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FROM SPARSE TO DENSE FUNCTIONAL DATA AND BEYOND1

BY XIAOKE ZHANG AND JANE-LING WANG

University of Delaware and University of California, Davis

Nonparametric estimation of mean and covariance functions is important
in functional data analysis. We investigate the performance of local linear
smoothers for both mean and covariance functions with a general weighing
scheme, which includes two commonly used schemes, equal weight per ob-
servation (OBS), and equal weight per subject (SUBJ), as two special cases.
We provide a comprehensive analysis of their asymptotic properties on a uni-
fied platform for all types of sampling plan, be it dense, sparse or neither.
Three types of asymptotic properties are investigated in this paper: asymp-
totic normality, L2 convergence and uniform convergence. The asymptotic
theories are unified on two aspects: (1) the weighing scheme is very general;
(2) the magnitude of the number Ni of measurements for the ith subject rela-
tive to the sample size n can vary freely. Based on the relative order of Ni to
n, functional data are partitioned into three types: non-dense, dense and ultra-
dense functional data for the OBS and SUBJ schemes. These two weighing
schemes are compared both theoretically and numerically. We also propose a
new class of weighing schemes in terms of a mixture of the OBS and SUBJ
weights, of which theoretical and numerical performances are examined and
compared.

1. Introduction. Functional data analysis (FDA) has gained increasing im-
portance in modern data analysis due to the improved capability to record and
store a vast amount of data and advances in scientific computing. In addition to the
monographs by Ramsay and Silverman (2005), Ferraty and Vieu (2006), Horváth
and Kokoszka (2012), Bongiorno et al. (2014) and Hsing and Eubank (2015), re-
cent developments in FDA are illustrated in the survey articles by Cuevas (2014),
Marron and Alonso (2014), Shang (2014), Morris (2015) and Wang, Chiou and
Müller (2016). A fundamental issue in FDA is the estimation of mean and covari-
ance functions. It is not only of interest by itself but also involved in subsequent
analyses, such as for dimension reduction and modeling of functional data.
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Nonparametric methods have been widely used in FDA, including smoothing
splines [Cai and Yuan (2011), Rice and Silverman (1991)], B-splines [Cardot
(2000), James, Hastie and Sugar (2000), Rice and Wu (2001)], penalized splines
[Ruppert, Wand and Carroll (2003), Yao and Lee (2006)] and local polynomial
smoothing [Yao and Li (2013), Zhang and Chen (2007)]. We focus on local linear
smoothers due to its conceptual simplicity, attractive local features and well-known
ability for automatic boundary correction [Fan and Gijbels (1992)]. Extensions of
local polynomial smoothers from independent data to functional data include Yao,
Müller and Wang (2005a), Hall, Müller and Wang (2006) and Li and Hsing (2010),
who employed local linear smoothers to estimate the mean and covariance func-
tions of functional data and demonstrated their excellent theoretical and numerical
properties. Additional applications of local linear smoothers to the regression set-
ting and their variants are illustrated in Baíllo and Grané (2009), Barrientos-Marin,
Ferraty and Vieu (2010) and Boj, Delicado and Fortiana (2010).

In the context of FDA, we normally have n random functions or curves, repre-
senting n subjects, observed at discrete Ni time points for the ith subject. It has
been realized that the magnitude of Ni should be carefully handled since it not
only leads to distinct asymptotic properties but may also have an impact on the
choice of estimation procedures. Although no official definition exists, generally,
if all Ni are larger than some order of n, then the functional data are referred
to as “dense” data. If all Ni are bounded, the data are commonly considered as
“sparse.” The words “sparsity” and “sparse” have multiple meanings in the FDA
literature depending on the context, such as the sparsity of the model/function
[Aneiros and Vieu (2014)], the sparsity of data related to the topological effects of
small ball probabilities and the curse of dimensionality [Delaigle and Hall (2010),
Ferraty and Vieu (2006), Geenens (2011)] and the sparsity of the time grid at which
measurements are taken [James, Hastie and Sugar (2000), Yao, Müller and Wang
(2005a)]. We adopt in this paper the last meaning of “sparsity” and “sparse” in
terms of the amount of repeated measurements over time on experimental sub-
jects. For dense data, the observations from each subject are often pre-smoothed,
to remove noise in the data and to reconstruct the random curve of that subject,
before subsequent analysis [Cardot (2000), Ramsay and Silverman (2005), Zhang
and Chen (2007)]. For sparse data, such a pre-smoothing step is not viable so data
from all subjects are pooled to borrow information from each other before subse-
quent analysis [Paul and Peng (2009), Rice and Wu (2001), Yao, Müller and Wang
(2005a)]. Apart from the difference in estimation procedures, the estimators from
dense and sparse data have distinct asymptotic properties. Consequently, it is com-
mon in the FDA literature that a paper focuses on one type of data, either dense
or sparse. Data that are neither dense nor sparse were considered in Yao (2007),
Li and Hsing (2010) and Cai and Yuan (2010, 2011) but have received much less
attention in the literature.

We present in this paper a unified approach that handles both dense and sparse
functional data plus other data that are of neither type. The unifying theoretical
platform allows the magnitude of Ni relative to n to vary freely, and we derive both
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local and global asymptotic results. Distinct types of convergence rates emerge
from the unified theory based on the relative order of Ni to n, which leads to a
clear and natural criterion to define dense functional data: functional data such
that the root-n convergence rate can be achieved in estimation; otherwise, the data
are considered non-dense. In this sense, sparse data are just one special case of
non-dense data and there are other non-dense data types with unbounded Ni , which
one could term “semi-dense.” We also define a new category of “ultra-dense” func-
tional data such that not only the root-n convergence rate can be achieved but also
the asymptotic bias, which typically present in nonparametric smoothing meth-
ods, disappears, so the theory for ultra-dense data falls squarely in the parametric
paradigm.

Three types of asymptotic properties are often investigated for functional data:
local asymptotic normality, L2 convergence, and uniform convergence. In addi-
tion to deriving asymptotic normality of the mean estimator, Yao (2007) made the
first attempt to prove the asymptotic normality for the covariance estimator. The
asymptotic results there could accommodate large Ni but cannot achieve the root-
n convergence rate. Zhang and Chen (2007) established the asymptotic normality
results for both the mean and covariance estimators where a “smoothing first, then
estimation” approach was applied to dense data and a root-n rate was achieved.
For L2 convergence, Hall, Müller and Wang (2006) developed the optimal rate of
convergence for sparse data; however, their results focused on functional princi-
pal component analysis, rather than mean or covariance estimation. Cai and Yuan
(2011) showed that a smoothing spline estimator of the mean function achieves the
optimal minimax rate of L2 convergence, and Cai and Yuan (2010) established the
minimax rate for a regularized covariance estimator under a reproducing kernel
Hilbert space framework. Uniform convergence was first explored in Yao, Müller
and Wang (2005a) but the convergence rate there was sub-optimal. This was im-
proved in Li and Hsing (2010) but using a different estimator, which will be dis-
cussed in the next paragraph. Each paper in the FDA literature typically focuses on
one type of asymptotic properties, but in this paper we investigate all three types
of large sample properties.

The difference between the estimation procedures in Yao, Müller and Wang
(2005a) and Li and Hsing (2010) lies in the weighing scheme, the way weights
are assigned to observations. Yao, Müller and Wang (2005a) employed a scatter
plot smoother that assigns the same weight to each observation, which we term
the “OBS” scheme, so a subject with a larger number of observations Ni receives
more weights in total. In contrast, Li and Hsing (2010) assigned the same weight
to each subject, which we term the “SUBJ” scheme. The follow-up work [Cai and
Yuan (2011), Hall, Müller and Wang (2006), Kim and Zhao (2013), Yao (2007)]
also uses either OBS or SUBJ scheme, rather than considering both or a more
general one. We consider in this paper an approach that allows a general weighing
scheme such that both the OBS and SUBJ schemes are special cases of it. Since the
OBS and SUBJ schemes are the most commonly used ones in practice, we further
compare them theoretically and numerically to provide guidance for practitioners.
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We additionally propose a new class of weighing schemes in terms of a mixture of
the OBS and SUBJ weights, of which theoretical and numerical performances are
also compared with the OBS and SUBJ schemes.

To summarize, this paper provides a comprehensive and unifying analysis of
three asymptotic properties (asymptotic normality, L2 convergence, and uniform
convergence) based on a general weighing scheme for functional data. The unified
new theory also leads to new results under the OBS and SUBJ schemes, such
as the asymptotic normality for SUBJ estimators as well as the L2 and uniform
convergence for OBS estimators. Moreover, we improve the asymptotic normality
results of Yao (2007) such that root-n rate can now be attained for dense and ultra-
dense data. We also ameliorate the covariance estimator in Li and Hsing (2010) to
have better numerical performance.

A byproduct of the unified theory is a systematic partition of functional data into
non-dense, dense and ultra-dense data. Another intriguing result is the “disconti-
nuity of the asymptotic variance” phenomenon in the sense that the asymptotic
variance expressions may be different for the variance and covariance estimators.

For the OBS and SUBJ schemes, they have the same asymptotic bias but dif-
ferent asymptotic variances. With some constraints on Ni , Jensen’s inequality im-
plies that the rate of convergence for the OBS approach is always as good as and,
in some special cases, better than, the one from the SUBJ approach. The benefit
of the OBS scheme could be substantial when the measurement schedule is dense
for some subjects and sparse for others. When the aforementioned constraints on
Ni are violated, the OBS scheme may be inferior to the SUBJ scheme in terms of
mean integrated squared error and mean supremum absolute error. Perhaps not sur-
prisingly, for ultra-dense data, the SUBJ estimators can achieve exactly the same
asymptotic normality results as those based on the sample mean and sample co-
variance of the true individual functions. For either mean or covariance estimation,
there exists a particular mixture of the OBS and SUBJ weights such that the global
(either L2 or uniform) convergence rate of the resulting estimator is at least as
good as those of both OBS and SUBJ estimators.

The remainder of the paper is organized as follows: Section 2 introduces the
model and estimators. The asymptotic results on the three types of convergence
are shown in Sections 3–5, respectively. In Section 6, numerical performances of
the OBS and SUBJ schemes together with their mixture scheme are compared via
simulation. Section 7 contains the conclusion of this paper.

2. Methodology. Let {X(t) : t ∈ I } be an L2 stochastic process on an inter-
val I , which we assume for simplicity to be [0,1]. The mean and covariance func-
tions of X(t) are, respectively, μ(t) = E(X(t)) and γ (s, t) = Cov(X(s),X(t)).
With this notation, we can decompose X(t) into

X(t) = μ(t) + U(t),(2.1)

where U(t) is the stochastic part of X(t) with EU(t) = 0 for any t ∈ [0,1] and
Cov(U(s),U(t)) = γ (s, t) for all s, t ∈ [0,1].
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Let Xi be i.i.d. copies of X, which are not observable in practice. Instead, for
the ith subject, measurements are taken at Ni time points, Tij , j = 1, . . . ,Ni , and
the observations at these time points are contaminated with additive random errors,
so the actual observations follow

Yij = Xi(Tij ) + eij = μ(Tij ) + Ui(Tij ) + eij ,(2.2)

where the eij are i.i.d. copies of e with E(e) = 0 and Var(e) = σ 2. Thus, we ob-
serve {(Tij , Yij ) : i = 1, . . . , n, j = 1, . . . ,Ni}, which are identically distributed as
(T ,Y ) where Y = μ(T ) + U(T ) + e. For convenience, we denote Uij = Ui(Tij )

and δij = Uij + eij .
To estimate μ(t) and γ (s, t), local linear smoothing is applied due to its sim-

plicity and attractive local features. In the FDA literature, the OBS [Yao, Müller
and Wang (2005a)] and SUBJ [Li and Hsing (2010)] schemes are the most com-
monly used weighing schemes, and the OBS estimators are typically referred as
the scatter-plot smoothers. Obviously, the two schemes coincide when all the Ni

are equal. In this paper, we investigate a more general weighing scheme, of which
OBS and SUBJ are two special cases. Hereafter, estimators with no subscript repre-
sent those using the general weighing scheme, while estimators with the subscript
“obs” and “subj” represent the OBS and SUBJ estimators, respectively.

In what follows, denote Kh(·) = K(·/h)/h for a one-dimensional kernel K and
bandwidth h. We denote a(n) � b(n) to mean lim supn→∞ a(n)/b(n) < ∞, and
a(n) � b(n) to mean a(n) � b(n) and b(n) � a(n).

To estimate μ, a local linear smoother is applied to {(Yij , Tij ) : i = 1, . . . , n; j =
1, . . . ,Ni} and the weight wi is attached to each observation for the ith subject
such that

∑n
i=1 Niwi = 1. The mean estimator is μ̂(t) = β̂0 where

(β̂0, β̂1) = argmin
β0,β1

n∑
i=1

wi

Ni∑
j=1

[
Yij − β0 − β1(Tij − t)

]2
Khμ(Tij − t).(2.3)

To estimate γ , we assume Ni ≥ 2. Once μ̂(t) is obtained, a local linear smoother
is applied to the “raw covariances,” Cijl = [Yij − μ̂(Tij )][Yil − μ̂(Til)], and the
weight vi is attached to each Cijl for the ith subject such that

∑n
i=1 Ni(Ni −1)vi =

1. The resulting covariance estimator is γ̂ (s, t) = β̂0, where

(β̂0, β̂1, β̂2) = argmin
β0,β1,β2

n∑
i=1

vi

∑
1≤j 	=l≤Ni

[
Cijl − β0 − β1(Tij − s) − β2(Til − t)

]2
(2.4)

× Khγ (Tij − s)Khγ (Til − t).

For the OBS scheme, we let wi = 1/NS where NS = ∑n
i=1 Ni and vi =

1/
∑n

i=1 Ni(Ni − 1); for the SUBJ scheme, we let wi = 1/(nNi) and vi =
1/[nNi(Ni − 1)]. To establish asymptotic properties for the general weight esti-
mators, we regard Ni , wi and vi as fixed quantities that are allowed to vary over n.
When Ni are random, the theory can be regarded as conditional on the values
of Ni .
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3. Asymptotic normality. We provide a unified theory in this section on the
asymptotic normality of the mean and covariance estimators in (2.3) and (2.4),
regardless of the type of measurement schedule. For the special cases of OBS and
SUBJ schemes, a byproduct of the asymptotic normality is the emergence of three
types of asymptotic normality as presented in Corollaries 3.2 and 3.5.

3.1. Mean function. We first provide the asymptotic normality of the mean
estimator based on the general weighing scheme.

THEOREM 3.1. Under (A1)–(A2), (B1)–(B4) and (C1a)–(C3a) in Appendix A
and for a fixed interior point t ∈ (0,1), if min{hμ/

∑n
i=1 Niw

2
i ,1/

∑n
i=1 Ni(Ni −

1)w2
i }h6

μ → 0 and hμ

∑n
i=1 Ni(Ni − 1)w2

i /
∑n

i=1 Niw
2
i → C0 ∈ [0,∞], then

�−1/2
μ

[
μ̂(t) − μ(t) − 1

2h2
μσ 2

Kμ(2)(t) + op

(
h2

μ

)] d−→N (0,1),

where

�μ =
∑n

i=1 Niw
2
i

hμ

‖K‖2 γ (t, t) + σ 2

f (t)
+
[

n∑
i=1

Ni(Ni − 1)w2
i

]
γ (t, t).

By letting wi = 1/NS and wi = 1/(nNi), respectively, we obtain the corre-
sponding results for the OBS and SUBJ estimators. We denote NSk = ∑n

i=1 Nk
i

for an integer k ≥ 2, N̄ = NS/n, N̄Sk = NSk/n, and N̄H = (n−1 ∑n
i=1 N−1

i )−1,
where the subscript “H” in N̄H suggests that it is a harmonic mean.

COROLLARY 3.1. Suppose that (A1)–(A2), (B1)–(B4) and (C1a)–(C3a) hold
and t is a fixed interior point in (0,1).

(a) OBS: If min{nN̄hμ,n(N̄)2/(N̄S2 − N̄)}h6
μ → 0 and hμ(N̄S2 − N̄)/N̄ →

C0 ∈ [0,∞],
�

−1/2
obs

[
μ̂obs(t) − μ(t) − 1

2
h2

μσ 2
Kμ(2)(t) + op

(
h2

μ

)] d−→N (0,1),

where �obs = ‖K‖2 γ (t, t) + σ 2

nN̄hμf (t)
+ (N̄S2 − N̄)

n(N̄)2
γ (t, t).

(b) SUBJ: If min{nN̄Hhμ,n/(1 − 1/N̄H )}h6
μ → 0 and hμ(N̄H − 1) → C0 ∈

[0,∞],
�

−1/2
subj

[
μ̂subj(t) − μ(t) − 1

2
h2

μσ 2
Kμ(2)(t) + op

(
h2

μ

)] d−→N (0,1),

where �subj = ‖K‖2 γ (t, t) + σ 2

nN̄Hhμf (t)
+ 1

n

(
1 − 1

N̄H

)
γ (t, t).
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REMARK 1. (i) The magnitude of Ni in Theorem 3.1 can be of any order of
the sample size n. The result in Corollary 3.1 for the SUBJ estimator is new and the
result for the OBS estimator improves that of Yao (2007), where {Ni : i = 1, . . . , n}
are assumed as i.i.d. copies of a random variable N and an additional assumption
ENhμ → 0 was used. Due to this additional assumption, root-n rate could not be
attained in Yao (2007), while we established it in Corollary 3.2 below.

(ii) Likelihood based mixed-effects models have been investigated for longitu-
dinal data [Rice and Wu (2001), Shi, Weiss and Taylor (1996)] to estimate fixed
and random effects nonparametrically. These approaches involve the assumption
of Gaussian process and have no theory involved. Wu and Zhang (2002) considered
local polynomial mixed-effect models and developed asymptotic normality results
for the local linear and local constant mixed-effects estimates, which also involves
the Gaussian assumption. In contrast, the approach we consider in this paper does
not rely on the Gaussian assumption and is thus more broadly applicable.

(iii) In Theorem 3.1, we assume that the errors eij are i.i.d. copies of e with
zero mean Ee = 0 and constant variance Var(e) = σ 2. One possible relaxation of
this assumption is that eij = e(Tij ) where Ee(t) = 0, Var[e(t)] = σ 2(t), and σ 2(·)
is twice-differentiable. The asymptotic result is the same except that σ 2 is replaced
by σ 2(t) and the proof is essentially similar. For simplicity and to avoid technical
distraction, we assume the constant error variance throughout this paper.

For either the OBS or SUBJ scheme, three types of asymptotic normality
emerge from Corollary 3.1 depending on the order of N̄ and N̄H relative to n

and the order of hμ.

COROLLARY 3.2. Suppose that the assumptions for Corollary 3.1 hold and t

is a fixed interior point in (0,1).
(a) OBS: Assume lim supn N̄S2/(N̄)2 < ∞.
Case 1. When N̄/n1/4 → 0 and hμ � (nN̄)−1/5,√

nN̄hμ

[
μ̂obs(t) − μ(t) − 1

2
h2

μσ 2
Kμ(2)(t)

]
d−→N

(
0,‖K‖2 γ (t, t) + σ 2

f (t)

)
.

Case 2. When N̄/n1/4 → C and hμN̄S2/N̄ → C1 where 0 < C,C1 < ∞,√√√√n(N̄)2

N̄S2

[
μ̂obs(t) − μ(t) − 1

2
h2

μσ 2
Kμ(2)(t)

]

d−→N
(

0,‖K‖2 γ (t, t) + σ 2

f (t)C1
+ γ (t, t)

)
.

Case 3. When N̄/n1/4 → ∞, hμ = o(n−1/4), and hμN̄ → ∞,√√√√n(N̄)2

N̄S2

[
μ̂obs(t) − μ(t)

] d−→N
(
0, γ (t, t)

)
.
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(b) SUBJ: Similar three cases can be obtained for μ̂subj by replacing N̄ , N̄S2/N̄

and (N̄)2/N̄S2 in (a) by N̄H , N̄H and 1, respectively.

REMARK 2. (i) Corollary 3.2 leads to a systematic partition of functional data
into three categories under either OBS or SUBJ scheme. The partition is based
on the relative order of N̄ and N̄H to n1/4, for μ̂obs and μ̂subj, respectively. With
either scheme, the result in case 1 is comparable to the one-dimensional local linear
smoother for independent data. In both cases 2 and 3, root-n rate can be attained.

(ii) Corollary 3.2 also gives a clear and natural criterion to define dense func-
tional data: Functional data such that root-n rate of convergence can be achieved
are “dense”; otherwise, the data are “non-dense.” Accordingly, cases 2 and 3 cor-
respond to dense data while case 1 is for non-dense data since the optimal rate of
convergence is (nN̄)2/5 or (nN̄H )2/5, both are of the order o(n1/2). The rate in
case 1 can be of any order between n2/5 and n1/2, but it can never reach root-n.
Sparse data, where all Ni are bounded, is a special case of case 1. Although root-
n rate can be attained in both cases 2 and 3, only case 3 falls in the parametric
paradigm where the limiting normal distribution has zero mean. We term the data
in case 3 as “ultra-dense.” Therefore, functional data can be partitioned into three
types: non-dense, dense and ultra-dense functional data.

Corollary 3.1 implies that μ̂obs and μ̂subj have identical asymptotic bias but
different asymptotic variances. We decompose �obs in Corollary 3.1 into �obs =
�A

obs + �B
obs where

�A
obs = ‖K‖2 γ (t, t) + σ 2

nN̄hμf (t)
, �B

obs(t) = (N̄S2 − N̄)

n(N̄)2
γ (t, t).

For μ̂subj, we can similarly decompose �subj into two parts:

�A
subj = ‖K‖2 γ (t, t) + σ 2

nN̄Hhμf (t)
, �B

subj = 1

n

(
1 − 1

N̄H

)
γ (t, t).

We have the following two inequalities.

COROLLARY 3.3.

�A
obs ≤ �A

subj and �B
obs ≥ �B

subj.

REMARK 3. Corollary 3.3 sheds lights on the different performance of the two
weighing schemes for non-dense and ultra-dense data as shown in Corollary 3.2.
For non-dense data, where �A

obs and �A
subj dominate �B

obs and �B
subj, respectively,

the OBS scheme results in a more efficient mean estimator. In contrast, for ultra-
dense data, where �B

obs and �B
subj dominate �A

obs and �A
subj, respectively, the SUBJ

scheme outperforms the OBS scheme. In particular, for ultra-dense data, the SUBJ
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estimator is asymptotically equivalent to the sample mean when the true curves
Xi(t) are observable. Below we provide an intuitive explanation for these two
scenarios.

For non-dense data the choice of the bandwidth hμ in case 1 of Corollary 3.2
leads to N̄hμ, N̄Hhμ → 0. Consider the simplest special case when Nihμ → 0 for
all i, so each subject contributes at most one observation to the mean estimator
μ̂(t) asymptotically. Due to the independence between subjects, the data used for
the mean estimation are essentially i.i.d. so the OBS scheme, which assigns the
same weight to each observation, enables the most efficient estimator. For more
general cases when only N̄hμ, N̄Hhμ → 0 hold, the same arguments applies on
the average, so even though μ̂obs may not be the most efficient estimator it is still
better than the SUBJ estimator, which does not weigh in the extra information from
subjects with larger Ni .

On the other hand, when data are ultra-dense the choice of the bandwidth hμ

in case 3 of Corollary 3.2 leads to N̄hμ, N̄Hhμ → ∞, so an average subject con-
tributes infinitely many observations to the mean estimator. Since observations
from the same subject are correlated, the covariances within subjects now domi-
nate the variances and it is unwise to allow any subject to have an undue influence
as it may otherwise inflate the rate of the variance of the mean estimator. The SUBJ
scheme achieves such a goal and is thus a safer and better strategy than the OBS
scheme. Furthermore, the SUBJ scheme is equivalent to taking a sample mean af-
ter one pre-smoothes each individual data and it is well known [Hall, Müller and
Wang (2006)] that for ultra-dense data pre-smoothing of individual data leads to a
curve that is first order equivalent to the original signal Xi(t). This explains why
the SUBJ estimator is asymptotically equivalent to the sample mean based on the
true curves.

3.2. Covariance function. Define

V1(s, t) = Var
[(

Y1 − μ(T1)
)(

Y2 − μ(T2)
)|T1 = s, T2 = t

];
V2(s, t) = Cov

([
Y1 − μ(T1)

][
Y2 − μ(T2)

]
,
[
Y1 − μ(T1)

][
Y3 − μ(T3)

]|
T1 = s, T2 = t, T3 = t

);
V3(s, t) = Cov

([
Y1 − μ(T1)

][
Y2 − μ(T2)

]
,
[
Y3 − μ(T3)

][
Y4 − μ(T4)

]|
T1 = s, T2 = t, T3 = s, T4 = t

)
.

The next theorem provides the asymptotic normality of the covariance estima-
tor with the general weighing scheme. For simplicity and to illustrate the general
concept of covariance estimation, we assume that the mean function μ is known
so it is not entangled in the covariance estimation.
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THEOREM 3.2. Under (A1)–(A2), (B1)–(B4) and (D1a)–(D3a), for two fixed
interior points s, t ∈ (0,1), if

min
{

h2
γ∑n

i=1 Ni(Ni − 1)v2
i

,
hγ∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i

,

1∑n
i=1 Ni(Ni − 1)(Ni − 2)(Ni − 3)v2

i

}
h6

γ → 0,

[∑n
i=1 Ni(Ni − 1)(Ni − 2)(Ni − 3)v2

i ] · [∑n
i=1 Ni(Ni − 1)v2

i ]
[∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i ]2

→ C0 and

h2
γ

∑n
i=1 Ni(Ni − 1)(Ni − 2)(Ni − 3)v2

i∑n
i=1 Ni(Ni − 1)v2

i

→ C′
0 where C0,C

′
0 ∈ [0,∞],

then we have

�−1/2
γ

[
γ̂ (s, t) − γ (s, t) − 1

2
h2

γ σ 2
K

(
∂2γ

∂s2 (s, t) + ∂2γ

∂t2 (s, t)

)
+ op

(
h2

γ

)]
d−→N (0,1),

where

�γ = [
1 + I (s = t)

][∑n
i=1 Ni(Ni − 1)v2

i

h2
γ

‖K‖4 V1(s, t)

f (s)f (t)

+
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i

hγ

‖K‖2 f (s)V2(t, s) + f (t)V2(s, t)

f (s)f (t)

]

+
[

n∑
i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i

]
V3(s, t),

and I (·) is the indicator function.

Letting vi = 1/
∑n

i=1 Ni(Ni − 1) and vi = 1/[nNi(Ni − 1)] leads to the corre-
sponding results for OBS and SUBJ estimators, respectively. Hereafter, we denote

P1(N) = 1

n−1 ∑n
i=1[Ni(Ni − 1)] ,

P2(N) = n−1 ∑n
i=1[Ni(Ni − 1)(Ni − 2)]

(n−1 ∑n
i=1[Ni(Ni − 1)])2 ,

P3(N) = n−1 ∑n
i=1[Ni(Ni − 1)(Ni − 2)(Ni − 3)]
(n−1 ∑n

i=1[Ni(Ni − 1)])2 ,
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P4(N) = 1

n

n∑
i=1

1

Ni(Ni − 1)
,

P5(N) = 1

n

n∑
i=1

Ni − 2

Ni(Ni − 1)
,

P6(N) = 1

n

n∑
i=1

(Ni − 2)(Ni − 3)

Ni(Ni − 1)
.

COROLLARY 3.4. Suppose that (A1)–(A2), (B1)–(B4) and (D1a)–(D3a)
hold, and s and t are two fixed interior points in (0,1).

(a) OBS: If min{nP1(N)−1h2
γ , nP2(N)−1hγ ,nP3(N)−1}h6

γ → 0, P1(N)P3(N)/

P2(N)2 → C0 and h2
γ P3(N)/P1(N) → C′

0 where C0,C
′
0 ∈ [0,∞],

�
−1/2
obs

[
γ̂obs(s, t) − γ (s, t) − 1

2
h2

γ σ 2
K

(
∂2γ

∂s2 (s, t) + ∂2γ

∂t2 (s, t)

)
+ op

(
h2

γ

)]
d−→N (0,1),

where

�obs = [
1 + I (s = t)

][P1(N)

nh2
γ

‖K‖4 V1(s, t)

f (s)f (t)

+ P2(N)

nhγ

‖K‖2 f (s)V2(t, s) + f (t)V2(s, t)

f (s)f (t)

]

+ P3(N)

n
V3(s, t).

(b) SUBJ: If min{nP4(N)−1h2
γ , nP5(N)−1hγ ,nP6(N)−1}h6

γ → 0, P4(N) ×
P6(N)/P5(N)2 → C0 and h2

γ P6(N)/P4(N) → C′
0 where C0,C

′
0 ∈ [0,∞],

�
−1/2
subj

[
γ̂subj(s, t) − γ (s, t) − 1

2
h2

γ σ 2
K

(
∂2γ

∂s2 (s, t) + ∂2γ

∂t2 (s, t)

)
+ op

(
h2

γ

)]
d−→N (0,1),

where

�subj = [
1 + I (s = t)

][P4(N)

nh2
γ

‖K‖4 V1(s, t)

f (s)f (t)

+ P5(N)

nhγ

‖K‖2 f (s)V2(t, s) + f (t)V2(s, t)

f (s)f (t)

]

+ P6(N)

n
V3(s, t).
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Similar to Corollary 3.2, for either the OBS or SUBJ covariance estimator, we
can also partition the functional data into three types: non-dense, dense and ultra-
dense data, based on their asymptotic distributions.

COROLLARY 3.5. Suppose that the assumptions for Corollary 3.4 hold and
that s and t are two fixed interior points in (0,1).

(a) OBS: Assume limn N̄S2 · N̄S4/(N̄S3)
2 = C0 ∈ [1,∞], lim supn(N̄S2)/(N̄)2,

lim supn(N̄ · N̄S3)/(N̄S2)
2, lim supn N̄S4/(N̄S2)

2 < ∞.
Case 1. When P1(N)−1/n1/2 → 0 and hγ � (nP1(N)−1)−1/6,

√
nP1(N)−1h2

γ

[
γ̂obs(s, t) − γ (s, t) − 1

2
h2

γ σ 2
K

(
∂2γ

∂s2 (s, t) + ∂2γ

∂t2 (s, t)

)]

d−→N
(

0,
[
1 + I (s = t)

]‖K‖4 V1(s, t)

f (s)f (t)

)
.

Case 2. When P1(N)−1/n1/2 → C and h2
γ P3(n)/P1(N) → C2

1 , where 0 <

C,C1 < ∞,√√√√n(N̄S2)2

N̄S4

[
γ̂obs(s, t) − γ (s, t) − 1

2
h2

γ σ 2
K

(
∂2γ

∂s2 (s, t) + ∂2γ

∂t2 (s, t)

)]

d−→N
(

0,
[
1 + I (s = t)

][‖K‖4V1(s, t)

C2
1f (s)f (t)

+ ‖K‖2

C1C
1/2
0

f (s)V2(t, s) + f (t)V2(s, t)

f (s)f (t)

]
+ V3(s, t)

)
.

Case 3. When P1(N)−1/n1/2 → ∞, hγ = o(n−1/4), and h2
γ P1(N)−1 → ∞,√√√√n(N̄S2)2

N̄S4

[
γ̂obs(s, t) − γ (s, t)

] d−→N
(
0,V1(s, t)

)
.

(b) SUBJ: Replacing P1(N), P3(N)/P1(N), and (N̄S2)
2/N̄S4 in cases 1–3 with

P4(N), P6(N)/P4(N) and 1, respectively, lead to the corresponding three cases.

REMARK 4. (i) The results in Theorem 3.2 are intriguing as the asymptotic
variance expressions are different for the variance (s = t) and covariance (s 	= t)
estimators. We refer this fact as the “discontinuity of the asymptotic variance” of
the covariance estimator. This difference results from the fact that E[Khγ (T −
t)Khγ (T − s)] = ‖K‖2f (t)/hγ + o(1/hγ ) for s = t , but E[Khγ (T − s)Khγ (T −
t)] = 0 for s 	= t when hγ is sufficiently small. Details can be found in Appendix B.

Corollary 3.5 further reveals that the “discontinuity of the asymptotic variance”
appears for non-dense and dense data but not for ultra-dense data. The explanation
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is as follows: The ith subject contributes to the variance of γ̂ in terms of three
sources of variation: Var(δij δil), for j 	= l (Variation A), Cov(δij δil, δij δik), for
pairwise unequal j, k, l (Variation B), and Cov(δij δil, δimδik), for pairwise unequal
j, k, l,m (Variation C). Due to the different expression of E[Khγ (T − t)Khγ (T −
s)] between s = t and s 	= t , both Variation A and Variation B are doubled when
s = t compared to s 	= t , but Variation C is unaffected. Since Variation C dominates
Variations A and B asymptotically when data are ultra-dense, the phenomenon
“discontinuity of the asymptotic variance” does not appear there. In contrast, when
data are either non-dense or dense, at least one of the Variations, A or B, is not
negligible so this phenomenon occurs.

(ii) Remarks 1(i), 2 and 3 apply for the covariance estimators as well with all the
arguments on one-dimensional smoothing changed to two-dimensional smoothing.
The results for the OBS estimator improves that of Yao (2007) where an extra
assumption EN3hγ → 0 was used under the random Ni scenario and only the
case with s 	= t was considered.

Based on the order of P1(N)−1 and P4(N)−1 relative to n1/2, functional data
are partitioned into three types in covariance estimation as in Corollary 3.5: non-
dense, dense and ultra-dense. Similar to Corollary 3.3, we have P1(N) ≤ P4(N)

and P3(N) ≥ P6(N). Therefore, the OBS scheme outperforms SUBJ scheme for
non-dense data, while this is reversed for ultra-dense data. Moreover, for ultra-
dense data, the SUBJ estimator is asymptotically equivalent to the sample covari-
ance when the true curves Xi(t) are observable.

4. L2 convergence. In this section, L2 rates of convergence are provided for
mean and covariance estimators with the general weighing scheme, for which the
OBS and SUBJ schemes are two special cases.

For a univariate function φ(·) ∈ [0,1] and a bivariate function 	(·, ·) ∈ [0,1]2,
define the L2 norm by ‖φ‖2 = [∫ φ(t)2 dt]1/2 and the Hilbert–Schmidt norm by
‖	‖HS = [∫∫ 	(s, t)2 ds dt]1/2. The domains of the integrals are omitted unless
otherwise specified.

4.1. Mean function. We consider the mean estimator in (2.3) with a general
weight wi for subject i.

THEOREM 4.1. Under (A1)–(A2), (B1)–(B4) and (C1b)–(C3b),

‖μ̂ − μ‖2 = Op

(
h2

μ +
[∑n

i=1 Niw
2
i

hμ

+
n∑

i=1

Ni(Ni − 1)w2
i

]1/2)
.

COROLLARY 4.1. Suppose that (A1)–(A2), (B1)–(B4), (C1b) and (C3b)
hold.
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(a) OBS:

‖μ̂obs − μ‖2 = Op

(
h2

μ +
√√√√(

1

N̄hμ

+ N̄S2

(N̄)2

)
1

n

)
.

(b) SUBJ: Under an additional assumption (C2b),

‖μ̂subj − μ‖2 = Op

(
h2

μ +
√(

1

N̄Hhμ

+ 1
)

1

n

)
.

REMARK 5. (i) For the SUBJ scheme, if we let hμ � (nN̄H )−1/5, the L2

rate for μ̂subj is the same as the minimax rate in Theorem 3.2 of Cai and Yuan
(2011), who also considered the same weighing scheme but employed a smoothing
spline estimator. Thus, the local polynomial smoother enjoys the same minimax
optimality as this smoothing spline estimator.

(ii) By Jensen’s inequality, N̄ ≥ N̄H and N̄S2 ≥ (N̄)2, so Remark 3 also applies
here. Moreover, if lim supn N̄S2/(N̄)2 < ∞, the rate for the OBS mean estimator is
always as good as the SUBJ estimator and in some special cases the former could
be better. For example, if Ni ≤ m < ∞, for i = 1, . . . , [n/2], and Ni � nα , for
i = [n/2]+1, . . . , n, where α ≥ 1/4, then the rate of μ̂obs is strictly better than that
of μ̂subj. Explicitly, root-n rate can be attained for μ̂obs since N̄ � nα ≥ n1/4, while
the rate for μ̂subj is the same as the one for sparse data since N̄H = O(1). This phe-
nomenon is numerically confirmed in Section 6. The above statement needs to be
taken with caution when the two schemes leads to the same

√
n-rate of conver-

gence, where the SUBJ scheme is better for ultra-dense data as it leads to a smaller
asymptotic variance.

COROLLARY 4.2. Suppose that (A1)–(A2), (B1)–(B4), (C1b) and (C3b)
hold.

(a) OBS: Assume lim supn N̄S2/(N̄)2 < ∞.

(1) When N̄/n1/4 → 0 and hμ � (nN̄)−1/5,

‖μ̂obs − μ‖2 = Op

(
h2

μ + 1√
nN̄hμ

)
.

(2) When N̄/n1/4 → C, where 0 < C < ∞, and hμ � n−1/4,

‖μ̂obs − μ‖2 = Op

(
1√
n

)
.

(3) When N̄/n1/4 → ∞, hμ = o(n−1/4), and hμN̄ → ∞,

‖μ̂obs − μ‖2 = Op

(
1√
n

)
.

(b) SUBJ: Under (C2b), replacing N̄ in (a) with N̄H leads to the corresponding
results.
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4.2. Covariance function. For the same reason as in Section 3.2, we assume
that the mean function μ is known. The rate for γ̂ in (2.4) is given in the next
theorem.

THEOREM 4.2. Under (A1)–(A2), (B1)–(B4) and (D1b)–(D3b),

‖γ̂ − γ ‖HS = Op

(
h2

γ +
[∑n

i=1 Ni(Ni − 1)v2
i

h2
γ

+
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i

hγ

+
n∑

i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i

]1/2)
.

We show below the corresponding results for γ̂obs and γ̂subj. Denote N̄H2 =
(n−1 ∑n

i=1 N−2
i )−1.

COROLLARY 4.3. Suppose that (A1)–(A2), (B1)–(B4), (D1b) and (D3b)
hold.

(a) OBS:

‖γ̂obs − γ ‖HS = Op

(
h2

γ +
√√√√(

1

N̄S2h2
γ

+ N̄S3

(N̄S2)2hγ

+ N̄S4

(N̄S2)2

)
1

n

)
.

(b) SUBJ: Under an additional assumption (D2b),

‖γ̂subj − γ ‖HS = Op

(
h2

γ +
√√√√(

1

N̄H2h2
γ

+ 1

N̄Hhγ

+ 1
)

1

n

)
.

Since N̄ ≥ N̄H and N̄S2 ≥ N̄H2, Jensen’s inequality implies that the rate
for γ̂obs is always as good as γ̂subj if lim supn(N̄S2)/(N̄)2 < ∞, lim supn(N̄ ·
N̄S3)/(N̄S2)

2 < ∞, and lim supn N̄S4/(N̄S2)
2 < ∞.

COROLLARY 4.4. Suppose that (A1)–(A2), (B1)–(B4), (D1b) and (D3b)
hold.

(a) OBS: Assume that lim supn(N̄S2)/(N̄)2, lim supn(N̄ · N̄S3)/(N̄S2)
2,

lim supn N̄S4/(N̄S2)
2 < ∞.

(1) When N̄S2/n1/2 → 0, and hγ � (nN̄S2)
−1/6,

‖γ̂obs − γ ‖HS = Op

(
h2

γ + 1√
nN̄S2h2

γ

)
.
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(2) When N̄S2/n1/2 → C, and hγ � n−1/4,

‖γ̂obs − γ ‖HS = Op

(
1√
n

)
.

(3) When N̄S2/n1/2 → ∞, hγ = o(n−1/4) and hγ N̄ → ∞,

‖γ̂obs − γ ‖HS = Op

(
1√
n

)
.

(b) SUBJ: Under an additional assumption (D2b), replacing N̄ and N̄S2 in (a)
with N̄H and N̄H2, respectively, leads to the corresponding results.

REMARK 6. OBS and SUBJ are the most commonly used schemes, but for
some cases, using a weighing scheme that is neither OBS nor SUBJ is likely to
achieve a better rate. For instance, one can use a mixture of the OBS and SUBJ
schemes, that is, wi = α/(nN̄) + (1 − α)/(nNi) for some 0 ≤ α ≤ 1 to estimate
μ, which satisfies both Assumptions (C1b) and (C2b). It can be easily shown that
the corresponding mean estimator, denoted by μ̂α , can achieve the following rate:

‖μ̂α − μ‖2 = Op

(
h2

μ +
√

α2cn1 + (1 − α)2cn2
)
,

where cn1 =
(

1

N̄hμ

+ N̄S2

(N̄)2

)
1

n
, and cn2 =

(
1

N̄Hhμ

+ 1
)

1

n
.

In particular, if we let α∗ = cn2/(cn1 + cn2) such that α2cn1 + (1 − α)2cn2 is min-
imized, the rate becomes

‖μ̂α∗ − μ‖2 = Op

(
h2

μ +
√

cn1cn2

cn1 + cn2

)
.

Since cn1cn2/(cn1 + cn2) ≤ min{cn1, cn2}, the estimator μ̂α∗ always attains at least
the better rate between the two estimators, μ̂obs and μ̂subj. This is a very appealing
feature since in reality it is difficulty to judge which of the two schemes is a better
one but by using μ̂α∗ we will always do at least as well as, if not better than, both.

Similarly, to estimate γ , one could use vi = θ/[∑n
i=1 Ni(Ni − 1)] + (1 −

θ)/[nNi(Ni − 1)] for some 0 ≤ θ ≤ 1 as an alternative weighing scheme, and
the rate of the corresponding covariance estimator, denoted by γ̂θ , is

‖γ̂θ − γ ‖HS = Op

(
h2

γ +
√

θ2dn1 + (1 − θ)2dn2
)
,

where

dn1 =
(

1

N̄S2h2
γ

+ N̄S3

(N̄S2)2hγ

+ N̄S4

(N̄S2)2

)
1

n
and

dn2 =
(

1

N̄H2h2
γ

+ 1

N̄Hhγ

+ 1
)

1

n
.
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A particular choice of θ is θ∗ = dn2/(dn1 + dn2) that minimizes this rate, and γ̂θ∗
always attains at least the better rate between γ̂obs and γ̂subj.

5. Uniform convergence. In this section, we focus on the uniform conver-
gence for mean and covariance estimators. Again, for OBS and SUBJ schemes,
there are three types of uniform rates for non-dense, dense and ultra-dense func-
tional data, respectively.

5.1. Mean function.

THEOREM 5.1. Under (A1)–(A2), (B1)–(B4) and (C1c)–(C3c),

sup
t∈[0,1]

∣∣μ̂(t) − μ(t)
∣∣ = O

(
h2

μ +
{

log(n)

[∑n
i=1 Niw

2
i

hμ

+
n∑

i=1

Ni(Ni − 1)w2
i

]}1/2)

a.s.

The respective rates of convergence for μ̂obs and μ̂subj are as follows.

COROLLARY 5.1. Suppose that (A1)–(A2), (B1)–(B4) and (C1c)–(C2c)
hold.

(a) OBS: Under an additional assumption (C3c),

sup
t∈[0,1]

∣∣μ̂obs(t) − μ(t)
∣∣ = O

(
h2

μ +
√√√√(

1

N̄hμ

+ N̄S2

(N̄)2

)
log(n)

n

)
a.s.

(b) SUBJ:

sup
t∈[0,1]

∣∣μ̂subj(t) − μ(t)
∣∣ = O

(
h2

μ +
√(

1

N̄Hhμ

+ 1
)

log(n)

n

)
a.s.

The result in Corollary 5.1 for the SUBJ scheme was first established in Li
and Hsing (2010). Here, we restate it for completeness as it facilitates the next
corollary.

COROLLARY 5.2. Suppose that (A1)–(A2), (B1)–(B4), and (C1c)–(C2c)
hold.

(a) OBS: Assume (C3c).

(1) When N̄/(n/ log(n))1/4 → 0 and hμ � (nN̄/ log(n))−1/5,

sup
t∈[0,1]

∣∣μ̂obs(t) − μ(t)
∣∣ = O

(
h2

μ +
√

log(n)

nN̄hμ

)
a.s.
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(2) When N̄/(n/ log(n))1/4 → C, where C > 0, and hμ � (n/ log(n))−1/4,

sup
t∈[0,1]

∣∣μ̂obs(t) − μ(t)
∣∣ = O

(√
log(n)

n

)
a.s.

(3) When N̄/(n/ log(n))1/4 → ∞, hμ = o((n/ log(n))−1/4), and hμN̄ → ∞,

sup
t∈[0,1]

∣∣μ̂obs(t) − μ(t)
∣∣ = O

(√
log(n)

n

)
a.s.

(b) SUBJ: We can obtain the corresponding results by replacing N̄ in (a)
with N̄H .

5.2. Covariance function.

THEOREM 5.2. Under (A1)–(A2), (B1)–(B4), (C1c)–(C3c) and (D1c)–
(D3c),

sup
s,t∈[0,1]

∣∣γ̂ (s, t) − γ (s, t)
∣∣

= O

(
h2

μ +
{

log(n)

[∑n
i=1 Niw

2
i

hμ

+
n∑

i=1

Ni(Ni − 1)w2
i

]}1/2

+ h2
γ +

{
log(n)

[∑n
i=1 Ni(Ni − 1)v2

i

h2
γ

+
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i

hγ

+
n∑

i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i

]}1/2)
a.s.

Theorem 5.2 indicates that the rate for γ̂ depends on the rate for μ̂. The uniform
rates for the OBS and SUBJ estimators are as follows.

COROLLARY 5.3. Assume (A1)–(A2), (B1)–(B4), (C1c)–(C2c) and (D1c)–
(D2c).

(a) OBS: Under two additional assumptions (C3c) and (D3c),

sup
s,t∈[0,1]

∣∣γ̂obs(s, t) − γ (s, t)
∣∣

= O

(
h2

μ +
√√√√(

1

N̄hμ

+ N̄S2

(N̄)2

)
log(n)

n
+ h2

γ

+
√√√√(

1

N̄S2h2
γ

+ N̄S3

(N̄S2)2hγ

+ N̄S4

(N̄S2)2

)
log(n)

n

)
a.s.
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(b) SUBJ:

sup
s,t∈[0,1]

∣∣γ̂subj(s, t) − γ (s, t)
∣∣ = O

(
h2

μ +
√(

1

N̄Hhμ

+ 1
)

log(n)

n
+ h2

γ

+
√√√√(

1

N̄H2h2
γ

+ 1

N̄Hhγ

+ 1
)

log(n)

n

)
a.s.

REMARK 7. Li and Hsing (2010) also assigned equal weight for each subject
to estimate γ , but used a different procedure. We denote their estimator by γ̂LH
which is as follows: γ̂LH(s, t) = â0 − μ̂subj(s)μ̂subj(t) where

(â0, â1, â2)

= argmin
a0,a1,a2

n∑
i=1

1

nNi(Ni − 1)

(5.1)
× ∑

1≤j 	=l≤Ni

[
YijYil − a0 − a1(Tij − s) − a2(Til − t)

]2
× Khγ (Tij − s)Khγ (Til − t).

Obviously, γ̂subj is obtained by smoothing residuals from the mean estimation
while γ̂LH is obtained by first estimating EX(s)X(t) and then centering by μ̂subj.
Theoretically, γ̂subj and γ̂LH have the same rate of convergence but they differ in
numerical performance as shown in Section 6, where γ̂subj outperforms γ̂LH.

COROLLARY 5.4. Assume (A1)–(A2), (B1)–(B4), (C1c)–(C2c) and (D1c)–
(D2c).

(a) OBS: Assume (C3c) and (D3c).

(1) When N̄S2/(n/ log(n))1/2 → 0, N̄/(n/ log(n))1/4 → 0, hμ � (nN̄/

log(n))−1/5, and hγ � (nN̄S2/ log(n))−1/6,

sup
s,t∈[0,1]

∣∣γ̂obs(s, t) − γ (s, t)
∣∣ = O

(
h2

γ +
√√√√ log(n)

nN̄S2h2
γ

)
a.s.

(2) When N̄S2/(n/ log(n))1/2 → C1, N̄/(n/ log(n))1/4 → C2, where 0 <

C1,C2 < ∞, and hμ � hγ � (n/ log(n))−1/4,

sup
s,t∈[0,1]

∣∣γ̂obs(s, t) − γ (s, t)
∣∣ = O

(√
log(n)

n

)
a.s.

(3) When N̄S2/(n/ log(n))1/2 → ∞, N̄/(n/ log(n))1/4 → ∞, hμ,hγ = o((n/

log(n))−1/4), and hμN̄,hγ N̄ → ∞,

sup
s,t∈[0,1]

∣∣γ̂obs(s, t) − γ (s, t)
∣∣ = O

(√
log(n)

n

)
a.s.
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(b) SUBJ: Replacing N̄ and N̄S2 in (a) with N̄H and N̄H2, respectively, leads to
the corresponding results.

Following similar arguments in Remark 6, the uniform rate of μ̂α∗ is at least as
good as those of μ̂obs and μ̂subj. Given the same effect of μ̂ on the rate of γ̂ , γ̂θ∗
always performs at least as well as, if not better than, both of γ̂obs and γ̂subj.

6. Simulation. In this section, we evaluate the numerical performances of the
OBS and SUBJ schemes, together with the weighing schemes based on their mix-
ture where we only consider μ̂α∗ and γ̂θ∗ as defined in Remark 6. We also compare
γ̂subj with γ̂LH to investigate which estimation procedure is better as mentioned in
Remark 7.

We considered four settings for Ni :

• Setting 1: Ni are i.i.d. from a discrete uniform distribution on the set {2,3,4,5}.
• Setting 2: Ni = n/4 with probability 0.5, and follow Setting 1 with probability

0.5.
• Setting 3: Ni = n/4 with probability n−1/2, and follow Setting 1 with probability

1 − n−1/2.
• Setting 4: Ni are i.i.d. from a discrete uniform distribution on the interval

[�n/8�, �3n/8�].
The notation �x� represents the integer part of x.

Setting 1, where all Ni are bounded, corresponds to sparse data for both OBS
and SUBJ schemes. In Setting 2, Ni are bi-partitioned with approximately half
bounded and half proportional to n. In Setting 3, a majority of the subjects are
sparsely measured but a small portion have a large amount of observations. In
Setting 4, the data are purely ultra-dense for both OBS and SUBJ schemes. Set-
tings 1–4 are designed to confirm Remarks 3 and 5. By Remark 3, we expect the
OBS scheme to outperform the SUBJ scheme in Setting 1, while the SUBJ scheme
would be superior in Setting 4. By Remark 5(ii), since N̄ � n and N̄H � 1 in Set-
ting 2, the OBS estimator is expected to perform better. In Setting 3, since (C3c)
and (D3c) are violated for the OBS scheme, and N̄S2/(N̄)2, N̄S4/(N̄S2)

2 � n1/2,
the SUBJ scheme is expected to be better.

In each setting, we generated Q = 500 simulation runs with n = 200 subjects
in each run. The true mean and covariance functions are respectively

μ(t) = 1.5 sin
(
3π(t + 0.5)

)+ 2t3, γ (s, t) =
4∑

k=1

λkφk(s)φk(t), s, t ∈ [0,1],

where λk = 1/(k + 1)2, k = 1, . . . ,4 and

φ1(t) = √
2 cos(2πt), φ2(t) = √

2 sin(2πt),

φ3(t) = √
2 cos(4πt), φ4(t) = √

2 sin(4πt).
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TABLE 1
Minimum MISE and MSAE of μ̂obs, μ̂subj and μ̂α∗ in the four settings for Ni ’s. The corresponding

standard deviations are in the parentheses

Setting 1 Setting 2 Setting 3 Setting 4

MISE (1e-2) μ̂obs 1.1304 (0.4832) 0.5793 (0.3910) 1.4149 (0.9514) 0.3387 (0.2117)
μ̂subj 1.1875 (0.5046) 0.7857 (0.3540) 1.1280 (0.4841) 0.3304 (0.1920)
μ̂α∗ 1.1331 (0.4827) 0.5328 (0.3025) 0.9966 (0.5065) 0.3277 (0.1967)

MSAE μ̂obs 0.2972 (0.1137) 0.1715 (0.0574) 0.2717 (0.0915) 0.1326 (0.0401)
μ̂subj 0.3059 (0.1203) 0.2339 (0.0776) 0.2899 (0.1061) 0.1331 (0.0403)
μ̂α∗ 0.2980 (0.1159) 0.1780 (0.0604) 0.2589 (0.0925) 0.1314 (0.0397)

The time points Tij are i.i.d. from the uniform distribution on [0,1] and
Uij = ∑4

k=1 Aikφk(Tij ) where Aik are independent from N(0, λk). The response
was generated by Yij = μ(Tij ) + Uij + eij where eij are i.i.d. from N(0,0.01).
Epanechnikov kernel was used and the values of hμ and hγ varied on a dense
grid. To evaluate the performance of μ̂obs, given a specific bandwidth hμ, we cal-
culated the mean integrated squared error (MISE) and mean supremum absolute
error (MSAE) defined as follows:

MISE(μ̂obs, hμ) = 1

Q

Q∑
q=1

∫ 1

0

[
μ̂obs(t)

[q] − μ(t)
]2

dt,

MSAE(μ̂obs, hμ) = 1

Q

Q∑
q=1

sup
t∈[0,1]

∣∣μ̂obs(t)
[q] − μ(t)

∣∣,
where {μ̂[q]

obs, q = 1, . . . ,Q} are mean estimators obtained from the Q = 500
datasets. We can similarly define MISE(μ̂subj, hμ), MSAE(μ̂subj, hμ), MISE(μ̂α∗,
hμ), and MSAE(μ̂α∗, hμ). The minimum MISE and MSAE over the grid of band-
widths are presented in Table 1.

To evaluate the covariance estimators, we assume that the mean μ is known so
that the covariance estimation is distangled from the mean estimation. We defined
MISE and MSAE as follows:

MISE(γ̂obs, hγ ) = Q−1
Q∑

q=1

∫∫
[0,1]2

[
γ̂obs(s, t)

[q] − γ (s, t)
]2

ds dt,

MSAE(γ̂obs, hγ ) = Q−1
Q∑

q=1

sup
s,t∈[0,1]

∣∣γ̂obs(s, t)
[q] − γ (s, t)

∣∣,
where {γ̂ [q]

obs, q = 1, . . . ,Q} are the estimators from the Q = 500 datasets.
MISE(γ̂subj, hγ ), MSAE(γ̂subj, hγ ), MISE(γ̂θ∗, hγ ), MSAE(γ̂θ∗, hγ ), MISE(γ̂LH,
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TABLE 2
Minimum MISE and MSAE of γ̂obs, γ̂subj, γ̂θ∗ and γ̂LH in the four settings for Ni ’s. The

corresponding standard deviations are in the parentheses

Setting 1 Setting 2 Setting 3 Setting 4

MISE (1e-2) γ̂obs 1.3489 (0.5249) 0.3970 (0.2159) 1.9106 (1.3814) 0.2487 (0.1297)
γ̂subj 1.6796 (0.7680) 0.9485 (0.3602) 1.5385 (0.5715) 0.2184 (0.0968)
γ̂θ∗ 1.3840 (0.5592) 0.3913 (0.1797) 1.1089 (0.4028) 0.2171 (0.1036)
γ̂LH 26.8078 (12.7777) 12.5926 (4.5385) 23.9794 (10.6328) 2.2406 (0.9320)

MSAE γ̂obs 0.4611 (0.1451) 0.2375 (0.0949) 0.4523 (0.2086) 0.1898 (0.0640)
γ̂subj 0.5138 (0.1867) 0.4049 (0.1717) 0.4975 (0.1834) 0.1875 (0.0644)
γ̂θ∗ 0.4784 (0.1214) 0.2805 (0.1311) 0.4547 (0.1294) 0.1828 (0.0647)
γ̂LH 3.2164 (1.4695) 2.2682 (1.0607) 3.1272 (1.2488) 1.0148 (0.4434)

hγ ) and MSAE(γ̂LH, hγ ) can be similarly defined. The minimal MISE and MSAE
over the grid of bandwidths are presented in Table 2.

By comparing μ̂obs and μ̂subj in Table 1, and γ̂obs and γ̂subj in Table 2, one
can see that the OBS scheme leads to smaller MSAE values for both the mean
and covariance estimation in all the four settings of Ni except for the covariance
estimation in Setting 4. With respect to MISE, μ̂obs and γ̂obs outperform their
counterparts in Settings 1 and 2 while μ̂subj and γ̂subj are superior in Settings 3
and 4, which conforms with our expectations. In consideration of Remark 3 on
ultra-dense data and the violation of design assumptions for OBS scheme in Set-
ting 3, it is interesting that μ̂obs and γ̂obs outperform their competitors in terms of
MSAE even in Setting 4 for mean estimation and in Setting 3 for both mean and
covariance estimation. This suggests that the design conditions might be further
relaxed and could be an interesting future project. As shown in Tables 1 and 2,
both μ̂α∗ and γ̂θ∗ performed equally well (in terms of MISE and MSAE) and in
some settings better than both the corresponding OBS and SUBJ estimators. This
provides the numerical evidence for the benefit of using a mixture of the OBS and
SUBJ schemes as discussed in Remark 6.

Table 2 demonstrates that γ̂subj always outperforms γ̂LH with respect to both
MISE and MSAE in all the four settings for Ni . This is perhaps not surprising as
smoothing over residuals can reduce the error involved in the estimation and can
be heuristically explained as follows: In (5.1),

YijYil = Xi(Tij )Xi(Til) + eij eil + Xi(Tij )eil + Xi(Til)eij ,

where Xi(Tij )Xi(Til) targets EX(s)X(t) and eij eil + Xi(Tij )eil + Xi(Til)eij can
be viewed as “noise.” In contrast, the raw covariance is

Cijl ≈ δij δil = UijUil + eij eil + Uij eil + Uileij ,

where UijUil targets γ (s, t) and eij eil + Uij eil + Uileij can be viewed as “noise.”
Therefore, γ̂LH involves higher levels of “noise” than γ̂subj making the former less
efficient as reflected in this simulation.
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The optimal bandwidths in this simulation study were the best ones over a pre-
fixed grid of bandwidths. It is useful to understand the numerical performance of
the competing procedures but data-driven methods will be needed in practice and
this remains an open and challenging issue in FDA. Leave-one-curve-out cross-
validation (CV), as suggested by Rice and Silverman (1991), is commonly used.
This method has two major advantages: First, it does not depend on the within-
subject correlation structure; second, there is no need to specify whether data are
non-dense, dense or ultra-dense. Its consistency property was established by Hart
and Wehrly (1993) for a different mean function estimator from (2.3) where the en-
tire trajectory of each Xi is observable. To reduce computational cost, K-fold CV
is a feasible alternative to leave-one-curve-out CV, especially for covariance esti-
mation. See Jiang and Wang (2010) among others. Generalized cross-validation is
another computationally simpler method [Liu and Müller (2009), Zhang and Chen
(2007)], which could alleviate the tendency of CV to undersmooth, but its consis-
tency property has not been established. Since there exists no consensus on which
bandwidth selection method is preferred, practitioners may rely on their own judg-
ments. For example, one could obtain multiple bandwidths selected by different
methods and choose the one with the best fit (e.g., the smallest residual sum of
squares) or that is most interpretable.

7. Conclusion. In this paper, we focused on local linear smoothers when es-
timating the mean and covariance functions. We considered a general weighing
scheme which incorporates the commonly used OBS and SUBJ schemes. Three
types of convergence are investigated: asymptotic normality, L2 convergence and
uniform convergence. For each type, unified results were established in the sense
that (1) the weighing scheme is general; (2) Ni is allowed to be of any order rel-
ative to n. The unified theory sheds light on the partition of functional data into
three categories: non-dense, dense, and ultra-dense, when either the OBS or SUBJ
weighing scheme is employed. The partition depends on the target (mean or co-
variance) and the weighing scheme (OBS or SUBJ). Theoretical and numerical
performances of OBS and SUBJ schemes are also systematically compared. We
additionally consider and compare a new class of weighing schemes based on a
mixture of the OBS and SUBJ weights.

To summarize, functional data are considered as dense if root-n rate can be
attained for the corresponding estimator. Otherwise, data are non-dense (or at
least not dense enough to achieve the root-n rate). For non-dense data, asymp-
totic results are comparable to those nonparametric smoothing methods when all
the measurements are independent. When Ni = O(1) for all i, the data are often
called “sparse data,” a special case of non-dense data with the lowest rate of con-
vergence. We caution here that the technical meaning of “sparse,” “non-dense,”
versus “dense” data may not conform with their literary meanings since it is pos-
sible to achieve the same rate as conventional sparse data even if some of Ni ’s
are unbounded. We lean toward a technical viewpoint to define sparse functional
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data as those with the lowest convergence rate and term “semi-dense” functional
data as those that are neither sparse nor dense, that is, those with rates of conver-
gence faster than the rate for sparse data but slower than root-n. For dense data,
we propose a further partition through the asymptotic bias. Functional data can be
regarded as falling in the parametric paradigm only when both the parametric rate
(root-n) of convergence is attained and the asymptotic bias is of the order o(n−1/2),
which corresponds to our definition of ultra-dense data. This reopens the discus-
sion on what should be considered dense functional data. We adopt the convention
that defines dense data as those that can achieve the parametric (root-n) rate of
convergence but introduce a new category of “ultra-dense functional data” when
additionally the asymptotic bias is of the order o(n−1/2).

For the two global convergence criteria, under additional assumptions such as
(C3c), (D3c) and lim supn N̄S2/(N̄)2 < ∞ as in Remark 5, the convergence rates
of the OBS estimators are at least as good as, and sometimes better than, the SUBJ
estimators. These additional assumptions essentially imply that the distribution of
Ni cannot have a heavy tail. Pointwise asymptotic results suggest that the OBS
scheme is more efficient for non-dense data but the SUBJ scheme is more effi-
cient for ultra-dense data, under which the SUBJ estimators are asymptotically
equivalent to the sample mean or sample covariance function when the true indi-
vidual curves are observed without errors. Although the theory in this paper helps
to understand when and why one weighing scheme might be better than the other,
the actual choice between the OBS and SUBJ schemes is still challenging in re-
ality since it may not be obvious which type of functional data one has in hand.
A general guideline is to adopt the OBS scheme unless one believes that the data
are ultra-dense or if the distribution of Ni suggests a heavy upper tail. An ad-
hoc means to detect ultra-dense data was proposed in Kim and Zhao (2013), who
considered ultra-dense data as those when n is about 30–200 and min1≤i≤n Ni is
about 10–30. If the consideration is not limited to the OBS and SUBJ schemes,
one could alternatively use a mixture of OBS and SUBJ weights as in Remark 6
which can guarantee at least the better rate of convergence between the OBS and
SUBJ estimators.

The asymptotic properties developed in this paper will play a direct role in sta-
tistical inference, for instance, in the construction of a simultaneous confidence
band for the mean function. When data are sufficiently dense, the mean process√

n(μ̂(t) − μ(t)) is likely to weakly converge to a Gaussian process W(t), which
can facilitate the confidence band based on supt |W(t)| due to the continuous map-
ping theorem. See Degras (2011) for the special case of dense data with measure-
ments sampled according to the same time schedule for all subjects. However,
when data are not dense enough, this process is not tight, so the construction needs
to follow the line of work by Bickel and Rosenblatt (1973), and this has been il-
lustrated in Zheng, Yang and Härdle (2014) for sparse functional data. The general
approach developed in this paper can facilitate the construction of simultaneous
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confidence band for any design once we realize whether a parametric or nonpara-
metric convergence rate emerges for the corresponding estimate.

The partition on functional data may shed light on the asymptotic properties in a
broader context. An immediate application is functional principal component anal-
ysis (FPCA) by invoking the perturbation theory [Bosq (2000), Dauxois, Pousse
and Romain (1982), Hall and Hosseini-Nasab (2006), Kato (1980)]. However, as
demonstrated in Hall, Müller and Wang (2006) for sparse functional data, this may
not lead to optimal results since a better rate, same as for one-dimensional nonpara-
metric smoothing, can be attained for the estimated eigenfunction if the covariance
function was under-smoothed before the eigenfunctions were constructed. In other
words, with proper care the results in this paper will be useful to explore the cor-
responding properties derived from FPCA.

Another application is functional regression. The results in this paper will be
applicable to concurrent models [Ramsay and Silverman (2005)], such as varying-
coefficient models [Hoover et al. (1998), Huang, Wu and Zhou (2002), Wu and
Chiang (2000)], functional index models [Jiang and Wang (2011)], and functional
additive models [Zhang, Park and Wang (2013)]. For more complicated regression
models that involve the inversion of a covariance operator [Cai and Hall (2006),
Cardot, Ferraty and Sarda (1999), Hall and Horowitz (2007), Yao, Müller and
Wang (2005b)], which is an ill-posed problem, the impact of Ni on the asymptotic
properties is unknown but the approach in this paper might be useful for future
explorations.

APPENDIX A: ASSUMPTIONS

A.1. Kernel function. We assume the one-dimensional kernel K to follow

(A1) K(·) is a symmetric probability density function on [−1,1] and

σ 2
K =

∫
u2K(u)du < ∞, ‖K‖2 =

∫
K(u)2 du < ∞.

(A2) K(·) is Lipschitz continuous: There exists 0 < L < ∞ such that∣∣K(u) − K(v)
∣∣ ≤ L|u − v|, for any u, v ∈ [0,1].

This implies K(·) ≤ MK for a constant MK .

A.2. Time points and true functions.

(B1) {Tij : i = 1, . . . , n, j = 1, . . . ,Ni}, are i.i.d. copies of a random variable T

defined on [0,1]. The density f (·) of T is bounded from below and above:

0 < mf ≤ min
t∈[0,1]f (t) ≤ max

t∈[0,1]f (t) ≤ Mf < ∞.

Furthermore, f (2)(·), the second derivative of f (·), is bounded.
(B2) X is independent of T and e is independent of T and U .
(B3) μ(2)(t), the second derivative of μ(t), is bounded on [0,1].
(B4) ∂2γ (s, t)/∂s2, ∂2γ (s, t)/∂s ∂t and ∂2γ (s, t)/∂t2 are bounded on [0,1]2.
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A.3. Assumptions for mean estimation.

• Asymptotic normality:

(C1a) hμ → 0,
∑n

i=1 Niw
2
i /hμ → 0,

∑n
i=1 Ni(Ni − 1)w2

i → 0.
(C2a) max{∑n

i=1 Niw
3
i /h2

μ,
∑n

i=1 Ni(Ni − 1)w3
i /hμ,

∑n
i=1 Ni(Ni − 1) ×

(Ni − 2)w3
i }/[

∑n
i=1 Niw

2
i /hμ +∑n

i=1 Ni(Ni − 1)w2
i ]3/2 → 0.

(C3a) supt∈[0,1] E|U(t)|3 < ∞ and E|e|3 < ∞.

• L2 convergence:

(C1b) hμ → 0, log(1/
∑n

i=1 Niw
2
i )
∑n

i=1 Niw
2
i /hμ → 0,

∑n
i=1 Ni(Ni −

1)w2
i → 0.

(C2b) maxi w
2
i log(1/

∑n
i=1 Niw

2
i )/[hμ

∑n
i=1 Niw

2
i ] → 0.

(C3b) supt∈[0,1] E|U(t)|2 < ∞ and E|e|2 < ∞.

• Uniform convergence:

(C1c) hμ → 0, log(n)
∑n

i=1 Niw
2
i /hμ → 0, log(n)

∑n
i=1 Ni(Ni − 1)w2

i →
0.

(C2c) For some α > 2, E supt∈[0,1] |U(t)|α < ∞, E|e|α < ∞ and

n

[
n∑

i=1

Niw
2
i hμ +

n∑
i=1

Ni(Ni − 1)w2
i h

2
μ

][
log(n)

n

]2/α−1

→ ∞.

(C3c) supn(nmaxi Niwi) ≤ B < ∞.

A.4. Assumptions for covariance estimation.

• Asymptotic normality:

(D1a) hγ → 0,
∑n

i=1 Ni(Ni − 1)v2
i /h2

γ → 0,
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i /

hγ → 0,
∑n

i=1 Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i → 0.

(D2a) max{∑n
i=1 Ni(Ni − 1)v3

i /h4
γ ,

∑n
i=1 Ni(Ni − 1)(Ni − 2)v3

i /h3
γ ,∑n

i=1 Ni(Ni − 1)(Ni − 2)(Ni − 3)v3
i /h2

γ ,
∑n

i=1 Ni(Ni − 1)(Ni − 2)(Ni −
3)(Ni − 4)v3

i /hγ ,
∑n

i=1 Ni(Ni − 1)(Ni − 2)(Ni − 3)(Ni − 4)(Ni − 5)v3
i }/

[∑n
i=1 Ni(Ni − 1)v2

i /h2
γ + ∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i /hγ + ∑n

i=1 Ni(Ni −
1)(Ni − 2)(Ni − 3)v2

i ]3/2 → 0.
(D3a) supt∈[0,1] E|U(t)|6 < ∞ and E|e|6 < ∞.

• L2 convergence:

(D1b) hγ → 0, log{1/[∑n
i=1 Ni(Ni − 1)v2

i maxi(Ni(Ni − 1))]} ×
maxi (Ni(Ni − 1))

∑n
i=1 Ni(Ni − 1)v2

i /h2
γ → 0, log{1/[∑n

i=1 Ni(Ni − 1)v2
i ×

maxi (Ni(Ni − 1))]}maxi (Ni(Ni − 1))
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i /hγ → 0,∑n

i=1 Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i → 0.
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(D2b) maxi[Ni(Ni − 1)v2
i ] log{1/[∑n

i=1 Ni(Ni − 1)v2
i maxi (Ni(Ni − 1))]}/

[h2
γ

∑n
i=1 Ni(Ni − 1)v2

i + hγ

∑n
i=1 Ni(Ni − 1)(Ni − 2)v2

i ] → 0.
(D3b) supt∈[0,1] E|U(t)|4 < ∞ and E|e|4 < ∞.

• Uniform convergence:

(D1c) hγ → 0, log(n)
∑n

i=1 Ni(Ni − 1)v2
i /h2

γ → 0, log(n)
∑n

i=1 Ni(Ni −
1)(Ni − 2)v2

i /hγ → 0, log(n)
∑n

i=1 Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i → 0.

(D2c) For some β > 2, E supt∈[0,1] |U(t)|2β < ∞, E|e|2β < ∞, and

n

[
n∑

i=1

Ni(Ni − 1)v2
i h

2
γ +

n∑
i=1

Ni(Ni − 1)(Ni − 2)v2
i h

3
γ

+
n∑

i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i h

4
γ

][
log(n)

n

]2/β−1

→ ∞.

(D3c) supn(nmaxi Ni(Ni − 1)vi) ≤ B ′ < ∞.

Assumptions (A1) and (A2) are standard in the context of smoothing but (A2)
could be replaced by another assumption. For instance, instead of (A2), Li and Hs-
ing (2010) assumed that K is of bounded variation. The slightly stronger assump-
tion (A2) just makes the proof of uniform convergence simpler. Assumptions (B1)–
(B4) are typical in the context of FDA and local polynomial smoothing, which are
assumed in all asymptotic results.

Assumptions (C1a), (C1b), (C1c), (D1a), (D1b) and (D1c) are used to guaran-
tee the consistency of the estimators. Their counterparts for the OBS and SUBJ
schemes are standard in local polynomial smoothing. Assumptions (C2a) and
(D2a) are used to check the Lyapunov condition for asymptotic normality, and
(C2b) and (D2b) are useful to prove Lemmas 2 and 4, respectively, for L2 conver-
gence. Similar versions of (C2c) and (D2c) were adopted by Li and Hsing (2010).
For the OBS estimators, (C2b) and (D2b) are implied by (C1b) and (D1b), respec-
tively. For the SUBJ estimators, (C3c) and (D3c) are automatically satisfied.

APPENDIX B: ASYMPTOTIC NORMALITY

We only give the proofs of Theorems 3.1 and 3.2, and Corollary 3.3. The proofs
of Corollaries 3.1, 3.2, 3.4 and 3.5 are straightforward and thus omitted.

B.1. Mean function.

PROOF OF THEOREM 3.1. Easy calculation results in

μ̂(t) = R0S2 − R1S1

S0S2 − S2
1

,(B.1)
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where for r = 0,1,2,

Sr =
n∑

i=1

wi

Ni∑
j=1

Khμ(Tij − t)

(
Tij − t

hμ

)r

,

Rr =
n∑

i=1

wi

Ni∑
j=1

Khμ(Tij − t)

(
Tij − t

hμ

)r

Yij .

By (B.1)

μ̂(t) = R0

S̃0
− S̃1

S̃0
μ̂(1)(t) + tμ̂(1)(t) where μ̂(1)(t) = 1

hμ

R1 − R0S1/S0

S2 − S2
1/S0

and

S̃r =
n∑

i=1

wi

Ni∑
j=1

Khμ(Tij − t)T r
ij , r = 0,1.

We first prove that
[
min

{
hμ∑n

i=1 Niw
2
i

,
1∑n

i=1 Ni(Ni − 1)w2
i

}]1/2(
μ̂(t) − μ̃(t)

) = op(1),

(B.2)

where μ̃(t) = R0

S̃0
− S̃1

S̃0
μ(1)(t) + tμ(1)(t),

and μ(1)(·) is the first derivative of μ(·). To see it, easy calculation shows that

μ̂ − μ̃ = −S1

S0

S0(R1 − μS1 − hμμ(1)S2) − S1(R0 − μS0 − hμμ(1)S1)

S0S2 − S2
1

.

It is straightforward to show that both S0 and S0S2 − S2
1 are positive and bounded

away from 0 with probability tending to one, S1 = Op[hμ + (
∑n

i=1 Niw
2
i /hμ)1/2],

and R1 − μS1 − hμμ(1)S2,R0 − μS0 − hμμ(1)S1 = Op[h2
μ + (

∑n
i=1 Niw

2
i /

hμ)1/2 + (
∑n

i=1 Ni(Ni − 1)w2
i )

1/2]. Hence, (B.2) holds and it suffices to show
the asymptotic normality of μ̃(t).

In analogy to the proof of Theorem 4.1 in Bhattacharya and Müller (1993)
for independent data and by the Cramér–Wold device and Lyapunov condition
due to (C2a), we can achieve the asymptotic joint normality of (R0 − ER0, S̃1 −
ES̃1, S̃0 − ES̃0), where the rate of convergence is [min{hμ/∑n

i=1 Niw
2
i ,1/

∑n
i=1 Ni(Ni − 1)w2

i }]1/2. Explicitly for r, r ′ = 0,1,

ES̃r = t rf (t) + h2
μ

2
σ 2

K

[
2rf (1)(t) + t rf (2)(t)

]+ o
(
h2

μ

);
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ER0 = μ(t)f (t) + h2
μ

2
σ 2

K

[
μ(t)f (2)(t) + 2μ(1)(t)f (1)(t) + μ(2)(t)f (t)

]
+ o

(
h2

μ

);
Cov(S̃r , S̃r ′) =

∑n
i=1 Niw

2
i

hμ

‖K‖2t r+r ′
f (t) + o

(∑n
i=1 Niw

2
i

hμ

)
;

Var(R0) =
∑n

i=1 Niw
2
i

hμ

‖K‖2(μ(t)2 + γ (t, t) + σ 2)f (t)

+
(

n∑
i=1

Ni(Ni − 1)w2
i

)
γ (t, t)f (t)2

+ o

(∑n
i=1 Niw

2
i

hμ

)
+ o

(
n∑

i=1

Ni(Ni − 1)w2
i

)
;

Cov(R0, S̃r ) =
∑n

i=1 Niw
2
i

hμ

‖K‖2t rμ(t)f (t) + o

(∑n
i=1 Niw

2
i

hμ

)
.

From here, the asymptotic normality of μ̃(t) follows from the delta method. �

PROOF OF COROLLARY 3.3. By Cauchy–Schwarz inequality, N̄ ≥ N̄H so
�A

obs(t) ≤ �A
subj(t). Since {N2

i }ni=1 and {1 − N−1
i }ni=1 can be concomitantly rear-

ranged to be monotone, Chebyshev’s sum inequality implies:

1

n

∑
i

N2
i

[
1 − 1

Ni

]
≥
(

1

n

∑
i

N2
i

)(
1

n

∑
i

[
1 − 1

Ni

])

≥
(

1

n

∑
i

Ni

)2(1

n

∑
i

[
1 − 1

Ni

])
,

where the last inequality follows from Cauchy–Schwarz inequality. Therefore,

(N̄S2 − N̄)

(N̄)2
≥ 1 − 1

N̄H

and �B
obs(t) ≥ �B

subj(t). �

B.2. Covariance function.

PROOF OF THEOREM 3.2. We can obtain

γ̂ (s, t)
(B.3)

= (S20S02 − S2
11)R00 − (S10S02 − S01S11)R10 + (S10S11 − S01S20)R01

(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

,
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where for p,q = 0,1,2,

Sp,q =
n∑

i=1

vi

∑
1≤j 	=l≤Ni

Khγ (Tij − s)Khγ (Til − t)

(
Tij − s

hγ

)p(Til − t

hγ

)q

,

Rp,q =
n∑

i=1

vi

∑
1≤j 	=l≤Ni

Khγ (Tij − s)Khγ (Til − t)

(
Tij − s

hγ

)p(Til − t

hγ

)q

Cijl.

By (B.3), γ̂ (s, t) = (R00 − β̂1S10 − β̂2S01)/S00. We now consider γ̃ (s, t) where

γ̃ (s, t) =
((

R̃00 − ∂γ

∂s
(s, t)S̃10 − ∂γ

∂t
(s, t)S̃01

)/
S̃00

)
+ s

∂γ

∂s
(s, t) + t

∂γ

∂t
(s, t),

R̃00 =
n∑

i=1

vi

∑
1≤j 	=l≤Ni

Khγ (Tij − s)Khγ (Til − t)δij δil,

S̃p,q =
n∑

i=1

vi

∑
1≤j 	=l≤Ni

Khγ (Tij − s)Khγ (Til − t)T
p
ij T

q
il , 0 ≤ p + q ≤ 1.

Note that μ̂ = μ, so Cijl = δij δil and R̃00 = R00. Following similar argu-
ments in the proof of Theorem 3.1, we can prove that [min{h2

γ /
∑n

i=1 Ni(Ni −
1)v2

i , hγ /
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i ,1/

∑n
i=1 Ni(Ni − 1)(Ni − 2) ×

(Ni − 3)v2
i }]1/2(γ̂ (s, t) − γ̃ (s, t)) = op(1). It thus suffices to prove the asymp-

totic normality of γ̃ .
By (D2a), we can establish the asymptotic joint normality of (R̃00−ER̃00, S̃00−

ES̃00, S̃10 − ES̃10, S̃01 − ES̃01) through the Cramér–Wold device and Lyapunov
condition. By easy calculation, we have

ES̃p,q = sptqf (s)f (t) + h2
γ

2
σ 2

K

[
sptqf (2)(s)f (t) + sptqf (s)f (2)(t)

]

+ h2
γ

2
σ 2

K

[
2pf (1)(s)f (t) + 2qf (1)(t)f (s)

]+ o
(
h2

γ

)
,

ER̃00 = γ (s, t)f (s)f (t)

+ h2
γ

2
σ 2

K

[
∂2G

∂s2 (s, t)f (s)f (t)

+ 2
∂γ

∂s
(s, t)f (1)(s)f (t) + γ (s, t)f (2)(s)f (t)

+ ∂2γ

∂t2 (s, t)f (t)f (s)

+ 2
∂γ

∂t
(s, t)f (1)(t)f (s) + γ (s, t)f (2)(t)f (s)

]
+ o

(
h2

γ

)
.
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To express the asymptotic variances concisely, we introduce the following terms
in addition to V1(s, t), V2(s, t) and V3(s, t) in Section 3.2:

E1(s, t) = E
[(

Y1 − μ(T1)
)2(

Y2 − μ(T2)
)2|T1 = s, T2 = t

];
E2(s, t) = E

[(
Y1 − μ(T1)

)2(
Y2 − μ(T2)

)(
Y3 − μ(T3)

)|
T1 = s, T2 = t, T3 = t

]
.

Computing the asymptotic variances involves E[Khγ (T − t)Khγ (T −s)], which
equals ‖K‖2f (t)/hγ +o(1/hγ ) for s = t and 0 for s 	= t as hγ → 0, since K(·) =
0 outside [−1,1]. Therefore the asymptotic variances are different for s = t and
s 	= t . For 0 ≤ p + q ≤ 1 and 0 ≤ p′ + q ′ ≤ 1,

Var(R̃00) = [
1 + I (s = t)

][∑n
i=1 Ni(Ni − 1)v2

i

h2
γ

‖K‖4E1(s, t)f (s)f (t)

+
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i

hγ

× ‖K‖2[f 2(s)f (t)E2(t, s) + f (s)f 2(t)E2(s, t)
]]

+
[

n∑
i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i

]

× V3(s, t)f
2(s)f 2(t) + o

(∑n
i=1 Ni(Ni − 1)v2

i

h2
γ

)

+ o

(∑n
i=1 Ni(Ni − 1)(Ni − 2)v2

i

hγ

)

+ o

(
n∑

i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i

)
;

Cov(S̃p,q, S̃p′,q ′)

= [
1 + I (s = t)

]
sp+p′

tq+q ′
[∑n

i=1 Ni(Ni − 1)v2
i

h2
γ

‖K‖4f (s)f (t)

+
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i

hγ

‖K‖2[f 2(s)f (t) + f (s)f 2(t)
]]

+ o

(∑n
i=1 Ni(Ni − 1)v2

i

h2
γ

)
+ o

(∑n
i=1 Ni(Ni − 1)(Ni − 2)v2

i

hγ

)
;
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Cov(S̃p,q, R̃00)

= [
1 + I (s = t)

]
sptq

[∑n
i=1 Ni(Ni − 1)v2

i

h2
γ

‖K‖4γ (s, t)f (s)f (t)

+
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i

hγ

‖K‖2γ (s, t)
[
f 2(s)f (t) + f (s)f 2(t)

]]

+ o

(∑n
i=1 Ni(Ni − 1)v2

i

h2
γ

)
+ o

(∑n
i=1 Ni(Ni − 1)(Ni − 2)v2

i

hγ

)
.

Now apply the delta method to complete the proof. �

APPENDIX C: L2 CONVERGENCE

We only give the proofs of Theorems 4.1 and 4.2. The proofs of Corollaries 4.1–
4.4 are straightforward, and thus omitted.

C.1. Mean function. We first give the rate for
∑n

i=1 wi

∑Ni

j=1 K((Tij −
t)/hμ)δij .

LEMMA 1. Under the assumptions for Theorem 4.1,

∥∥∥∥
n∑

i=1

wi

Ni∑
j=1

K

(
Tij − t

hμ

)
δij

∥∥∥∥
2

= Op

([
n∑

i=1

Niw
2
i hμ +

n∑
i=1

Ni(Ni − 1)w2
i h

2
μ

]1/2)
.

PROOF. Denote an = (
∑n

i=1 Niw
2
i hμ + ∑n

i=1 Ni(Ni − 1)w2
i h

2
μ)1/2. For any

M > 0, by Markov inequality,

P

(∥∥∥∥∥
n∑

i=1

wi

Ni∑
j=1

K

(
Tij − t

hμ

)
δij

∥∥∥∥∥
2

> Man

)

= P

(∫ [
n∑

i=1

wi

Ni∑
j=1

K

(
Tij − t

hμ

)
δij

]2

dt > M2a2
n

)

≤ E
∫ [∑n

i=1 wi

∑Ni

j=1 K((Tij − t)/hμ)δij ]2 dt

M2a2
n

.
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Note that

E

∫ [
n∑

i=1

wi

Ni∑
j=1

K

(
Tij − t

hμ

)
δij

]2

dt

=
n∑

i=1

w2
i

{
Ni

∫
E

[
K2

(
T − t

hμ

)(
γ (T ,T ) + σ 2)]dt

+ (
N2

i − Ni

) ∫
EK

(
T1 − t

hμ

)
K

(
T2 − t

hμ

)
γ (T1, T2) dt

}

≤ M ′
(

n∑
i=1

Niw
2
i hμ +

n∑
i=1

Ni(Ni − 1)w2
i h

2
μ

)
= M ′a2

n,

for some constant M ′. Therefore, as M → ∞,

P

(∥∥∥∥∥
n∑

i=1

wi

Ni∑
j=1

K

(
Tij − t

hμ

)
δij

∥∥∥∥∥
2

> Man

)
≤ M ′′

M2 → 0.
�

We next give the uniform rate of Sr, r = 0,1,2 as defined in (B.1).

LEMMA 2. Under the assumptions for Theorem 4.1,

sup
t∈[0,1]

∣∣Sr(t) − ESr(t)
∣∣ = op(1).

PROOF. The proof is similar to that of Lemma 1 in Zhang, Park and Wang
(2013) and details are provided in the supplementary material [Zhang and Wang
(2016)]. �

PROOF OF THEOREM 4.1. From (B.1) we have,

μ̂(t) − μ(t)
(C.1)

= (R0 − μ(t)S0 − hμμ(1)(t)S1)S2 − (R1 − μ(t)S1 − hμμ(1)(t)S2)S1

S0S2 − S2
1

.

By Taylor expansion and Lemma 1,∥∥R0 − μ(t)S0 − hμμ(1)(t)S1
∥∥

2

=
∥∥∥∥∥

n∑
i=1

wi

Ni∑
j=1

Khμ(Tij − t)

×
(
δij + (Tij − t)2

∫ 1

0
μ(2)(t + v(Tij − t)

)
(1 − v) dv

)∥∥∥∥∥
2
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≤
∥∥∥∥∥

n∑
i=1

wi

Ni∑
j=1

Khμ(Tij − t)δij

∥∥∥∥∥
2

+ Op

(
h2

μ

)

= Op

(
h2

μ +
[∑n

i=1 Niw
2
i

hμ

+
n∑

i=1

Ni(Ni − 1)w2
i

]1/2)
.

Similarly, ∥∥R1 − μ(t)S1 − hμμ(1)(t)S2
∥∥

2

= Op

(
h2

μ +
[∑n

i=1 Niw
2
i

hμ

+
n∑

i=1

Ni(Ni − 1)w2
i

]1/2)
.

Lemma 2 implies that supt∈[0,1] |S1(t)|, supt∈[0,1] |S2(t)| = Op(1) and S0S2 −
S2

1 is positive and bounded away from 0 on [0,1] with probability approaching
one. The proof is complete by (C.1). �

C.2. Covariance function. Define

W(s, t) =
n∑

i=1

vi

∑
1≤j 	=l≤Ni

K

(
Tij − s

hγ

)
K

(
Til − t

hγ

)
δij δil .

The Hilbert–Schmidt rate of convergence for W(s, t) is given below.

LEMMA 3. Under the assumptions for Theorem 4.2,

‖W‖HS = Op

([
n∑

i=1

Ni(Ni − 1)v2
i h

2
γ +

n∑
i=1

Ni(Ni − 1)(Ni − 2)v2
i h

3
γ

+
n∑

i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i h

4
γ

]1/2)
.

PROOF. The proof is very similar to that of Lemma 1. See details in the sup-
plementary material [Zhang and Wang (2016)]. �

For Sp,q(s, t),0 ≤ p + q ≤ 2 defined in (B.3), their uniform rates are given
below.

LEMMA 4. Under the assumptions for Theorem 4.2,

sup
s,t∈[0,1]

∣∣Sp,q(s, t) − ESp,q(s, t)
∣∣ = op(1).
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PROOF. See the proof in the supplementary material [Zhang and Wang
(2016)], which is similar to that of Lemma 2. �

PROOF OF THEOREM 4.2. We have the decomposition below by (B.3)

γ̂ (s, t) − γ (s, t)

= (
S20S02 − S2

11
)[

R00 − γ (s, t)S00 − hγ

∂G

∂s
(s, t)S10 − hγ

∂γ

∂t
(s, t)S01

]
/((

S20S02 − S2
11
)
S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

)
− (S10S02 − S01S11)

(C.2)

×
[
R10 − γ (s, t)S10 − hγ

∂G

∂s
(s, t)S20 − hγ

∂γ

∂t
(s, t)S11

]
/((

S20S02 − S2
11
)
S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

)
+ (S10S11 − S01S20)

[
R01 − γ (s, t)S01 − hγ

∂G

∂s
(s, t)S11 − hγ

∂γ

∂t
(s, t)S02

]
/((

S20S02 − S2
11
)
S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

)
.

Consequently, by Lemma 3 and Taylor expansion,∥∥∥∥R00 − γ (s, t)S00 − hγ

∂γ

∂s
(s, t)S10 − hγ

∂γ

∂t
(s, t)S01

∥∥∥∥
HS

= Op

(
h2

γ +
[∑n

i=1 Ni(Ni − 1)v2
i

h2
γ

+
∑n

i=1 Ni(Ni − 1)(Ni − 2)v2
i

hγ

+
n∑

i=1

Ni(Ni − 1)(Ni − 2)(Ni − 3)v2
i

]1/2)
.

Similarly, R10 − γ (s, t)S10 − hγ
∂G
∂s

(s, t)S20 − hγ
∂γ
∂t

(s, t)S11 and R01 − γ (s, t) ×
S01 − hγ

∂G
∂s

(s, t)S11 − hγ
∂γ
∂t

(s, t)S02 both have this rate. Moreover, by Lemma 4,
each denominator in (C.2) is positive and bounded away from 0 on [0,1]2 with
probability approaching one and that sups,t∈[0,1] |S20S02 − S2

11|,
sups,t∈[0,1] |S10S02 − S01S11|, sups,t∈[0,1] |S10S02 − S01S11| = Op(1). Thus, the
proof is complete by (C.2). �

APPENDIX D: UNIFORM CONVERGENCE

We only give the proofs of Theorems 5.1 and 5.2. The proofs of Corollaries 5.1–
5.4 are straightforward, and thus omitted.
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D.1. Mean function. We first show the rate of convergence for

L(t) =
n∑

i=1

wi

Ni∑
j=1

K

(
Tij − t

hμ

)
U+

ij ,

where U+
ij is the positive part of Uij .

LEMMA 5. Under the assumptions for Theorem 5.1,

sup
t∈[0,1]

∣∣L(t) − EL(t)
∣∣

= O

({
log(n)

[
n∑

i=1

Niw
2
i hμ +

n∑
i=1

Ni(Ni − 1)w2
i h

2
μ

]}1/2)
a.s.

PROOF. Denote an = {log(n)[∑n
i=1 Niw

2
i hμ + ∑n

i=1 Ni(Ni − 1)w2
i h

2
μ]}1/2

and An = an[n/ log(n)]. By (C1c), we can find a constant γ > 0 such that
nγ hμan → ∞. Let χ(γ ) be an equidistant partition on [0,1] with grid length n−γ .
Therefore,

sup
t∈[0,1]

∣∣L(t) − EL(t)
∣∣ ≤ sup

t∈χ(γ )

∣∣L(t) − EL(t)
∣∣+ D1 + D2

where

D1 = sup
t,s∈[0,1];|t−s|≤n−γ

∣∣L(t) − L(s)
∣∣,

D2 = sup
t,s∈[0,1];|t−s|≤n−γ

∣∣EL(t) − EL(s)
∣∣.

By (A2) and Hölder inequality,

D1 ≤ sup
t,s∈[0,1];|t−s|≤n−γ

n∑
i=1

wi

Ni∑
j=1

U+
ij

∣∣∣∣K
(

Tij − t

hμ

)
− K

(
Tij − s

hμ

)∣∣∣∣

≤
(

n∑
i=1

wi

Ni∑
j=1

U+
ij

)
Ln−γ /hμ

≤
(

n∑
i=1

wi

Ni∑
j=1

(
U+

ij

)α)1/α

Ln−γ /hμ

≤
(

n∑
i=1

Niwi sup
t∈[0,1]

|Ui(t)|α
)1/α

Ln−γ /hμ.
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By (C2c), (C3c) and the strong law of large numbers,

n∑
i=1

Niwi sup
t∈[0,1]

∣∣Ui(t)
∣∣α ≤

(
nmax

i
Niwi

)
· 1

n

n∑
i=1

sup
t∈[0,1]

∣∣Ui(t)
∣∣α

≤ B · 1

n

n∑
i=1

sup
t∈[0,1]

∣∣Ui(t)
∣∣α

→ B · E sup
t∈[0,1]

∣∣U(t)
∣∣α < ∞, a.s.

By nγ hμan → ∞, D1,D2 = o(an), a.s.
Let the truncated L(t) be L(t)∗ = ∑n

i=1 wi

∑Ni

j=1 K((Tij − t)/hμ)U+
ij I (U+

ij ≤
An), where I (·) is the indicator function. Then

sup
t∈χ(γ )

∣∣L(t) − EL(t)
∣∣ ≤ sup

t∈χ(γ )

∣∣L(t)∗ − EL(t)∗
∣∣+ E1 + E2,

where

E1 = sup
t∈χ(γ )

n∑
i=1

wi

Ni∑
j=1

K
(
(Tij − t)/hμ

)
U+

ij I
(
U+

ij > An

)
,

E2 = sup
t∈χ(γ )

n∑
i=1

wi

Ni∑
j=1

E
[
K
(
(Tij − t)/hμ

)
U+

ij I
(
U+

ij > An

)]
.

We have E1,E2 = o(an), a.s. since by (A2), (C2c) and (C3c), for every t ∈ χ(γ ),

n∑
i=1

wi

Ni∑
j=1

K
(
(Tij − t)/hμ

)
U+

ij I
(
U+

ij > An

)

≤ MKA1−α
n

n∑
i=1

wi

Ni∑
j=1

|Uij |α ≤ BMKA1−α
n

(
n−1

n∑
i=1

sup
t∈[0,1]

∣∣Ui(t)
∣∣α).

We can rewrite L(t)∗ − EL(t)∗ = ∑n
i=1(Vi − EVi) where Vi = wi ×∑Ni

j=1 K((Tij − t)/hμ)U+
ij I (U+

ij ≤ An). By (C3c), |Vi − EVi | ≤ 2NiwiMKAn ≤
2BMKAn/n. Additionally,

E(Vi − EVi)
2 ≤ EV 2

i ≤ Niw
2
i E

[
K

(
T − t

hμ

)
U+(T )

]2

+ Ni(Ni − 1)w2
i

× E

[
K

(
T1 − t

hμ

)
K

(
T2 − t

hμ

)
U+(T1)U

+(T2)

]

≤ MU

[
Niw

2
i hμ + Ni(Ni − 1)w2

i h
2
μ

]
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for some constant MU > 0. By Bernstein inequality, for any M > 0,

P
(

sup
t∈χ(γ )

∣∣L(t)∗ − EL(t)∗
∣∣ > Man

)

≤ nγ P

(∣∣∣∣∣
n∑

i=1

(Vi − EVi)

∣∣∣∣∣ > Man

)

≤ 2nγ exp
(
− M2a2

n/2∑n
i=1 MU [Niw

2
i hμ + Ni(Ni − 1)w2

i h
2
μ] + 2BMKAnMan/3n

)

= 2nγ−M∗
,

where M∗ = M2/(2MU + 4BMKM/3). By Borel–Cantelli’s lemma,

sup
t∈χ(γ )

∣∣L(t)∗ − EL(t)∗
∣∣ = O(an) a.s.

and the proof is complete. �

PROOF OF THEOREM 5.1. By Taylor expansion and the fact that Khμ(Tij −
t) = 0 if |Tij − t | > hμ,

R0 − μ(t)S0 − hμμ(1)(t)S1

=
n∑

i=1

wi

Ni∑
j=1

Khμ(Tij − t)
(
δij + μ(Tij ) − μ(t) − μ(1)(t)(Tij − t)

)
(D.1)

=
n∑

i=1

wi

Ni∑
j=1

Khμ(Tij − t)δij + O
(
h2

μ

)
.

By Lemma 5, supt∈[0,1] |
∑n

i=1 wi

∑Ni

j=1 Khμ(Tij − t)δij | = O(an/hμ), a.s. so

supt∈[0,1] |R0 − μ(t)S0 − hμμ(1)(t)S1| = O(h2
μ + an/hμ), a.s. Similarly,

supt∈[0,1] |R1 − μ(t)S1 − hμμ(1)(t)S2| = O(h2
μ + an/hμ), a.s.

For t ∈ [hμ,1 − hμ], ES0 = f (t) + O(h2
μ), ES1 = O(hμ) and ES2 =

f (t)σ 2
K + O(hμ). For t ∈ [0, hμ], ES0 = f (t)

∫
[−t/hμ,1] K(u)du + O(hμ),

ES1 = f (t)
∫
[−t/hμ,1] uK(u)du + O(hμ) and ES2 = f (t)

∫ 1
−t/hμ

u2K(u)du +
O(hμ). For t ∈ [1 − hμ,1], ES0 = f (t)

∫
[−1,1−hμ] K(u)du + O(hμ), ES1 =

f (t)
∫
[−1,1−hμ] uK(u)du + O(hμ) and ES2 = f (t)

∫
[−1,1−hμ] u2K(u)du +

O(hμ). Therefore, S0S2 − S2
1 is positive and bounded away from 0 on [0,1] a.s.

and S1 and S2 are both bounded on [0,1] a.s. The proof is thus complete by (C.1).
�
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D.2. Covariance function.

PROOF OF THEOREM 5.2. The proof of Theorem 5.1 can be easily extended
to the two-dimensional case for covariance. See details in the supplementary ma-
terial [Zhang and Wang (2016)]. �
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SUPPLEMENTARY MATERIAL

Supplement to “From sparse to dense functional data and beyond” (DOI:
10.1214/16-AOS1446SUPP; .pdf). In the supplementary material, we provide the
proofs of Lemmas 2–4 and the detailed proof of Theorem 5.2.
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