: accuracy of the mixing matrix estimation, separation errors due
to interferences, separation errors due to artifacts, and overall distortion. The
corresponding stages and experiments are presented in Sect. 3.4 for the mixing
matrix estimation and Sect. 3.5 for the source estimation stage.

A summary of conclusions, and their implications in the development of the
subsequent chapters, will be discussed in Sect. 3.6. Parts of this chapter have been
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previously published in [30] and [31].

3.1 Frequency-warped representations

A general discrete time–frequency representation X(r, k), where r is the time frame
and k is the frequency or band index (k = 0, 1, . . . ,K − 1), can be interpreted
as the output of a K-channel bank of bandpass filters. Its frequency resolution is
determined by the center frequencies of the filters fk and by their bandwidths ∆fk.
If the center frequencies are located nonuniformly along the linear frequency axis, the
resulting time–frequency representation is said to be frequency-warped. Frequency-
warped techniques for audio signal processing have been proposed since the early
years of digital technology [120], but have rather infrequently been deployed in
practical applications. A general overview of frequency warping and its application
to linear prediction, adaptive filtering, equalization and physical modeling can be
found in the work by Härmä et al. [70].

Each channel of the nonuniform filter bank can be downsampled according to
its bandwidth. Note that avoiding downsampling does not increase time resolution
which, according to the uncertainty principle (see Sect. 2.3.2), is bounded by the
bandwidth, and only provides redundant interpolated data. Filter banks whose
channels are downsampled as much as possible without data loss are called critically
downsampled or maximally decimated.

The individual impulse responses hk(t) of such a filter bank can be obtained by
modulating and scaling a prototype impulse response wTk

(t) of length Tk samples,
where fs is the sampling rate (recall that fk = k

Tk
fs), giving:

hk(t) =
1

Tk
wTk

(t)ej2πfkt/fs . (3.1)

A filter bank defined in this way is called modulated filter bank. The bandwidth of
each channel, defined as the main-lobe width of the frequency response of its impulse
response, is given by

∆fk = Bml
fs

Tk
=

Bml

Lk
, (3.2)

where Tk is the window length in bins, Lk is the window length in seconds, and
Bml is the main-lobe width in bins, a parameter given for each type of impulse
response. For Hann windows, which are the ones used in the present chapter as
impulse responses, the main-lobe width is Bml = 4 bins [2]. Eq. 3.2 is the mathe-
matical expression of the trade-off between time and frequency resolution resulting
from the uncertainty principle conceptually introduced in Sect. 2.3.2. Specifically,
the parameter Bml = ∆fkLk can be interpreted as the constant area of the time–
frequency tiles.

The output of such a general filter bank is thus given by the convolution

X(t, k) = x(t) ∗ hk(t) (3.3)
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which, after downsampling, gives the most general expression for a frequency-warped
time–frequency representation:

X(rk, k) =
1

Tk

Tk−1
∑

t=0

x(rkHk + t)wTk
(t)e−j2πfkt/fs , (3.4)

where Hk is the channel-dependent hop size/downsampling factor. The notation
rk denotes that the frame rate differs among frequency bands. The normalization
factor Tk is needed to compensate the resulting varying data density. The expression
3.4 is sometimes called Generalized STFT [146].

Analogously, a generalized modulated warping can be expressed in the time
domain as a Generalized Gabor Expansion (see also Eq. 2.25) of the form

x(t) =
K−1
∑

k=0

1

Tk

+∞
∑

rk=−∞

X(rk, k)wTk
(rkHk + t)ej2πfkt/fs (3.5)

with time–frequency atoms brkk = wTk
(rkHk + t)ej2πfkt/fs and coefficients

crkk = X(rk, k).

Formulation for piecewise linear source separation

For the purpose of source separation, the generalized STFT/Gabor coefficients crkk

corresponding to each signal are subjected to lexicographic ordering (Eq. 2.23) with
varying time resolution, and thus concatenated to coefficient vector

c = (c11, c21, . . . , cR11, c12, . . . , cR22, . . . , cRKK)T (3.6)

of size (
∑K−1

k=0 Rk) × 1, where Rk is the total number of frames in the k-th sub-
band. Then, arranging the coefficient vectors cn corresponding to the n-th source
as the rows of matrix C, and the coefficient vectors ym corresponding to the m-th
mixture as the rows of matrix Y, it is possible to use the usual transformed linear
mixing model Y = AC (see Sect. 2.4) for frequency-warped separation as long
as the coefficients are linearly additive in the transformed domain. This is true
for the complex-valued STFT and for the filter bank subband coefficients, which in
essence are time-domain signals and thus additive in amplitude. This is however not
the case for absolute-valued or power representations such as magnitude or power
spectrograms.

It is important not to confuse the nonlinearity of the time–frequency resolution,
such as in warped representations, with the fact that such representations are indeed
linearly separable when mixed. In other words, additivity of the corresponding
time–frequency tiles of different transformed signals is enough to comply with the
linear mixing model, irrespective of their boundary definition. This can explicitly
be expressed by rewriting the transformed mixing model as

yrkk = Acrkk, (3.7)
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where this time crkk represents the N -dimensional signal bin and yrkk the M -
dimensional mixture bin at time–frequency position (rk, k). This is the basis of
piecewise linear source separation, as proposed by Gribonval [68]: a transformed
separation problem can be reduced to a set of local separation problems (in the
present case,

∑K−1
k=0 Rk problems) whose results can be added to obtain the global

result. This allows using the present definition of frequency warping within a sepa-
ration context.

The STFT as a filter bank

The STFT, which was introduced in Sect. 2.3.2 and defined in Eq. 2.24, is equivalent
to a bank of T = K filters equally spaced at the frequencies

fSTFT
k = k

fs

K
, (3.8)

with constant bandwidth

∆fSTFT
k = Bml

fs

K
, (3.9)

and with a fixed-length prototype impulse response of length K. For details on
the STFT-filter bank analogy, see, e.g., [65]. Figure 3.1(a) shows the combined
frequency response of a 17-band STFT filter bank based on a Hann window as
prototype impulse response. The STFT yields thus a time–frequency representation
with uniform frequency and time resolutions.

Constant-Q Representation

The most straightforward way to obtain a nonuniform resolution is to force the
center frequencies and bandwidths to be logarithmically related to frequency, i.e., to
grow geometrically. This corresponds to a constant frequency-to-bandwidth ratio.
In the context of bandpass filter processing, this ratio is called the quality factor Q:

Q =
fk

∆fk
. (3.10)

This results in a perfectly logarithmic frequency warping which, for the same number
of bands, has a higher frequency resolution at low frequencies, and a lower frequency
resolution at high frequencies than the STFT (the inverse applies to time resolution).
Such a constant-Q (CQ) representation [27] can be especially useful for the analysis
of music signals, since pitches of consecutive notes on the equal-temperament chro-
matic scale are exactly logarithmically spaced1. In general, a geometrical subdivision
of each octave into b notes gives the center frequencies

fCQ
k = f02

k
b , (3.11)

1The equal-temperament chromatic scale is the result of dividing each octave into 12
geometrically-spaced frequencies, each one corresponding to a semitone. It is by far the most
commonly used musical scale.
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Figure 3.1: Normalized frequency responses of 17-band, Hann-window filter banks at a
sampling rate of 8 kHz.

where f0 is the lowest fundamental frequency expected. For the western chromatic
scale, b = 12. Then, for adjacent filters, the bandwidths become

∆fCQ
k = Bml(f

CQ
k+1 − fCQ

k ) = Bmlf
CQ
k (2

1
b − 1). (3.12)

This results in the constant Q factor

Q =
1

Bml(2
1
b
−1)

. (3.13)

Finally, the corresponding window lengths are given by

TCQ
k = BmlQ

fs

fCQ
k

. (3.14)

These constraints lead to the standard definition of the Constant-Q Transform
(CQT) [27]:

XCQ(k) =
1

TCQ
k

TCQ
k −1
∑

t=0

x(t)w
TCQ

k
(t)e−j 2πQt/TCQ

k , (3.15)
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which can be regarded as a generalization of the DFT in which the digital frequency
2πk/K has been replaced with 2πQ/Tk. Note that this standard definition of the
CQT is instantaneous, i.e., it is only valid for a single signal frame, and thus only
uses frequency indexing. In practice however, short-time CQTs can be computed
in succession. This also differs from the more general filter bank implementation
resulting from applying the previous fk and ∆fk to Eq. 3.4, which was used here.
In this case, the analysis step is not synchronous between frames, and depends on the
downsampling factor that each frequency band allows. This ensures that no original
signal data is lost. Another difference between the filter bank implementation and
the general CQT definition is that the latter defines filter bandwidth as the distance
between consecutive center frequencies, rather than taking into account the main-
lobe width of the window, and thus it assumes Bml = 1. To make this distinction
clear, the term Constant-Q or CQ representation instead of CQT will be used here
to refer to the filter bank implementation. A CQ representation is also offered by
the Discrete Wavelet Transform (DWT), which can be implemented as a cascaded
filter bank in which each low-pass subband is further subdivided and downsampled
in successive stages.

Figure 3.1(b) shows the normalized frequency response of a 17-channel CQ filter
bank with Hann windows. It can be observed that the time-resolution trade-off is
strongly biased towards improving frequency resolution in the low-frequency area.

Bark representation

CQ warping is formally and computationally simple, but does not exactly correspond
to the nonlinear resolution of the cochlea. More accurate approximations to it
are provided by empirically obtained auditory or psychoacoustical scales, in which
frequencies are mapped into a linear auditory quantity according to experimental
measurements. The resulting filters are equally spaced in the auditory scale, but
nonuniformly spaced in frequency. Three of the most common auditory scales will
be used in the present work for frequency warping: two related to the concept
of critical bands (the Bark and the ERB scales) and one related to the nonlinear
perception of pitch ratios (Mel scale).

The Bark scale [183] defines an analytical approximation to measurements of
the critical bands of hearing, which are ranges in the basilar membrane in which
neighboring frequencies interact. This interaction occurs because each sinusoidal
component arriving to the cochlea causes a certain portion of the basilar membrane
to vibrate due to resonance. Although the resonating portions are approximately of
constant length along the membrane (around 1 mm), the latter’s uneven elasticity
results in nonlinear frequency relationships. A commonly used analytical expression
for the critical bandwidths is the one given by Zwicker [183]:

∆fBARK = 25 + 75

[

1 + 1.4

(

f

1000

)2
]0.69

. (3.16)

The Bark scale converts such a nonlinear bandwidth definition into a linear scale in
which each Bark unit corresponds to each one of the 24 existing critical bands. Such
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a mapping to the auditory scale ξBARK in Bark units can be approximated by [136]

ξBARK = 7 arcsinh

(

f

650

)

. (3.17)

The two previous equations provide the nominal definition of the Bark scale. For
the purposes of this work these definitions must be adapted as a consequence of the
following two facts:

• An appropriate performance comparison between different time–frequency rep-
resentations must be made under the same resolution constraints, i.e., with
each representation having the same number of frequency bands. All experi-
ments reported in the present chapter were performed by varying the number
of filter subbands as the basic resolution-related parameter. This means that,
in the Bark case for instance, the fixed nominal definition of 24 bands must
be adapted so that a desired number of K bands is obtained instead. To that
end, Eq. 3.17 is linearly sampled between the values corresponding to 0 Hz
and the Nyquist frequency fs/2 with the desired number of bands K. Such
a linear sampling will be denoted by ξBARK

k . Then, the inverse mapping is
applied to obtain the effective center frequencies:

fBARK
k = 650 sinh

(

ξBARK
k

7

)

. (3.18)

The sampled fBARK
k values are then substituted into Eq. 3.16 to finally obtain

the sampled bandwidths.

• The bandwidths must also be modified according to the desired band number
K. Filter channels narrower than the critical bands are needed to obtain an
acceptable frequency segregation for source separation. Thus, for K > 24, the
range corresponding to one Bark unit must be subdivided, and the filter band-
widths accordingly adapted. In this way, the final adapted filter bandwidths
are obtained as ∆fBARK

k = ∆fBARK(fBARK
k )/BBARK, where BBARK is the

number of bands per Bark unit, obtained also from the linear sampling of Eq.
3.17. The window lengths are, then:

TBARK
k = BBARKBml

fs

∆fBARK
. (3.19)

These considerations also apply to the two other auditory scales introduced next.

Equal Rectangular Bandwidth (ERB) representation

An alternative description of critical band frequency discrimination is offered by
the Equal Rectangular Bandwidth (ERB) scale, proposed by Moore and Glasberg
[112]. It differs from the Bark scale in the critical band measurement method that
was employed in the experiments (the so-called notched-noise method instead of the
probe tone/narrowband masking method employed for the Bark scale), and in the
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length it assumes to correspond to a critical band, which is shorter (0.86 mm of the
basilar membrane). Its nominal bandwidth definition is given by:

∆fERB = 24.7 +
f

9.26
. (3.20)

The mapping to ERB units is:

ξERB = 9.26 ln

(

1

228.7
f + 1

)

. (3.21)

After linear sampling to ξERB
k , the inverse mapping is

fERB
k = 228.7 exp(ξERB

k /9.26−1) (3.22)

and, again, the actual filter bank bandwidths are ∆fERB
k = ∆fERB(fERB

k )/BERB,
where BERB is the number of bands per ERB unit.

The frequency response of a 17-band ERB filter bank is shown in Fig. 3.1(c).
It can be observed that the resolution is more balanced between the high and low
frequency areas when compared to the CQ representation.

Mel representation

The Mel scale, originally introduced by Stevens et al. [149], was derived from the
nonlinear perception of pitch ratios and, in contrast to the ERB and Bark scales, it
is not defined in terms of bandwidths, but as a direct mapping between frequencies
and Mel units ξMEL:

ξMEL = 2595 log10

(

1 +
f

700

)

. (3.23)

The sampled inverse mapping is:

fMEL
k = 700

(

10ξMEL
k /2595 − 1

)

. (3.24)

The bandwidth per Mel unit (which is much smaller than an ERB or a Bark unit)
can be obtained as ∆fMEL = dfMEL/dξMEL [70], which gives the relationship

∆fMEL =
1

1127
(700 + f) (3.25)

and, finally, ∆fMEL
k = ∆fMEL(fMEL

k )/BMEL. The Mel scale is well-known in speech
and music analysis applications as the warping stage of the MFCC representation
front-end (see Sect. 4.7.1).

General remarks

As already mentioned, a warped auditory representation X(rk, k) can be obtained by
applying one of the previous definitions of fk and either Tk or ∆fk to the filter bank
definition of Eq. 3.1. Table 3.1 summarizes the nominal definition equations for fk
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sampling rate and 257 bands.

Repr. fk ∆fk Comments

STFT k fs

N
Bml

fs

N
Uniform resolution

CQ f02
k

b Bmlfk(2
1

b
−1) Logarithmic resolution

ERB 228.7 exp(ξk/9.26 − 1) 24.7 + fk

9.26
Approximates critical band
resolution

Bark 650 sinh
“

ξk

7

”

25 + 75

»

1 + 1.4
“

f
1000

”2
–0.69

Approximates critical band
resolution

Mel 700
`

10ξk/2595 − 1
´

1
1127

(700 + f) Approximates perception of
pitch ratios

Table 3.1: Summary of nominal center frequency (fk) and bandwidth (∆fk) definitions.

and ∆fk of all considered representations. It should be emphasized that, in order
to compare representations with the same number of bands K, for each value of K
the b parameter in the CQ representation and the BBARK, BERB and BMEL param-
eters must be accordingly adapted. Figure 3.2 compares the distribution of center
frequencies versus subband number for the resolution-adapted representations, and
for the particular case fs = 16 kHz and K = 257.

A graphical example of the effect of frequency warping is shown in Fig. 3.3, which
illustrates the effect of ERB warping on an excerpt of a clarinet playing a 5-note
melody fragment. Comparing it with the magnitude spectrogram representation it
can be observed that, for the same number of bands covering the same frequency
range, the resolution has been enhanced in the low frequency range, where most of
the signal energy is concentrated, and that the time–frequency lines corresponding
to the harmonics are more clearly visible and separated. This is the main reason
why auditory warpings have the potential to improve representation sparsity and
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Figure 3.3: Comparison of 129-band spectrogram and ERB spectral representation of a
clarinet melody.

mixture disjointness, a fact that will be confirmed in the evaluation experiments
described in the rest of the present chapter. Note that the magnitude spectrogram
has been used here only for illustration purposes. As was noted above, complex-
valued STFTs must be used in the final algorithm to comply with the piecewise
linear source separation model.

To improve the accuracy of the auditory simulations, more sophisticated auditory
filter banks employ a set of special-purpose filter shapes designed to accurately
model the mechanical response of the basilar membrane, such as rounded exponential
(roex) [124] and gammatone [123] filters. As introduced in Sect. 2.8, the resulting
time–frequency representations are called cochleagrams. However, in this work the
emphasis is put on studying the effects of the frequency-warping stage of auditory
modeling, motivated by previous results that show that spectral resolution is most
crucial in improving sparsity and disjointness [11, 21, 128, 181]. For this reason,
auditory filter shapes have not been used. Instead, a Hann window was chosen as
the prototype impulse response/analysis window in all representations.

For the experiments reported in this chapter, a direct, downsampled implemen-
tation of the filter banks was used. This method is computationally inefficient in
comparison with the STFT. However, it should be noted that more efficient imple-
mentations of frequency-warped filter banks exist, which use chains of all-pass filters
[70] and can be combined with analytical expressions of the all-pass coefficient in
such a way that the warping approximates an auditory scale [147].

3.1.1 Invertibility of the representations

In order for a transformation to be useful in the context of source separation, it
must be invertible, so that the extracted sources can be synthesized back. The
STFT is perfectly invertible in the absence of spectral modifications, as long as
the analysis window fulfills the constant-overlap-add (COLA) condition in the time
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domain [2, 65, 146]:
∞
∑

r=−∞

w(rH + t) = 1 (3.26)

for a given hop size H. In that case, the STFT can be perfectly inverted by the
Overlap-Add (OLA) method, consisting in adding the inverse DFTs of the successive
analysis frames, as given by Eq. 2.25. In the filter bank interpretation of the STFT,
this corresponds to upsampling, re-filtering and adding the outputs of the subbands,
which in this context is called the Filter Bank Summation (FBS) method [65, 146].
The 50%-overlapped Hann window used here, as a member of the Generalized Ham-
ming family of windows, fulfills the COLA condition [146].

In contrast, downsampled, nonuniform filter banks cannot generally be recon-
structed perfectly by FBS [70] because they do not fulfill the COLA condition, as
can be predicted from Fig. 3.1. However, perfect reconstruction is not critical in
source separation, since the largest reconstruction errors are introduced by the sep-
aration algorithm itself and are much more significant than the errors introduced by
inverting the transformation [160]. Thus quasi-perfect reconstruction (with inaudi-
ble error) will be sufficient, and inversion errors will not be considered harmful in the
performed evaluations. Directly implemented warped filter banks can be approxi-
mately inverted by upsampling, re-filtering with the time-reversed analysis filters
and adding the subbands with appropriate weighting according to their bandwidth
[143].

3.2 Evaluation of source sparsity

The introductory Chapter 2 emphasized the importance of sparsity for source sep-
aration applications, especially in underdetermined scenarios. A higher degree of
sparsity will a priori lead to an easier separation, no matter which specific algorithm
is used. The purpose of this and the next section is to investigate the sparsity prop-
erties of warped time–frequency representations as front-ends for source separation,
i.e., independently of the separation algorithm. To this end, objective measures are
needed that allow an intrinsic measure of the gain in sparsity introduced by the initial
transformation stage, without further consideration of other algorithm-dependent
factors such as spectral artifacts or required time granularity. The present section
concentrates on the measurement of sparsity of individual signals transformed with
the considered warpings, and the next (Sect. 3.3) will focus on evaluating mixture
disjointness, which can be loosely considered as the sparsity of the mixture signals.

3.2.1 Sparsity properties of speech and music signals

The degree of sparsity a transformation can achieve will obviously depend on the
nature of the signals themselves. It is no surprise that speech and music signals
possess very different properties with regard to sparsity. Speech signals are generally
faster time-variant with respect to energy, and they will consequently need some
minimal time resolution in order to be properly described. Music signals, specially
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harmonic, sustained sounds, will be highly localized in frequency and relatively
slowly time-variant.

The purpose of the first experiment was to objectively assess these differing
characteristics, and to give insight into the special implications that music signals
require. The normalized kurtosis κ̄4 (Eq. 2.36) was used as sparsity measure. A
database of 50 speech and 50 music short audio segments of 1 s sampled at 8 kHz was
used. The speech examples correspond to single-speaker utterances, and the musical
ones are melody fragments played by single instruments. For each fragment, a 50%
overlapped STFT, a Bark and an ERB representation based on Hann windows were
computed for different band numbers, ranging from K0 = 17 to KP−1 = 2049.
Higher band numbers (Kp > fs/2) would result in either significant data loss or
zero padding of time samples at the end of the signals, thus producing less plausible
measures.

Note that for real signals, the N/2 upper spectral bins of the STFT are redun-
dant, and thus an N -points STFT corresponds to a spectrogram representation of
K = N/2 + 1 bands (positive frequencies plus the DC value). For this reason, the
values Kp = Nmin2p−1 + 1 with p = 0, 1, . . . , P − 1 were used as evaluation points,
where Nmin is a power of two to benefit from an efficient FFT computation (in this
case, Nmin = 32 and P = 8). Figure 3.4 shows the kurtosis curves averaged for each
of the databases. Table 3.2 shows the numerical values corresponding to the maxima
of the respective obtained curves, together with the optimal band number for which
these values were reached. The table additionally shows the result of measuring
sparsity in the time domain.

A clearly differentiated behavior is obvious from these results. For all three rep-
resentations considered, the speech curves have a clear peak around Kp = [129, 513],
whereas music sparsity increases monotonically with increasing frequency resolution
(and decreasing time resolution). The decrease of speech sparsity for a high number
of bands reveals the harmful effect of low time resolution: in that case, the analysis
windows span a too large interval for the energy variance to be appropriately de-
scribed by a single representation bin. Thus, an optimal balance between time and
frequency resolution must be used when working with speech signals.

This contrasts with the music case: here, frequency resolution must be favored
to maximize sparsity. Generally, the curves will decay again for extremely high
frequency resolutions (Kp > fs/2), as was observed in preliminary tests, but such
resolutions are impractical due to computational requirements (especially for the
warped representations) and to the mentioned data distortion at the end of the sig-
nal. Only in cases where music signals are highly harmonic and slowly varying (such
as a slow single-voiced instrumental solo) the sparsity will be constantly, though
asymptotically, increasing. This was the case of the example shown in Sect. 2.3.3
to conceptually introduce the need for sparsity. It corresponded to the extreme case
where K equals the number of input samples (i.e., the STFT becomes a single DFT),
for which a higher sparsity was obtained. It should be noted that, as will be shown
later, factors other than sparsity also influence the final separation quality, and thus
the highest sparsity does not necessarily result in the highest performance.

In global terms, a higher sparsity was achieved for music (κ̄4,max = 385.2 for
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Figure 3.4: Averaged sparsity, measured by normalized kurtosis, against number of bands
for speech and music sources at 8 kHz sampling rate.

Repr. Speech Music
κ̄4,max opt. bands κ̄4,max opt. bands

Time 5.707 - 2.608 -
STFT 141.9 513 258.3 2049
Bark 236.0 257 385.2 2049
ERB 185.8 129 349.9 2049

Table 3.2: Maximum averaged sparsity, measured by normalized kurtosis, and optimal
number of bands, for speech and music data for 8 kHz sampling rate.

a Bark warping) than for speech (κ̄4,max = 236.0, also with Bark) in the time–
frequency domain, which corresponds to a proportional increase of 63.2%. In the
time domain, however, and although the kurtosis values are much lower in both
cases, speech is sparser than music (κ̄4 = 5.707 compared to κ̄4 = 2.608). This is an
important fact that provides a further argument to perform a sparse transformation
if the signals in study are musical.
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Figure 3.5: Average sparsity, measured by normalized kurtosis, against number of bands
for spectrogram (STFT), Bark and ERB representations, at 8 kHz sampling rate.

3.2.2 Sparsity properties of frequency-warped signals

More interesting for the purpose of the present chapter is to compare the sparsity
measurements between the representations, rather than between the audio classes.
To highlight this comparison, Fig. 3.5 shows again the previous sparsity curves, this
time superimposed according to representation type.

In both the speech and the music case sparsity has been considerably improved
compared to the STFT using the ERB and Bark auditory warpings. The best
results were obtained for the Bark representation. The proportional gain in sparsity
was higher with speech (66.3% improvement from κ̄4,max = 141.9 with the STFT to
κ̄4,max = 236.0 with Bark) than with music (49.1% improvement from κ̄4,max = 258.3
to κ̄4,max = 385.2).

3.3 Disjointness and W-Disjoint Orthogonality

Highly sparse sources can certainly facilitate separation, but there are several further
aspects to be considered. In BSS, only the mixtures are available. Thus, more than
the properties of the isolated sources, the factor that will ultimately determine the
separation performance is the characteristics of the mixture itself. In particular,
the crucial factor is the degree of source overlapping that occurs during the mixing
process. Source sparsity alone is useless if the sources overlap to a high degree. For
example, two identically distributed sources lying on very close stereo positions will
be very hard to separate, no matter how sparse they are. Another important factor
to note is that overlapping will not only be determined by the nature of the individual
sources and the mixing process, but to the greatest extent by the mutual properties
between sources, such as correlation and independence. This is especially important
for music mixtures, as will be addressed in Sect. 3.3.1. All these considerations
demonstrate that an objective measure of the degree of overlapping is needed in
order to really assess the difficulty of separating a given mixture.
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The disjointness D of a mixture can be defined as the degree of non-overlapping
of the mixed signals. An objective measure of disjointness called W-Disjoint Orthog-
onality (WDO) was initially proposed by Jourjine et al. [83] and further developed
by Yilmaz and Rickard [181] in the context of the DUET source separation system.
WDO relies on the concept of unmixing by binary time–frequency masking, intro-
duced in Sect. 2.7.3. If a mixture is sufficiently disjoint in some time–frequency
domain, it can be used to estimate a set of unmixing masks, one for each source,
that will approximately extract the desired source when applied on the mixture rep-
resentation. The key idea behind the WDO-based measurement method is that the
unmixing capabilities of a set of ideal masks computed from the knowledge of the
sources can be also interpreted as the intrinsic disjointness of the mixture.

A pair of signals transformed into the time–frequency domain, S1(r, k) and
S2(r, k), are said to be W-disjoint orthogonal if they fulfill2

S1(r, k)S2(r, k) = 0, ∀r, k. (3.27)

or, in matrix notation
S1(r, k) ◦ S2(r, k) = 0. (3.28)

The “W” in WDO refers to the analysis window used. Now, consider a simple
one-channel linear mixture without gain factors of N sources in the transformed
domain:

X(r, k) =

N
∑

n=1

Sn(r, k). (3.29)

If all N sources in the mixture are pairwise W-Disjoint Orthogonal, then each time–
frequency bin in the mixture is only contributed by a single source. This is the
condition for perfect disjointness: there is zero overlapping, and the sources will be
easy to separate.

Obviously, in practice no signals fulfill Eq. 3.27 perfectly. What is needed is
a measure of approximate WDO that describes how close the mixture is to perfect
disjointness. To that end, consider the sum of all signals interfering with source n:

Un(r, k) =
N
∑

i=1
i6=n

Si(r, k). (3.30)

In [181] it is shown that a binary time–frequency mask defined as

Mn(r, k) =

{

1, 20 log
(

|Sn(r,k)|
|Un(r,k)|

)

≥ 0

0, otherwise
∀r, k (3.31)

optimally unmixes the n-th source when applied to the mixture:

Ŝn(r, k) = Mn(r, k) ◦ X(r, k). (3.32)

2The multi-resolution notation rk for the frame index will be relaxed from here on, but it will
be valid in the general case.
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Mn(r, k) is the indicator function of the time–frequency bins to which source n
contributes more than all the sources that interfere with it. Based on this ideal
mask, the following two quantities can be defined. The preserved-signal ratio (PSR)
measures the energy loss of the desired signal after unmixing:

PSRn =
‖Mn(r, k) ◦ Sn(r, k)‖2

F

‖Sn(r, k)‖2
F

, (3.33)

where ‖·‖2
F denotes the squared Frobenius norm (Eq. 2.64), or matrix energy. The

Source to Interference Ratio (SIR) measures the energy difference between the de-
sired signal and its interference after applying the mask:

SIRn =
‖Mn(r, k) ◦ Sn(r, k)‖2

F

‖Mn(r, k) ◦ Un(r, k)‖2
F

. (3.34)

Finally, the approximate WDO for that particular source is defined as the nor-
malized difference between preserved energy and interference energy:

WDOn =
‖Mn(r, k) ◦ Sn(r, k)‖2

F − ‖Mn(r, k) ◦ Un(r, k)‖2
F

‖Sn(r, k)‖2
F

, (3.35)

which can be expressed as a function of the previous two quantities:

WDOn = PSRn − PSRn

SIRn
. (3.36)

A global measure of the disjointness of the mixture can then be measured as the
averaged approximate WDO of its sources:

D = WDO =
1

N

N
∑

n=1

WDOn. (3.37)

A perfect disjointness (each bin is contributed only by one source) corresponds to
PSR = 1, SIR = ∞ and WDO = 1, and would result in perfect separation with the
given mask.

WDO can also be used as a BSS performance measure when based on masks
estimated from the mixtures without knowing the sources. However, it should be
noted that in the case studied here, the above masks are derived with the sources
being known, which implies that the definition of WDO used here can be interpreted
as the upper bound in unmixing performance by binary masking.

Although the WDO criterion was originally defined for the STFT, it can readily
be applied with other additive transformations, such as warped filter banks. It is
important to note however that it is only possible to compute the PSR, SIR and
WDO values in the time–frequency domain if the corresponding transform obeys
Parseval’s theorem, i.e., if the signal energy in the frequency domain is proportional
to the energy in the time domain. The STFT fulfills this condition. This is how-
ever not the case for transformations with nonuniform resolutions, which distribute
signal energy unequally across the spectral bands, depending on the bandwidth and
eventually amplitude weighting of each band. Therefore it is mandatory to invert
the transform after masking and compute the energy ratios in the time domain.
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3.3.1 Disjointness properties of speech and music mixtures

Like in the sparsity evaluation of the previous section, two aspects are of interest
here: to compare the disjointness properties of music with those of speech, and to
compare the improvement in disjointness when applying different warped transfor-
mations. This section covers the first, the next one the latter.

As already mentioned, overlapping depends not only on source sparsity and on
the mixing process, but also on the mutual relationships between signals. Highly
uncorrelated signals will result in a low probability of overlapping. This is even truer
for statistically independent signals, since independence is a stronger requirement
than uncorrelation, as was discussed in Sect. 2.6.1. Highly independent signals will
be easier to separate. As it can be recalled, this is precisely the principle underlying
ICA.

Speech signals most often mix in a random and uncorrelated manner, such as in
the cocktail party paradigm. With music mixtures, the situation is different. Their
disjointness will vary strongly according to music type. Tonal music will result
in strong overlaps in frequency, and homophonic or homorhythmic music in strong
temporal overlaps3. On the contrary, atonal music will be more disjoint in frequency,
and contrapuntal music more disjoint in time.

These observations motivated the subdivision of the music database for the
current experiments into two sub-databases. Dataset UMEL (for “uncorrelated
melodies”) contains 50 fragments of instrumental solos playing unrelated melodies,
i.e., melodies randomly drawn from an instrumental database which are not in-
tended to be musically coherent when mixed. To evaluate disjointness, 50 different
combinations of 3 sources were randomly extracted and mixed. Dataset CMEL (for
“correlated melodies”) contains 50 sets of 3 instrumental fragments extracted from
a real multitrack recording, in such a way that the resulting mixtures constitute
excerpts from a coherent musical performance (in this case a saxophone quintet).
Throughout the literature, uncorrelated musical mixtures are more often employed
for evaluating the performance of source separators, in spite of the fact that co-
herent mixtures simulate closer the requirements of a practical musical unmixing
application. The speech dataset (SP), like the UMEL dataset, contains 50 random
mixtures of 3 speech utterances each. All files used are short fragments of 1 second,
sampled at 8 kHz.

Figure 3.6 shows the disjointness D, measured as WDO, averaged over all samples
from each database as a function of the number of bands. As before, 50% overlapping
STFT, Bark and ERB representations were chosen for the comparison. Table 3.3
shows the highest WDO achieved for each of the curves and the corresponding
optimal number of bands. It also shows the disjointness of the mixtures in the time
domain.

For the speech database, and for both music databases taken as a whole, the
results show a correlated behavior between disjointness and the source sparsity eval-
uated in the previous section. In particular, speech presents an optimal balance

3The terminology for musical textures and harmony was introduced at the beginning of Chapter
2.
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Figure 3.6: Disjointness (WDO) against number of bands for speech (SP), uncorrelated
music (UMEL) and correlated music (CMEL), 3-source stereo mixtures at 8 kHz sampling
rate.

point between time and frequency resolution, as a consequence of the reduction in
temporal resolution when moving towards large window sizes. The disjointness of
music tends to monotonically increase towards the high frequency resolution area.
For speech signals, a compromise should be taken to balance temporal and frequency
disjointness by choosing a moderate window size (of around Kp = fs/25), whereas
for music signals, frequency disjointness plays a more important role than time dis-
jointness and so frequency resolution should be favored. Also, a higher disjointness
is possible for music than for speech, when favoring frequency resolution.

As expected, mixtures of correlated melodies are less disjoint than uncorrelated
ones because of the higher amount of spectral and temporal overlapping4. The
largest increase between UMEL and CMEL was of 5.4% WDO, obtained with the
ERB representation. On average, uncorrelated music is 8.8% more disjoint, corre-
lated music however only 4% more disjoint than speech. In contrast, speech is more
disjoint than music in the time domain: 70.8% WDO of speech compared to 51.1%
and 55.3% WDO of CMEL and UMEL, respectively.

4The saxophone quintet used for the experiments is tonal and highly homorhytmic.
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Figure 3.7: Disjointness (WDO) against number of bands for ERB, Bark and STFT rep-
resentations, 3-source stereo mixtures and 8 kHz sampling rate.

Repr. SP UMEL CMEL

WDOmax opt. bands WDOmax opt. bands WDOmax opt. bands

Time 70.8 - 55.3 - 51.1 -
STFT 83.4 257 94.8 1025 90.9 2049
Bark 88.6 257 96.0 1025 90.8 2049
ERB 88.5 129 96.0 1025 90.6 1025

Table 3.3: Maximum disjointness, measured in % of WDO, and optimal number of bands
for speech (SP), uncorrelated music (UMEL) and correlated music (CMEL) data for 8 kHz
sampling rate.

3.3.2 Disjointness properties of frequency-warped mixtures

In general, the previous results are analogous to the results of the sparsity experi-
ments. When re-plotted to compare the effect of the different warping approaches
(Fig. 3.7), the curves show that this analogy does not hold as clearly anymore.
This is especially the case for music signals: the gain in disjointness is high when
few bands are used, but decreases as the number of bands increases. In the UMEL
case, the improvement is of around 5-10% in the low frequency resolution area, but
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decreases to 1.2% with high band numbers. In the CMEL case, the improvement is
again high in the low frequency resolution/high temporal resolution area (10-15%),
but with large windows, the WDO of the STFT and the auditory scales become sta-
tistically equivalent, at around 91%. In other words, the more the sources overlap,
the higher the improvement will be. For speech signals, however, the improvement
is clear in all resolution areas, and more significant than with music, with an im-
provement of maximally achievable disjointness of 5.2% with the Bark scale. As
expected, the improvement is in all cases high compared to the time domain: using
the Bark scale, speech improves disjointness by 17.8%, correlated music by 39.7%
and uncorrelated music by 40.7%.

These results contrast with the more pronounced improvement in sparsity ob-
tained for all resolutions, as can be observed by comparing the WDO curves with
those of Fig. 3.5. This cannot be attributed to the error introduced by inverting
the warped representations, which was needed to comply with Parseval’s theorem,
since that error was proven to be insignificant. A further difference is that this time
the behaviors of both ERB and Bark auditory scales are very similar.

Such observations demonstrate the need of studying in detail the nature of the
mixing process for assessing signal separability. Maximizing intrinsic source spar-
sity alone does indeed improve disjointness, and thus ease of separation, at most
resolutions with most of the considered mixing scenarios. There is however one sit-
uation where high source sparsity might not be enough for guaranteeing an easier
separation: the case of coherent musical mixtures with a high-frequency-resolution
representation. Also, note that the WDO tests were based on single-channel mix-
tures, as defined by Eq. 3.29. This particular situation is closer to the mentioned
worst-case scenario in which all sources have identical probability distributions and
spatial positions. Such a worst-case, although unlikely, would remain inseparable, in-
dependently of the degree of frequency warping applied to its representation domain.
This is a first hint towards the need of adding source-related a priori information for
improving separation in musically coherent mixtures. In addition, the next sections
will demonstrate that, in the context of a full separation system, yet another factor
arises that will prove crucial for separation quality: the distortion introduced by
spectral artifacts.

3.4 Frequency-warped mixing matrix estimation

The previous two sections (3.2 and 3.3) studied the effect of warping on the represen-
tation front-end, independently of the separation algorithm used. This was achieved
by objectively measuring two factors that intrinsically describe source and mixture
properties: sparsity and disjointness.

Still, there are several other factors that must be assessed for a full-fledged
separation scenario. Frequency warping can influence in different ways the two
successive stages of a separation algorithm that follows the staged architecture that
was introduced in Sect. 2.5: mixing matrix estimation and source estimation or
resynthesis. The definitive test for the utility of such representations is the quality
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of the separated signals. From a practical point of view, this is the most meaningful
evaluation. Its disadvantage is however, that it is inevitably associated to a specific
algorithm.

As baseline, the method proposed by Bofill and Zibulevsky in [23] and [24] has
been chosen. It consists of a combination of kernel-based clustering for the mixing
matrix estimation (Sect. 2.6.2) and of shortest path resynthesis, which is an ℓ1-norm
minimization method, for source estimation (Sect. 2.7.2). This approach fits the
purpose of the present chapter for the following reasons:

• It is designed for stereo, underdetermined, instantaneous mixtures.

• It complies with the linear piecewise separation model that has been used
in the present chapter to formulate frequency-warped source separation (Eq.
3.7).

• It has shown good performance with up to N = 6 sources.

• It follows a fully independent staged architecture, which allows assessing mix-
ing and source estimation separately.

• It is intuitive, which allows interpreting physically the effect of warping at each
individual stage or sub-stage of the method.

This section concentrates on evaluating the effect of frequency warping on the
kernel clustering mixing estimation stage, the next one will be devoted to the source
resynthesis stage.

3.4.1 Kernel-based angular clustering

In Sect. 2.6, the phenomenon of direction clustering on the mixture space scatter
plot for sufficiently sparse sources was introduced, together with several clustering-
based methods for mixing matrix estimation. Figure 3.8 shows examples of scatter
plots for a stereo (M = 2) mixture of N = 3 sources in the time, STFT and ERB
domains. The plots have been normalized and downsampled so that each scatter
plot contains the same number of data points. The lack of sparsity in the temporal
domain prevents the mixing directions from being recognizable, and thus clustering
would fail in this case. The time–frequency representations however clearly show
the directions.

When performing an angular search from θ = 0 to θ = 2π, each mixing direction
will correspond to two clusters lying on opposite sides with respect to the origin
of the scatter plot. Alternatively, the mixture data can be projected to the first
quadrant of R2 and the search range restricted to 0 ≤ θ ≤ π/2, with the consequent
gain in computation time. For transformations yielding complex coefficients (in the
present case, the STFT), the scatter plots corresponding to the real and imaginary
parts, which cluster to the same directions, can be superimposed before performing
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(a) Time domain (b) STFT (c) ERB

Figure 3.8: Example of 3-source, stereo mixture scatter plots for music signals.

the angular search. For these reasons, the final scatter plot that is subjected to
clustering is in general given by the projection

Xproj = (|Re{x1}|, . . . , |Re{xC}|, |Im{x1}|, . . . , |Im{xC}|), (3.38)

where each data point is xrk = (x1,rk, x2,rk) and C is the total number of coefficients

in the lexicographically ordered transformation vectors: C =
∑K−1

k=0 Rk. In polar

coordinates, each data point is defined by its radius ρrk =
√

x2
1,rk + x2

2,rk and its

angle θrk = arctan(x2,rk/x1,rk). Figure 3.9(b) shows an example of such a projection.
Due to sparsity, most of the bins accumulate near the origin. However, bins with

small modules do not add much information when searching for the mixing direc-
tions, and so they can be ignored for the clustering analysis. This saves computation
time and does not significantly affect the performance. The clustering threshold is
denoted in Fig. 3.9(b) by the circle quadrant around the origin.

The clustering used is based on kernel density estimation or Parzen windowing
(Sect. 2.6.2), which can be interpreted as a smoothed histogram obtained by as-
signing each data point to a weighting function, called kernel or local basis function.
The angular kernel is in this case a triangular function given by

K(θ) =

{

1 − θ
π/4 if |θ| < π/4

0 otherwise
. (3.39)

The estimated distribution, in this context also called potential function, is given by

p̂(θ) =
∑

r,k

ρrkK(λ(θ − θrk)), (3.40)

where λ is a parameter controlling the width of the kernels. To perform the angular
search, the quadrant must be in practice be subdivided as a radial grid of a certain
angular resolution.

Figure 3.9 shows an example of clustering results. The example corresponds to
a 4-source mixture transformed with a 129-band ERB warping. The original scatter
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Figure 3.9: Example of mixing matrix estimation by kernel-based angular clustering.

plot (Fig. 3.9(a)) is first projected to the first quadrant and the low-amplitude bins
are removed (Fig. 3.9(b)). Figures 3.9(c) and 3.9(d) show the resulting potential
function in Cartesian and polar coordinates, respectively. The predicted directions
ân and, implicitly, the predicted number of sources N̂ , are obtained by detecting the
peaks of the function, marked with dots on the figure. The direction vectors found
are shown superimposed to the projected scatter plot of Fig. 3.9(b).

3.4.2 Evaluation with frequency-warped representations

Improved sparsity is expected to benefit clustering accuracy, since proportionally
more data points will concentrate around the true directions. In this section, the
results of using the above mixing matrix estimation algorithm with the frequency-
warped front-ends are presented.

For the evaluation experiments, a set of 10 stereo mixtures of N = 3 sources and
a set of 10 stereo mixtures of N = 4 sources were used. The sources to be mixed
were randomly extracted from a database of musical fragments of 3 s duration played
by melodic instruments and sampled at 8 kHz. For each mixture, the experiment
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Representation N = 3 sources N = 4 sources
DR (%) eang(◦) DR (%) eang(◦)

STFT 81.3 1.22 65.0 3.38
CQ 80.0 0.75 67.5 4.82
ERB 82.5 0.76 71.3 0.83
Bark 82.5 0.78 73.8 0.90
Mel 82.5 0.76 71.3 1.50

Table 3.4: Evaluation of the mixing matrix estimation stage: averaged source detection
rate (DR) and angular error (eang) in degrees, for stereo mixtures of N = 3 (left) and N = 4
sources (right).

was repeated for all time–frequency representations discussed in the present chapter
(STFT, constant Q (CQ), ERB, Bark and Mel), and for a different number of
representation bands Kp, ranging from K0 = 33 to KP−1 = 4097. This makes
a total of 800 separation experiments.

Each source was normalized, artificially panned and mixed. The mixing matrix
was defined with equally spaced directions, i.e., θ1 = 3π/4, θ2 = π/2 and θ3 = π/4
for N = 3 and θ1 = 4π/5, θ2 = 3π/5, θ3 = 2π/5 and θ4 = π/5 for N = 4, where
0 corresponds to hard right and π to hard left. To find the direction clusters, the
scatter plot was rastered using a radial grid with 0.5◦ = 0.00873 rad resolution.

The estimation performance of the mixing matrix can be measured by the angular
error eang between the original directions an and their predictions ân, averaged
across each source and across each experiment. Also, the percentage of experiments
in which the correct number of sources were detected (detection rate, DR) will be
given as an additional measure of detection robustness.

The resulting values for DR and eang are shown in Table 3.4. For N = 3, the DR
does not improve significantly, but eang has been almost halved. The N = 4 problem
is more difficult, as expected, but the performance difference between the warped
representations and the STFT has increased. In particular, the angular error has
been reduced by a factor of 4 with the ERB and Bark warpings. The maximum
improvement in average DR of the warpings was of 5% compared to the STFT.

3.5 Frequency-warped source estimation

The performance criteria reviewed until now (source sparsity, mixture disjointness
and mixing matrix estimation accuracy) will all affect the last and definitive crite-
rion: the quality of the separated signals. In this final section, the shortest path
resynthesis algorithm will be introduced, followed by a discussion of a powerful and
flexible set of criteria for separation quality evaluation. Finally, the experimental
results will be presented.

3.5.1 Shortest path resynthesis

Source estimation for a given estimated mixing matrix Â will be formulated as an
ℓ1-norm minimization problem (Sect. 2.7.2). For the noiseless case, and assuming
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the source densities are Laplacian (Eq. 2.29), the formulation was given in Eq. 2.86.
When the piecewise separation model holds (Eq. 3.7), Eq. 2.86 can be rewritten in
the transformed domain as

ŝrk = argmin
xrk=Âsrk

{

N
∑

n=1

|sn,rk|
}

. (3.41)

The piecewise linear mixing model can be rewritten as

xrk =

N
∑

n=1

ansn,rk. (3.42)

Geometrically, this corresponds to each mixture data point being contributed by
the projections of srk upon the mixing directions or, in other words, by a set of N
segments of length |sn,rk| along the vectors an. Thus, minimizing ℓ1 amounts to
finding the shortest geometric path between each data point and the origin along
the mixing directions, hence the alternative name shortest path algorithm.

As shown in Fig. 3.10, the shortest path to the origin for the stereo case (M=2)
is found by projecting each data point upon the two mixing directions enclosing it.
More specifically, the method partitions the mixture space R2 into regions delimited
by the mixing directions an. Then, for each bin xrk at direction θrk, a 2×2 reduced
mixing matrix Âρ = [âa, âb] is defined, whose columns are the delimiting directions
of the region it belongs to, i.e., θL = arctan(aa2/aa1) and θR = arctan(ab2/ab1) are
the closest mixing directions to the left and to the right, respectively, that enclose
θrk. Source estimation is performed by inverting the determined 2 × 2 sub-problem
and setting all other N − M sources to zero:

{

ŝρ,rk = A−1
ρ xrk

ŝn = 0, ∀n 6= a, b.
(3.43)

The zeroing of the source contributions ∀n 6= a, b makes the problem solvable, but
as a trade-off, amounts to the introduction of artificial zeros to the time–frequency
representation. This will cause spectral artifacts than can be audible as a burbling
noise, sometimes called in this context musical noise.

3.5.2 Measurement of separation quality

An obvious method to evaluate the separation quality, assuming the original sources
are known, is to measure the ratio between the estimation error and the correspond-
ing original source (Signal to Error Ratio, SER):

SERn = 10 log10

‖sn‖2

‖ŝn − sn‖2 . (3.44)

The SER is an overall measure of all distortions and errors introduced in the process,
including errors by interference with the undesired signals, artifacts introduced by
the separation algorithm and distortion due to imperfect transform inversion.
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Figure 3.10: Shortest path resynthesis.

Recently, an alternative, more powerful evaluation method has been proposed
by Gribonval et al. [163, 69], that allows gaining insight into the individual error
sources in the course of the algorithm. For this reason, it was the method used here.
In the noiseless case, it consists of decomposing each estimated source ŝn as the sum

ŝn = starget + einterf + eartif , (3.45)

where starget is an allowed distortion of sn (in the present case, a gain factor), einterf

is the error due to interferences with the other sources and eartif is the error due to
separation artifacts (which in this case are caused by the artificial zeros introduced
by Eq. 3.43). Furthermore, the method achieves such a decomposition without
knowledge of the mixing process, i.e., of A. This is achieved as follows. The allowed
distortion is given by the orthogonal projection

starget =
〈ŝn, sn〉 sn

‖sn‖2
. (3.46)

The error due to interferences is obtained via

einterf = dHS − starget, (3.47)

and the coefficient vector d is given by

d = G−1
ss [〈ŝn, s1〉 , . . . , 〈ŝn, sN 〉]H , (3.48)

where Gss is the Gram matrix of the original sources, whose elements are the mutual
scalar products of all possible combinations of two source signals:

(Gss)ij = 〈si, sj〉 . (3.49)

The remaining errors are assumed to arise from the artifacts introduced by the
algorithm:

eartif = ŝn − starget − einterf = ŝn − dHS. (3.50)
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Repr. N = 3 sources N = 4 sources
SDR (dB) SIR (dB) SAR (dB) SDR (dB) SIR (dB) SAR (dB)

STFT 16.47 31.39 16.74 10.41 23.81 10.81
CQ 18.23 31.71 18.59 12.77 24.75 13.42
ERB 18.46 31.56 18.83 12.98 24.71 13.53
Bark 18.02 31.46 18.36 12.79 24.58 13.34
Mel 18.54 31.41 18.92 13.00 24.62 13.57

Table 3.5: Evaluation of the source resynthesis stage: maximum achieved SDR, SIR and
SAR for stereo mixtures of N = 3 (left) and N = 4 sources (right).

Once such decomposition has been performed, the following objective measures
can be defined. The Source to Distortion Ratio (SDR), which plays the role of the
global error measure SER, is defined based on the total error produced:

SDRn = 10 log10

‖starget‖2

‖einterf + eartif‖2
. (3.51)

The Source to Interference Ratio (SIR) is

SIRn = 10 log10

‖starget‖2

‖einterf‖2
. (3.52)

Note that this SIR is a redefinition of the measure defined in Eq. 3.34 in the context
of time–frequency masking, and both quantities are conceptually equivalent. Finally,
the Source to Artifacts Ratio (SAR) is given by

SARn = 10 log10

‖starget + einterf‖2

‖eartif‖2
. (3.53)

The artifacts introduced by the separation algorithm are often the main cause of
distortion in source separation, which justifies the utility of a separate SAR measure.

3.5.3 Evaluation with frequency-warped representations

The same 800 mixtures used in the evaluation of the mixing matrix estimation stage
were subjected to shortest path resynthesis, given the estimated matrix obtained
in that stage. Only those mixtures for which the correct number of sources was
detected were forwarded to the resynthesis block. For each experiment run, the
averaged values of SDR, SIR and SAR across all sources, and for band numbers
K0 = 33 to KP−1 = 4097 were computed.

The results are shown in Fig. 3.11 for the 3-source mixtures and in Fig. 3.12
for the 4-source mixtures. Table 3.5 shows the maximum values achieved. The
improvement of the warped representations over the STFT is clear for the SDR and
SAR measures. As expected, the unmixing of 4 sources gets worse quality values;
the gain of using warpings however increases. The SIR curves show a different
behaviour. While for 4 sources the improvement, though smaller than for SDR and
SAR, is noticeable, for the 3-source case the maximum value achieved (with 1025
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Figure 3.11: Evaluation of the source resynthesis stage: SDR, SIR and SAR as a function
of number of subbands L, for stereo mixtures of N = 3 sources..

bands) is statistically equivalent for all representations. Overall, SIR is the least
improved measure. In other words, with high frequency resolutions, warping mostly
improves the results by reducing the effect of artifacts; the improvement by reducing
interferences plays, in comparison, a smaller role. For medium and low frequency
resolutions, frequency warping reduces both interferences and the effect of artifacts.

This observation can be explained by the fact that the SIR measure is the one
most related to the concept of disjointness; although approached from a different
perspective, both constitute a measure of the degree of overlapping. Recalling Fig.
3.7, it can be observed that for the music mixtures both the WDO and the SIR
curves follow similar behaviours: the improvement of warping is clear for highly
overlapping sources, and gets small with highly disjoint sources. In contrast with
WDO, the SIR measure is algorithm-dependent, and is influenced by the errors in
mixing matrix estimation. Their goal is however similar, and thus a correlation
between both results is plausible. Such a correlation is also readily observable from
Eq. 3.36: when SIRn increases, WDOn increases, and vice versa.

An explanation for the reduction of the artifact distortion achieved with the
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Figure 3.12: Evaluation of the source resynthesis stage: SDR, SIR and SAR as a function
of number of subbands L, for stereo mixtures of N = 4 sources..

warped representations is that with STFT, the frames of all bands are synchronous,
and thus the spectral zeros change all at the same time, increasing the measurable
effect of the artifacts. With the warped representations, however, the temporal
boundaries of the zeros are different in each band, and thus the instants of the
spectral changes to zero are spread across time and the effect becomes less noticeable.

In general, all three auditory warpings (ERB, Bark and Mel) showed similar be-
haviors, with Mel obtaining a slightly better performance in both measures, followed
by ERB and Bark. However, the overall difference with CQ is greater. As can be
seen in Fig. 3.2, CQ is the transformation offering the highest frequency resolution
in the low frequency area. It turns out that a more balanced trade-off between low
frequency and high frequency resolution, as offered by the auditory warpings (whose
warping curves lie between those of CQ and STFT) is more advantageous for the
purpose of source separation.
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3.6 Summary of conclusions

This chapter provided a thorough evaluation of the effect of using warped representa-
tions with nonuniform time–frequency resolution as the transformation stage within
an underdetermined source separation framework. The representations were eval-
uated both under algorithm-independent conditions (by measuring source sparsity
with normalized kurtosis and mixture disjointness with average W-Disjoint Orthog-
onality, WDO), and in combination with a practical separation system based on
kernel clustering and ℓ1-norm minimization (by measuring the accuracy of the mix-
ing matrix estimation and the quality of the separated signals). Also, the special
characteristics of music signals, together with their implications for the separation
problem, were compared to those of speech signals. The conclusions drawn from the
experiments can be summarized as follows:

• Speech is most sparse and most disjoint for a balanced trade-off between time
and frequency resolution, with around K = fs/25 bands. For music signals
however, frequency resolution needs to be favored. In general, music is more
sparse and disjoint at high frequency resolutions than speech at the optimal
trade-off point.

• Frequency warping improves sparsity in comparison to the STFT. The maxi-
mum improvement was of 66.3% for speech and of 49.1% for music.

• Frequency warping also improves disjointness. The improvement is higher the
more the sources overlap (i.e., in the low frequency resolution area for music
signals and in both the lowest and highest frequency resolution areas at both
ends of the optimal point for speech signals). For uncorrelated music mixtures,
the improvement is of around 5-10% WDO for low frequency resolutions and
of maximally 1.2% WDO for high frequency resolutions. For correlated music
mixtures, the improvement is of 10-15% WDO in the low frequency resolution
area; for high frequency resolutions, the disjointness of the STFT and of warp-
ings are equivalent for music mixtures. With speech, the improvement is clear
at all resolutions, achieving a highest difference of 5.2% WDO.

• Within a practical application scenario with music mixtures, warping reduces
the angular error when estimating the mixing directions, since proportionally
more data points concentrate around the true mixing directions. Warpings
reduce average angular errors by a factor of 2 for mixtures of 3 sources and
by a factor of 4 for mixtures of 4 sources. The source detection rate (the
percentage of the experiments in which the correct number of sources was
detected) also improved, however less significantly, by an average of 5%.

• The separation quality was measured with respect to interference errors (SIR),
artifacts errors (SAR) and overall distortion (SDR). The improvement due to
the reduction of artifact errors is more important than the improvement due to
the reduction of interference errors. In general, the improvement is the higher
the more underdetermined the mixture is. For 3 sources, the maximum overall
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maximum distortion improvement was of 2.07 dB SDR and for 4 sources of
2.59 dB SDR. The reduced effect of the artifacts is due to the between-band
unsynchronicity of the spectral zeros.

• From the improvement in SAR being higher than the improvement in SIR
follows that maximizing sparsity and disjointness is not the only criterion that
should be taken into account within a practical separation context. In fact,
the experiments showed that separation quality can decay even if the overall
sparsity/disjointness is maximal. Thus, it is important to acknowledge and
evaluate the particular effect of the spectral artifacts introduced by time–
frequency-masking-like algorithms, and to choose a balance between sparsity
maximization and artifact error reduction.

• The ERB, Bark and Mel auditory warpings generally show a very similar
behaviour, the results with Mel being slightly better. The CQ transforma-
tion globally performs worse, especially for low frequency resolutions. Conse-
quently, an auditory-related distribution of time–frequency resolution, which
is more balanced between the low and high resolution areas than the per-
fectly logarithmic resolution of the CQ, is generally more adequate for source
separation.

These observations support the convenience of performing source separation in
a frequency-warped domain. The results show that it is possible to improve the per-
formance by only changing the transformation stage of the general staged separation
approach of Fig. 2.8.

Obviously, this is just one of the possibilities to approach better performance,
and further improvements are possible by studying other parts of the process. A
crucial observation in this respect is that if two signal components, for example
partial tracks in a tonal music mixture, overlap in exactly the same or in a very
narrow time–frequency–space region, they will be impossible to separate, no matter
how much warping is applied to the mixture. Since frequency-domain overlapping
is especially significant for music signals, this will potentially pose a problem when
separating in the spectral domain, and in highly correlated mixtures, warping will
only be able to improve performance up to a certain degree.

A possibility to overcome this problem is to use a more sophisticated model of
the sources, which equivalently means to increase the a priori information. The
separation performed by the system discussed in this chapter was, according to
the usual definition, completely blind: it was solely based on spatial information
and on a broad sparsity assumption on the sources (a Laplacian distribution). In
order to further improve performance and robustness, knowledge about the nature
of the sources can be added. This can take the form of source-dependent models
of spectral content or temporal structure. For the case of music mixtures, this can
be achieved by exploiting the very specific timbral characteristics associated with
different musical instruments. The development of such a model will be the topic of
the following chapter.



4
Source modeling for musical instruments

The main goal of audio source separation in the time–frequency domain, when ap-
plied to harmonic or quasi-harmonic sounds, is to segregate the overlapping sinu-
soidal peaks. Algorithms exploiting only spatial information fail if the problem
is underdetermined and highly overlapping. As discussed in the previous chapter,
frequency-warping the representation front-end helps to improve disjointness and
reduce artifact errors, but it will not help if two partials fall on exactly the same
frequency, or on very narrow frequency margins. To overcome this and improve sep-
aration quality, the high generality of BSS algorithms (i.e., their complete “blind-
ness”) can be sacrificed in favor of a higher degree of a priori knowledge about the
nature of the signals that are expected to appear in the mixture. Methods following
this approach are said to perform Semi-Blind Source Separation (SBSS) [162, 164].

Such a priori information results in source-specific models providing more de-
tailed temporal and spectral information than the general statistical assumption
of sparsity. Source modeling can consist of either developing a detailed structural
description or probabilistic framework of the time–frequency events that can consti-
tute the sources, or on training a statistical model based on a database of previously
available source examples. These two distinctive methods are called, respectively,
unsupervised and supervised source modeling approaches.

The unmixing of musical signals calls for the exploitation of the very specific
temporal, spectral and statistical characteristics of sounds produced by musical in-
struments. Timbre is the musicological term employed to denote the perceptual
qualities that enable the listener to distinguish between different instruments play-
ing the same notes with the same dynamics. In contrast to the other sound quality
attributes (pitch, intensity, duration), timbre is a concept more difficult to describe
objectively, and is not univocally associated with an easily measured physical quan-
tity. Instead, several factors play important roles in timbral perception, such as the
temporal and spectral envelopes, the degree of harmonicity of the partials, noise
content or transients1. Any source modeling approach aiming at a description of
any of those aspects, or a combination thereof, will consequently also be a model of
timbre.

This chapter addresses the development of a novel timbre modeling approach for
musical instruments from a general-purpose point of view. Although the main mo-

1Transients are the pulse-like, non-harmonic segments occurring in the attack phase of a note,
or in the transitions between consecutive notes.
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tivation was to provide source knowledge for source separation, it was intended that
the models could also be used as a feature in classification or recognition applica-
tions. Evaluation experiments of the models applied to classification and polyphonic
instrument recognition tasks will be reported later in the chapter. Their application
within a source separation framework will be discussed in more detail in Chapters
5 and 6. Correspondingly, previous work related with the development of general-
purpose timbral descriptions will be introduced in this chapter (Sect. 4.3), whereas
models specifically designed for source separation will be introduced in Sect. 5.1 of
the next chapter. Parts of this chapter were previously published in [28], [29] and
[105].

Requirements on the model

The following design criteria were followed and evaluated during the development
process:

• Generality. The model should be able to handle unknown, real-world input
signals. Thus, it must represent each musical instrument with enough gener-
ality to encompass the different qualities of, e.g., different violins or different
pianos, or even of the same instrument at different pitch ranges. This require-
ment calls for a framework of database training and a consequent extraction
of prototypes for each trained instrument. The presented modeling approach
will consequently be supervised.

• Compactness. A compact model does not only result in more efficient compu-
tation and retrieval but, together with generality, implies that it has captured
the essential characteristics of the source.

• Accuracy. In the source separation context, a timbre model will serve as a
mask or template guiding the unmixing of overlapping partials. This requires
a high representation accuracy, since the presence of artifacts resulting from
deviations in the spectral masking process is the factor that most reduces
perceptual separation quality, such as noted in the previous chapter and in
works like [163]. Model accuracy is a demanding requirement that is not
always necessary in other applications such as classification or retrieval by
similarity, where the goal is to extract global, discriminative features.

The next two sections will introduce two concepts that will be central in the
development of the timbre models: the spectral envelope (Sect. 4.1) and sinusoidal
modeling (Sect. 4.2).

4.1 The spectral envelope

From the mentioned factors that contribute to timbre (envelopes, harmonicity, noise,
transients), the temporal and spectral envelopes are two of the most important ones.
In many situations, they arguably play the major role. Assuming that the expected
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musical instruments are harmonic (winds, bowed strings) or quasi-harmonic (piano),
harmonicity will not be a highly discriminative feature. Also, recent studies have
noted the importance of the sinusoidal part compared to the noise part for the
purpose of instrument recognition, such as in the work by Livshin and Rodet [101],
where a 90.53% classification rate was obtained using only the sinusoidal part, only
4.36% less than using the original signals including sinusoids and noise. The first
design decision was thus to base the model on the temporal and spectral envelopes.

The temporal envelope is usually divided into Attack, Decay, Sustain and Release
phases, and is therefore often called the ADSR envelope. ADSR characteristics will
be a valuable feature to distinguish, for instance, between sustained (bowed strings,
wind instruments) and constantly decaying instruments (plucked or struck strings).

The spectral envelope can be defined as a smooth function of frequency that
approximately matches the individual partial peaks of each spectrum frame. The
frame-wise evolution of the partial amplitudes, and consequently of the spectral
envelope, corresponds, when considered globally, to the temporal envelope. Thus,
considering the spectral envelope and its evolution in time makes it unnecessary
to consider the time-domain envelope separately. It even provides more detailed
descriptions, since the time envelopes corresponding to the individual partials can
be treated separately. In this work, the term “spectral envelope” will denote both
the frame-wise spectral envelope and its dynamic temporal evolution and thus, the
temporal envelope implicitly.

Apart from the temporal variations that occur during the course of a single note,
the spectral envelope can be greatly dependent on dynamics. For example, playing
the same note louder can excite upper partials that were previously masked by the
noise floor, changing the envelope. It is well-known that many acoustic instruments
exhibit fairly different timbres when played with different dynamics. Examples of
instruments with great dynamic-dependency of timbre include the French horn, the
clarinet and the piano. Less dynamic-dependent is the timbre of, for example, the
oboe, the trumpet, a distorted electric guitar or the harpsichord, the latter having
in effect virtually no dynamic range.

Some instruments feature formants in a similar way as the human voice does,
produced by the resonances of the resonating body. Furthermore, physical char-
acteristics of the instrument can greatly constrain the nature of the partials (e.g.,
the fact that the clarinet contains a cylindrical tube closed at one end causes the
odd harmonics to predominate). Formant- or resonance-like spectral features can
either lie at the same frequency, irrespective of the pitch, or be correlated with the
fundamental frequency. In this work, the former will be referred to as f0-invariant
features, and the latter as f0-correlated features. Formants that are f0-invariant
motivate that the same instrument can have fairly different timbres in the lower and
upper pitch ranges.

Other modifications, such as different playing styles or effects (e.g., pizzicati —
plucking the string with the fingers—, sul ponticello —bowing near the bridge— or
playing harmonics) or the application of external sound modifiers (dampers, mutes,
prepared pianos, analog or digital effects) will obviously have a direct influence on the
envelope and on timbre. Reverberation will also modify the perceived envelope, but
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it will not be considered an intrinsic timbral feature, since it depends on the listener’s
position and on the characteristics of the room, and is furthermore irrelevant in the
instantaneous mixing scenario that is being considered throughout the present work.

The source–filter model of sound production

The source–filter model [6] provides a simple but powerful approximation to the
generation of sounds whose timbre is highly determined by a spectral envelope,
such as speech or music signals. It assumes that such sounds are produced by an
excitation signal with a flat spectrum (usually white noise or a set of harmonic
partials with constant amplitude) that is subsequently filtered with a frequency
response resembling the spectral envelope. Thus, it decouples the contribution of
the spectral envelope (produced by filtering due to the properties of the resonating
body, in musical instruments, or of the vocal tract for speech or singing) from that
of the original raw sound material (produced by the vibrating sound generator, e.g.,
the string in a guitar or the vocal cords in human voice).

The source–filter model differs from reality in that it collects all spectral modifi-
cations into the filtering stage, whereas in real situations the vibrating source already
exhibits some spectral coloring. For most modeling applications such a distinction
is unnecessary.

Next, some popular methods for the estimation of the spectral envelope will be
introduced. They can be divided into three groups: methods based on assuming an
autoregressive (AR) model of the signal to be analyzed, methods relying on cepstral
smoothing, and methods relying on interpolation. All methods operate on a frame-
wise basis. A comparative study of spectral envelope estimation methods can be
found in the work by Schwarz [137].

Autoregressive methods for spectral envelope estimation

An AR signal model assumes that the observed signal s(t) has been produced ac-
cording to

s(t) =

N
∑

n=1

ans(t − n) + u(t), (4.1)

where u(t) is the input signal, an are the AR coefficients and N is the model or-
der. Thus, each output sample can be predicted by a linear combination of the N
previous samples, as acknowledged by its alternative designation of linear predictive
model. Under certain circumstances, the AR coefficients are able to sufficiently ap-
proximate the signal, so that a high compression is possible by transmitting only the
coefficients and the excitation (this is called Linear Predictive Coding, LPC). The
optimal coefficients in the MSE sense can be obtained by a variety of approaches,
such as the Levinson-Durbin or Burg algorithms. Such techniques have become clas-
sical signal processing methods, and are widely documented in the literature (see,
e.g., [127]).
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A spectral analysis of the AR model reveals a direct relationship with the source–
filter production model. In particular, the AR coefficients are also the coefficients
of an N -th order all-pole filter whose frequency response approximates the spectral
envelope. Thus, linear prediction corresponds to filtering the excitation signal u(t)
with the obtained all-pole filter. A disadvantage of the LPC method is that for high
model orders, and if the partials are sufficiently separated, the estimated envelope
tends to “wrap” the partials too closely, and to “fall” towards the noise floor, as has
been pointed out by Schwarz [137].

The all-pole approximation is optimal if the excitation signal u(t) is assumed to
be white, uncorrelated noise, but was shown to be suboptimal for periodic or quasi-
periodic excitations, which are more interesting for analyzing pitched instruments,
as noted by El-Jaroudi and Makhoul [56]. In the cited work, an alternative LPC-
based method was proposed, called the Discrete All-Pole (DAP) method, which is
based on sampling the input spectrum at the partial peaks, and modifying the error
criterion accordingly. This was shown to reduce the systematic estimation errors
of classic LPC when analyzing harmonic sounds, while keeping a good performance
for noisy excitations. As disadvantages of the DAP method, difficulty in finding the
optimal model order and high computational requirements have been pointed out
[159].

Cepstral methods

An alternative family of methods arises from the concept of cepstrum, which in the
real-valued, discrete version is defined as

c(q) =
1

K

K−1
∑

k=0

log(|S(k)|)ej 2π
K

kq, (4.2)

where S(k) is the DFT of the input signal s(t). The cepstrum is thus the inverse DFT
of the log-amplitude spectrum. The magnitude in the cepstral domain, indexed by
q, is called quefrency. Some authors define the cepstrum as the direct DFT of the log
amplitude spectrum, instead of the inverse transform. Since the quantity log(|X(k)|)
is always real and even for real signals x(t), both definitions are equivalent.

The cepstrum can be interpreted as a spectrum of the spectrum, i.e., the original
spectrum is considered as a signal and its “frequency” contents is analyzed. An
advantage of cepstral processing is that filtering, which is a convolution in the time
domain, and a multiplication in the spectral domain, turns into a sum in the cepstral
domain. In much the same way that low-pass filtering a time domain signal results
in a smoothing of the fast amplitude changes, keeping the low cepstral coefficients
smoothes the spectrum, i.e., produces a spectral envelope. For a signal following the
source–filter model, the low quefrencies will correspond to the spectral envelope and
the high quefrencies to the detailed structure of the spectrum. Harmonic signals
will show a cepstral peak corresponding to the fundamental frequency. Thus, by
taking the L < N lowest cepstral coefficients it is possible to isolate an approximate
spectral envelope (the generation filter) from the excitation (source) signal. The
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Figure 4.1: Comparison between linear and cubic interpolation for spectral envelope esti-
mation.

action of keeping these low coefficients is called cepstral smoothing or liftering (in
analogy to filtering), and L is called the smoothing order. In this work, cepstral
smoothing will be used to improve the robustness of sinusoidal peak picking (see
Sect. 4.2).

In [137], two disadvantages of cepstral smoothing are noted: the fact that it
produces an averaged envelope, rather than an envelope closely matching the peaks,
and that, like LPC, it tends to the noise level in between-peak valleys. Following
a similar reasoning as for the DAP approach, this can be avoided by picking the
prominent peaks of the spectrum. To that end, the Discrete Cepstrum method by
Galas and Rodet [64] selects the partial peaks and defines an MSE minimization
problem thereupon. It has however been criticized by Cappé and Moulines [34] as
being ill-conditioned in many cases of interest.

An approach that tackles both the averaging and the “valley” problems is the
True Envelope estimation method, presented by Röbel and Rodet [131], which uses
a simple but effective rule to iteratively update the cepstral-smoothed envelope. It
has the advantage over Discrete Cepstrum that it does not rely on a previous peak
picking stage.

Interpolation methods

Interpolation-based spectral envelope estimation consists in selecting the prominent
sinusoidal peaks and defining a function between them by interpolation. The most
basic form of interpolation is linear interpolation, in which a straight line is traced
between each two neighboring peaks. The amplitude A between peaks at frequencies
f0 and f1 is thus given by

A(f) = A(f0) +
A(f1) − A(f0)

f1 − f0
(f − f0). (4.3)
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Cubic polynomial interpolation consists in finding a smooth function defined by the
polynomial

A(f) = a0 + a1f + a2f
2 + a3f

3 (4.4)

that passes through the peaks. An illustration of linear and cubic interpolation is
given in Fig. 4.1 for a DFT frame of an oboe playing a C5 note. Linear interpolation
results in a piecewise linear envelope containing edges. In spite of its simplicity
and roughness, it has proven adequate for several applications, such as envelope-
preserving pitch shifting, spectral shape shifting and residual shape modeling [4].
Cubic interpolation results in a smooth curve, but is much more computationally
expensive. For its effectiveness, simplicity and flexibility, the interpolation approach
was chosen in the present work as the envelope estimation method.

4.2 Sinusoidal modeling

All envelope estimation methods relying on the sampling of the spectrum at the
partial frequencies (DAP, Discrete Cepstrum, interpolation methods) need a way of
accurately and robustly detecting the amplitude peaks at each frame of the STFT.
Note that, under the general signal expansion framework introduced in Sect. 2.3.1,
this would correspond to frame-wise decomposing the signal as a sum of sinusoids
with the frequency and amplitude values of the detected peaks, thus ignoring the
noise floor. It can therefore be understood as a generalization of a Fourier Series, in
which the sinusoids do not need to be in harmonic relationship.

When considering temporal evolution, each detected peak will change in ampli-
tude and frequency, building a partial track. Following the same reasoning, this can
be viewed as a generalization of the STFT in which the expansion sinusoids can
vary in frequency from frame to frame. The collection of partial tracks is called
the sinusoidal part of the signal, and its estimation is the goal of sinusoidal mod-
eling [65, 138, 146], also called additive analysis. The remainder of the signal, the
time-varying noise floor, is the noise part, stochastic part or residual.

The formulation of sinusoidal modeling as a signal decomposition problem is

s(t) ≈ ŝ(t) =

P (t)
∑

p=1

Ap(t) cos θp(t). (4.5)

Here, P (t) is the number of partials, possibly time-varying, Ap(t) are their ampli-
tudes and θp(t) is the instantaneous phase. Because the instantaneous frequency
fp(t) is the derivative of the instantaneous phase, the unwrapped2 phase is given by

θp(t) = θ(0) + 2π
t
∑

τ=0

fp(τ), (4.6)

2Unwrapped phase refers to a phase whose value can exceed the interval [0, 2π] or [−π, π]. An
unwrapped phase is equivalent to a wrapped one constrained to those intervals, but it is analytically
convenient for formulations such as Eq. 4.6.



90 4.2 Sinusoidal modeling

where θ(0) is the initial phase.

In practice, additive analysis consists of performing a frame-wise approxima-
tion of this model, yielding a triplet of estimated amplitude, frequency and phase
information

ŝpr = (Âpr, f̂pr, θ̂pr), (4.7)

for each partial p and each time frame r. Additionally, the frame-wise number
of partials Pr must also be approximated from P (t). These approximations are
implemented by the successive stages of STFT, peak picking and partial tracking,
with an optional pitch detection stage at the beginning. All these tasks have been the
subject of extensive research, and a range of well-established techniques [138, 146]
are available3. It is beyond the scope of the present work to describe them in detail;
instead, they will be briefly introduced conceptually.

Given a set of additive analysis data triplets, the spectral envelope can be
estimated by frame-wise interpolating the amplitudes Âpr at frequencies f̂pr for

p = 1, . . . , Pr and for each frame r. The set of frequency points f̂pr for all partials

during a given number of frames is called frequency support. The phases θ̂pr will be
ignored for the analysis applications presented in this work, but can be stored and
reused for resynthesis.

Peak picking

Choosing adequate resolution parameters for the STFT is crucial to make a success-
ful detection of prominent peaks. A sufficiently high frequency resolution should be
chosen to avoid the overlapping of close peaks, such as suggested by the disjoint-
ness experiments of Chapter 3. Also, the frequency response of the analysis window
determines the shape of the peaks, so window parameters such as main-lobe width
and side-lobe attenuation must be taken into account. If the pitch of the signal is
known beforehand, or if peak detection follows an initial optional pitch detection
stage, the analysis parameters can be adapted to adequately accommodate the ex-
pected frequency components. Reasonable choices for a given expected fundamental
frequency f0 are a window length L = 4f0 for Hamming windows and L = 5f0

for Blackmann windows, with overlapping factors of 75% or 87.5%, in which cases
the COLA condition (Eq. 3.26) is met. If the fundamental frequency is not known
beforehand, a reasonable power-of-two window length is L = 8192 for a sampling
rate fs = 44.1 kHz.

Note that knowing the fundamental frequency does not only help to set the
STFT parameters, but also to predict that the prominent peaks will appear at
integer multiples of f0, improving the robustness of peak picking. This is also true
for the next stage of partial tracking. In general, additive analysis can thus work
in two different modes: harmonic, when the f0 is known or extracted via pitch
detection, or inharmonic, when the f0 is unknown or cannot be reliably detected.

3This work uses IRCAM’s implementation of an additive analysis/synthesis framework, called
pm2.
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Figure 4.2: Frequency-dependent thresholding for peak picking.

In the present work, both analysis modes will be encountered. In the train-
ing procedure discussed later in this chapter, the notes belonging to the training
database are previously labeled with their instrument, dynamics and pitch, and a
harmonic analysis can thus be performed. For the classification of isolated instru-
ment notes (Sect. 4.7), the pitch of the unknown notes was previously extracted
using the autocorrelation-based YIN method by de Cheveigné and Kawahara [44].

However, whenever mixtures must be subjected to additive analysis, such as in
Sect. 4.8 and in Chapter 5, pitch estimation is unreliable and for highly polyphonic
mixtures even virtually impossible. In that case, inharmonic analysis must be used,
which increases the possibility of detecting spurious or noisy peaks near the noise
floor. To avoid that and increase the robustness of the extraction, an additional
preprocessing step was added in the present approach, as suggested by Every and
Szymanski [62], consisting of computing a rough approximation to the spectral en-
velope of each frame by simple cepstral smoothing. In particular, the spectrum is
liftered by convolving a Hamming window with each log-amplitude DFT frame. The
rough envelope is then scaled in amplitude so that it appropriately covers the noise
floor, and is used as a frequency-dependent threshold for peak picking. This is il-
lustrated in Fig. 4.2, where the solid line represents the obtained threshold and the
points denote the detected peaks. Note that using a constant threshold minimized
to cover the highest level of the noise floor, as showed by the dashed line, would
result in missing most upper partials.

Finally, an important factor to note in peak detection is that the sampled na-
ture of the STFT unavoidably introduces rounding errors when estimating frequency
and amplitude values lying in the area between two frequency bins, separated by an
interval of fs/K Hz for a FFT of size K. It is possible to increase the detection res-
olution without increasing the size of the FFT by using one of a range of refinement
methods based on interpolation4. As an example, Amatriain et al. [4] use parabolic

4Such a between-bin interpolation should not be confused with the between-peak interpolation
for extracting the spectral envelope explained previously in the chapter.
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amplitude interpolation of the frequency bins.

Partial tracking

Once the peaks have been detected, it is the purpose of the subsequent partial
tracking or peak continuation block to trace the frame-to-frame evolution of each
peak, resulting in a set of partial tracks or trajectories. Partial tracking relies on
measuring the continuity of the sinusoids as measured by the frame-wise relative
and absolute differences in amplitude and frequency. By observing a certain range
of neighboring frames, the algorithm then decides when a partial trajectory (called
guide in this context) starts or ends. The sensitivity to amplitude or frequency
variations can be set up by appropriate weighting parameters. Partial following
is often performed backwards, since it is easier to establish the most likely partial
candidates in the more stable decay phase of the notes, rather than in the course
of the noisy attack transients. The classical method for partial tracking is the
McAulay–Quatieri algorithm [107].

In the developments of the present chapter, an explicit grouping of subsequent
peaks into tracks is not needed. However, it is important to perform partial tracking
anyway, since its continuation rules retroactively influence the decision of which
peaks of the peak picking stage can be reliably associated to a partial, and which
cannot. In the source separation methods that will be proposed in the next two
chapters, such a track-wise grouping will be however crucial. To denote a track tt,
the following notation will be used:

tt = {ŝprt |rt = 1, . . . , Rt}, (4.8)

where Rt is the track length in frames, rt is the frame index relative to the first
frame of the track, and ŝprt is the estimated parameter triplet of Eq. 4.7. Note
that this definition implicitly assumes that each track is contributed by the same
partial p during its whole length, which should always be the case. The previous
considerations about harmonic and inharmonic analysis apply here as well. Partial
tracking algorithms can be considered computational implementations of the ASA
grouping principles of good continuation and common fate (see Sect. 2.8).

A graphical example of the detected frequency support of a set of partial tracks
after peak picking and partial tracking can be found in Figs. 5.2(a) and 5.6 of the
next chapter.

Resynthesis

Resynthesis of a time-domain signal from the sinusoidal parameters (additive syn-
thesis) is straightforward and consists of driving a set of sinusoidal oscillators with
the parameters and adding the resulting sinusoids. To avoid clicks at the frame
boundaries, the parameters are usually interpolated between frames [138]. Ampli-
tude is smoothed by linear interpolation, and instantaneous phase (the integral of
the frequency) by cubic interpolation. This results in the sinusoidal or deterministic
part of the signal.
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Extensions to the sinusoidal model

To further improve the model and also to take into account the noise part, the
sinusoidal part can be subtracted from the original signal, yielding the noise residual.
This residual can be modeled by frame-wise fitting the noise spectrum to a certain
filter frequency response, and keeping the coefficients as features. By means of this
analysis, a powerful and flexible model of the signal is obtained, called sinusoidal plus
noise model, which is the basis of the Spectral Modeling Synthesis (SMS) framework
by Serra [138]. An extension thereof, presented by Verma et al. [157] called Transient
Modeling Synthesis (TMS), uses an explicit model of the note transients.

4.3 Modeling timbre: previous work

In this section, previous approaches having as main goal a detailed and systematic
extraction of timbral descriptions will be reviewed. Timbral and other sophisticated
source models arising within a source separation context will be introduced later in
Sect. 5.1 for mono and in Sect. 6.1 for stereo separation systems.

Probably the first attempt to thoroughly and systematically assess the factors
that contribute to timbre was the 1977 work by Grey [67]. He conducted listen-
ing tests to judge perceptual similarity between pairs of instrumental sounds, and
applied Multidimensional Scaling (MDS) to the results. MDS is a dimensionality
reduction technique very similar to PCA that finds the most informative projections
of the data by trying to preserve a given dissimilarity matrix (such as a matrix of
Euclidean distances), instead of by trying to maximize variances, as PCA does. In
the cited work, MDS was used to produce a three-dimensional timbre space where
the individual instruments clustered according to the evaluated similarity. It was
obtained that the first dimension was related to the spectral flatness, the second to
the amount of synchronicity of the partials at the onsets and offsets of each note,
and the third to the energy of the attack transient.

In later works, similar results were obtained by substituting the listening tests
by objectively measured sound parameters. Hourdin, Charbonneau and Moussa
[76] apply MDS to obtain a similar timbral characterization from the parameters
obtained from sinusoidal modeling. They represent trajectories in timbre space cor-
responding to individual notes, and resynthesize them to evaluate the sound quality.
It was obtained that, after MDS, 75% of information was needed for musically ac-
ceptable sounds, and 90% of the information for sounds indistinguishable from the
original.

Sandell and Martens [134] use PCA as a method for data reduction of additive
analysis/synthesis parameters. They performed hearing experiments to evaluate the
compression efficiency of single notes. In this case, depending on the instrument,
a 40-70% data reduction was obtained for nearly identically-sounding resynthesized
sounds. De Poli and Prandoni [126] propose their sonological models for timbre
characterization, which are based on applying PCA or Self Organizing Maps (SOM)
to a description of the spectral envelope based on MFCCs. SOMs are neural net-
works trained to produce a low-dimensional representation that keeps the topological
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properties of the original data. A similar procedure by Loureiro, de Paula and Yehia
[102], which applies either PCA plus k-Means clustering or SOM directly to the si-
nusoidal parameters, has recently been used to perform clustering based on timbre
similarity.

Jensen [81] develops a sophisticated framework for the perceptually meaning-
ful parametrization of additive analysis parameters. Different sets of parameters
are intended to describe in detail the spectral envelope, the mean frequencies, the
temporal envelopes containing the ADSR segments plus an additional “End” seg-
ment, and amplitude and frequency irregularities (called, respectively, shimmer and
jitter). Expressive additions such as vibrato and tremolo5 can be included as ex-
plicit extensions to the model. The intended main application is parameter-driven
synthesis.

The fields of Music Information Retrieval and Music Content Analysis provide a
huge diversity of spectral features. Most of them are basic measures of the spectral
shape (centroid, flatness, energy rolloff, etc.), and are too simple and inaccurate
to be considered timbre models as understood here. More sophisticated measures
make use of psychoacoustical knowledge to produce a compact description of spectral
shape. This is the case of the very popular MFCCs [50], which are based on a mel-
warped filter bank and a cepstral smoothing and energy compaction stage achieved
by a DCT. The MFCC algorithm can be considered a psychoacoustically-adapted
cepstral smoothing for spectral envelope estimation. It has proven to be very efficient
for speech and music description. As an example, Helén and Virtanen [71] combine
MFCC extraction with a parametrization of the ADSR temporal envelopes of the
individual coefficients; the intended application thereof is Structured Audio Coding
(SAC). However, the poor frequency resolution of the MFCC filter bank, together
with the fact that the envelope portions correspond to fixed frequency bands, and not
to time-varying partials, makes them unsuitable for an accurate spectral envelope
description. MFCCs will be addressed in more detail in Sect. 4.7.1, since they will
be subjected to a comparative evaluation in the scope of the present work.

The MPEG-7 standard [80] makes use of spectral basis decomposition as feature
extraction to train a statistical model [38]. However, the goal there is again the
classification of general audio signals, and the extraction is based on an estimation
of a rough overall spectral shape, defined as the energies in a set of fixed frequency
bands. Although this shape feature is called Audio Spectrum Envelope in the stan-
dard, it is not a spectral envelope in the strict sense of matching the partial peaks,
and so it does not accurately follow the peaks, either.

Tardieu and Rodet [152] propose a statistical model of instrumental timbre based
on estimating GMMs from general-purpose features such as spectral flatness, nois-
iness, attack time and energy modulation. Each model is intended to capture the
instrument’s whole pitch and dynamic ranges; however, different playing styles and
effects require different models. In order to increase the per-class sample popula-
tion, needed for robust training, they propose a factorization of the GMMs. In

5Although interrelated, it is often assumed that vibrato is only produced by frequency modula-
tion, and tremolo by amplitude modulation.
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this way, it possible to learn, e.g., an instrument-independent vibrato model and a
playing-style-independent flute model, and afterwards combine both models to ob-
tain a vibrato flute model, even if few or no samples belonging to that particular
class were present in the database. The intended application is a very novel one:
Computer-Aided Orchestration (CAO). Given a target sound, the goal is to pro-
pose a certain combination of acoustic orchestral instruments, and their respective
pitches, dynamics and playing styles, so that, when combined, the resulting sound
will resemble the original target sound.

Relatively few works have been devoted to discuss the limitations of traditional
statistical models such as GMMs or Hidden Markov Models (HMM), or of vector-
quantization clustering techniques, in which each input data vector is replaced by
the corresponding cluster centroid (such as k-Means) when applied to individual
instrumental samples. The issue here is that an accurate description of the temporal
evolution of the spectral, or any other kind of short-time feature, is lost or severely
reduced, and replaced by a discrete set or sequence of states or cluster centroids.

Within this context, Klapuri et al. [92] propose a state-based modeling method
in which the between-state transitions do not occur instantly, such as in HMM and
vector quantization, but during a given time interval at a constant speed, following
a path defined by linear interpolation (and thus called interpolating state model).
However, the method is completely deterministic and thus not appropriate to the
statistical characterization of large databases, which is the purpose aimed at here.
The proposed application in the cited work is to encode individual data sets for SAC
purposes. The issue of accurate modeling of temporal evolution will play the central
role in the prototyping (training) stage of the model proposed here (Sect. 4.6).

4.4 Developed model

The approaches reviewed above fulfill some of this work’s design requirements of
generality, compactness and accuracy, but none of them meets the three conditions
at the same time. The modeling approach presented in the present chapter was
motivated by the goal of combining all three advantages into the same algorithm.
What follows is a detailed discussion of how the previous approaches fail to meet
the criteria, and how those limitations are proposed to be overcome.

• Generality. Most of the reviewed methods are intended for the timbral char-
acterization of individual notes, and do not propose a training procedure. Most
often [76, 102, 126, 134], a few consecutive notes are indeed concatenated to
obtain common bases of the timbre space; however, no method is proposed
to summarize the projections of all notes from each instrument into a single
prototype. MFCCs and the MPEG-7 approach are intended for large-scale
training with common pattern recognition methods, but as mentioned they
do not meet the requirement of accuracy of the envelope description. In the
present work, a training procedure consisting of extracting common reduced-
dimensional bases and describing each instrument’s training database as a
prototype curve in timbre space will be proposed (Sect. 4.6).
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Figure 4.3: Overview of the timbre modeling process.

• Compactness. In [134], compactness was considered one of the goals, but no
training phase takes place. MFCCs, used in [71, 126], are highly compact but,
again, inaccurate. This work will use PCA-based spectral basis decomposition
to attain compactness.

• Accuracy. All approaches relying on sinusoidal modeling [76, 102, 126, 134]
are based on highly accurate spectral descriptions, but as mentioned, fail to
fulfill either compactness or generality. The model used here relies on an
accurate description of the spectral envelope by means of additive-analysis-
based interpolation. Also, the dynamic evolution of timbre will be modeled in
a more detailed way than can be obtained by traditional methods like GMMs
and HMMs.

As will be discussed in detail, the fulfillment of the three criteria simultaneously
creates additional challenges that need to be addressed, such as the misalignment of
frequency supports (Sect. 4.5.2) and the preservation of a faithful description of the
spectral envelope’s temporal variation (Sect. 4.6). The modeling approach proposed
here can be divided into a representation and a prototyping stage. In the context
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of statistical pattern recognition, this corresponds to the traditional division into
feature extraction and training stages. Figure 4.3 shows an overview diagram of the
whole modeling approach. Each individual processing block will be addressed and
evaluated in detail in the next two sections: Sect. 4.5 deals with the representation
stage and Sect. 4.6 with the prototyping stage.

4.5 Representation stage

The aim of the representation stage of the modeling procedure is to produce a set
of coefficients describing the individual training samples. It thus can be thought
of as a feature extraction process such as found in classification or general pattern
recognition applications. The process of summarizing all the coefficients belonging to
an instrument into a prototype subset representative of that particular instrument
will be the goal of the second modeling step, the prototyping or training stage,
addressed in the next section.

The requirement of accuracy, however, makes the presented approach differ from
traditional feature extraction methods, which in general loose lots of information
and are not invertible (think for instance of the spectral shape features like centroid
or flatness, which describe the whole spectrum by a single scalar). An appropri-
ate balance between compactness and accuracy can be achieved by adaptive basis
decomposition methods (introduced in Sect. 2.3) applied to the time–frequency
spectrum.

4.5.1 Basis decomposition of spectral envelopes

The application of adaptive basis decomposition to time–frequency representations
was proposed by Casey [38, 40] as a powerful feature extraction method that ade-
quately characterizes a wide range of sounds. His approach has been widely popular
and was adopted as part of the MPEG-7 standard [80]. Following the notation
used for PCA in Sect. 2.3.4, spectral basis decomposition consists of performing a
factorization of the form

X = PY, (4.9)

where X is the data matrix containing the original signal, P is the transformation
basis whose columns pi are the basis vectors, and Y is the projected coefficient
matrix. However, instead of considering a set of time-domain signals as the rows
of matrix X, as was done in Chapter 2, this time the input data matrix is a time–
frequency representation constituted by a set of K spectral bands and R time frames
(usually R ≫ K).

As introduced in that chapter, the rows are considered the random variables, and
the columns their realizations. Therefore, the interpretation of the decomposition
defined by Eq. 4.9 will depend on the data organization on that matrix. If the matrix
is in temporal orientation (i.e., it is a R×K matrix X(r, k)), a temporal R×R basis
matrix P is obtained. If it is in spectral orientation (K × R matrix X(k, r)), the
result is a spectral basis of size K × K. Having as goal the extraction of spectral
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features, the latter case is of interest here. In spectral orientation, the projected
coefficients Y (i.e., the principal components) constitute a set of uncorrelated time-
varying weights.

Using adaptive transforms like PCA (Sect. 2.3.4) or ICA (Sect. 2.6.1) for time–
frequency decomposition has proven to yield valuable features for content analysis
[38]. Since PCA yields an optimally compact representation, in the sense that the
first few basis vectors represent most of the information contained in the original
representation, while minimizing the reconstruction error, it is most appropriate as
a method for dimensionality reduction. ICA additionally makes the transformed
coefficients statistically independent. When applied to a time–frequency representa-
tion, ICA is called Independent Subspace Analysis (ISA), and its main application is
source separation from mono mixtures [39] (see also Sect. 5.1). However, since the
minimum reconstruction error is already achieved by PCA, ICA is not needed for the
current compact representation purposes. This fact was confirmed by preliminary
experiments. PCA was thus chosen for the present model.

In practice, the input data must be centered and it is convenient to whiten the
output (Sect. 2.3.4) in order to balance the influence of each timbral axis. Thus,
the final projection of reduced dimensionality D < K is given by

Yρ = Λ−1/2
ρ PT

ρ (X − E{X}), (4.10)

where Λ = diag(λ1, . . . , λD) and λd are the D largest eigenvalues of the covariance
matrix Σx, whose corresponding eigenvectors are the columns of Pρ. The truncated
model reconstruction will then yield the approximation

X̂ = PρΛ
1/2
ρ Yρ + E{X}. (4.11)

The original approach by Casey performs basis decomposition upon the STFT
spectrogram, with fixed frequency positions given by the regular frequency-domain
sampling of the DFT. This is a substantial difference to the aim of the present work,
which is to apply such decomposition methods on the (dynamic) spectral envelope.
Since the spectral envelope is defined here as a set of partials with varying frequency
supports plus an interpolation function, the arrangement into the data matrix is not
no obvious and calls for several additional considerations. They will be addressed
thoroughly in the next section.

Examples of spectral envelope decompositions of single notes

Figure 4.4 shows an example of PCA spectral basis decomposition performed upon
the spectral envelope of a single violin note extracted by additive analysis and linear
interpolation. Note that the surface is only defined at the time-varying frequency
support of the sinusoids. Only the first 3 dimensions of the PCA decomposition
are shown. The original data matrix (left), containing logarithmic amplitudes, is
decomposed as the product of a spectral basis matrix (center) and of a coefficient
matrix (right). Note that the first time coefficient function represents the overall
temporal ADSR envelope, consisting in this case of a sustained phase and of a
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Figure 4.4: Example of basis decomposition of a spectral envelope by PCA. The data
matrix is the product of the coefficient and basis matrices. The figure shows the first 3 bases
of a violin note played with vibrato.
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Figure 4.5: Interpretation of the basis decomposition of Fig. 4.4 as a projection onto the
space spanned by the bases.

pronounced release phase. The second and third coefficient functions capture the
effect of the vibrato. Thus, PCA has been able to decouple the influence of vibrato
from the overall spectral shape. Similarly, the first spectral basis is the overall shape
of the spectral envelope, and the higher order bases describe finer spectral variations
that modulate the envelope at a rate dictated by the corresponding time functions.

Figure 4.5 shows the same decomposition interpreted as a projection onto the
reduced-dimensional space defined by the first three PCA bases. The projected
coefficients constitute a multivariate data cloud whose data vectors are ordered in
time, as can be denoted by explicitly tracing a trajectory between them. Each point
in PCA space corresponds to one time frame of the spectral envelope, whose shape
will be determined by the position of the point relative to the axes. The cluster to
the right corresponds to the sustained phase, in which the first coefficient (overall
amplitude) is nearly constant, whereas the second and third coefficients oscillate due
to the vibrato. The outcoming tail to the left corresponds to the release phase.
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(a) Original spectral envelope
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(b) Reconstruction with 1 dimension

Figure 4.6: Example of envelope reconstruction with only the first PCA basis.
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Figure 4.7: Explained variance as a function of dimensionality for a single French horn
note.

Previous works [76, 134], as well as experiments performed in the scope of the
present work, have shown the efficiency of PCA when applied to additive analysis
data. This is due to the fact that partial amplitude trajectories are usually highly
correlated, in consonance with the CASA grouping principles of similarity and com-
mon fate. As an example, the first dimension of PCA extracted from the additive
parameters of single notes already accounts for more than 90% of the total variance,
often reaching 99% with the first 5 or less dimensions. Figure 4.6(b) shows the
reconstruction of a linearly interpolated spectral envelope using only the first PCA
basis and the first coefficient function. When compared to the original envelope
(Fig. 4.6(a)), it can be seen that it smoothes the detailed spectral variations; nev-
ertheless, the overall shape has been reasonably retained. The reconstruction with
one dimension is just a constant envelope multiplied by a time-varying gain6.

Figure 4.7 gives a quantitative example. The plotted curve is the normalized ex-

6Apart from the amplitude adjustment produced by the term E{X} when de-centering.
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plained variance as a function of the number of retained dimensions. As was shown
in Sect. 2.3.4, the variance of each principal component equals the corresponding
eigenvalue of the covariance matrix. The global explained variance is thus the sum of
all previously extracted eigenvalues. The first dimension already attains almost 94%
of the variance, and 99% is reached with only 5 of the original 20 dimensions, corre-
sponding to a data reduction of 75%. This kind of measurement will be performed
in a more systematic way in the evaluation of the training framework described later
in this section.

When resynthesized using the original frequency information, similar results are
obtained in terms of perceived quality. The difference is clearly audible when using
only the first dimension. The sound is however indistinguishable from the original
sinusoidal model when using 5 or more dimensions.

4.5.2 Dealing with variable frequency supports

Training a model based on adaptive spectral basis decomposition requires the extrac-
tion of a common set of bases for the training set. This is achieved by concatenating
the spectra belonging to the classes to be trained (in this case, musical instruments)
into a single input data matrix. As mentioned above, the spectral envelope may
change with the pitch, and therefore training one single model with the whole pitch
range of a given instrument may result in a poor timbral characterization. However,
it can be expected that the changes in envelope shape will be minor for neighboring
notes. Training with a moderate range of consecutive semitones will thus contribute
to generality, and at the same time will reduce the size of the model.

In the case of additive data, the straightforward way to arrange the amplitudes
into a spectral data matrix is to fix the number of partials to be extracted (Pr = P )
and use the partial index p as frequency index, obtaining X(p, r) with elements
xpr = Âpr . This approach will be referred to as Partial Indexing (PI). This is the
method used in previous works like [76, 134].

However, when concatenating notes of different pitches for the training, their
frequency support will change logarithmically. This has the effect of misaligning the
f0-invariant features of the spectral envelope in the data matrix. This is illustrated
in Fig. 4.8, which shows the concatenated notes of one octave of an alto saxophone.
In the partial-indexed data matrix depicted in Fig. 4.8(c) (where coloring denotes
partial amplitudes), diagonal lines descending in frequency for subsequent notes can
be observed, which correspond to a misalignment of f0-invariant features. On the
contrary, possible features that follow the logarithmic evolution of f0 will become
aligned.

An alternative approach will be evaluated, consisting on setting a fixed maximum
frequency limit fmax before the additive analysis and extracting for each note the
required number of partials to reach that frequency. This is the opposite situation
as before: now the frequency range represented in each model is always the same,
but the number of sinusoids is variable. To obtain a rectangular data matrix, an
additional step is introduced in which the extracted spectral envelope is sampled
in frequency at points defined by a grid of G points uniformly spaced within the
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(a) Frequency support (b) Original partial data (c) PCA data matrix

Figure 4.8: PCA data matrix with Partial Indexing (1 octave of an alto saxophone).

(a) Frequency support (b) Original partial data (c) PCA data matrix

Figure 4.9: PCA data matrix with Envelope Interpolation (1 octave of an alto saxophone).

frequency range:

fg =
fmax

G
g. (4.12)

An example of this interpolation plus sampling approach is shown on Fig. 4.10.
The spectral matrix is now defined by X(g, r), where g = 1, . . . , G is the frequency
grid index and r the frame index. Its elements will be denoted7 by xgr = Ãgr. This
approach shall be referred to as Envelope Interpolation (EI). This strategy does
not change frequency alignments (or misalignments), but additionally introduces
an interpolation error. In the experiments, the two different interpolation methods
already introduced will be evaluated: linear and cubic interpolation.

Figure 4.9 illustrates the effect of preprocessing the PCA data matrix with EI.
The frequency support varies in density, but covers a nearly constant frequency
range. The preprocessed data matrix preserves the frequency alignment of the
formant-like features.

It is worth emphasizing at this point that the representations shown in Figs.
4.8(b) and 4.9(b) are not spectrograms (in which case the f0-invariant features would
always be aligned), but amplitude diagrams of the extracted partials, which corre-
spond exactly to the peaks defining the spectral envelope.

7The tilde notation (˜) will be used to denote interpolation.
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Figure 4.10: Cubic envelope interpolation at a regular frequency grid.

Frequency alignment is desirable for the present modeling approach because, if
subsequent training samples share more common characteristics, prototype spectral
shapes will be learnt more effectively. In other words, the data matrix will be
more correlated and thus PCA will be able to obtain a better compression. In this
context, the question arises of which one of the alternative preprocessing methods
—PI (aligning f0-correlated features) or EI (aligning f0-invariant features)— is more
appropriate. In order to answer to that, the experiments outlined in the next section
were performed.

The issue of taking into account the f0-dependency of timbre within a computa-
tional model has only been addressed recently, although from a different perspective.
For instance, in the work by Kitahara, Goto and Okuno [89], the aim is to explicitly
model the pitch correlation of the features, instead of trying to accommodate the
feature extraction process to reduce the error produced by not considering it, which
is the approach proposed here. To that end, the cited work employs a multivariate
Gaussian distribution in which the mean is f0-dependent and the covariance is con-
stant. Results showed an improvement of around 4% classification accuracy for a
database of isolated notes when using the explicit f0-dependency modeling.

4.5.3 Evaluation of the representation stage

The cross-validation8 experimental setup shown in Fig. 4.11 was implemented to
test the validity of the representation stage and to evaluate the influence of the
different preprocessing methods introduced: PI, linear EI and cubic EI. The audio
samples belonging to the training database are subjected to sinusoidal modeling,
concatenated and arranged into a spectral data matrix using one of the three meth-
ods. PCA is then applied to the data matrix. Dimension reduction is performed by
keeping D < K spectral dimensions (K = P for PI and K = G for EI), thus yielding

8k-fold cross-validation refers to the experimental setup in which a database is successively
partitioned k times into training and test sets. The results of the k experiment runs are averaged.
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Figure 4.11: Cross-validation framework for the evaluation of the representation stage.

a common reduced basis matrix Pρ of size K×D. The data matrix is then projected
onto the obtained bases, and thus transformed into the reduced-dimension model
space. The test samples are subjected to the same preprocessing, and afterwards
projected onto the bases extracted from the training database. The test samples
in model space can then be projected back into the time–frequency domain and, in
the case of EI preprocessing, reinterpolated at the original frequency support. Each
test sample is individually processed and evaluated, and afterwards the results are
averaged over all experiment runs.

By measuring objective quantities at different points of the framework, it is
possible to evaluate the requirements of compactness (experiment 1), reconstruction
accuracy (experiment 2) and generality (experiment 3). Although each experiment
was mainly motivated by its corresponding design criterion, it should be noted that
they do not strictly measure them independently from each other.

In the following, the results obtained with three musical instruments belonging
to three different families will be presented: violin (bowed strings), piano (struck
strings or percussion) and bassoon (woodwinds). The used samples are part of
the RWC Musical Instrument Sound Database [66]. One octave (C4 to B4) of two
exemplars from each instrument type was trained. As test set, the same octave from
a third exemplar from the database was used. For the PI method, P = 20 partials
were extracted. For the EI method, fmax was set as the frequency of the 20th partial
of the highest note present in the database, so that both methods span the same
maximum frequency range, and a frequency grid of G = 40 points was defined.
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Figure 4.12: Results from experiment 1: explained variance.

Experiment 1: compactness.

The first experiment evaluates the ability of PCA to compress the training database
by measuring the explained variance. As was shown in Sect. 2.3.4, the variance of
each principal component equals the corresponding eigenvalue of the covariance ma-
trix, and thus the total explained variance is the accumulated sum of the previously
extracted eigenvalues. A normalized version has been used so that no dimension
reduction corresponds to 100% of the variance:

EV(D) = 100

∑D
i λi

∑K
i λi

, (4.13)

where λi are the PCA eigenvalues, D is the reduced number of dimensions, and K
is the total number of dimensions (K = 20 for PI and K = 40 for EI).

Figure 4.12 shows the results. The curves show that EI is capable of achieving a
higher compression than PI for low dimensionalities (D < 14 for the violin, D < 5
for the piano and D < 10 for the bassoon). A 95% of variance is achieved with
R = 8 for the violin, R = 7 for the piano and R = 12 for the bassoon.
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Figure 4.13: Reinterpolation error.

Experiment 2: reconstruction accuracy.

To test the amplitude accuracy of the envelopes provided by the representation stage,
the dimension-reduced representations were projected back into the time–frequency
domain, and compared with the original sinusoidal part of the signal. To that end,
the Relative Spectral Error (RSE)[75] was measured:

RSE =
1

R

R
∑

r=1

√

√

√

√

∑Pr
p=1(Âpr − ˜̂

Apr)2
∑Pr

p=1 Â2
pr

, (4.14)

where Âpr is the original amplitude,
˜̂
Apr is the reconstructed and reinterpolated

amplitude, both at support point (p, r), Pr is the number of partials at frame r and
R is the total number of frames. In order to measure the RSE, the envelopes must
be compared at the points of the original frequency support. This means that, in the
case of the EI method, the back-projected envelopes must be reinterpolated using
the original frequency information. As a consequence, the RSE accounts not only
for the errors introduced by the dimension reduction, but also for the interpolation
error itself, introduced by EI.

Note that in the EI approach there is always an error produced by reinterpola-
tion, even if no dimension reduction is performed. This is illustrated in Fig. 4.13,
which shows a close-up of the estimated envelope between two consecutive partial
peaks in a given time frame. The black curve shows the original spectral envelope
estimated by cubic interpolation between the original peaks Âpr. This envelope is
then sampled at the frequency grid, denoted by the vertical dashed lines, and yield-
ing the sampled amplitudes Ãgr indicated by red points, which will be subjected to
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Figure 4.14: Results from experiment 2: Relative Spectral Error.

PCA analysis. If the full dimensionality is employed, like here, PCA is a perfectly in-
vertible transformation, and thus the reconstructed amplitudes have the same values
Ãgr. Keeping a reduced set of bases would result in the reconstructed amplitudes ly-
ing on a different position along each frequency grid line. Finally, the reconstructed
amplitudes are reinterpolated, producing the envelope shown in red which, as shown

by the green points (that correspond to the reinterpolated amplitudes
˜̂
Apr), differs

from the original one at the original frequency support. In contrast, with PI the
frequency support remains unchanged throughout all processing steps. Therefore,
no reinterpolation is needed, and no reconstruction error is present for D = K.

The results of this experiment are shown in Fig. 4.14. EI reduces the reconstruc-
tion error in the low-dimensionality range. The curves for PI and EI must always
cross because of the zero reconstruction error of PI with D = K and of the reinter-
polation error of EI. Interestingly, the cross points between both methods occur at
around D = 10 for all three instruments.

Experiment 3: generality.

If the sets are large enough and representative, a high similarity between the training
and testing data clouds in model space implies that the model has managed to cap-
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Figure 4.15: First two dimensions in model space of the training data for one octave of an
acoustic guitar, and corresponding Gaussian model.

ture general features of the modeled instrument for different pitches and instrument
exemplars. Thus, generality can be measured by defining a global distance measure
between both data distributions.

Note that this way of measuring training/testing data similarity is solely based
on the topology of the data points in feature space, and independent of any train-
ing or prototyping approach eventually used in later stages of the method. It is
thus appropriate for the present purpose of evaluating the representation stage sep-
arately. The training/testing similarity will be implicitly assessed by the results
of classification-related applications using the prototype models, whose success will
depend on their discriminative power. Such classification tasks will be the subject
of Sects. 4.7, 4.8, 5.2.4 and 6.4.

It was observed that most often the projected data clouds do not adopt simple
cluster forms. For instance, when observing the scatter plot for one octave of an
acoustic guitar (Fig. 4.15) it becomes clear that a single Gaussian density (in this
case shown with diagonal covariance matrix) would not be able to yield a reasonable
approximation. The same can be said of other models like GMM, which will not ap-
propriately match the underlying data neither, at least not with a moderate number
of model parameters. This is due to the non-sustained nature of the guitar notes,
in which spectral shape is constantly changing along its decay phase, resulting in a
monotonous trajectory in model space.

As a consequence, probabilistic distances that rely on the assumption of a cer-
tain probability distribution (like the divergence, the Bhattacharyya distance or the
Cross Likelihood Ratio), which will yield inaccurate results for data not matching
that distribution, were avoided. Instead, average point-to-point distances were used
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because, since they are solely based on point geometry, they will be more reliable
in the general case. In particular, the averaged minimum distance between point
clouds, normalized by the number of dimensions, was computed:

∆D(ω1, ω2) =
1

D

{

1

n1

n1
∑

i=1

min
yj∈ω2

{d(yi,yj)} +
1

n2

n2
∑

j=1

min
yi∈ω1

{d(yi,yj)}







, (4.15)

where ω1 and ω2 denote the two clusters, n1 and n2 are the number of points in each
cluster, yi are the transformed coefficients, and d(·) denotes a given point-to-point
distance.

An important point to note is that the distances are being measured in differ-
ent spaces, each one defined by a different set of bases, one for each preprocessing
method. A point-to-point distance susceptible to scale changes (such as the Eu-
clidean distance) will yield erroneous comparisons. It is necessary to use a distance
that takes into account the variance of the data in each dimension in order to appro-
priately weight their contributions. These requirements are met by the Mahalanobis
distance:

dM (y0,y1) =
√

(y0 − y1)TΣ−1
Y (y0 − y1), (4.16)

where ΣY is the global covariance matrix of the training coefficients9. The results of
this measurement are shown in Fig. 4.16. In all cases, and for all dimensionalities,
EI has managed to reduce the distance between training and test sets in comparison
to PI. The instrument with the greatest improvement was the piano.

For the sake of comparison, the same experiment was repeated for the piano, but
this time using the Kullback-Leibler (KL) divergence, which is a density-dependent
similarity measure. When applied to Gaussian distributions, the KL divergence is
given by

KL(ω1, ω2) =
1

2

(

log

(

detΣ2

detΣ1

)

+ tr(Σ−1
2 Σ1)

+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1) − N
)

. (4.17)

Note that the KL divergence measure relies only on the estimated parameters of
the normal distributions N1(µ1,Σ1) and N2(µ2,Σ2) (the covariance matrix used
in the Mahalanobis distance of Eq. 4.16 was a global one for whitening purposes,
not a cluster-dependent one). The results of this experiment (Fig. 4.17), show that
the measurements are misleadingly optimistic in comparison with the distribution-
independent results of Fig. 4.16.

Evaluation of the representation stage: summary of conclusions

From the previous experiments it follows that using the Envelope Interpolation
method for spectral representation improves compression efficiency, reduces the re-
construction error, and increases the similarity between test and training sets in

9The same result can also be obtained by performing an additional whitening step after PCA in
order to normalize variances before using the Euclidean distance.
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Figure 4.16: Results from experiment 3: training/test cluster distance.

principal component space, for a low to moderate dimensionality. In average, all
three measures are improved for 10 or less dimensions, which already correspond to
95% of the variance contained in the original envelope data. In general, cubic and
linear interpolation performed very similarly.

4.6 Prototyping stage

In model space, the projected coefficients must be grouped into a set of generic
models representing the classes. Common methods from the field of MIR include
GMMs and HMMs. Both are based on clustering the transformed coefficients into
a set of densities, either static (GMM) or linked by transition probabilities (HMM).
The exact variation of the envelope in time is either completely ignored in the former
case, or approximated as a sequence of states in the latter.

For the sake of accuracy, however, the time variation of the envelope should be
modeled in a more accurate manner, since as mentioned it plays an equally important
role as the envelope shape when characterizing timbre. Therefore, the choice here
was to always keep the sequential ordering of the coefficients, and to represent each
class as a trajectory rather than as a cluster. For each class, all training trajectories
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Figure 4.17: Training/test cluster distance measured by KL divergence.

are to be collapsed into a single prototype curve representing that instrument.
To that end, the following steps are taken. Let Ysi denote the coefficient trajec-

tory in model space corresponding to training sample s (with s = 1, . . . , Si) belonging
to instrument i (with i = 1, . . . , I), of length Rsi frames:

Ysi = (ysi1,ysi2, . . . ,ysiRsi). (4.18)

First, all trajectories are interpolated in time using the underlying time scales in
order to obtain the same number of points (in this case, cubic interpolation was
used). In particular, the longest trajectory, of length Rmax is selected and all other
ones are interpolated so that they have that length.

Ỹsi = interpRmax
{Ysi} = (ỹsi1, ỹsi1, . . . , ỹsiRmax), ∀s, i. (4.19)

Then, each point in the resulting prototype curve for instrument i, of length
Rmax, denoted by

Ci = (pi1,pi2, . . . ,piRmax), (4.20)

is considered to be a D-dimensional Gaussian random variable pir ∼ N(µir,Σir)
with empirical mean

µir =
1

Si

Si
∑

s=1

ỹsir (4.21)

and empirical covariance matrix Σir, which for simplicity will be assumed diagonal,
where σ2

ir = diag(Σir) is given by

σ2
ir =

1

Si − 1

Si
∑

s=1

(ỹsir − µir)
2. (4.22)

A prototype curve can be thus interpreted as a D-dimensional, non-stationary
Gaussian Process (GP) with time-varying means and covariances parametrized by
the frame index r:

Ci ∼ GP (µi(r),Σi(r)) . (4.23)
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Figure 4.18: Prototype curves in the first 3 dimensions of model space corresponding
to a 5-class training database of 423 sound samples, preprocessed using linear envelope
interpolation. The starting points are denoted by squares.

Figure 4.18 shows an example set of mean prototype curves corresponding to a
training set of 5 classes: piano, clarinet, oboe, violin and trumpet, in the first three
dimensions of a common PCA model space. The database consists of all dynamic
levels (piano, mezzoforte and forte) of two or three exemplars of each instrument
type, with normal playing style, covering a range of one octave between C4 and B4.
This makes a total of 423 sound files. Note that under the projection in which the
space is represented on the figure, the mean curves are perfectly separable. This is
a remarkable fact, since PCA is not optimized for separability, such as other linear
transformations like Linear Discriminant Analysis (LDA), but for compactness. In
this case, however, it manages to attain a high degree of separation.

Note that, for the graphical representation of the probabilistic prototype curves,
only the mean curves formed by the values µir were plotted. It is worth emphasizing,
however, that each curve has an “influence area” around it as determined by their
time-varying covariances.

Figure 4.19 depicts the same trained prototype curves under the three orthogonal
projections parallel to the axes, so that the influence and significance of each prin-
cipal component can be more clearly assessed. The y2y3 projection (Fig. 4.19(c))
is clearly the one that attains the highest curve separability.

Note lengths do not affect the length or the shape of the training trajectories.
Short notes and long notes share the same curve in space as long as they have the
same timbral evolution, the former having a smaller density of points on the curve
than the latter.

When projected back to the time–frequency domain, each prototype trajectory
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Figure 4.19: Orthogonal projections of the timbre space of Fig. 4.18.
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will correspond to a prototype envelope consisting of a mean surface and a variance
surface, which will be denoted by Mi(g, r) and Vi(g, r), respectively, where g =
1, . . . , G denotes the regular frequency grid of Eq. 4.12 and r = 1, . . . Rmax for all
the models. Each D-dimensional mean point µir in model space will correspond
to a G-dimensional vector of mean amplitudes constituting a time frame of the
reconstructed spectral envelope. From the properties of the Gaussian distribution,
it is known that a linear transformation of the form Ax + c applied to the variable
x with distribution N(µ,Σ) results in the distribution N(Aµ + c,AΣAT ). Thus,
undoing the effects of whitening and centering, the reconstructed vector of means is
given by

µ̂ir = PρΛ
1/2
ρ µir + E{X} (4.24)

and the corresponding variance vector

σ̂2
ir = diag

(

PρΛ
1/2
ρ Σir(PρΛ

1/2
ρ )T

)

, (4.25)

both of G dimensions, which form the columns of Mi(g, r) and Vi(g, r), respectively.
Again, for representation purposes only the mean surfaces Mi(g, r) will be used, but
variance surfaces are always implicit in the model as well.

Figure 4.20 shows the prototype envelopes corresponding to the prototype curves
of Figs. 4.18 and 4.19. For each envelope, a time–frequency, three-dimensional view
is shown, together with the projections from the frequency axes, which show more
clearly the overall shape characteristics of the spectral envelope. Note the different
formant-related features in the mid-low frequency areas. The coloring reflects the
logarithmic amplitudes.

Analogously as in model space, a prototype envelope can be interpreted as a
Gaussian Process, but in a slightly different sense. Instead of being multidimen-
sional, the GP is unidimensional (in amplitude), but parametrized with means and
variances varying in the 2-dimensional time–frequency plane. Such prototype en-
velopes are intended to be used as time–frequency templates that can be interpolated
at any desired time–frequency point. Thus, the probabilistic parametrization can
be considered continuous, and therefore the indices t and f will be used, instead of
their discrete counterparts r and k. The prototype envelopes can then be denoted
by

Ei ∼ GP
(

µi(t, f), σ2
i (t, f)

)

. (4.26)

Depending on the application, it can be more convenient to perform further
processing on the reduced-dimensional PCA space or back in the time–frequency
domain. When classifying individual notes, such as introduced in the next section,
a distance measure between unknown trajectories and the prototype curves in PCA
space has proven a successful approach. However, in applications where the signals
to be analyzed are mixtures of notes, such as polyphonic instrument recognition
(Sect. 4.8) or source separation (Chapter 5), the envelopes to be compared to the
models can contain regions of unresolved overlapping partials or outliers, which can
introduce important interpolation errors when adapted to the frequency grid needed
for projection onto the bases. In those cases, working in the time–frequency domain
will be more convenient.
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(a) Piano (b) Piano (frequency profile)

(c) Clarinet (d) Clarinet (freq. profile)

(e) Oboe (f) Oboe (frequency profile)

(g) Trumpet (h) Trumpet (freq. profile)

(i) Violin (j) Violin (frequency profile)

Figure 4.20: Prototype envelopes corresponding to the curves on Fig. 4.18.
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Remarks about the observed formants

On the frequency profile representations of Fig. 4.20, several prominent formants
are clearly visible, constituting the characteristic averaged spectral shapes of the
respective instruments. A number of acoustic studies with the purpose of analyzing
the formants of musical instruments have been reported in the literature, and their
observations are consistent with the average resonances found with the modeling
procedure that has been presented here.

As an example, the frequency profile of the clarinet (Fig. 4.20(d)) shows a
spectral hill that corresponds to the first measured formant, which, as reported by
Backus [10], has its maximum between 1500 Hz and 1700 Hz.

In the work by Meyer [110], the first formant of the oboe is reported to start
around 1100 Hz (roughly corresponding to the voice formant of the vocal “a”),
and the second to be centered around 2700 Hz (between vocals “e” and “i”). The
corresponding numbers given by Backus [10] are, respectively, 1400 Hz and 3000 Hz.
The corresponding profile of Fig. 4.20(f) shows a very prominent formant in the
first region, and a more attenuated hump-like resonance in the second.

In the case of the trumpet, a single formant is visible on Fig. 4.20(h), correspond-
ing to its first acoustically measured formant, observed by Meyer between 1200 Hz
and 1500 Hz and by Backus between 1200 Hz and 1400 Hz. Finally, the clear bump
around 2000 Hz on the violin profile (Fig. 4.20(j)) can be identified as the “bridge
hill” observed by several authors (see, e.g., [63]) in that frequency area, produced
by resonances of the bridge.

On the interpretation of the timbre axes

To gain further insight into the meaning of the timbre axes, the spectral envelope
will be evaluated and plotted at different points of the timbre space. In benefit of
clarity, a two-dimensional projection of the space onto the first two dimensions is
performed, and several evaluation locations were chosen as indicated on Fig. 4.21.
The used database is the same as in the previous figures. Two kinds of graphical
examples are provided. The first was intended to explicitly illustrate the variance
of the envelopes in the frequency domain as defined in Eq. 4.25. To that end, three
points on three different prototype curves were selected, as indicated by the red dots
on the figure. Point A corresponds to the first prototype frame of the clarinet, point
B to a mid-length prototype frame of the trumpet, and point C to one of the last
frames of the piano. Figure 4.22 represents the corresponding mean envelopes as
the thick line, enclosed by two thinner lines representing the variance.

Figure 4.23 represents the evolution of the spectral envelope alongside the straight
traces defined on Fig. 4.21, sampled uniformly at 10 different points. The thicker
envelopes correspond to the starting points on the traces, which are then followed
in the direction marked by the arrows. Traces 1 to 4 are parallel to the axes, thus
showing the latter’s individual influence on the envelope.

From traces 1 and 3 it can be asserted that the first dimension (axis y1) mostly
(but not only) affects the overall amount of decreasing slope of the spectral enve-
lope. Such overall slope can be approximated as the slope of the straight line one
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Figure 4.21: Envelope evaluation points and traces for Figs. 4.22 and 4.23.
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Figure 4.22: Envelope mean and variances at points A,B and C on Fig. 4.21.

would obtain performing linear regression on the spectral envelope. Along traces 2
and 4 (axis y2), the envelope has the clear behavior of changing the ratio between
low-frequency and high-frequency spectral content. For decreasing values of y2,
high-frequency contents decreases and low-frequency contents increases, producing
a rotation of the spectral shape around a pivoting point at approximately 4000 Hz.
It follows that one of the most affected features is in this case the spectral centroid
(center of gravity), or its perceptual counterpart, the “brightness”. In contrast to
the first dimension, the slope of the linear regression would not significantly change.
The centroid or brightness has often been identified as one of the 2 or 3 most im-
portant perceptual dimensions in classic and recent psychoacoustical studies based
on listening tests, such as in Wessel [179], McAdams et al. [106] and Lakatos [96].
Traces 5 and 6 travel alongside the diagonals and represent thus a combination of
both behaviors.
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Figure 4.23: Evolution of the spectral envelope alongside the traces on Fig. 4.21.

4.7 Application to musical instrument classification

In the previous sections it has been shown that the proposed modeling approach
is successful in capturing the timbral content of individual instruments. For most
applications, however, dissimilarity between different models is desired. Therefore, it
is desirable to evaluate the performance of the model within a classification context
involving solo instrumental samples. Such a classification task is a popular MIR
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application , aimed at the efficient managing and searching of sample databases. A
comprehensive overview of isolated instrumental sample classification can be found in
the work by Herrera, Peeters and Dubnov [73]. In that work, the reported accuracies
for classification problems containing few instrumental classes (less than 10) reach
percentages higher than 90% with a variety of techniques from the literature.

One possibility to perform such a classification task using the present model is
to extract a common basis for the whole training set, compute one prototype curve
for each class and measure the distance between an input curve and each prototype
curve. Like for prototyping, the curves must have the same number of points, and
thus the input curve must be interpolated with the number of points of the densest
prototype curve, of length Rmax. The distance between an interpolated unknown
curve Ũ and the i-th prototype curve Ci is defined here as the average Euclidean
distance between their mean points:

d(Ũ , Ci) =
1

Rmax

Rmax
∑

r=1

‖ũr − µir‖ =
1

Rmax

Rmax
∑

r=1

√

√

√

√

D
∑

k=1

(ũrk − µirk)2. (4.27)

The class corresponding to the lowest distance is chosen.
For the experiments, a set of 5 classes was defined (piano, clarinet, oboe, violin

and trumpet), again from the RWC database [66], each containing all notes present
in the database for a range of two octaves (C4 to B5), in all different dynamics
(forte, mezzoforte and piano) and normal playing style. This makes a total of 1098
individual note files, all sampled at 44,1 kHz. For each method and each number of
dimensions, the experiments were iterated using 10-fold cross-validation. The same
parameters as in the representation stage evaluations were used: P = 20 partials for
PI, and a frequency grid of G = 40 points.

The obtained classification accuracy curves are shown on Fig. 4.24. Note that
each data point is the result of averaging the 10 folds of cross-validation. The
experiments were iterated up to a dimensionality of D = 20, which is the full di-
mensionality in the PI case. The best classification results are given in Table 4.1.
With PI, a maximal accuracy of 74.86% was obtained. This was outperformed by
around 20% when using the EI approach, obtaining 94.86% for linear interpolation
and 94.59% for cubic interpolation. As in the representation stage experiments,
performance does not significantly differ between linear and cubic interpolation. As
has been seen, the obtained accuracies are comparable to those of state-of-the-art
systems.

Note that the curves rise quickly in the low-dimensionality area, and very strongly
tend to stabilize starting from around D = 8 or D = 10. This is another confir-
mation of the fact that the first few dimensions of model space capture the most
informative timbral features.

4.7.1 Comparison with MFCC

The widely used Mel Frequency Cepstral Coefficients (MFCC), originally proposed
by Davis and Mermelstein [50], are comparable to the proposed model inasmuch
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Figure 4.24: Classification results: averaged classification accuracy.

Representation Accuracy STD

PI 74.86 % ± 2.84%
Linear EI 94.86 % ± 2.13%
Cubic EI 94.59 % ± 2.72%
MFCC 60.37 % ± 4.10%

Table 4.1: Classification results: maximum averaged classification accuracy and standard
deviation (STD) using 10-fold cross-validation.

as they aim at a compact description of spectral shape. However, as anticipated
before, they lack accuracy in the description of the spectral envelope. To compare
the performances of both approaches, the experiments were repeated with exactly
the same set of database partitions, substituting the representation stage with a
standard computation of MFCCs10. Before presenting the results, the extraction
process [51] will be briefly addressed.

The extraction of MFCCs relies on a modification of the original cepstrum def-
inition of Eq. 4.2 in order to simulate the non-linear human hearing mechanism,
which has been shown to further improve the effectiveness of cepstral analysis. In
particular, the frequency axis is warped to approximate the nonlinear perception of
pitch which, as was introduced in Sect. 3.1, is approximated by the mel scale (Eq.
3.23).

Such a warping is implemented by filtering the original DFT spectral content
with a bank of L bandpass filters with center frequencies fi = ki

fs

N , where N is the
DFT size, spaced by the mel scale and with a bandwidth given by some approxima-
tion to critical bandwidth. In the context of cepstral analysis, this original spectral
content is log(|X(k)|) and the filtering results in a set of log total energies in the

10The implementation used here was the one contained in Slaney’s Auditory Toolbox [141].
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critical bands, given by

Y (i) =

N/2
∑

k=0

log(|X(k)|)Hi

(

k
2π

N

)

, (4.28)

where Hi is the frequency response of the filter (usually assumed triangular). Note
that the values Y (i) must lie on the center frequencies fi, and the rest of the bins
must be set to zero:

Y (k) =

{

Y (i) , k = ki

0 , k 6= ki
. (4.29)

After the mel-warping, the final MFCCs, (the mel-cepstrum) are obtained by taking
the DCT:

cmel(q) =
N−1
∑

k=0

Y (k) cos

[

π

N

(

k +
1

2

)

q

]

. (4.30)

Taking the DCT has the effect of concentrating the energy in the first few coefficients
(this concentration is however less efficient than the one obtained with PCA, which
as was shown in Sect. 2.3.4, is optimal both in the variance and in the MSE sense).

The steps to extract the MFCCs can then be summarized as follows (in the case
of short-time processing, all of them must be performed for each windowed frame):

1. Compute the DFT X(k) from the input signal x(t).

2. Take the logarithm from the amplitude, log(|X(k)|).

3. Apply mel-scale warping using critical band averaging (Eq. 4.29).

4. Take the DCT thereof.

The coefficients obtained in this way were subjected to the same prototyping
approach outlined in Sect. 4.6, and a set of MFCC prototype curves was thus
created. Again, classification based on average point-to-point Euclidean distance
was performed with the same database, under exactly the same cross-validation
partitions. The results are shown on Fig. 4.24 and Table 4.1. The highest achieved
classification rate was of 60,37 % (with 13 coefficients), i.e., around 34 % lower than
obtained with EI.

4.8 Application to polyphonic instrument recognition

A more demanding classification-related task in which the presented modeling ap-
proach can be used is that of polyphonic, multi-timbral instrument recognition,
i.e., the detection of the instruments that are present in a monaural mixture.
The problem is more difficult than the previous isolated-note classification, for the
same reasons that complicate source separation: the spectral components of the
sources overlap in the time–frequency domain. Approaches for polyphonic instru-
ment recognition follow either one of two possible paths, corresponding to either
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the understanding-without-separation or the separation-for-understanding paradigm,
both introduced in Sect. 1.1. Examples of the first class, which avoid separation
and try to detect the instruments from the whole mixture, include the works by
Essid, Richard and David [60] and Livshin and Rodet [100]. The second kind of
approaches perform a partial source separation, not necessarily oriented to quality,
but enough to allow further, quasi-isolated processing (see, e.g., the work by Kashino
and Murase [85]).

The timbre modeling approach presented in the current chapter was tested within
a recognition framework of the second type, consisting on a first separation-oriented
block and a second timbre-matching block. The first block yields a set of time–
frequency clusters, each one ideally corresponding to a single note. These are then
passed on to the matching block, in which the clusters are compared to each one
of the timbre models, and the highest match is selected as the instrument for that
note.

The separation block uses sinusoidal modeling as front-end and is based on the
Normalized Cut (Ncut) criterion, which originated from the domain of video and
image segmentation [139]. The goal of the Ncut algorithm is to partition a graph
following solely topological criteria. It was first proposed for audio applications
by Lagrange and Tzanetakis [95], where the nodes of the graph correspond to the
amplitudes of the partial peaks obtained by additive analysis. A detailed description
of the algorithm can be found in the previous references.

For the present discussion, it suffices to know that the Ncut stage provides a
set of clusters of partial frequencies and amplitudes that approximately correspond
to each individual note present in the mixture. A particular cluster of Rj frames
will be represented here as an ordered set of amplitude and frequency time frames
Aj = (a1, . . . ,aRj ) and Fj = (f1, . . . , fRj ), each one with possibly a different number
of partials P1, . . . , PRj

In this particular application scenario, working in the reconstructed time–
frequency domain instead of in model space (i.e., using prototype envelopes rather
than prototype curves) is more convenient, to avoid the already mentioned large in-
terpolation errors produced by unresolved partials, undetected time–frequency areas
or outliers that can be produced by the separation stage.

Timbre matching

Each one of the clusters obtained by the Ncut stage is matched against each one of the
mean prototype envelopes Mi(g, r). The proposed approach consists of evaluating
the prototype envelope of model i at the frequency support of the input cluster j.
This operation will be denoted by

M̃ij = Mi(Fj). (4.31)

To that end, the time scales of both input and model are first normalized. Then, the
model frames closest to each one of the input frames in the normalized time scale
are selected. Finally, each new amplitude value m̃ij

pr is linearly interpolated from the
neighboring amplitude values of the selected model frame.
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Classified True instruments
as p o c t v s

p 100 0 0 0 0 0
o 0 100 8 8 0 0
c 0 0 67 0 33 0
t 0 0 0 92 0 8
v 0 0 0 0 58 8
s 0 0 25 0 8 83

Table 4.2: Confusion matrix (detection accuracies in %) for single-note instrument classi-
fication. The labels denote: piano (p), oboe (o), clarinet (c), trumpet (t), violin (v) and
alto sax (s).

The distance between the j-th cluster and the i-th interpolated prototype enve-
lope is then defined as

d(Aj , M̃ij) =
1

Rj

Rj
∑

r=1

√

√

√

√

√

PRj
∑

p=1

(Aj
pr − m̃ij

pr)2, (4.32)

i.e., the average of the Euclidean distances between frames of the input clusters and
interpolated prototype envelopes at the normalized time scale. This is the time–
frequency counterpart of the timbre-space curve distance of Eq. 4.27. The model
M̃ij minimizing this distance is chosen as the predicted instrument for classification.

Results for isolated notes

As a baseline for comparison with the multi-note case, the timbre matching stage was
tested for the task of classification of isolated notes, such as in the previous section.
The matching and decision process, however, takes now place in the time–frequency
domain using envelopes, rather than in model space as before.

A dataset of 72 notes within the range C4 to B4 belonging to 6 instruments
(piano, oboe, clarinet, trumpet, violin and alto saxophone) was again extracted
from the RWC Musical Instrument Sound Database [66]. The results are shown on
the confusion matrix of Table 4.2. The overall classification rate was 83.3%. Violin
and clarinet turned out to be the most difficult instruments to classify.

Results for mixed notes

More interesting are the results for multiple notes. A total of 54 synthetic mixtures
were created, each one containing 2, 3 or 4 simultaneous notes belonging to different
instruments, all with synchronous onsets. The first evaluation is based on the true
positive (TP) and false positive (FP) values. In this context, true positives are the
number of separated clusters correctly classified as an instrument present in the
mixture. False positives are the number of instrument detections not present in the
mixture. Based on these quantities, the standard Information Retrieval measures of
Recall (RCL):

RCL =
TP

COUNT
, (4.33)
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2-note 3-note 4-note total

RCL PRC F1 RCL PRC F1 RCL PRC F1 RCL PRC F1

p 83 100 91 22 100 36 0 0 0 23 100 38
o 133 75 96 100 46 63 67 40 50 86 50 63
c 33 100 50 33 100 50 40 86 55 36 93 52
t 89 100 94 58 100 74 58 64 61 67 85 75
v 67 67 67 83 45 59 83 36 50 80 43 56
s 100 43 60 78 60 63 60 75 67 67 62 64

total 75 79 77 56 64 59 46 56 50 56 64 60

Table 4.3: Recall (RCL), precision (PRC) and F-Measure (F1) values for instrument iden-
tification in multiple-note mixtures.

where COUNT is the total number of notes of a given instrument present in the
mixture database, Precision (PRC):

PRC =
TP

TP + FP
(4.34)

and F-Measure (F1):

F1 =
2 · RCL · PRC

RCL + PRC
(4.35)

were computed. The results are shown in Table 4.3. It can be seen that the system
detected correctly 75% of the instrument occurrences in the 2-note case, 56% in the
3-note case and 46% in the 4-note case. The corresponding average precisions were
79%, 64% and 56%, respectively. The most demanding identification was posed by
the piano in the 4-note case, where no note was correctly detected as being produced
by it.

The second evaluation criterion used is a more demanding one: it not only
requires, as before, that the present instruments are correctly detected, but that
each individual note detection actually corresponds to the detected instruments.
For example, a violin+piano mixture would have been correctly detected with the
previous measures even if the first note was wrongly detected as a piano and the
second as a violin. To avoid this, the separated clusters were subjected to simple
fundamental frequency estimation, so that they could be compared with the correct
training notes that were labeled according to pitch in the database. Pitch detection
consisted on computing a frequency histogram of each cluster, yielding the strongest
partials, followed by a second histogram of differences between those strongest partial
frequencies, yielding the fundamental frequency estimate. This simple approach was
sufficient in such an isolated-note scenario.

With the pitch information obtained in this way, the results in Table 4.4 were
obtained. The table shows the note-by-note detection accuracy, i.e., the percentage
of individually, correctly detected notes. The average performances were 65%, 50%
and 33% for the 2-, 3- and 4-note cases, respectively.

4.9 Conclusions

The task of developing a computational model representing the timbral characteris-
tics of musical instruments has been addressed in the present chapter. The develop-
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Instrument detection accuracy
2-note 3-note 4-note overall

p 67 67 0 55
o 100 86 60 81
c 33 29 19 26
t 75 33 22 43
v 67 100 50 75
s 75 36 42 44

total 65 50 33 47

Table 4.4: Instrument classification performance (detection accuracy in %) for 2-, 3- and
4-note mixtures.

ment criteria were chosen and combined so that such models can be used not only as
a source model for source separation, but also in a wide range of MIR applications.
To that end, techniques aiming at compactness (PCA), accuracy of the envelope
description (sinusoidal modeling) and model generalization (training and prototyp-
ing) were combined into a single framework. The obtained features were modeled as
prototype curves in the reduced-dimension space, which can be projected back into
the time–frequency domain to yield a set of prototype envelopes.

A particular point of interest was the evaluation of the frequency misalignment
effects that occur when notes of different pitches are used in the same training
database. In order to handle that, a representation strategy based on frequency
interpolation was proposed as an alternative to applying data reduction directly to
the partial parameters. This Envelope Interpolation (EI) technique improved objec-
tive measures of explained variance, reconstruction error and training/test cluster
similarity for low and moderate dimensionalities of up to around 1/4 of the full
dimensionality, which already corresponds to around 95% of the total variance. It
also improves prototype-curve-based classification of isolated instrumental samples
by 20% in comparison to using plain partial indexing and by 34% in comparison to
using MFCCs as the features. It follows that the interpolation error introduced by
EI is compensated by the gain in correlation in the training data. It can also be con-
cluded that f0-invariant features play a more important role in such a PCA-based
model, and thus their frequency alignment must be favored.

In a first content analysis context, the models were employed in a classification
task involving isolated sound samples. Class decisions were based on average dis-
tances between the prototype curves and the unknown trajectories in PCA space.
The method attained 94.86% classification accuracy with 5 classes. In comparison,
the accuracy using MFCCs as the representation stage was of 60.37%.

The models were also successfully employed in the time–frequency timbre match-
ing stage of a single-channel polyphonic instrument recognition system based on a
previous cluster extraction using the Ncut criterion. Obtained note-by-note accura-
cies range from 65% for 2-voice mixtures to 33% for 4-voice mixtures for a database
of 6 instruments.

The modeling approach proposed here can be extended and refined in many
different ways, and it can be considered for other applications such as transcription
or realistic sound transformations. A detailed discussion of possibilities for future
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developments will be given in Sect. 7.2.
The next chapter will be devoted to the usage of the developed timbre models

as a source of a priori information within a monaural source separation context.
Chapter 6 will extend the approach to the stereo case.



5
Monaural separation based on timbre models

The timbre models discussed in the previous chapter were developed considering
their primary application as time–frequency templates guiding the separation of the
partials present in a mixture according to the source they belong to. This was
the main reason why an accurate representation of the spectral envelope based on
sinusoidal modeling and interpolation was chosen, in contrast with other, general-
purpose timbre models using only rough descriptions of the spectral shape, such as
MFCCs or MPEG-7’s Audio Spectrum Envelope feature.

The present chapter describes the development of a novel monaural source sepa-
ration approach based on those models. Monaural (single-channel) separation is the
most underdetermined situation, in which only one mixture or sensor is observed:

x(t) =

N
∑

n=1

ansn(t), (5.1)

and thus no spatial cues can be used to search for the mixing parameters, as was the
case in the methods presented in Sects. 2.6 and 3.4. Therefore, the separation success
relies solely on the capacity of the models to group the transformed coefficients into
sources, and their representation accuracy will directly be reflected on the separation
quality. A method that combines both the spectral information provided by the
models and spatial separation cues will be the subject of the next chapter.

In general, the single-channel separation problem calls for the use of sophis-
ticated signal models, either pre-trained or assuming a certain level of structural
configuration of the signals. The next section will present a brief review of previous
works that rely on such kind of modeling. The proposed system will be introduced
in Sect. 5.2, following a sequential description of the different processing steps in-
volved. Its experimental evaluation will be addressed in Sect. 5.3, and a summary
of conclusions in Sect. 5.4. Parts of the present chapter were previously published
in [32] and [33].

5.1 Monaural music separation based on advanced source

models

Source separation from a single channel is a demanding problem that requires either
strong assumptions about the nature of the sources, a fair amount of a priori infor-
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mation, or a combination of both. Since no spatial information can be exploited,
basic signal models such as the STFT or the DWT are not sufficient, and more
elaborate descriptions are needed.

Systems of this type can be classified into unsupervised and supervised ones. The
first do not rely on a previous training and generate the models in a data-driven
fashion. Examples include methods based on adaptive basis decomposition (Sect.
2.3) and on sinusoidal modeling (Sect. 4.2), which can be interpreted as adaptive
models whose parameters are estimated from the signals. They will be reviewed
in the next two subsections. Supervised methods, in contrast, employ a training
database of source examples to estimate the model before the actual separation
takes place, and will be introduced in Sect. 5.1.3. An overview of methods aiming
at monaural music separation can be found in the work by Siamantas, Every and
Szymanski [140]. An overview of unsupervised methods can be found in the work
by Virtanen [171].

Note that all approaches reviewed here perform separation from a single channel.
There exist hybrid systems that combine both the use of advanced source models
with the exploitation of spatial cues for the stereo or multichannel case. They will
introduced in the next chapter.

5.1.1 Unsupervised methods based on adaptive basis decomposition

Data-driven basis decomposition applied to spectra has already appeared in the
present work (Sect. 4.5.1) in the context of PCA-based dimensionality reduction
to obtain appropriate representation spaces for the timbral descriptions. As again
suggested by the representation/separation analogy (Sect. 2.4), the same principle
can be applied to the mixture signals in order to obtain the separated sources as the
result of the decomposition.

Usually, the obtained expansion functions do not directly correspond to the
sources; each source is rather formed by the sum of a certain subset of bases. This
requires an additional clustering step after the basis decomposition, so that each
subset of bases is grouped into a source stream. The clustering step has turned out
to be the most demanding one in many proposed systems, and must sometimes be
performed manually [1, 176].

An example of this kind of methods is the application of ICA (Sect. 2.6.1) to a
time–frequency representation of the input signal, as proposed by Casey [39]. The
ICA requirement that there must be the same number of sources than sensors is
overcome by performing analysis in the transformed domain, and decomposing the
mixture spectrogram into a set of statistically independent subspaces. This approach
is called Independent Subspace Analysis (ISA). Clustering of the bases into sources
is performed by partitioning a matrix, which they called ixegram, whose components
are the symmetric Kullback-Leibler divergences between each pair of independent
components.

A related approach is based on the constraint that the obtained spectral bases
and coefficients must be non-negative, which is meaningful when working with am-
plitude or power spectra. Such is the case of the application of Nonnegative Matrix
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Factorization (NMF) [97] to time–frequency representations, such as in the work
by Wang and Plumbley [176], which yields a set of spectral masks used for the
unmixing. The clustering of the corresponding bases must be performed manually.
Durrieu et al. [54] combine NMF with a source–filter model of the singing voice for
its separation from the accompaniment.

A related set of approaches are based on Nonnegative Sparse Coding (NSC) [77],
which combines the criterion of non-negativity with that of sparsity. An example is
the transcription-related approach proposed by Abdallah and Plumbley [1], where
the original NMF algorithm is extended assuming a sparse generative model with
multiplicative noise. Virtanen [169] further extends NSC with an additional criterion
of temporal continuity, formulated as a cost function measuring the absolute value
of the overall amplitude difference between spectral frames. Here, each temporal
expansion function is assumed to correspond to a source, and thus no clustering step
is needed. This however implies that each source is supposed to be generated by
a constant spectral envelope (given by the corresponding spectral basis) multiplied
by a time-varying gain. This is a too inaccurate approximation for most real-world,
non-stationary music signals.

A possibility to improve temporal accuracy was later proposed by Virtanen [170]
as a further extension of NSC. The generative model for each source consists of the
convolution of spectrograms (thus, full time–frequency representations conveying the
dynamic variation of the spectral envelope) with a vector of onsets. This approach
was thus named Convolutive Sparse Coding.

5.1.2 Unsupervised methods based on sinusoidal modeling

A different family of unsupervised approaches is based on sinusoidal modeling (Sect.
4.2), which is also a highly sparse model and allows a detailed handling of overlapping
partials. They are based on grouping the extracted partials according to ASA cues
(see Sect. 2.8), such as temporal and spectral smoothness, harmonic concordance,
common onsets and offsets or common modulations, and can be thus interpreted as
data-driven CASA implementations.

In an early 1990 approach by Maher [103], the goal is to separate two sources
after a preliminary multipitch estimation step. Then, four different methods for
resolving the overlapping partials are compared: the solution of a set of linear equa-
tions, the analysis of beating components (which takes advantage of the fact that the
interference of two sinusoids with close frequencies results in an amplitude modula-
tion at the rate of the frequency difference), linear interpolation from neighbouring
partials, and the use of a set of fixed spectral envelopes as templates. The latter
approach is thus supervised, but was discarded for the final evaluations because of
its lack of robustness.

In [173], the first of a series of works by Virtanen dealing with separation based
on sinusoidal modeling, CASA-like cues are implemented by a perceptual distance
that measures synchronous changes and harmonic concordance. The individual tra-
jectories are grouped into sources by selecting the combination that minimizes that
distance. The system is limited in that it cannot handle notes with the same pitch
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or the same onset. Also, according to the author, the results were not reliable for a
large number of sources.

To overcome these problems, an iterative approach was later proposed [174].
After a first, rough estimation of the sinusoidal frequencies by means of a multi-
pitch estimation stage, the parameters are refined in a least squares optimization
based on a linear model for the amplitudes and imposing harmonicity constraints
for the frequencies. An intermediate processing step of amplitude smoothing in a
critical-band frequency scale is introduced to simulate the smoothness of the spec-
tral envelope. This procedure was extended in [172] with a more refined model of
spectral smoothness and in [168] with a similar model for temporal smoothness.
In both cases, the smoothness is modeled by means of basis decomposition of the
harmonic structures and their evolution in time. In the spectral case, the expansion
functions are bandpass-filtered harmonic combs at frequency locations defined by
several warpings, such as a critical-band scale and a mel warping (Sect. 3.1).

In the previous approaches, once the individual partials have been assigned to
sources, their parameters are used to resynthesize them by means of additive analysis
(Sect. 4.2). An alternative approach has been presented by Every and Szymanski
[62], where spectral filtering techniques are used to resolve overlapping sinusoids,
which are detected based on harmonicity relations. The amplitudes of the over-
lapping partials are linearly interpolated from the nearest neighbors. Then, a set
of especially designed notch filters is applied to separate each pair of overlapping
peaks. The method can be interpreted as an adaptive time–frequency masking pro-
cess driven by the sinusoidal parameters. Its advantage over additive synthesis is
that it allows a more accurate estimation of the noise residual for further processing.
This system is non-blind, since it requires an explicit a priori knowledge about the
pitches in form of a MIDI score, or alternatively, a robust multipitch pre-processing
stage.

An explicit separation of the noise residual part is addressed by Every in [61].
One of the methods proposed is based on the assumed amplitude correlation between
the spectral envelope of the sinusoids and the spectral envelope of the noise floor.

5.1.3 Supervised methods

The above methods are unsupervised, without a training stage, and are based on
generic source models. To further improve separation, statistical models of the
sources can be trained beforehand on a database of isolated source samples, at
the cost of reducing the general applicability of the system to unknown sound or
instrument types.

A possibility of using a priori trained models arises in the context of Wiener-
filtering-based source separation, which was briefly introduced in Sect. 2.7.3. In
particular, Benaroya and Bimbot [18] use a database of isolated samples in order to
train alternatively GMMs or HMMs as the source priors needed for Wiener filtering
in the STFT domain. The approach is tested upon a 2-source single-channel mix-
ture. A similar approach was used by Ozerov et al. [122] to separate singing voice
from accompaniment. However, instead of using a separated training database, the
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priors are in this case extracted online from the processed mixture, which must have
been previously segmented manually into the vocal and non-vocal parts. A further
Wiener-based extension by Benaroya et al. [19] used a more sophisticated NSC
model instead of GMMs or Gaussian-state HMMs.

Vincent and Plumbley [166] propose a Bayesian framework to estimate the fre-
quency and amplitude parameters of the harmonic components (a set of harmonically
related sinusoids spanning several frames), as well as the noise residual, constituting
a monaural mixture, under an MAP criterion. The spectral envelope of each compo-
nent is assumed to be fixed and multiplied by a time-varying gain. The priors of the
model are learnt on a database of isolated sounds. A better performance than NMF
is reported. Automatic clustering of the components into sources is however not
discussed. Instead, clustering is based on maximizing the separation performance,
given the sources are known beforehand.

Meron and Hirose [109] address the single-channel separation of singing and
piano accompaniment, based on the prior knowledge of the musical score of the
piano part and on sinusoidal modeling. A model of the piano is trained on isolated
samples. It consists of a parametric description of each partial’s ADSR envelope,
whose frequency support is assumed to be constant.

Kashino et al. [86] combine a prediction-driven CASA architecture (see Sect.
2.8) with a range of a priori musical knowledge sources, including a chord transition
dictionary, a chord-note relation database, a set of chord naming rules, ASA grouping
rules (harmonicity and common onset), a set of sample spectral envelopes (which
they call tone memory) and a set of timbre models which in this case are simple
Gaussian models of a set of dimensionality-reduced (via PCA) features, such as
onset gradients and frequency modulations. This architecture is called OPTIMA
(Organized Processing Toward Intelligent Music Scene Analysis). This framework
was extended to handle overlapping partials by Kinoshita et al. [87].

Bay and Beauchamp [14] base their separation system on Sinusoidal Model-
ing and on a preliminary multipitch estimation step that assumes harmonicity. A
library of stored spectra is created by clustering a set of training, isolated-note spec-
tra for each fundamental frequency via the k-Means algorithm and selecting their
centroids. The library consists thus on a set of averaged static spectral shapes. The
non-overlapping sinusoids, predicted from the f0 information and the harmonicity
constraint, are matched with the library after a nearest-neighbor criterion, and the
overlapping sinusoids are retrieved from the best-matching template.

5.2 Proposed system

Many of the modeling steps discussed in the previous chapter (envelope estimation
based on sinusoidal modeling, envelope interpolation in the frequency grid, evalu-
ation of the reconstruction errors) were motivated by an increase of representation
accuracy, having as ultimate goal their deployment within a separation context. The
system that will be presented below was devised to evaluate and demonstrate the
ability of the timbre models as templates guiding the peak selection and unmixing
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for separation. For that reason, single-channel separation was addressed first, so
that no spatial cues can be exploited and the success of separation will directly
depend on the models.

Most approaches based on sinusoidal modeling rely either on a previous multip-
itch estimation stage [14, 172, 168] or on the knowledge of the MIDI or music score of
the mixture [61, 62, 109]. In contrast, as will be seen, for the proposed approach no
previous multipitch estimation or any kind of a priori pitch-related score is needed.
Instead, separation is solely based on common-onset properties of the partials, and
on the analysis of the evolution in time of the spectral envelope they define.

Another novelty is that no assumptions on harmonicity are made, unlike all pre-
vious sinusoidal-modeling-based approaches [61, 62, 103, 172, 169, 173, 174]. Instead,
separation is based on the CASA-like cues of common fate and good continuation
of the sinusoidal amplitudes, and on their comparison with the pre-stored time–
frequency templates which, it should be kept in mind, are interpolated surfaces that
cover a continuous range of frequencies. This allows separating highly inharmonic
sounds and separating chords played by a single instrument. The knowledge of the
number and names of the instruments is not mandatory, but will obviously increase
the performance.

System overview

Figure 5.1 shows an overview of the proposed separation system. It will be briefly
introduced here; a detailed presentation of the processing steps and its evaluation
will constitute the remainder of the chapter.

First, the mixture signal is subjected to sinusoidal modeling, obtaining a set
of sinusoidal tracks. Next, an onset detection stage follows (Sect. 5.2.2), based
on identifying synchronously starting tracks. In the track grouping module (Sect.
5.2.3), tracks corresponding to the same onset are grouped together, and overlap-
ping tracks are detected. The core of the separation system is formed by the timbre
matching (Sect. 5.2.4) and track retrieval (Sect. 5.2.5) modules, both based on
the trained timbre models described in the previous chapter. The timbre match-
ing module assigns an instrument to each track group, eliminating the need for a
post-separation clustering. Since this module also outputs onset/offset information
and the instrument each note belongs to, it can also be used for segmentation or
polyphonic instrument recognition. The track extension module retrieves the miss-
ing segments of the partial tracks (either due to overlapping or for not having been
detected), as well as entirely overlapping tracks, from the timbre models. Finally,
the separated tracks are resynthesized using additive synthesis.

Requirements on sinusoidal modeling

As will be seen in Sects. 5.2.2 and 5.2.5, the method requires analyzed partial
tracks to be split if there is a quick change in amplitude of moderate proportions,
and thus a sinusoidal extraction with a high sensitivity to amplitude changes must be
performed. On the other hand, a too high sensitivity would result on tracks being cut
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Figure 5.1: Monaural source separation system overview.

at intra-note amplitude modulations. An appropriate amplitude sensitivity balance
must be thus set carefully.

A further point to note when setting the extraction parameters is that peak
picking and partial tracking must be performed in inharmonic mode, since the signals
to be analyzed are mixtures of unknown pitches and harmonicities. Thus, the use
of a thresholding procedure to prevent the noise floor from being detected, like the
one detailed in Sect. 4.2 and illustrated on Fig. 4.2, is crucial.

5.2.1 Experimental setup

Throughout this chapter, the separation system developed will be tested with a
large set of experimental databases, each one consisting of a collection of mixtures
with distinctive characteristics that determine the level of complexity in question.
Not only the separation performance, but also the instrument classification accuracy
will be evaluated. The degree of difficulty will be determined by the polyphony, the
knowledge or absence of knowledge of the number and types of instruments, the
length of the mixture, the melodic and harmonic relationships between notes, and
the spectral characteristics of the involved instruments. The reader is again referred
to Tables 2.1 and 2.2 for a contextual overview of such experimental demands.

The experimental criteria have been organized according to Table 5.1. The group
of basic experiments (EXP 1 to EXP 3k1) corresponds to the mixing conditions most

1The “k” suffix denotes the fact that the instruments are assumed to be known a priori. It is
only used in case there is another instance of the same experiment set with unknown instruments.



134 5.2 Proposed system

Type Name Source content Harmony Instruments Polyphony

Basic

EXP 1 Individual notes Consonant Unknown 2,3,4
EXP 2 Individual notes Dissonant Unknown 2,3,4
EXP 3 Sequence of notes Cons., Diss. Unknown 2,3
EXP 3k Sequence of notes Cons., Diss. Known 2,3

Extended

EXP 4 One chord Consonant Unknown 2,3
EXP 5 One cluster Dissonant Unknown 2,3
EXP 6 Sequence with chords Cons., Diss. Known 2,3
EXP 7 Inharmonic notes - Known 2

Table 5.1: Table of experimental setups for the monaural separation system.

commonly tested with monaural separation systems: each source is a sequence of one
or more individual notes. The extended experiments (EXP 4 to EXP 7) demonstrate
advanced capabilities of the proposed method: the separation of sources containing
same-instrument chords and inharmonic sounds. Further implications and demands
of each experiment will be detailed in the course of the chapter.

The instrument model library used for setups EXP 1 to EXP 6 was the same
used for the evaluation of the model design in the previous chapter, consisting of 5
prototypes, namely piano, clarinet, oboe, trumpet, and violin. EXP 7 additionally
uses a trained model of inharmonic bell sounds. Each model was learnt using the
procedure detailed in Fig. 4.3 and throughout the previous chapter. They were
trained with individual note samples (fs = 44.1 kHz) from the RWC Musical In-
strument Sound database [66] corresponding to the fourth octave (C4 to B4) and
including all three different dynamic levels: forte, mezzoforte and piano. All piano,
clarinet, oboe and trumpet samples correspond to the “normal” playing style, and
violin was played without vibrato. The training parameters used were G = 40 fre-
quency grid points, D = 10 PCA dimensions, and linear frequency interpolation for
the time–frequency training data matrix.

In all experiments, cross-validation was ensured by testing with one instrument
exemplar and training with the remaining exemplars of the RWC database. Piano,
clarinet and violin are represented by 3 instrument exemplars; oboe and trumpet by
2. The total size of the database is of 414 files. Each experimental setup contains a
collection of 10 mixtures for each degree of polyphony, except the sequence experi-
ments EXP 3, EXP 3k and EXP 6, containing each 20 mixtures for each polyphony.
This makes a total of 170 individual separation experiments.

5.2.2 Onset detection

Sinusoidal extraction is followed by a simple onset detection stage, based on counting
the number of new tracks at any given time. The procedure will be illustrated by an
example mixture consisting of a sequence of 8 notes played alternatively by a piano
and by an oboe. Figure 5.2(a) shows the frequency support of the partial tracks
resulting from the additive analysis of such a mixture.

Let b(r) denote the function giving the number of tracks born at frame r. This
function, normalized by its maximum, is plotted as the dashed line on Fig. 5.2(b).
Taking this function as the onset detection function might work for simple mix-
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(b) Onset detection functions (see text): b(r) (dashed line) and o(r) (solid line)

Figure 5.2: Sinusoidal modeling and onset detection for an 8-note sequence of alternating
piano and oboe notes.

tures where a robust sinusoidal analysis is possible. Very often, however, many
high-frequency partials are only detected several frames after the real onset of the
corresponding note. This is due to their more unstable nature (both in frequency
and in energy) compared to the lower partials, particularly shortly after the attack.
If several of such higher partials happen to appear for the first time at the same
post-onset frame, they will produce a false peak on b(r). This is especially noticeable
in the second and sixth notes on the figure.

A preliminarily tested procedure to overcome this consisted of taking a moving
average of b(r) and taking the peaks of the resulting smoothed function as the
position of the onsets (this was the method used in [32]). A more robust solution
is to weight the contribution of each partial to the onset detection function by its
frequency, so that the lower partials, that are supposed to be more stable, have a
greater effect on establishing the detection peaks. In particular, the onset detection
function o(r) used was defined as
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o(r) =
∑

p∈Nr

1

f̂pr

, (5.2)

where f̂pr is the estimated frequency of partial p at frame r and Nr is the set of
indices of the partials born at frame r. This function is shown as a solid line on Fig.
5.2(b), together with an appropriate peak-picking threshold. A threshold suitable
for most of the experiments performed with the developed system was of 0.25 times
the maximum value of o(r). The peaks are then declared as the onset positions Lon

o

for o = 1, . . . , O (given in frames), which are denoted by the dashed lines on Fig.
5.2(a).

If a note is followed by another note of different pitch, new partial tracks will
appear and contribute to the above onset function. The contribution will be greater
the less partials of the new note overlap with the partials of the old note (i.e., the
more dissonant their interval is). For highly consonant intervals, and even with
unisons, the high amplitude sensitivity of the sinusoidal extraction will have already
ensured that the overlapping partials have been split at the onset, an thus they will
also contribute to o(r).

An important point to note is that the time of the detected onsets will always
be quantized with a resolution determined by the size of the analysis frames. In
other words, even with an optimal onset detection, there can be a time error of up
to one hop size. This is because the sinusoidal analysis method delivers frame-wise
time-stamps, assigned to all partials deemed stable in the course of the correspond-
ing analysis window. Since the preference is to have a relatively high frequency
resolution for detecting close partials, such time quantization can be quite coarse
(e.g., with the working sampling rate of 44.1 kHz, an FFT size of 8192 and a hop
size of 2048 samples were used, which corresponds to a time resolution of 46.4 ms).
Since the same time-stamp is used for resynthesis, the onset quantization can have
a noticeable effect on the qualitative and quantitative separation results.

In spite of its simplicity, the presented onset detection approach was sufficient
for the desired purposes. It was out of the scope of this work to evaluate in depth
the onset detection quality, or to further improve it. It must be noted, however,
that since the module is completely independent from the rest of the system (it only
delivers a vector of frame positions), any other onset detection method can be used.
A comprehensive review of onset detection methods can be found in [17].

5.2.3 Track grouping and labeling

To account for the above mentioned partial instability during the attack phase, all
tracks tt having its first frame within the interval [Lon

o − Q, Lon
o + Q] for a given

onset location Lon
o are grouped into the set To, where o is the onset index. A value

of Q = 2 was chosen. A track belonging to this set can be of one of the following
types:

1. Nonoverlapping: if it corresponds to a new partial not present in the previous
track group To−1, and does not overlap with any other partial belonging to the
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same track group To.

2. Overlapping with previous track: if its mean frequency is close, within a narrow
margin, to the mean frequency of a partial from the previous track group To−1.

3. Overlapping with synchronous track: if it corresponds to a new partial not
present in the previous track group To−1, and coincides in frequency, within a
narrow margin, with a track belonging to the same track group To.

Tracks of type 2 are detected, and correspondingly labeled, by searching the set
To−1 for a track fulfilling the narrow frequency margin condition. More specifically,
a track is labeled as overlapping with a previous-onset track if their mean frequencies
differ by less than 40 cents2.

Tracks of type 2 and 3 can be furthermore classified as resulting from overlaps
between partials belonging to the same or different instruments. Whether a track
of type 2 corresponds to the same or to different instruments is irrelevant for the
present purposes since the corresponding notes will be segmented and separated
anyway. On the other hand, tracks of type 3 belonging to the same instrument
will be left intact without separation in order to detect same-instrument chords as
belonging to a single source, allowing them to be separated as a single entity. Note
that this separation goal differs from that of transcription or multipitch estimation,
which would require to detect each and every constituent note of the chord.

The information available at this point of the system does not allow detecting
if tracks of type 3 belong to the same or to different instruments, and in fact to
distinguish between nonoverlapping tracks (type 1) and overlapping tracks of type 3.
Preliminary tests were performed that consisted in matching individual tracks to the
timbre models, but the results showed no sufficient robustness. This gave rise to the
simplification of considering tracks of types 1 and 3 as belonging to the same source,
which implies the current limitation of the system not supporting the separation of
notes and chords from different instruments if they start within the same analysis
frame. Such an onset separability constraint has to be assumed occasionally as a
trade-off for separation quality in systems relying on onset detection [61, 173].

For each track set To, a reduced set T NOV
o was created by eliminating all the

overlapping tracks of type 2 (NOV stands for “nonoverlapping”). This subset will
be used for the timbre matching stage, to ensure that each onset-wise track group
contains an many nonoverlapping tracks as possible in order to facilitate the match-
ing with the time–frequency templates. The full set To will however be stored and
used afterwards in the track extension and resynthesis stages.

As a final step within the track grouping module, the offset Loff
o corresponding

to a given onset Lon
o is declared as the last frame of the lowest-frequency partial of

group To. This decision is again based on the supposition that the lowest partials
are the ones with the smoothest and most stable behavior.

2A cent is one hundredth of a semitone in a logarithmic scale. Taking the octave as basis, a cent
corresponds to a frequency factor of 1200

√
2.
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5.2.4 Timbre matching

The timbre detection stage compares each one of the onset-related, non-overlapping
track groups T NOV

o to each one of the prototype envelopes derived from the timbre
models, and selects the instrument corresponding to the highest match. The over-
lapping tracks are discarded since their dynamic behaviour can significantly differ
from that of the stored time–frequency templates. The output of this module is a set
of labels, one for each onset, with the name of the instrument that has produced that
note or chord. Although it is not the main goal of the present work, this means that
running the system up to the timbre matching module can be used for polyphonic
instrument recognition and segmentation (not however for multipitch estimation or
transcription, since simultaneously playing notes by the same instrument will re-
main together as chords). In the context of source separation, this has the crucial
consequence that a post-separation clustering of separated components or notes to
sources is not necessary.

The core problem in this module is to design an appropriate distance measure
between the track groups and the models. A similar situation appeared in Sect. 4.8,
where the aim was to match partial clusters already separated by an independent sep-
aration method for the final purpose of polyphonic instrument recognition. In that
case, an averaged Euclidean distance between the clusters and the time–frequency
prototypes was used (Eq. 4.32). Here, that basic idea is further developed, enhanced
and adapted to the proposed separation system.

The first measure tested, similar to Eq. 4.32, was the total Euclidean distance
between the amplitude of each time–frequency bin belonging to a nonoverlapping
track group T NOV

o and the mean surface of the prototype envelope of instrument i
evaluated at the frequency support of T NOV

o , denoted by M̃io. Such a distance can
be rewritten here as

d(T NOV
o , M̃io) =

∑

t∈T NOV
o

Rt
∑

r=1

|Atr − Mi(ftr)|, (5.3)

where Rt is the number of frames in track tt ∈ To and Atr and ftr are the amplitude
and frequency, respectively, on the r-th frame of that track. In order to obtain the
evaluation at the frequency support M̃io = Mi(Fo), for each data point the model
frames closest in time to the input frames are chosen, and the corresponding values
for the mean surface are linearly interpolated from neighboring data points.

A probabilistic reformulation of the matching distance allows taking into account
not only the metric distance to the mean surfaces Mi, but also the spread of their dis-
tribution, which was modeled as the variance surface Vi. To this end, the distance-
minimization problem was redefined as a likelihood-maximization or, in other words,
a Maximum Likelihood decision. In particular, as measure of timbre similarity be-
tween T NOV

o and the instrument model formed by parameters θi = (Mi,Vi), the
following likelihood function is used:

L(T NOV
o |θi) =

∏

t∈T NOV
o

Rt
∏

r=1

p (Atr|Mi(ftr),Vi(ftr)) , (5.4)
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where p(x) denotes a unidimensional Gaussian distribution. The evaluation of the
variance surface at the frequency support Ṽio = Vi(Fo) is performed in the same
way as with the mean surface.

A requirement on both the metric and the probabilistic formulations in order for
them to be generally applicable is that they should not be affected by the overall gain
and by the length of the note or chord being classified. Gain invariance is required
because the models were trained with different dynamic levels, and thus they are
supposed to represent spectral shapes in a generalized way with respect to dynamic
levels. In order to guarantee a correct optimization of the matching measures, a two-
dimensional parameter search must be performed, with one parameter controlling
the amplitude scaling and one controlling the time extent. Amplitude scaling is
introduced by the additive parameter α and time scaling is performed by jointly,
linearly stretching the partial tracks towards the offset. Then, the Euclidean-based
measure becomes the optimization problem

d(T NOV
o , M̃io) = min

α,N







∑

t∈T NOV
o

Rt
∑

r=1

|AN
tr + α − Mi(f

N
tr )|







, (5.5)

and the likelihood-based problem is

L(T NOV
o |θi) = max

α,N







∏

t∈T NOV
o

Rt
∏

r=1

p
(

AN
tr + α|Mi(f

N
tr ),Vi(f

N
tr )
)







, (5.6)

where AN
tr and fN

tr denote the amplitude and frequency values for a track belonging
to a group that has been stretched so that its last frame is N . To avoid rounding
errors, the likelihood was computed in the logarithmic domain.

A further modification subjected to evaluation was a track-wise weighting such
that lower-frequency and longer tracks have a greater impact of the matching mea-
sure than higher-frequency and shorter tracks. Such a weighted likelihood takes the
form

Lw(T NOV
o |θi) = max

α,N







∏

t∈T NOV
o

wt

Rt
∏

r=1

p
(

AN
tr + α|Mi(f

N
tr ),Vi(f

N
tr )
)







, (5.7)

where wt is the track-dependent weight, which according to the above was defined
as

wt = eRt/f̄t , (5.8)

where f̄t is the mean frequency of the track. A disadvantage of such a weighting is
that pitch affects the likelihood, which will be higher for lower notes.

The three matching measures defined in Eqs. 5.5, 5.6 and 5.7 will be subjected to
performance evaluation in the next subsection. But first, a simple example will serve
to illustrate the timbre matching process. Figure 5.3(a) shows a good match between
a track group belonging to a piano note (solid black lines) and a segment of the piano
prototype envelope, with given amplitude scaling and time stretching parameters.
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(a) Good match: piano track group versus pi-
ano model

(b) Bad match: piano track group versus oboe
model

Figure 5.3: Examples of matches between track groups (solid black lines) and prototype
envelopes.

The gray lines on the envelope surface correspond to the evaluation points of the
envelope at the frequency support of the track group. It can be seen that the
tracks have an overall strong similarity in both their frequency-dependent amplitude
distribution and dynamic variation, in this case corresponding to an unsustained
sound. In contrast, Fig. 5.3(b) is an example of weak match between the same
piano track group and the oboe model. Both spectral shape and dynamic behavior
differ significantly.

Figure 5.4(a) shows the matching surfaces produced by the exhaustive, two-
dimensional parameter search (α,N) for the same piano note, compared with the
previously library of 5 instrument models: piano, oboe, clarinet, trumpet and violin
(non vibrato). The prototype curves corresponding to this database were shown in
Figs. 4.18 and 4.19, and the time–frequency prototype envelopes in Fig. 4.20. In
this example, the weighted likelihood of Eq. 5.7 was used as optimization measure.
The class corresponding to the global maximum of each such collection of probability
surfaces is assigned to the analyzed note. Figures 5.4(b) and 5.4(c) show representa-
tive projection profiles of the surfaces with fixed stretching and scaling parameters,
respectively.

Timbre matching evaluation

The separation performance of the system will obviously depend on its instrument
classification performance. A wrongly classified note will be assigned to the wrong
output source. Moreover, as it will be seen in the next section, its overlapping and
incomplete tracks will be retrieved from the wrong model, which will artificially alter
its timbre. From a different point of view, it is also interesting to test the timbre
matching module as a polyphonic instrument detector by itself. An evaluation of
the classification accuracy will thus help to assess these issues, and to select the
most appropriate matching measure.
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Figure 5.4: Examples of likelihood optimization results for a piano note.

The evaluations were based on the databases corresponding to the basic experi-
mental setups EXP 1 to EXP 3, as defined in Table 5.1. Mixtures in EXP 1 and EXP
2 contain one single note played by each instrument, with different onsets. They
differ in the harmonic relationships between them: in EXP 1, the used pairwise
intervals are the ones that are considered more consonant (perfect fifth, major and
minor thirds and major and minor sixths), and in EXP 2, the intervals are mostly
dissonant (major and minor seconds, augmented fourths and major and minor sev-
enths). As was argued in the introduction of Chapter 2, predominantly dissonant
mixtures are expected to be easier to separate than predominantly consonant ones,
because of the higher degree of partial overlaps in the latter case. In all timbre
matching experiments, the number and types of instruments out of the library of 5
models were unknown.

The sources making up EXP 3 contain sequences of more than one note per
instrument, again at different onsets. Such mixtures are more demanding, since in
order for the separation to be correct, each and every note of a given source must
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Consonant (EXP 1) Dissonant (EXP 2)
Polyphony 2 3 4 Av. 2 3 4 Av.

Euclidean distance 63.14 34.71 40.23 46.03 73.81 69.79 42.33 61.98
Likelihood 66.48 53.57 51.95 57.33 79.81 57.55 56.40 64.59
Weighted likelihood 76.95 43.21 40.50 53.55 79.81 77.79 61.40 73.00

Table 5.2: Instrument detection accuracy (%) for simple mixtures of one note per instru-
ment.

Sequences (EXP 3)
Polyphony 2 3 Av.

Euclidean distance 64.66 50.64 57.65
Likelihood 63.68 56.40 60.04

Weighted likelihood 65.16 54.35 59.76

Table 5.3: Instrument detection accuracy (%) for mixtures of sequences containing several
notes.

be correctly classified. Furthermore, the sequences were produced in such a way
that the first of two consecutive notes played by the same instrument gets cut at
the point were the second note starts, if the first did not yet finish. In such cases,
the matching of the track group with the models will decrease in robustness.

The classification measure chosen for the experiments was the note-by-note ac-
curacy, which is the percentage of individual notes correctly assigned to their in-
strument (this was the measure used in Table 4.4 of Sect. 4.8). Table 5.2 shows the
results for the individual note experiments EXP 1 and EXP 2 using either the aver-
age Euclidean distance (Eq. 5.5), the Gaussian likelihood (Eq. 5.6) or the weighted
likelihood (Eq. 5.7) as matching measures. The likelihood approach worked bet-
ter than the distance in all cases, showing the advantage of taking into account
the model variances. Using the track-wise length and frequency weighting in the
likelihood clearly improves performance in the dissonant case. That is not the case,
however, for high, consonant polyphonies. This can be explained by the fact that, in
consonant intervals, it is very likely that the lowest-frequency partials of one of the
notes are overlapping, and thus ignored for the matching, cancelling their propor-
tionally more important contribution to the weighted likelihood as compared to the
unweighted likelihood. In contrast, lowest partials in dissonant intervals are in fact
very unlikely to overlap, and the overlapping will more commonly occur in higher
frequencies. As expected, performance decreases with increasing polyphony and is
better with dissonant than with consonant mixtures. The best performances were
of 79.71% with 2 voices, 77.79% with 3 voices, and 61.40% for 4 voices.

Table 5.3 contains the results for the sequence experiments (EXP 3). Again,
the likelihood approach outperforms the Euclidean distance. The improvement is
however less important, and the difference in average accuracy between the weighted
and non-weighted likelihoods is statistically negligible.
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5.2.5 Track retrieval

Once a non-overlapping track group T NOV
o with onset Lon

o and offset Loff
o has been

declared as produced by instrument i, the corresponding prototype envelope means
Mi are used for performing the two following operations on the corresponding full
track group To:

1. Extension. Tracks of type 1 or 3 that are shorter than the current note are
extended forwards towards the offset (post-extension) or backwards towards
the onset (pre-extension) by selecting the appropriate frames from Mi and
linearly interpolating the amplitudes at the mean frequency of the remainder
of the track. Furthermore, the amplitudes retrieved from the model are scaled
so that the amplitude transition between original and extended sections of the
partial is smooth.

Tracks shorter than the note can result from either:

• a partial amplitude approximating the noise threshold in the region to-
wards the offset and thus remaining undetected in the sinusoidal analysis
stage (subjected to post-extension),

• the imminent appearance of a partial from the next onset group overlap-
ping with it (subjected to post-extension), or

• a partial not being correctly detected during the first frames after the on-
set because the instability of the attack phase (subjected to pre-extension).

2. Substitution. Overlapping tracks of type 2 are retrieved from the model
in their entirety by interpolating the model at the frequency support of the
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track. If the track is shorter than the note, it is again extended using the same
procedure as above.

Figure 5.5 shows a schematic example of the results of the track extension block
on the frequency support for each type of partial track. The example illustrates two
partially overlapping notes separated by a perfect fifth. A representative selection of
the partials are labeled according to type. The OV labels mean overlapping tracks
of type 2 and NOV means nonoverlapping tracks (type 1). Short, nonoverlapping
partials are extended towards the offset (marked by extension) and overlapping
tracks of the second track group are marked by substitution. All the extensions
shown in the example are post-extensions (which are by far more common than
pre-extensions). Note that any region marked as substitution additionally implies a
post-extension of the nonverlapping tracks from the previous onset.

Figure 5.6 shows a more realistic application context of the extension and sub-
stitution module. Figure 5.6(a) shows the frequency support and Fig. 5.6(b) the
time–frequency projection of a mixture of two notes. The first note (black tracks)
is a clarinet playing an F4 and the second is an oboe playing an E♭4, which forms
the highly dissonant interval of a major second. Pre- and post extensions corre-
sponding to the clarinet tracks are marked by the black dots superimposed to the
corresponding track segments. Non-overlapping tracks of the oboe note are denoted
by blue solid lines, and their corresponding pre- and post-extension sections by blue
dots. Overlapping tracks of the oboe (closer than 40 cents to a clarinet track) are
displayed as solid red lines.

Because of the high degree of dissonance, most of the lowest-frequency partials
do not overlap (the first overlap occurs at the 7th partial of the oboe). As can
be seen in Fig. 5.6(b), the dynamic profiles of the overlapping tracks (red lines),
entirely retrieved from the prototype envelope, show a smoother behavior, which
corresponds to the averaged spectral envelopes obtained in the training. The same
applies to the extended sections. As a result, the most overlaps and extensions, the
more artificial and “canonical” will sound the separated note when resynthesized.

Resynthesis

At the final stage of the system, all reconstructed track groups belonging to the
same instrument, as detected by the timbre matching stage, are concatenated and
resynthesized using additive synthesis (see Sect. 4.2) to create the separated source
corresponding to that instrument. The extended and substituted tracks do not pre-
serve the phases, and thus a phaseless resynthesis was performed. This was however
judged as being perceptually irrelevant. The already mentioned quantization of the
onsets results in the separated notes being time-shifted with respect to the original
notes by up to one hop size (46.4 ms) using the above mentioned analysis parameters.



5.3 Evaluation of separation performance 145

5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (frames)

F
re

q
u

e
n

c
y
 (

H
z
)

(a) Frequency support

10

20

30

400 2000 4000 6000 8000 10000

−5

−4

−3

−2

−1

0

Frequency (Hz)

L
o
g
−

a
m

p
lit

u
d
e
 (

d
B

)

Time (frames)

(b) Time–frequency view

Figure 5.6: Application example of track extension/substitution for a mixture of 2 notes.

5.3 Evaluation of separation performance

The separation performance of the system depends on the individual performances
of the subsequent modules, most importantly from the onset detection and timbre
matching stages. An undetected onset is especially costly, since the entire corre-
sponding note will be absent from the separated signal and thus will highly degrade
objective measures such as Signal to Error Ratios. False-positive onsets (i.e., the de-
tection of an onset that does not correspond to a note start) are much less harmful,
since their track groups will be mixed with the correctly detected part of the note
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at the appropriate amplitude level, as long as they have been correctly assigned to
their instrument. As for the timbre matching stage, wrong classifications have two
harmful effects: the false assignment of a note to a separated track, which decreases
the performance in the same order of magnitude than undetected onsets, and the
extension and/or substitution of tracks with a false timbre model, which is far less
perceptually and objectively relevant.

As was introduced in Sect. 3.5.2, a frequently used objective measure of the
separation quality is the time-domain Signal to Error Ratio (SER), defined in Eq.
3.44. When separation is based on additive resynthesis, the time-domain subtraction
to obtain the error signal is only valid if the algorithm preserves the phases [14]. The
proposed system does not provide phase information in the track segments that have
been retrieved from the time–frequency models, and thus a direct application of SER
will produce misleading results. Instead, a Spectral Signal to Error Ratio (SSER)
will therefore be used, defined as the SER between the magnitude of the STFT of
the original source S(r, k) and the separated source Ŝ(r, k):

SSER = 10 log10

∑

r,k |S(r, k)|2
∑

r,k(|S(r, k)| − |Ŝ(r, k)|)2
. (5.9)

Another motivation for performing the comparison in the frequency domain
arises from the already mentioned onset time quantization of up to one hop size.
Such onset indeterminacy is not critical from the point of view of perceptually or
aurally assessing the separation success, but can have a noticeable impact on the
sample-by-sample, time-domain error measure (note that the indeterminacy occurs
at the most energetic part of the signals). Using the spectral measure SSER with the
same STFT parameters that were used for the sinusoidal modeling (fs = 44.1 kHz,
window and FFT sizes of 8192 samples or 185.7 ms and hop size of 2048 samples
or 46.4 ms) avoids this by performing an averaged error computation along each
analysis frame. Note also that, for the same reasons, the other quality measures
introduced in Sect. 3.5.2 are not directly usable within this context since they are
defined in the time domain.

The separation performance was evaluated with all the mixture types listed as
experimental setups in Table 5.1. Each degree of polyphony in each experimental
setup was tested with a collection of 10 mixtures, giving a total number of 170
separation experiments. The final performance measures appearing in all tables
in the remainder of the chapter correspond to the averaged SSER values across
all separated sources of each particular setup’s mixtures whose onsets have been
correctly detected.

The following four subsections address the results for mixtures consisting of one
note per instrument (Sect. 5.3.1, EXP 1 to EXP 2), of a sequence of notes per
instrument (Sect. 5.3.2, EXP 3k), for mixture containing chords or clusters (Sect.
5.3.3, EXP 4 to EXP 6) and for mixtures containing inharmonic sounds (Sect. 5.3.4,
EXP 7).
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5.3.1 Experiments with individual notes

For the first and simplest evaluation test, 60 mixtures of single notes from 2, 3 or 4
different instruments were considered, 30 of them composed by consonant intervals
(EXP 1), and the other 30 by dissonant intervals (EXP 2), the same that were used in
the timbre matching evaluation. Each one of such mixtures makes up a multi-timbral
arpeggio3, an example of which is shown in Fig. 5.7(a). For this experimental setup,
the instruments contained in the mixture were considered unknown and belonging
to the 5-class instrument library specified in Sect. 5.2.1.

Figure 5.7 illustrates the separation results for an instance of this experimental
setup. Figures 5.7(a) and 5.7(b) show the input mixture in musical notation and as
a waveform, respectively. It should be noted that all musical scores shown in the
remainder of the chapter were created a posteriori for illustration purposes and to
allow a rapid overview of the involved pitches and the demands of the experiment in
question. The note durations should be thus considered approximate with respect
to those of the real original sources. Figure 5.7(c) shows the segmentation chart
resulting from the timbre matching module, indicating the frame ranges in which
the different instruments are present. Black frames denote the detected onsets. The
width of those onset frames serve as an indication of the degree of quantization of
the resynthesized onsets. The number of rows in the segmentation chart corresponds
to the number of instruments in the timbre template database. In this particular
example, the oboe has been misclassified as a trumpet. Finally, Fig. 5.7(d) shows
the waveforms of the separated and resynthesized sources.

The first two rows in Table 5.4 show the results of averaging all SSER values for
each detected source and for all mixtures, for the consonant and dissonant cases,
respectively. The numerical values obtained obey the expected behavior: separation
quality decreases with increasing polyphony and increases with dissonance. The
difference between consonance and dissonance is higher with lower polyphony. This
shows that polyphony has a considerably stronger effect on increasing the degree of
overlapping, and thus separation difficulty, than the nature of the harmonic rela-
tionships. It can be expected that with polyphonies of 5 notes or higher, consonant
and dissonant mixtures will be equally difficult to separate.

5.3.2 Experiments with note sequences

For the next set of experiments, 40 mixtures of 2 and 3 instruments playing short
melodic sequences of individual notes were used. This time, the instruments were
known a priori (EXP 3k). As noted before, this situation is more demanding, mainly
because all notes from each instrument need to be correctly detected and classified
in order to be clustered into the same separated track. Figure 5.8 shows an example
of the kind of mixture this set of experiments is dealing with.

The averaged SSER results are in the third row of Table 5.4. It is surprising that,
while similar, the results with 3-note polyphony are slightly better than with 2-note

3An arpeggio is a broken chord, i.e., a chord in which the constituent notes are played in succession
rather than simultaneously.
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Figure 5.7: Example of separation of an
individual-note, four voice mixture (part of
EXP 1).
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Figure 5.8: Example of separation of a
mixture of 3 sequences of notes (part of
EXP 3k).

polyphony. This is most probably a consequence of the disparity of the created test
mixtures with respect to length, note intervals, tempo and rhythmic relationships,
which partially hinders the evaluation of polyphony as an independent parameter. In
contrast, EXP 1 and EXP 2 contained similar mixtures with well-defined constraints
and characteristics, making their averaged evaluation more statistically significant.

5.3.3 Experiments with chords and clusters

A novelty of the presented approach compared to previous separation systems based
on sinusoidal modeling is that it is able to separate groups of simultaneously sound-
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Polyphony
Source type 2 3 4

Individual notes, consonant (EXP 1) 6.93 dB 5.82 dB 5.35 dB
Individual notes, dissonant (EXP 2) 9.38 dB 8.36 dB 5.95 dB
Sequences of notes (EXP 3k) 6.97 dB 7.34 dB -

Table 5.4: Results (averaged SSER) for the basic experiments.

ing notes (i.e., chords4) produced by a single instrument. As has already been
noted, this is because both timbre matching and track retrieval are based on tracks
grouped solely following common-onset and common-dynamic-behavior criteria. No
harmonic or quasi-harmonic relationships are required for a track to be grouped into
a common-onset, same-instrument separated entity.

To illustrate and evaluate this capability, the “extended” experimental setups
EXP 4 to EXP 6 were defined. As counterparts of, respectively, EXP 1 and EXP
2, both EXP 4 and EXP 5 include short mixtures of only one chord instance per
instrument. The difference between both mixture types pertains again to the har-
monic nature, either consonant or dissonant. When dealing with chords however,
an additional consideration must be taken into account. In this case, there is a
distinction between intra-class harmony (i.e., the harmonic relationships between
the constituent notes of a chord), and inter-class harmony (between different chords
played by different instruments).

Inter-class dissonance, as in the individual-note case, will result in less overlaps
and better separation. On the contrary, as it will be seen, the effect of intra-class dis-
sonance is exactly the opposite. If a chord contains several notes in highly dissonant
mutual relations, its corresponding track group will contain many non-overlapping
tracks. These will cover the frequency range more tightly and make collisions with
the next chord’s tracks more probable, hindering separation. Consonant chords, in
contrast, will have many tracks overlapping in the high-energy area, and will thus
leave empty frequency gaps to be filled by tracks of the upcoming chord.

To test these new harmonic implications, EXP 4 was based on 20 mixtures of 2
and 3 instruments playing chords with mostly consonant intra-class intervals (such
as major and minor triads, and seventh chords, see Fig. 5.9(a) for a two-note, two-
chord example), and EXP 5 on 20 mixtures with the most internally-dissonant chords
possible: clusters5. Figure 5.10 shows the separation of a mixture of a trumpet
chromatic cluster comprising all notes between A4 and C5, and of a diatonic 3-
note cluster played by the piano. The averaged results shown on the first two rows
of Table 5.5 confirm the higher difficulty of separating consecutive clusters. These
experiments were performed with the instruments unknown, as can be observed from
the empty rows on the segmentation charts.

4The usual musical definition of chord is a group of three or more simultaneously sounding notes.
A group of two simultaneous notes is more appropriately termed a dyad. For simplicity, “chord”
will be used here in either case.

5A musical cluster is a chord containing notes that are consecutive on a given scale. A chromatic
cluster is a special case in which the notes are adjacent semitones, and a diatonic cluster is the
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Figure 5.9: Ex. of separation of a mixture
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Figure 5.10: Example of separation of a
mixture of two clusters (part of EXP 5).

No. Instruments
Source type 2 3

One chord (EXP 4) 7.12 dB 6.74 dB
One cluster (EXP 5) 4.81 dB 4.77 dB
Sequences with chords and clusters (EXP 6) 4.99 dB 6.29 dB
Inharmonic notes (EXP 7) 7.84 dB -

Table 5.5: Results (averaged SSER) for the extended experiments.

As a counterpart to EXP 3, a set of 20 mixtures of sequences, this time includ-
ing chords, was generated and evaluated as EXP 6, with the instruments known.
Test mixtures included chord-only sequences (such as the one in Fig. 5.11) and
hybrid sequences containing both chords and individual notes (such as in Fig. 5.12).
The averaged SSER results included on the table accentuate the mixture disparity
problem mentioned in the last section.

equivalent with whole-tones.
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Figure 5.11: Example of separation of a
mixture of two chord sequences (part of
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Figure 5.12: Example of separation of a
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5.3.4 Experiments with inharmonic sounds

The same working principle that allows the separation of same-instrument chords as
single entities, namely the fact that grouping is only based on the amplitude behavior
of the partials, and not on their frequency characteristics, allows dealing with sounds
containing partials that do not follow a harmonic or even quasi-harmonic frequency
positioning. The only difference to be taken into account is that the additive analysis
stage needed to perform the training corresponding to such an instrument must be
performed in inharmonic mode (see Sect. 4.2), without an f0-based prediction of
the partial frequencies.

To the aim of demonstrating this capability, a new timbre model was trained
using a collection of 36 tubular bell samples from the RWC database [66], with
predominant pitches C4 to B4. Then, for the final set of experiments (EXP 7), 10
mixtures of individual notes played by the bells and one of the other 5 instruments
were created. The quantitative averaged result shown on the last raw of Table



152 5.4 Conclusions

5.5 shows a quality halfway between the individual-note, consonant case and the
individual-note, dissonant case.

5.4 Conclusions

The discussions and results that have been presented in this chapter show that an
accurate description of the spectral envelope and its dynamic behaviour, based on the
models presented in Chapter 4, is sufficient to make the demanding task of single-
channel source separation possible. No explicit assumptions about the frequency
contents (pitch, harmonicity) were made; the system solely relies on the amplitude
characteristics of the partial tracks, exploiting the CASA-like grouping principles of
good continuation and common fate, together with their group-wise matching with
a set of stored probabilistic templates. Experiments using mixtures of up to 4 notes
from up to 5 instruments, including mixtures with single-instrument chords, have
been shown to demonstrate the viability of the method.

The main features of the proposed separation system can be summarized as
follows:

• No pitch information required. In contrast to many previous approaches,
the system does not require a priori knowledge about the pitches present in
the mixture [61, 62, 109], nor a preliminary multipitch estimation stage [14,
168, 172], which is often a source of unrobustness.

• No harmonicity assumed. Instead, track grouping and reconstruction is
only based on common-onset and amplitude continuity cues. This allows sep-
arating highly inharmonic sounds and detecting single-instrument chords as
single entities. These results were not possible with the wide range of previous
systems that assume perfect or approximate harmonicity [61, 62, 103, 169, 172,
173, 174].

• Accurate spectral modeling. The timbre models used describe in detail
the temporal evolution of the spectral envelope. This contrasts with simpler
models that assume a set of fixed spectral shapes as the timbre library [14], or
a multiplication of static spectral envelopes by a time-varying gain [166, 169].

• Source identification. Due to the timbre matching stage, the system outputs
the name of the musical instrument each source belongs to. Thus, it can be
used for polyphonic instrument recognition. The maximum accuracies were
of 79.81% correctly detected notes for a 2-voice polyphony, of 77.79% for 3
voices, and of 61.40% for 4 voices.

• Provides segmentation data. Each detected common-onset group is pro-
cessed and reconstructed separately, so that the system can output the start
and ending points of each played note, making it appropriate as a pre-processing
step for polyphonic transcription.
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• No note-to-source clustering needed. Due to the fact that each note is
assigned to an instrument, clustering is implicitly accomplished by the timbre
matching stage, and thus not needed as a separate final stage, unlike most
methods relying on basis decomposition [1, 39, 166, 176].

As a trade-off for not using any harmonicity cue, the main limitation of the
system is that it is not able to handle common-onset separation if the corresponding
notes have been played by different instruments (if they are played by the same
instrument, they are considered a chord and thus they are left mixed). A first
direction towards relaxing such an onset separability constraint [61, 173] was to
match the tracks to the timbre models individually, rather than in common-onset
groups, and declaring an onset group as a mixture of two instruments if the individual
track classification result was spread across the corresponding classes. Although
some success has been obtained using this approach, it showed little robustness in
preliminary experiments. Another possibility would be to train joint models of the
combination of several timbres and add them to the library for model matching.

The modular architecture of the system has the drawback that the overall suc-
cess highly depends on the robustness of the consecutive processing stages, mainly
of onset detection and timbre classification, and on the quality of the pre-trained
timbre models. On the other hand, performance can be further improved by using
more sophisticated onset detection methods or by exploring new timbre similarity
measures. These and other possibilities for future improvements will be further
discussed in Sect. 7.2.

In the next chapter, the present system will be extended to stereo mixtures, so
that the additionally available spatial information will be able to further facilitate
and generalize separation.
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6
Extension to stereo mixtures

The highly underdetermined nature of the monaural separation problem, together
with the generality imposed by not assuming harmonicity cues, resulted in some
constraints concerning the applicability of the separation system presented in the
previous chapter. An important issue was the onset separability constraint: two
notes from different instruments cannot be detected separately if they start within
the same analysis window. Also, both the robustness of the system, and its sepa-
ration quality, depend on the accumulated success of each individual stage of onset
detection, timbre matching and track retrieval. For example, clustering of notes into
sources is performed by classification in the timbre matching stage, and its failure
will have an important negative effect on the separation quality.

Such problems can be greatly reduced if the separation process can take into
account spatial cues resulting from a multichannel mixture. The purpose of this
chapter is to combine the blind stereo separation system presented in Chapter 3,
which was solely based on sparsity and spatial information, with the ideas developed
in Chapters 4 and 5 concerning supervised detection and separation of monaural
signals according to common-onset and timbral cues. In particular, two different
methods for developing such a hybrid system will be proposed, evaluated and dis-
cussed. Note that, in this context, the word “hybrid” denotes the combination of
elaborate source modeling techniques with the exploitation of spatial cues [164].

The first, simpler, method consists in applying the monaural separation system
of Chapter 5 to each one of the output channels1 of the stereo BSS system of Chapter
3, with minor modifications concerning classification decisions. This approach will
be introduced in Sect. 6.2. The second makes use of sinusoidal subtraction to
perform a more elaborate refinement of the BSS output, and will be addressed in
Sect. 6.3. The classification (timbre matching) stage, common to both systems, will
be evaluated in Sect. 6.4. Separation experiments and corresponding evaluations
will be detailed, for each of the methods separately, in Sect. 6.5. But before, some
hybrid approaches from the literature will be briefly presented.

6.1 Hybrid source separation systems

After having reviewed previous work proposing basic blind approaches to source sep-
aration (Sects. 2.6 and 2.7), and monaural systems based in more advanced models

1It should be noted that “channel” will be used to denote the output signals of the BSS stage,
and “track” will always denote sinusoidal tracks defined by the partials.
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or a priori knowledge (Sect. 5.1), this section will introduce systems extending the
latter group to the stereo (M = 2) and multichannel (M > 2) cases. In compar-
ison with the monaural case, few works have addressed an extension of advanced
generative models to the multichannel scenario.

Vincent and Rodet [167] develop a generative source model defined as a three-
layer Bayesian Network that is combined with spatial diversity information provided
by the IIDs for MAP estimation. From bottom (low-level) to top (high-level), the
three layers are: spectral layer, which uses an ISA spectral basis decomposition
model (see Sect. 5.1); descriptor layer, which collects the time-varying weights of
the ISA decomposition together with an energy factor, all assumed to be Gaussian;
and state layer, which models the presence or absence of a note at a particular
instant, following a HMM. The model parameters are learnt on a database of single-
channel solo excerpts. The results show that combining spatial information with
the generative source models improve average separation quality by 2.7 dB over
using only spatial cues, and of 9.7 dB over using the source models alone. This
approach was extended in [161] by considering delayed mixtures and by using a
more sophisticated model for the state layer called segmental model, which adds
a temporal persistence prior. According to the authors, this was the first system
capable of separating mixtures with long reverberation.

Viste and Evangelista [175] present a system based on sinusoidal modeling that
exploits spatial cues and similarity of the sinusoidal amplitude tracks belonging to
the same note. Non-overlapping partials are detected assuming harmonicity and are
used as models for the amplitude envelope of the overlapping partials. Then, for
each bandpass frequency region containing a set of overlapping partials, a spatial
unmixing matrix is searched so that it maximizes the similarity of the unmixed
partial tracks with the corresponding partial models.

Nakatani [114] introduces source localization cues into a CASA architecture
aimed at speech segregation, most other examples of which are based on monau-
ral mixtures. The mixture is assumed to be delayed, and both IID and IPD are
exploited for obtaining a measure of spatial diversity that is considered in the hy-
pothesis scoring.

Sakuraba [133] uses IID and IPD cues to group the partials according to single
notes, together with an harmonicity assumption. To perform the note-to-source
clustering (which is called sequential grouping in the cited work), spatial proximity is
again a criterion, which is furthermore combined with a measure of timbre similarity
based on a set of temporal and spectral features given as input to a Support Vector
Machine (SVM).

6.2 Stereo separation based on track retrieval

As has been mentioned throughout this work, underdetermined blind separation
methods, without a priori knowledge about the sources, can attain reasonable per-
formances with well-spaced instantaneous multichannel mixtures. The basic idea
behind the methods proposed in this chapter is to perform BSS as a first, coarse
separation stage, followed by a channel-wise refinement using the methods intro-
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Figure 6.1: Overview of stereo separation based on track retrieval.

duced in the previous two chapters, including sinusoidal modeling, timbre matching
and common-onset grouping.

The Bofill and Zibulevsky BSS approach [23, 24] used for the warped-frequency
separation experiments in Chapter 3 showed an overall satisfying and robust per-
formance concerning source detection (see Table 3.4) and separation (Table 3.5). It
consists of the successive stages of sparse transformation, mixing matrix estimation
using kernel-based angular clustering, shortest-path resynthesis based on ℓ1 norm
minimization and inverse sparse transformation. After processing with that system,
separated channels still contain artifacts and interferences from other sources, de-
pending mostly on the degree of polyphony and on inter-channel closeness in the
stereo field. The goal of applying the mentioned advanced modeling techniques is
to diminish the effect of such residual components.

The first evaluated method to that aim consists of applying in parallel the monau-
ral processing chain of Fig. 5.1, with some slight modifications, to each channel
preliminarily separated by the BSS stage. The resulting scheme is shown in Fig.
6.1, where Â denotes the estimated mixing matrix. Note that, for clarity, the di-
rect/inverse sparse transformation stages before and after BSS have been omitted
on the figure. It should be noted however, that the BSS processing stages take place
in the sparse domain.

In spite of the probably important interference residual still present after BSS,
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this scheme dramatically increases the robustness and capabilities of the system
compared to the monaural case. The reasons for this are the following:

• Sinusoidal modeling is now applied on partially separated channels, rather than
on a full mixture. This allows finding better additive analysis parameters for a
smoother and more robust detection of the sinusoidal tracks. The same applies
to onset detection, which will expectedly increase in robustness. Nevertheless,
it was decided to keep the inharmonic analysis mode in order to still be able to
handle same-instrument chords and inharmonic sounds and to avoid a previous
fundamental frequency analysis.

• Overlapping partials have been already partially separated in the BSS stage by
an amplitude subtraction weighted by the coefficients of the reduced unmixing
matrix A−1

ρ , as defined in Eq. 3.43. A crucial consequence of this is that in the
timbre matching and track retrieval stages, all onset-synchronous predominant
partials can be assumed to belong to the same instrument and thus separation
of different-instrument notes starting at the same onset will be possible. In
other words, and using the track typology of Sect. 5.2.3, sinusoidal tracks of
type 3 are resolved by the BSS stage. Also, this is expected to increase the
note-by-note timbre matching accuracy, since the overall dynamic behavior of
the track groups will more closely resemble the prototype envelope.

• Assuming each source contains notes played only by one instrument, the note-
to-source clustering is now performed by the BSS stage following spatial crite-
ria, and not by timbre matching. As long as the mixture is instantaneous with
sufficiently spaced sources, such a BSS-based clustering is extremely reliable.
Assignment of an instrument label to a separated source can be thus performed
by majority voting among all note-wise classifications of that channel.

Such an approach will be evaluated in Sects. 6.4 and 6.5 for respectively, clas-
sification and separation performance. A disadvantage of the method is that, like
in the monaural case, separated sources are constituted only by the sinusoidal part,
and the contribution of the noise part is ignored. Also, the onset/offset uncertainty
mentioned in Sect. 5.2.2 is still present.

6.3 Stereo separation based on sinusoidal subtraction

The track retrieval approach, a direct extension of the previous chapter’s monaural
separation method to stereo mixtures, is able to suppress interferences after BSS,
but has the drawback that, since the separated sources are resynthesized from the
retrieved partial parameters, they lack the noise part, which contributes to the
perceived quality of the separated signals. This was also a disadvantage of the
monaural separation method.

As was seen on the literature review section of the previous chapter (Sect. 5.1),
most single-channel separation approaches are solely based on sinusoidal resynthesis.
An exception is the system proposed by Every and Szymanski [62], which is based on
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Figure 6.2: Overview of stereo separation based on sinusoidal subtraction.

subtracting interfering sinusoids from the spectrum of the mixture, thus leaving the
noise regions between sinusoids unaltered. This means that the resulting sources
have separated sinusoidal parts, but a common, non-separated noise part. If the
noise content of the original sources is moderate, the result of such a separation
is nevertheless more perceptually satisfactory than a plain additive resynthesis. In
another work by the same authors [61], several methods to separate the noise part
are proposed, based on transient detection and on an assumed strong correlation
between the spectral envelopes of the noise floor and of the sinusoidal peaks.

In the stereo setup proposed here, it is possible to take advantage of the fact that
the BSS stage partially separates the input mixture as a whole, both its sinusoidal
and noise parts. The idea is to use sinusoidal subtraction techniques applied to
the partially BSS-separated channels. This, again, will not change the noise floor
between sinusoidal main lobes, but in contrast to the monaural case, the noise part is
already partially unmixed, and the noise part of a given separated source is assumed
to have a higher energy than the noise parts of the interfering sources.

More specifically, for a given BSS partially separated channel, the aim is to
detect and eliminate extraneous sinusoidal tracks caused by the remaining inter-
ferences of the other channels. To that end, the monaural processing modules of
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sinusoidal modeling, onset detection, track grouping and timbre matching/majority
voting, are again applied in parallel to detect the instrument that is playing on each
channel (see Fig. 6.2). However, instead of using the detected models for extend-
ing and substituting overlapping tracks, they are used to detect tracks that have
probably been produced by another instrument, which will then be labeled as ex-
traneous. Furthermore, one can use the other partially-separated channels to make
more robust decisions about the interfering tracks, as will be detailed below. This
inter-channel dependency is denoted in the chart figure by the “switch-matrix”-type
symbol between the timbre matching and the extraneous track detection modules.
The detection of extraneous tracks will be addressed in more detail in Sect. 6.3.1.
Finally, each set of extraneous sinusoidal tracks is subtracted from the partially-
separated sources2, thus reducing interferences and improving separation quality.

Apart from the benefits of the track-retrieval-based method compared to the
monaural case (more robust sinusoidal modeling and onset detection, same-onset
separation possible, better classification performance), the sinusoidal subtraction
method has the following additional advantages:

• The (partially separated) noise content is kept in the separated sources.

• Possible bad performance of the onset detection and timbre matching modules
has a less costly effect on the separation quality. For instance, a false-positive
onset can result in failing to detect several extraneous tracks that will not be
subtracted. In contrast, in both monaural and stereo versions of the track
retrieval system, false-positive onsets can generate full notes inexistent in the
original mixture. A wrong classification will again lead to wrong labelling of a
few extraneous tracks, but in track retrieval it led to the generation of wrong
spectral shapes in the resynthesis.

• The onset/offset uncertainty of additive resynthesis does not apply to sepa-
rated notes, whose timing is not altered at all. It will only result in short
fragments of extraneous tracks not being effectively subtracted.

• The phases are kept all along the algorithm, allowing the usage of the well-
established time-domain separation measures of Source to Distortion Ratio
(SDR), Source to Interference Ratio (SIR) and Source to Artifacts Ratio (SAR),
introduced in Sect. 3.5.2.

6.3.1 Extraneous track detection

Crucial to the success of the subtraction approach is a reliable detection of the sinu-
soidal tracks that are supposed to originate from interfering sources. The decision is
based on three criteria: temporal, timbral and comparison between BSS-separated
channels. They will be introduced in the following subsections.

2The subtraction was performed with IRCAM’s pm2 software, as was the additive analysis.
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Temporal criterion

The first criterion to decide if a track is to be considered extraneous is its temporal
location with respect to the detected onsets and offsets. Correct (non-extraneous)
tracks are assumed to start and end within one of the onset/offset intervals of its
channel, with a tolerance of a few analysis frames. Every track that does not fulfill
this, i.e., that starts considerably before an onset and ends considerably after it, is
automatically labeled as extraneous, independently from the two subsequent criteria.

Timbral criterion

The second criterion is timbre similarity with respect to the timbre model assigned
to the current channel by the timbre matching and majority voting stages. All tracks
with a similarity lower than an appropriate threshold will be marked as extraneous.
The similarity measure chosen, as in the timbre matching stage, is based on a joint
Gaussian likelihood considered along all points of the track, and with amplitudes
linearly interpolated from the corresponding timbre model at the track’s frequency
support. Such a likelihood was the basis of the timbre similarity measures introduced
in Eqs. 5.6 and 5.7. However, tracks must now be matched individually, rather than
by common-onset track groups. This requires several additional considerations.

In the timbre matching stage, tracks were grouped according to onsets and
matched together with the models. In other words, the used similarity measures
were combined or averaged across all bins corresponding to all tracks of a given
group. In that context, it was a reasonable option to assign weights to individual
tracks within a group, such that longer and lower-frequency tracks have a greater
impact on that particular group-wise likelihood value. This was the case for the
weighted likelihood defined in Eq. 5.7. On the contrary, when tracks are matched
individually, they cannot use this kind of weighting. As long as it is located between
a given onset/offset pair, the length of a track is not a reliable indication of its ex-
traneousness, since it will depend on how well could it be detected by the Sinusoidal
Modeling stage, which in turn will depend on both the original amplitude of the
track in the mixture, and on the unmixing factor detected in the mixing matrix
estimation stage of the BSS block.

In fact, the length-dependency of the new track-wise likelihood must be now
explicitly cancelled by taking the geometric mean:

L(tt|θi) =

[

Rt
∏

r=1

p (Atr|Mi(ftr),Vi(ftr))

]

1
Rt

, (6.1)

where tt is the track defined by the set of sinusoidal parameter pairs

tt = {(Atr, ftr)|r = 1, . . . , Rt}, (6.2)

p(x) denotes a unidimensional Gaussian distribution and θi = (Mi,Vi) is the param-
eter vector of the assigned musical instrument i, containing the mean and variance
time–frequency surfaces. Such a cancellation was not necessary in timbre matching,
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since the Maximum Likelihood decision of comparing a track group with different
prototype envelopes was unaffected by the common factor arising from the total
number of time–frequency points in the group.

Another point to note is that optimization according to time and amplitude
scales, which was realized in the timbre matching stage by time-stretching the tracks
and sliding the surfaces in amplitude, is no longer applicable here. An optimized
match has already been found to assign a prototype envelope to each onset/offset in-
terval, with given optimal time-stretching and amplitude-scaling parameters (α,N).
The track-wise frequency support evaluation operations Mi(ftr) and Vi(ftr) must
be performed with those parameters.

Inter-channel comparison

The third and last criterion for extraneousness concerns a comparison between the
BSS output channels. A track that is correctly considered extraneous in a given
channel will certainly appear as a correct track on another. From another point of
view, a given sinusoidal track in the original stereo mixture can originate several
tracks in several post-BSS channels. If the track was non-overlapping in the original
mixture, it will result in one correct track in the correct source, and, if leaked to
adjacent channels after BSS, in one or more extraneous tracks in different channels,
with lower energy but the same frequency support and amplitude shape. If the
track was overlapping in the original mixture, it will be partially unmixed by the
BSS stage, and will appear as two or more valid (non-extraneous) tracks in two or
more BSS output channels.

These considerations, together with the fact that a set of partially separated
channels are available in parallel after BSS, allow defining the following algorithm
as the final check for track extraneousness:

1. For each track in the current post-BSS channel (which will be called the “con-
sidered track”), search for tracks on all other channels whose mean frequency
is very close to the mean frequency of the considered track. As in the track
grouping module (Sect. 5.2.3), frequency distance is measured in cents, and a
threshold of 40 cents is set to declare frequency matches.

2. For each of the found tracks in step 1, select the one whose location in time is
closest to that of the considered track. The time span of the found tracks is
allowed to be equal or longer than the time span of the considered track, but
not shorter (in other words, it is assumed that extraneous tracks will be equal
or shorter than the original tracks they originated from).

3. Check if the mean amplitude of the found track is considerably larger than the
mean amplitude of the considered track. If yes, label the considered track as
extraneous.

The amplitude threshold needed in step 3 to quantify what “considerably larger”
actually means must be chosen very carefully. Candidate tracks that differ only
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Figure 6.3: Application example of extraneous track detection. The colors denote the
criteria used to declare extraneousness: red denotes the temporal criterion, blue the timbral
criterion and green the inter-channel criterion.

by a moderate amplitude are probably both valid, and none should be declared as
extraneous. On the other hand, tracks with a large amplitude difference could in fact
be both valid, if they are overlapping and one of them belongs to a note played very
softly in the original mixture. Assuming the mixture is reasonably well balanced,
the latter is however more unlikely to happen.

It is important to note that none of the three criteria for extraneousness assumes
harmonic relationships between partials. As repeatedly argued in the previous chap-
ter, the non-assumption of harmonicity was chosen in order to allow the separation
of same-instrument chords and of sounds with inharmonic partials.

A practical example of detection of extraneous tracks is shown in Fig. 6.3.
The example corresponds to a three-note melody fragment played by a piano, that
has been separated from a 3-voice mixture additionally containing an oboe and a
trumpet. The figure shows the frequency support of the detected sinusoidal tracks
after the BSS stage. The vertical dashed lines indicate the detected onsets and
offsets. The colored frequency trajectories correspond to the detected extraneous
tracks. Red tracks were detected because they do not fulfill the temporal criterion,
blue tracks do not meet the timbral criterion and green tracks do not meet the inter-
channel criterion. For this particular example, after the removal of the extraneous
tracks separation quality improved from 9.16 dB to 14.94 dB in the case of SDR,
from 26.77 dB to 38.41 dB in the case of SIR and from 9.25 dB to 14.96 dB in the
case of SAR.

6.4 Evaluation of classification performance

The modules prior to timbre matching are common to both presented stereo sep-
aration approaches, and thus their classification and segmentation performance is
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identical. To allow a direct comparison with the monaural case, and an assessment
of the improvement introduced by the spatial cues, the “basic” databases used in
Sect. 5.2.4 of the previous chapter for the classification experiments will be used here
again. Those databases consisted of monaural mixtures containing individual notes
in consonant intervals (EXP 1), individual notes in dissonant intervals (EXP 2), and
sequences of notes (EXP 3), with a polyphony of 2 to 4 instruments. Each degree of
polyphony in EXP 1 and EXP 2 is represented by 10 mixtures, and in EXP 3 by 20
mixtures. To generate the instantaneous, stereo counterpart for those experimental
setups (which will be called, respectively, EXP 1s, EXP 2s and EXP3s), the sources
were equally distributed across the stereo field, as was done in Sect. 3.4.2.

For both the classification and the separation experiments, the STFT was used
as sparse transformation in the BSS stage. This was mainly decided on the grounds
of computational simplicity. Chapter 3 showed that frequency warping can improve
results, but, as argued in Sect. 3.1, at the cost of heavily increasing computational
demands, due to the direct filter bank implementation that was used. The practical
usage of frequency warping in an application scenario such as the one proposed in
this chapter should preferably be based on more efficient implementations, such as
the mentioned use of chains of all-pass filters [70].

For classification, the used evaluation measure is again the note-by-note accuracy.
Also, the different timbre similarity measures introduced in Sect. 5.2.4 are compared.
These were: averaged Euclidean distance (Eq. 5.5), Gaussian likelihood (Eq. 5.6)
and Gaussian likelihood weighted proportionally to the length of the constituent
tracks, and inversely-proportional to the mean track frequency (Eq. 5.7). The
timbre library is the same as the one used in the two previous chapters: a set of 5
trained prototype envelopes of piano, clarinet, oboe, trumpet and non-vibrato violin.
For more details about the training parameters, see Sect. 4.7.

The results are shown in Table 6.1 for EXP 1s and EXP 2s, and in Table 6.2 for
EXP 3s. As could be expected, classification accuracy is significantly better than in
the monaural case, attaining 87.67% with 2 channels (compared to 79.81% in mono),
86.43% with 3 channels (compared to 77.79%) and 82.38% for 4 channels (compared
to 61.40%). For the sequences, the best average accuracy is 71.08%, compared to
60.04% in the monaural setup.

Apart from the improvement in accuracy, two notable aspects differ from the
monaural case. The first is that the accuracy is much more independent from the
degree of polyphony. In fact, there are even cases where the accuracy is better
with higher polyphonies, such as with 3-channel polyphony compared to 2-channel
polyphony in EXP 2s. This indicates that the separation quality delivered by the
BSS stage is good enough to consider that the classification has been performed on
isolated notes. In other words, the remaining interferences have too little a weight
to considerably worsen the timbre matching procedure.

Secondly, the unweighted likelihood is on average clearly the better measure, in
contrast to the monaural case, in which the weighted likelihood was preferred for
dissonant intervals, and the unweighted for consonant intervals. An explanation for
this is the more robust sinusoidal detection after BSS separation, which results in
individual tracks being often correctly, steadily detected during the whole duration
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Consonant (EXP 1s) Dissonant (EXP 2s)
Polyphony 2 3 4 Av. 2 3 4 Av.

Euclidean distance 63.33 77.14 76.57 72.35 60.95 86.43 78.00 75.13
Likelihood 86.67 84.29 82.38 84.45 81.90 81.95 81.33 81.73

Weighted likelihood 70.00 70.95 66.38 69.11 78.10 78.62 74.67 77.13

Table 6.1: Instrument detection accuracy (%) for simple stereo mixtures of one note per
instrument.

Sequences (EXP 3s)
Polyphony 2 3 Av.

Euclidean distance 64.71 59.31 62.01
Likelihood 67.71 74.44 71.08

Weighted likelihood 69.34 58.34 63.84

Table 6.2: Instrument detection accuracy (%) for stereo mixtures of sequences containing
several notes.

of the note, and thus making the track-length weighting uninformative. This was
not the case in the mono experiments, where interrupted tracks due to overlaps were
far more common.

The reasons for the worse performance of the sequence experiments are again
the artificial cut of same-channel, consecutive notes, and the higher probability of
overlapping in time. When regarding track-wise instrument detection, however, the
effect of long sequences is the opposite than in the monaural case. In the mono
system, track creation and note-to-source clustering was entirely determined by the
timbre matching results, and thus longer sequences meant a higher probability of
error. In the stereo case, source clustering is robustly performed by the BSS stage,
and the global assignments of separated sources to instruments can be made, as
mentioned, by majority voting across the detected and individually classified notes.
Thus, as long as the note-by-note classification accuracy is higher than random,
longer sequences will lead to more robust majority decisions.

6.5 Evaluation of separation performance

The next two subsections are devoted to the separation quality evaluation of the
two proposed systems for stereo separation, based respectively on track retrieval
and sinusoidal subtraction. Like in the previous section, part of the evaluation
experiments were performed on a subset of the experiments used in the previous
chapter, so that the benefits of adding spatial information become apparent. Again,
the stereo versions of the basic experiments (EXP 1s, EXP 2s and EXP 3s) were
used, all containing note sequences without simultaneous onsets (except for same-
instrument chords). The results obtained for those experiments, with both systems,
will be reported in Sect. 6.5.1.

Additionally, a new collection of mixtures were generated to exploit the addi-
tional capabilities of the stereo systems, most importantly the ability to separate
same-onset notes from different instruments. Again, a differentiation will be made
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Type Name Source content Harmony Instr. Polyph.

Basic (stereo)
EXP 1s Individual notes Consonant Unknown 3,4
EXP 2s Individual notes Dissonant Unknown 3,4
EXP 3s Sequence of notes Cons., Diss. Unknown 3

Common onsets
EXP 8s Individual notes Consonant Unknown 3,4
EXP 9s Individual notes Dissonant Unknown 3,4
EXP 10s Sequence with chords Cons., Diss. Unknown 3,4

Table 6.3: Table of experimental setups for the stereo separation systems.

between consonant individual-note mixtures (i.e., multi-instrument chords), denoted
by EXP 8s, dissonant individual-note mixtures (EXP 9s) and sequences (EXP 10s),
which in this case can contain same-instrument chords and clusters. Table 6.3 sum-
marizes all experimental setups for the stereo case. Note that EXP 1s to EXP 3s
keep their numbering from the mono versions, since they are a mere upmix of the
same notes. Also, in contrast to the mono experiments (see Table 5.1), the instru-
ments are always assumed unknown. The results corresponding to this new set of
experiments will be presented in Sect. 6.5.2.

Each degree of polyphony is again represented by 10 mixtures, making a total of
110 stereo separation experiment instances. Only the mixture for which the correct
number of sources was detected by the BSS stage were considered. Insight into the
source detection performance of the angular-kernel-based mixing matrix estimation
was given in Table 3.4.

The performance of the track-retrieval-based system will be measured by the
Spectral Signal to Error Ratio (SSER), as defined in Eq. 5.9, since, like the monau-
ral system, it suffers from onset uncertainty and phase removal. The sinusoidal-
subtraction-based system, as has been discussed, allows the full usage of the common
time-domain measures of SDR, SIR and SAR (see Sect. 3.5.2). However, the SSER
was additionally computed in the latter case, so that the change in performance
between both systems can be readily appreciated.

6.5.1 Stereo version of monaural experiments

The averaged SSER, SDR, SIR and SAR values for the stereo-upmixed version of
the basic monaural experiments are shown in Table 6.4. Note that the case of
2-instrument polyphony has been ignored. In that case, the instantaneous stereo
separation problem would be even-determined and thus trivial, and the BSS stage
alone will already yield near-perfect separation. For example, SSER, SDR and SAR
values for the M = 2 case were typically higher than 80 dB, and SIR values higher
than 130 dB.

Stereo track retrieval outperforms monaural track retrieval by around 5 to 7 dB
(compare with Table 5.4). In turn, sinusoidal subtraction significantly outperforms
stereo track retrieval in terms of SSER, the difference ranging between around 5 dB
and 10 dB. Other expected behaviors hold here as well (dissonances are easier to
separate than consonances, higher polyphonies are more difficult), however in a less
pronounced manner than in the monaural case. In the presence of large interferences,
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Track
retrieval Sinusoidal subtraction

Source type Polyph. SSER SSER SDR SIR SAR

Individual notes, cons. (EXP 1s)
3 13.92 21.13 20.70 43.77 20.77
4 12.10 17.13 16.78 40.83 16.83

Individual notes, diss. (EXP 2s)
3 14.37 24.20 23.63 47.01 23.72
4 12.06 21.33 20.76 43.74 20.81

Sequences of notes (EXP 3s) 3 12.52 22.00 21.48 44.79 21.53

Table 6.4: Results for the stereo version of the basic experiments of Chapter 5 using track
retrieval and sinusoidal subtraction.

Track
retrieval Sinusoidal subtraction

Source type Polyph. SSER SSER SDR SIR SAR

Individual notes, cons. (EXP 8s)
3 13.36 18.26 17.35 40.48 17.39
4 14.88 15.31 14.96 36.25 15.06

Individual notes, diss. (EXP 9s)
3 11.88 21.72 20.91 44.56 21.03
4 15.10 18.93 18.24 40.36 18.30

Sequences with chords (EXP 10s)
3 11.21 17.95 17.17 32.30 17.44
4 10.57 12.16 11.18 26.26 11.51

Table 6.5: Results for the simultaneous-note experiments using track retrieval and sinu-
soidal subtraction.

the sources separated by means of spectral subtraction typically improve averaged
performance measures by 2 to 4 dB in the case of SDR and SAR and by 3 to 6 dB
in the case of SIR when compared to the output channels of the BSS stage.

6.5.2 Experiments with simultaneous notes

The performances obtained for the new experiments involving common-onset notes
(Table 6.5) were lower on average, but not significantly so (the average difference
is of around 1 to 2 dB). This again confirms the effectiveness of the BSS stage in
providing a good partially-separated basis for the remaining refinements. The degree
of improvement of sinusoidal subtraction over track retrieval is less homogeneous
than with the basic experiments, this time ranging between approximately 1 dB
SSER for the 4-channel EXP 8s and 10 dB SSER for the 3-voice EXP 9s.

6.6 Conclusions

The goal of this chapter was to combine several of the ideas developed throughout
the present work into a hybrid framework for supervised separation of stereo instan-
taneous mixtures. The sparsity-based blind separation method tested in Chapter 3
was used to exploit spatial information and provide a set of preliminarily separated
channels. Sinusoidal modeling techniques (Chapter 4) were used to channel-wise
refine that separation, according to common onset and good continuation cues, as-
sisted by timbral similarity measures computed by matching with the stored timbre
models.
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More specifically, two approaches were presented. The first is a direct extension
of the track-retrieval system proposed in Chapter 5 to the stereo case: it basically
applies the monaural separation system to each output channel of the BSS stage.
Classification and separation performance is considerably higher than in the monau-
ral case, but such a method ignores the noise part of the signal altogether.

The second approach consisted in the removal of remaining interferences by de-
tecting extraneous tracks that have been leaked from the original mixture to one or
more of the wrong post-BSS channels. Such a detection is again guided by common-
onset and timbral criteria, as well as by a mutual comparison between the channels.
The detected extraneous tracks are then subtracted from the partially separated
channels. This improves performance compared to using the BSS stage alone, and
compared to the track retrieval approach.
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Conclusions and outlook

The developments reported in this work were motivated by the need for improv-
ing content-based analysis and processing of complex musical signals. The role of
source separation in such a context is to allow a separation-for-understanding or
Significance Oriented (SO) paradigm in which feature extraction of the (at least
partially) separated components is easier and more robust than feature extraction
on the mixture as a whole. The specific scenario addressed was the separation of
monaural and stereo instantaneous musical mixtures. To that aim, several new
methods were proposed, all relying on source models of different levels of complex-
ity and applicability constraints: starting from unsupervised, blind separation based
on sparsity-optimized representations, and subsequently developing towards a more
sophisticated supervised method making use of models capturing timbre and its
temporal evolution.

A characteristic of the present work are the numerous connections with MCA
and MIR techniques, such as timbre learning, instrument classification, dimension-
ality reduction, onset detection, etc. On the one hand, they have been used both
as a means of helping (Chapter 6), or allowing (Chapter 5) separation. On the
other, as by-products of the design of the separation systems, several modules have
been evaluated in non-separation tasks. In particular, the proposed timbre model-
ing methodology has been evaluated as a statistical model for the classification of
isolated musical sounds and for polyphonic instrument detection.

7.1 Summary of results and contributions

What follows is a list of results and contributions in the order they were developed
and reported in the present dissertation. For a more detailed summary, the reader
is referred to the conclusion sections at the end of each chapter.

Evaluation of sparsity and disjointness of music and speech mixtures

The starting point for the design of the source models was a preliminary study on
sparsity (Sect. 3.2) and disjointness (Sect. 3.3) properties of speech and music
signals. Sparsity was measured by normalized kurtosis and disjointness (i.e., the
degree of non-overlapping) was measured by approximate W-Disjoint Orthogonality
(WDO). One of the main results was that speech needs a balanced trade-off between

169
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time and frequency resolutions for optimal sparsity and disjointness, whereas for
music signals frequency resolution must be favored.

Comparison of sparsity, disjointness and source separation performance
of frequency-warped representations

Next, the focus was shifted to music signals, and several non-uniform time–frequency
representations were compared not only in terms of intrinsic sparsity and disjoint-
ness properties, but also in terms of source detection and separation performance.
To that end, a set of frequency-warped filter banks (a constant-Q and three au-
ditory frequency filter banks: Mel, Equal Rectangular Bandwidth and Bark) were
implemented as the representation front-end of a sparsity-based stereo source sepa-
ration system, and compared to the use of the common STFT-based spectrogram.
Evaluation experiments showed that all warping schemes improved sparsity and dis-
jointness. In the case of disjointness, the improvement is higher the more the sources
overlap. Source detection and separation performance was improved as well, most
significantly in terms of Signal to Distortion Ratio (SDR) and of Signal to Artifacts
Ratio (SAR). The improvement in Source to Interference Ratio (SIR) is however
lower on average, which points to the fact that more sophisticated assumptions need
to be taken to handle the overlapping parts of the spectrum, a topic that was devel-
oped in the remainder of the thesis. For a detailed summary of these quantitative
results, the reader is referred to Sect. 3.6.

Detailed and compact timbre modeling

The previous observations led to the exploration of means to provide a priori in-
formation to guide and help separation in the spectral domain. The novel timbre
modeling approach proposed in Chapter 4 is based on a compact representation of
the spectral envelope. A notable feature is its detailed characterization of temporal
timbre evolution. The models are built by first extracting the spectral envelope of
a training set of isolated note samples by means of sinusoidal modeling and spectral
interpolation. The partial parameters are then arranged into a matrix upon which
PCA is performed, to attain compactness and extraction of salient spectral shapes.
The proposed method to arrange the partials into the PCA data matrix aims at
preserving formant structures and is based on reinterpolating the spectral envelope
at an equally-spaced frequency grid. Spectral interpolation followed by PCA was
called in this context the representation stage. Such stage was thoroughly evaluated
with respect to compactness, accuracy and generality, obtaining that the envelope
interpolation method outperforms, in all three criteria, the more common method
of arranging the data matrix with the indices of the partials.

This is followed by a prototyping stage in which the coefficients projected to PCA
space, forming timbral trajectories for each training sound sample, are used to train
prototype curves that can be interpreted as multidimensional Gaussian Processes
(GP). This results in the construction of a timbre space where it is possible to
visually inspect timbre similarities, or perform classification by analyzing geometric
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relationships. Also, it is possible to transform back to a less compact version of
the models in the time–frequency domain, which originates the prototype envelopes,
consisting of a mean and a variance surface, alternatively interpreted as a time- and
frequency-variant GP.

Use of the timbre models for monophonic and polyphonic instrument
classification

The developed timbre modeling approach was additionally used for non-separation
applications. First, a musical instrument classification experiment was conducted
(Sect. 4.7), consisting in projecting the spectral envelope of unknown samples on the
PCA space and comparing an average distance between the resulting trajectory and
each one of the prototype curves. This approach reached a classification accuracy
of 94.86% with a database of 5 classes, and outperformed using MFCCs for the
representation stage by 34%.

A second content-analysis application for the models arose in the context of
detection of instruments in polyphonic monaural mixtures (Sect. 4.8). An existing
sound source formation system based on the Normalized Cut (Ncut) criterion was
extended with a timbre matching module in which the separated partial clusters
where compared to a set of prototype envelopes derived from the above models.
This is a clear example of the separation-for-understanding paradigm. Obtained
accuracies range from 65% for 2-voice mixtures to 33% for 4-voice mixtures for a
database of 6 instruments.

Finally, the separation systems developed in the last chapters are (partially)
based on timbre matching with the models (they follow the understanding-for-
separation paradigm), and can thus also be used for polyphonic instrument de-
tection. In the single-channel version (Sect. 5.2.4), accuracies up to 79.81% for 2
voices, 77.79% for 3 voices and 61.40% for 4 voices were obtained with a 5-class
instrument database. The performance in the stereo case (Sect. 6.4) was obviously
higher, ranging from 86.67% with 2 voices to 82.38% with 4 voices.

Novel approach for separation of monaural mixtures, based on matching
with the timbre models and without harmonicity constraints

The a priori information conveyed by the designed source models was combined with
sinusoidal modeling to implement a source separation system (Sect. 5.2). First, the
mixtures were constrained to a single channel. This scenario is far more demanding
than the stereo case, where it is possible to exploit spatial cues, but was devised
as a way to evaluate the ability to detect and separate constituent notes following
only spectral cues. Broadly, separation is based on applying grouping principles, as
derived from Computational Auditory Scene Analysis (CASA), to detected partial
tracks on the mixture. More specifically, partial tracks are clustered into notes
according to common onset and good continuation principles. To resolve overlapping
partials, or overlapping sections of partials, timbre matching is performed with the
timbre model database, and the missing parts are retrieved from the model with the
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highest likelihood by means of linear interpolation at the desired frequency support.
This approach has been called track retrieval. The system has been tested with up
to 4-voice polyphony.

An important feature of the proposed separation system is that no assumptions
on the harmonicity (or quasi-harmonicity) of the sources were taken. One of the
consequences of this is that, in contrast to many previous approaches, the system
does not require pitch-related a priori information, nor a preliminary multipitch
estimation stage. Instead, grouping and separation solely relies on the dynamic
behavior of partial amplitudes. This also allows separating highly inharmonic sounds
(such as bells) and detecting single-instrument chords as single entities. A limitation
of such a method is the inability to separate notes from different instruments that
start during the same analysis frame. A large set of experiments were conducted
to demonstrate the separation performance with different kinds of input mixtures:
single arpeggios, note sequences, consonant and dissonant intervals, tonal chords
and chord clusters and inharmonic sounds.

Novel hybrid approaches for separation of stereo mixtures

A sparsity-based approach for exploiting spatial cues, and the previously mentioned
sinusoidal and timbral methods for exploiting spectral cues, were finally combined
for the proposal of two alternative methodologies for the separation of stereo mix-
tures. The first approach (Sect. 6.2), again based on track retrieval, was a simple
extension of the monaural system with a preliminary BSS stage for delivering par-
tially separated tracks. The BSS stage, which was also used in Chapter 3, follows a
staged architecture and consists of kernel-based angular clustering for the estimation
of the mixing matrix and on ℓ1 norm minimization for resynthesizing the sources.
It basically applies the monaural processing chain detailed above to each partially
separated channel. This eliminates interferences, but still has the main disadvantage
that the noise part of the signals is not preserved.

Thus, a proposed alternative (Sect. 6.3) was to use the spectral and timbral
cues not to resynthesize partials, but to detect and eliminate (by sinusoidal subtrac-
tion) extraneous tracks. The detection of extraneous tracks was based on temporal,
timbral and inter-channel-comparison criteria. In this way, separation quality was
significantly improved compared to the track retrieval method and to the BSS stage.

7.2 Outlook

The reported developments have covered a wide range of topics that can be further
studied either for improving source separation, or for their application within dif-
ferent content analysis contexts. This is a partial list of possible relevant research
directions.
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Separation-for-understanding applications

Since source separation has been regarded in this work from the point of view of im-
proving content analysis via the separation-for-understanding paradigm, an obvious
direction for future research is the evaluation of the proposed separation methods
within well-developed MCA systems, and a comparison of performance with whole-
mixture feature extraction. This can be of especial interest in the case of polyphonic
pitch detection or transcription, but could be also usable in other contexts such as
music genre, mood, structure or harmonic analysis.

Refinement of the timbre models

The timbre modeling approach can be further refined in various ways, correspond-
ing to the individual processing steps involved in the process. In the representation
step, other spectral basis decomposition methods can be evaluated instead of PCA.
For example, Linear Discriminant Analysis (LDA), which maximizes class separa-
bility and therefore is expected to improve applications aimed at classification or
instrument detection. In the classification context, it can be of interest to test the
performance difference of performing timbre matching in a single timbre space (as
has been done here), with that of performing Maximum Likelihood decisions between
a set of multiple spaces, one for each trained instrument. Also, frequency-warped in-
terpolation methods could be used to substitute the regular frequency grid, following
the ideas developed in Chapter 3.

The prototyping stage opens some other interesting research directions. The used
Gaussian Process approach can be refined to obtain more informative, parametrized
curve shapes by using methods such as nonlinear regression, Principal Curves [22]
(which generalize PCA to the nonlinear case), or neural approaches to the modeling
of nonlinear systems [130]. Another possibility is to separate prototype curves into
components corresponding to the temporal segments of the ADSR envelope. This
can allow three enhancements: first, different statistical models can be more appro-
priate to describe different segments of the temporal envelope. For example, clusters
can be appropriate for highly stationary parts of the sustain section, and they could
be combined with parametrized “tails” arising from them and describing the attack
and release parts. Second, such a multi-model description can make possible a more
abstract parametrization at a morphological level, turning timbre description into
the description of geometrical relationships between objects. For example, a violin
sound could be described as a cluster or set of clusters with different covariance
matrices, connected with curved tails that output the clusters at a given angle or
with a given gradient in timbre space. Note that this still offers a higher level of
dynamic detail than temporal modeling based on HMMs. And finally, it would
allow treating the segments differently when performing time interpolation for the
curve averaging, and time stretching for maximum-likelihood timbre matching. This
avoids stretching the attack time in the same degree than the sustained part.

Finally, the models could also be extended by studying in detail the influence
of the fundamental frequency and of dynamics on the spectral envelope, and by
including those two factors as either parameters for retrieval or as additional model
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dimensions.

Other applications of the timbre models

Timbre modeling is undoubtedly the module most susceptible of being used for
a variety of analysis applications other than source separation. For example, its
application for instrument classification and polyphonic instrument detection can
be pursued and further optimized by considering alternative similarity measures.
When using a single projection space, it can be used as an automatically generated
timbre space for timbral and psychoacoustical characterization. Also, the models
could be used to generate appropriate spectral envelope shapes to enhance timbre
realism in pitch shifting applications.

It is also possible to envision sound-transformation or even synthesis applica-
tions involving the generation of dynamic spectral envelope shapes by navigating
through the timbre space, either by a given set of deterministic functions or by user
interaction via mouse or gestural sensors. If combined with multi-model extensions
of the prototyping stage, like the ones mentioned above, this could allow approaches
to morphological or object-based sound synthesis.

Improvement of timbre matching

Robustness of the separation systems, and of their classification and segmentation
modules, can be improved by studying alternative similarity measures for timbre
matching, or more efficient parameter search algorithms for the amplitude scaling
and time stretching of partial track groups. An interesting candidate technique
to this aim is Dynamic Time Warping (DTW). Also, such an increase in robust-
ness could allow single-track classification and detection of same-onset, different-
instruments overlapping partials in the monaural case.

Refinement of the separation of the noise residual

Separation of the noise part was not considered in the monaural case, and assumed
to be partially realized by the BSS stage in the stereo setup. Extending the systems
with an explicit modeling of the noise parts can further improve the quality of
the separated sounds. A possible starting point for this research direction is the
assumption of correlation between the noise and sinusoidal spectral envelopes, as
proposed in [61].

Addition of a feedback loop to the hybrid separation framework

The hybrid separation approaches proposed in Chapter 6 are implemented using
a sequential architecture: first, sparsity and spatial diversity are exploited (BSS
stage), then the partially separated channels are refined via sinusoidal modeling
and matching with the timbre models. A potentially more efficient design could
be obtained by allowing the refinement stage pass model-based information back
to the BSS stage, and defining an iterative procedure optimizing a given objective
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function. For example, passing classification and onset detection results, or assigning
probabilities to the extraneous tracks could, starting from the second iteration, help
refine the detection of the mixing matrix directions and the avoidance of the artifacts
due to spectral zeros.

Separation of more complex signals

Finally, an evident research goal would be to extend the applicability of the proposed
separation systems to perform with more realistic signals of higher polyphonies, dif-
ferent mixing model assumptions (e.g., delayed or convolutive models due to re-
verberation) and real recordings that can contain different levels of between-note
articulations (transients), playing modes, special effects, moving sources, artificially-
altered timbres, etc. Also, percussive sounds will need a specialized treatment. From
the point of view of source modeling, such more demanding separation tasks will
require more refined timbral descriptions, and possibly the learning of other mix-
ture aspects, such as typical recording practices or even genre-based timbral and
structural characteristics. The latter is a further example of the close and mutually
beneficial connections that can exist between sound source separation and Music
Content Analysis.
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Related publications

Several methods and results presented in this dissertation have been published in
the following works, which are listed here chronologically:

• J. J. Burred and T. Sikora. On the use of auditory representations for sparsity-
based sound source separation. In Proc. International Conference on Infor-
mation, Communications and Signal Processing (ICICS), Bangkok, Thailand,
December 2005.

This article presented the preliminary results obtained in measuring disjoint-
ness of speech and music mixtures in a separation-algorithm-independent frame-
work for the STFT and two auditory scales: Bark and ERB. In the present
dissertation, they were reported and extended in Sect. 3.3.

• J. J. Burred and T. Sikora. Comparison of frequency-warped representations
for source separation of stereo mixtures. In Proc. 121st Convention of the
Audio Engineering Society, San Francisco, USA, October 2006.

This work follows the developments presented in the previous one by comparing
the actual separation quality of the STFT with that obtained with a Constant-
Q and ERB, Bark and Mel auditory warpings, as was presented here in Sects.
3.4 and 3.5.

• J. J. Burred, A. Röbel and X. Rodet. An accurate timbre model for musi-
cal instruments and its application to classification. In Proc. Workshop on
Learning the Semantics of Audio Signals (LSAS), Athens, Greece, December
2006.

The timbre modeling process discussed in Sects. 4.4 to 4.6 was first introduced
in this article through an abridged presentation of its design and development.

• L. G. Martins, J. J. Burred, G. Tzanetakis and M. Lagrange. Polyphonic
instrument recognition using spectral clustering. In Proc. International Con-
ference on Music Information Retrieval (ISMIR), Vienna, Austria, September
2007.
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The timbre models were integrated into a source formation framework based
on the Normalized Cut criterion developed by the above coauthors. The cor-
responding results were reported on Sect. 4.8.

• J. J. Burred and T. Sikora. Monaural source separation from musical mixtures
based on time–frequency timbre models. In Proc. International Conference
on Music Information Retrieval (ISMIR), Vienna, Austria, September 2007.

This paper contains an abridged presentation of the monaural separation sys-
tem described in Sect. 5.2.

• J. J. Burred, M. Haller, S. Jin, A Samour and T. Sikora. Audio Content
Analysis. In Y. Kompatsiaris and P. Hobson (Eds.), Semantic Multimedia and
Ontologies: Theory and Applications, Springer, January 2008.

This is an introductory chapter to the general topic of Audio Content Analysis.
A timbre space consisting of a set of prototype curves, similar to the one
depicted on Fig. 4.18, was presented as an example of a feature extraction
process for the purpose of music description.
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