
From Specification to Experimentation: A
Software Component Search Engine Architecture

Vinicius Cardoso Garcia1, Daniel Lucrédio2, Frederico Araujo Durão1,
Eduardo Cruz Reis Santos1, Eduardo Santana de Almeida1,

Renata Pontin de Mattos Fortes2, and Silvio Romero de Lemos Meira1

1 Informatics Center – Federal University of Pernambuco &
C.E.S.A.R. – Recife Center for Advanced Studies and Systems

{vinicius.garcia, frederico.durao, eduado.cruz,
eduardo.almeida, silvio}@cesar.org.br

2 Institute of Mathematical and Computing Sciences – São Paulo University
{lucredio, renata}@icmc.usp.br

Abstract. This paper presents a software component search engine,
from the early specification and design steps to two experiments per-
formed to evaluate its performance. After the experience gained from the
use of this first version, several improvements were introduced. The cur-
rent version of the engine combines text mining and facet-based search.
The experiments indicated, so far, that using these two techniques to-
gether is better than using them separately. From the experience ob-
tained in these experiments and in industrial tests, we point out possible
improvements and future research directions, which are presented and
discussed at the end of the paper.

1 Introduction

In a software development process, reuse is characterized by the use of software
products in a situation that is different from when and where they were originally
constructed. This idea, which is not new [1], brings crucial benefits to organiza-
tions, such as reduction in costs and time-to-market, and quality improvement.

Component repositories are among the factors that promote the success in
reuse programs [2, 3]. However, the simple acquisition of a component reposi-
tory does not lead to the expected benefits, since other factors must also be
considered, such as management, planning, reuse processes, among others [4,5].

Current component managers and repositories are, mostly, products that work
only with black-box components [6], i.e., components that are packaged without
the source code, inhibiting tasks such as adaptation and evolution. Moreover, the
adoption of this kind of repository often implicates in reengineering the software
factories, since making components available for reuse repositories (documen-
tation, packaging) have to follow some predetermined criteria [4]. Additionally,
these repositories represent isolated solutions, not associated to commonly used
development tools such as Eclipse [7]. This increases the barrier for their adop-
tion and utilization.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 82–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

From Specification to Experimentation 83

Thereby, an initial way of stimulating the reuse culture in organizations, and
obtaining its initial benefits [8], must concentrate in offering subsidies and tools
for the reuse of white-box components - where the source code is available - and
already existent source code, whether from the organization itself, from previous
projects, or from repositories available on the Internet.

In this context, this paper presents the specification, design and implementa-
tion of an architecture for a component search engine, to help promoting reuse
during software development, and solving the mentioned problem. In previous
work [9] we introduced the search engine and described our initial experience in
its specification and construction. This paper makes two novel contributions:

– Some refinements on the search engine;
– An experiment that evaluates the feasibility of Maracatu search engine use

in industrial contexts, aiding in the software development process with reuse
of components or source code parts.

2 Basic Component Search Requirements

Current research in component search and retrieval has focused in key aspects and
requirements for the component market, seeking to promote large scale reuse [9].

Lucrédio et al. [9] present a set of requirements for an efficient component
search and retrieval engine, standing out:

a. High precision and recall. High precision means that most components
that are retrieved are relevant. High recall means that few relevant components
are left behind without being retrieved.
b. Security. In a global component market, security must be considered a pri-
mordial characteristic, since there is a higher possibility that unauthorized indi-
viduals try to access the repository.
c. Query formulation. There is a natural loss of information when users for-
mulate queries. According to [10], there is a conceptual gap between the problem
and the solution. Components are often described in terms of their functional-
ities, or the solution (“how”), and the queries are formulated in terms of the
problem (“what”). Thus, a search engine must provide means to help the user
in formulating the queries, in an attempt to reduce this gap.
d. Component description. The search engine is responsible for identifying
the components that are relevant to the user, according to the query that is
formulated and compared with the components descriptions.
e. Repository familiarity. Reuse occurs more frequently with well-known
components [11]. However, a search engine must help the user in exploring the
repository and gaining knowledge about other components that are similar to
the initial target, facilitating future reuse and stimulating component vendors
competition [12].
f. Interoperability. In a scenario involving distributed repositories, it is in-
evitable not to think about interoperability. In this sense, a search engine that
functions in such scenario must be based on technologies that facilitate its future
expansion and integration with other systems and repositories.

84 V.C. Garcia et al.

g. Performance. Performance is usually measured in terms of response time. In
centralized systems, this involves variables related to the processing power and
the search algorithms. In distributed systems, other variables must be considered,
such as, for example, network traffic control, geographic distance and, of course,
the number of available components.

These requirements, however, are related to a component market that is based
on black-box reuse. To a search engine that also retrieves white-box components
and reusable source code, different requirements must be considered, as presented
next.

2.1 Features and Technical Requirements

A search engine based on white-box reuse should consider the evolving and dy-
namic environment that surrounds most development organizations. Differently
from black-box reuse, where there is usually more time to encapsulate the compo-
nents and to provide well-structured documentation that facilitates searching,
most development repositories contain work artifacts, such as development li-
braries and constantly evolving components. Documentation is usually minimal,
and mostly not structured.

In this sense, such engine should support two basic processes: i) to locate
all reusable software artifacts that are stored in project repositories, and to
maintain an index of these artifacts. The indexing process should be automatic,
and should consider non-structured (free text) documentation; and ii) to allow
the user to search and retrieve these artifacts, taking advantage of the index
created in process i).

Since in this scenario the artifacts are constantly changing, the first process
must be automatically performed on the background, maintaining the indexes
always updated and optimized according to a prescribed way. On the other
hand, the developer is responsible for starting the second, requesting possible
reusable artifacts that suits his/her problem. For the execution of these two
basic processes, some macro requirements should be fulfilled:

i. Artifacts filtering. Although ideally all kinds of artifacts should be consid-
ered for reuse, an automatic mechanism depends on a certain level of quality that
the artifact must have. For example, a keyword-based search requires that the
artifacts contain a considerable amount of free text describing it, otherwise the
engine cannot perform the keywords match. In this sense, a qualitative analysis
of the artifacts must be performed, in order to eliminate low-quality artifacts
that could prejudice the efficiency of the search.
ii. Repositories selection. The developer must be able to manually include the
list of the repositories where to search for reusable artifacts. It must be possible,
at any moment, to perform a search on these repositories in order to find newer
versions of the artifacts already found, or new artifacts.
iii. Local storage. All artifacts that were found must be locally stored in a
cache, in order to improve performance (reusable components repository
centralization).

From Specification to Experimentation 85

iv. Index update. Periodically, the repositories that are registered must be
accessed to verify the existence of new artifacts, or newer versions of already
indexed artifacts. In this case, the index must be rebuilt to include the changes.
v. Optimization. Performance is a critical issue, specially in scenarios where
thousands of artifacts are stored into several repositories. Thus, optimization
techniques should be adopted. A simple and practical example is to avoid to an-
alyze and index software artifacts that were already indexed by the mechanism.
vi. Keyword search. The search can be performed through keywords usage,
like most web search engines, in order to avoid the learning of a new method.
Thus, the search must accept a string as the input, and must interpret logical
operators such as “AND” and “OR”.
vii. Search results presentation. The search result must be presented in the
developer’s environment, so he/she can more easily reuse the artifacts into the
project he is currently working on.

3 Design of the First Maracatu Search Engine

Maracatu architecture was designed to be extensible to different kinds of reusable
artifacts, providing the ability to add new characteristics to the indexing, rank-
ing, search and retrieval processes. This was achieved through the partitioning of
the system into smaller elements, with well-defined responsibilities, low coupling
and encapsulation of implementation details.

However, as in any software project, some design decisions had to be made,
restricting the scope and the generality of the search engine. Next we discuss
these decisions, and the rationale behind them:

Type of the artifacts. Although theoretically all kinds of artifacts could be
indexed by the search engine, a practical implementation had to be limited to
some specific kinds of artifact. This version of Maracatu is restricted to Java
source code components, mainly because it is the most common kind of artifacts
found, specially in open source repositories and in software factories.
CVS Repositories. Maracatu was designed to access CVS repositories, because
it is the most used version control system, and also to take advantage of an
already existent API to access CVS, the Javacvs API [13].
Keyword indexing and component ranking. To perform indexing and rank-
ing of the artifacts, the Lucene search engine [14] was adopted. Lucene is a web
search engine, used to index web pages, and it allows queries to be performed
through keywords. It is open-source, fast, and easy to adapt, and this is the
reason why it was chosen to become part of Maracatu architecture.
Artifacts filtering. As a strategy for filtering the “quality” artifacts (with high
reuse potential), the JavaNCSS [15] was used, to perform source code analysis
in search for JavaDoc density. Only components, with more than 70% of its
code documented, are considered. This simple strategy is enough to guarantee
that Lucene is able to index the components, and also requires little effort to
implement.

86 V.C. Garcia et al.

User environment. Maracatu User Interface, where the developer can formu-
late the queries and view the results, was integrated to Eclipse platform, as a
plug-in, so that the user does not need to use a different tool to search the
repositories.

Maracatu architecture is based on the client-server model, and uses Web Ser-
vices technology [16] for message exchange between the subsystems. This im-
plementation strategy allows Maracatu Service to be available anywhere on the
Internet, or even on corporative Intranet, in scenarios where the components are
proprietary.

Maracatu is composed of two subsystems:
Maracatu Service: This subsystem is a Web Service, responsible for indexing
the components, in background, and responding to user’s queries. It is composed
of the following modules: the CVS module, which accesses the repositories in
the search for reusable components; the Analyzer, responsible for analyzing the
code in order to determine if it is suitable for indexing; the Indexer, responsi-
ble for indexing the Java files that passed through the Analyzer, also rebuilding
the indexes when components are modified or inserted; the Download module,
which helps the download (check-out) process, when the source code is trans-
ferred to the developer machine, after a request; and the Search module, which
receives the parameters of a query, interprets it (for example, “AND” and “OR”
operators), searches the index, and returns a set of index entries.
Eclipse plug-in : This subsystem is the visual interface the developer sees. It
acts as a Web Service client to access Maracatu Service.

The first version of Maracatu can be seen in Figure 1, which shows Maracatu
plug-in1 being used in Eclipse development environment (1).

Fig. 1. Maracatu running on Eclipse environment

1 The version 1.0 of the plug-in may be obtained on the project site http://
done.dev.java.net

http://done.dev.java.net
http://done.dev.java.net

From Specification to Experimentation 87

The Figure shows a screen of the plug-in (2), where the developer may type
a string to retrieve the components. In the example, a search was performed
with the string “Search” & “Retrieve”, obtaining as a result the following com-
ponents: AssignmentCommand, DBConnection, Assembler, among others. From
this result, it is possible to identify which project (repository) this component
belongs to (represented in “Module”), and download the component to the local
machine. Next, the developer may import the component into his/her Eclipse
project (3). In the example of the Figure, the developer has chosen the Assign-
mentCommand.

The first version of Maracatu plug-in implementation contained 32 classes,
divided into 17 packages, with 955 lines of code (not counting comments).

4 Maracatu Search Engine: Current Stage

After the first release of Maracatu, and its initial utilization in the industry,
several enhancements started to be suggested by its users. Some of these were
added, giving origin to the current version of the tool. Maracatu’s first version
was used to aid in the second version development. It helped the team to under-
stand how to use some API, consulting the open source code as example of its
use and to reduce the time to release the second prototype.

Next sections describe the new features that were included. The improvements
took place both in the client (plug-in) and in the server side (Maracatu Service).

4.1 Usability Issues

As expected, the first problems detected by the users were related to the User
Interface. In this sense, improvements were introduced into Maracatu’s Eclipse
plug-in:

i) Component pre-visualization: Before actually downloading a component,
it is interesting to have a glimpse on its content, so that the user may determine if
it is worth to retrieve that component or not. This saves considerable time, since
the check-out procedure, needed to download a component from CVS, requires
some processing. In this sense, two options were implemented, as shows Figure
2. The user may choose, in a pop-up menu (1), either to see a text (2) or UML
(3) version of the component, which he/she can then analyze before actually
downloading the component. The UML was obtained by a parser which analyze
the Java code and perform a transformation to write the UML.
ii) Drag and Drop functionality: With this new feature, components listed
in the tree view can be directly dragged to the user workspace project, been
automatically added to the project.
iii) Server Configuration: In the first version of Maracatu, the repositories
addresses were not dynamically configurable. The user could not, for example,
add new repositories without manually editing the server’s configuration files.
In order to solve this inconvenience, a menu item was added, to show a window
where the user can configure which repositories are to be considered in the search.

88 V.C. Garcia et al.

Fig. 2. Class Viewer and UML Generator

4.2 Facet-Based Search

The current version of Maracatu supports Facet-Based classification and search
[17] of the components. Components now can be browsed by platform, compo-
nent type and component model. It is also possible to combine facet-based search
with text-based search. By choosing only the desired facets, the search universe
is reduced, improving the search performance.

A new module, called Classifier, was introduced in the server-side of Mara-
catu’s architecture. This module is responsible for:

i) Reading the components from Maracatu’s repository, identifying the facets
to be extracted and inserted in the new search method. The extractor looks for
pre-defined facets, defined in a configuration file, together with rules for their
identification. Currently the rules consist of a combination of correlated terms
that must appear inside a component’s code in order to determine if it is classified
within the facet. New facets can be inserted by modifying this configuration file.
ii) After the identification and extraction of the facets, components are classified
according to them. The extraction and classification works together.

In the client side (Eclipse plug-in), modifications were made on the interface,
with a “selector” for each facet, allowing the developer to select the desirable
values for each one. The field for typing the regular text-based query was main-
tained, so the user may combine facet-based search with text-based search. The
search is now preceded by a filtering, which excludes components that do not
satisfy the constraints (facets). The keyword-based search is then performed over
the filtered result.

From Specification to Experimentation 89

Currently, Maracatu is capable of classifying components according to three
facets (F), with the following values:
F1: Platform - Values: J2EE, J2ME or J2SE;
F2: Component Type - Values: Web Services, GUI, Networking, Infrastructure,
Arithmetic, Security, Java 3D or Data Source; and
F3: Component Model - Values: EJB, CORBA or JavaBeans.

The user may choose combinations of these facets and values, performing
queries such as: retrieve all Infrastructure or Networking components that are
developed for J2EE Platform in the EJB Component Model.

5 Practical Usage in the Industry

Currently, the second version of Maracatu is being used in the industrial context,
at C.E.S.A.R.2, a Brazilian company. It is initially being used in two projects,
developed by RiSE3 group. These projects involve the development of a compo-
nent manager and a shared component library for Brazilian companies. The two
projects are supported by the Brazilian Government, under a budget of around
$1.5 millions. The team that uses Maracatu in these projects is composed by
13 members, divided as follows: project manager (1), software quality engineer
(1), software configuration manager (1), team leader (1), technical leader (1)
and software engineers (8). The experience gained in this usage is important to
identify opportunities for new features and improvements.

These projects’ repository contains 5 sub-projects, involving around 4200 ar-
tifacts created and shared by the development team. These artifacts may be
reused in different ways, offering different kinds of contribution to new projects:
source code can be directly reused, but they can also serve as examples of some
particular implementation or structural design.

The second version of Maracatu plug-in implementation contained 106 classes,
divided into 55 packages, with 3844 lines of code (not counting comments).

6 Experiments

Two experiments were performed in order to analyze and compare the mecha-
nisms of keyword matching and facet searching. The goal was to verify if the
second version became more useful than the first one, since the facet mechanism
was included.

For each experiment, four metrics were considered: the recall, the precision
and the f-measure. Recall is the number of relevant components retrieved over
the number of relevant components in the database [18]. The precision is the
number of relevant components retrieved over the total number of components
retrieved. Recall and precision are the classic measures of the effectiveness of
2 Currently, this company has about 700 employees and is preparing to obtain CMMi

level 3.
3 http://www.cin.ufpe.br/~rise

http://www.cin.ufpe.br/~rise

90 V.C. Garcia et al.

an information retrieval system. Ideally, a search mechanism should have good
precision and good recall. To assess this, mechanisms can be evaluated through
the f-measure, which is the harmonic mean of precision and recall [19]. The closer
the f-measure is to 1.0, the better the mechanism is. But this will only occur if
both precision and recall are high. If some mechanism have excellent precision,
but low recall, or excellent recall, but low precision, the f-measure will be closer
to zero, indicating that this mechanism does not perform well in one of these
criteria.

6.1 Context

According to Prieto-Dı́az [17] the facet approach provides higher accuracy and
flexibility in classification. The facet searching is based on the controlled vocab-
ulary and relies on a predefined set of keywords used as indexing terms. These
keywords are defined by experts and are designed to best describe or represent
concepts that are relevant to the domain question.

From these experiments, we expect to obtain similar results, i.e., the facet
approach should have better accuracy in classifying the components, and there-
fore the recall should be higher. On the other hand, free text search should have
higher precision, since it only retrieves components that has terms provided in
the query. If our results are correct, the combination of text and facet-based
search should provide the best results, resulting in higher f-measure than the
isolated approaches. These results would indicate that Maracatu’s mechanisms
were consistently implemented, and that the theory behind it is well-founded.

We considered that values close to 50 % for recall and values close to 20 %
for precision are satisfactory, since they come close to measurements made by
other authors [20, 11]. However, these values are only considered as a reference,
and these results were not included in the hypotheses of the experiments.

The dependent variables for the experiments are recall, precision, search time,
and f-measure. The independent variable is the searching method with three
approaches: keyword, facet, and keyword + facet. Differences in subjects’ skills
were also considered, to explain the results.

The null hypotheses, i.e., the hypotheses that the experimenter wants to reject,
are:

– H0a: facet-based search has lower recall than keyword search
– H0b: keyword-based search has lower precision than facet-based search
– H0c: the combination of facet-based and keyword-based search does not have

a greater f-measure than the isolated approaches

By rejecting these hypotheses, we expect to favor the following alternative
hypotheses:

– H1: facet-based search has higher recall than keyword search
– H2: keyword-based search has higher precision than facet-based search
– H3: the combination of facet-based and keyword-based search have a greater

f-measure than the isolated approaches

From Specification to Experimentation 91

If null hypotheses H0a and H0b are rejected, the results would indicate the
theory that facet-based search retrieves more relevant components, and that
keyword-based search is more precise. But the main result to be expected comes
from null hypothesis H0c. If rejected, the results would indicate that the combi-
nation of facet-based and keyword-based search takes advantage of the best of
each approach, producing a better overall result. By following this rationale, the
new version of Maracatu is more useful than the first one.

6.2 Preparation of the Experiments

In the first experimental environment, a repository was divided into 14 index files
for 4017 source code components distributed in 8 different projects from Java.net
(http://java.net/) and SourceForge (http://www.sourceforge.com) devel-
opers site, and two RiSE projects. The second experimental environment had a
repository divided into 14 index files for 3819 source code components distrib-
uted in 7 different projects, from the same developers site.

One particularly challenging task is to obtain a precise measure of the recall,
since the experimenter needs to know exactly how many relevant components
exist in the repository for each query. To overcome this problem, both experi-
ments adopted the same strategy: one of the projects inserted into the repository,
called known project, (with about 200 components), was from a very specific
domain, and was very well known by an expert. In this way, he could provide
a number of relevant components for each query with some assurance, since he
has a good knowledge of that project. Each experiment had a different known
project.

The experiments were conducted in a single machine, a Compaq Presario with
2,4 GHz, 512 MB RAM and Windows XP SP1. The subjects in this study were
4 researches of the RiSE Group and C.E.S.A.R, primarily software engineers and
analysts. Each subject was given a set of ten queries for each searching method
(keywords, facets and keywords + facets), and was asked to find all items in the
repository relevant to the query. The expert for each known project should be
consulted in this activity.

The queries were elaborated with the help of the expert for each known
project, and were specific to its domain, so that the number of relevant com-
ponents outside the known project - which would be unknown to the expert -
would be minimum.

6.3 Analysis of Experimental Results

Recall. Table 1 shows the recall results for both experiments. For each approach,
the table shows the mean of the recall for the ten queries, the standard deviance
and the variance.

In experiment 2, if we consider the worst case of the standard deviance, the
null hypothesis H0a - facet-based search has lower recall than keyword search-
fails to be rejected, since there is a possibility that keyword-based approach
has greater recall than facet-based. However, in experiment 1, even considering

http://java.net/
http://www.sourceforge.com

92 V.C. Garcia et al.

Table 1. Recall for both experiments

Approach Experiment 1 Experiment 2
Recall Std.Dev. Variance Recall Std.Dev. Variance

Keyword 0,4356 0,1434 0,0206 0,4867 0,2813 0,0791
Facet 0,8046 0,1562 0,0244 0,6936 0,2749 0,0756
Kw./Facet 0,4584 0,1646 0,0271 0,3158 0,2665 0,0710

the worst case of the standard deviance, the null hypothesis H0a is rejected.
This favors alternative hypothesis H1: facet-based search has higher recall than
keyword search.

Precision. Table 2 shows the precision results for both experiments. For each
approach, the table shows the mean of the precision for the ten queries, the
standard deviance and the variance.

Table 2. Precision for both experiments

Approach Experiment 1 Experiment 2
Precision Std.Dev. Variance Precision Std.Dev. Variance

Keyword 0,2084 0,2745 0,0753 0,1556 0,2655 0,0705
Facet 0,0071 0,0102 0,0001 0,0155 0,0238 0,0006
Kw./Facet 0,2616 0,2786 0,0776 0,2530 0,4658 0,2169

In both experiments, if looking only at the mean values, one may tend to
think that null hypothesis H0b - keyword-based search has lower precision than
facet-based search - was rejected. However, although this is probably true, it is
not guaranteed by statistical results, since the standard deviance was too high,
which may indicate that the mean could drastically change. However, in practice,
due to the high difference in the mean values in both experiments, we can favor
the alternative hypothesis H2: keyword-based search has higher precision than
facet-based search.

f-measure. Table 3 shows the f-measure results for both experiments. For each
approach, the table shows the mean of the f-measure for the ten queries, the
standard deviance and the variance.

By looking at these results, we may immediately discard the facet-based ap-
proach, since it has a very low f-measure for both experiments. However, null
hypothesis H0c - the combination of facet-based and keyword-based search does
not have a greater f-measure than the isolated approaches - cannot be statisti-
cally rejected by these results. If we look at both experiments, and if we consider
the worst case of the standard deviance, the mean could change drastically, and
the f-measure for the keyword approach could be higher than the keyword +
facet approach.

From Specification to Experimentation 93

Table 3. F-measure for both experiments

Approach Experiment 1 Experiment 2
F-meas. Std.Dev. Variance F-meas. Std.Dev. Variance

Keyword 0,2544 0,2584 0,0668 0,2109 0,3181 0,1012
Facet 0,0136 0,0189 0,0004 0,0294 0,0443 0,0020
Kw./Facet 0,3127 0,2592 0,0672 0,2361 0,2559 0,0655

However, in practice, considering just the mean values, both experiments tend
to reject Null hypothesis H0c, since in both cases the combination of facets and
keywords had a greater f-measure. Thus, if we had to make a decision, we would
favor alternative hypothesis H3: the combination of facet-based and keyword-
based search have a greater f-measure than the isolated approaches. However,
more experiments are needed in order to provide a more solid confirmation of
this hypothesis.

6.4 Discussion

Subject preferences for the searching methods was obtained by asking the sub-
jects to answer which approach was preferred. Keyword + facet was ranked
higher, followed by keyword and only then the facets.

The three null hypotheses were practically rejected, although not statisti-
cally. This favors the alternative hypotheses, and specially H3, which states that
the new version of Maracatu, combining facet-based search with keyword-based
search, is more useful than the first one, which only had keyword-based search.

As expected, the recall and precision rates, in the best cases, were very close to
the values obtained by other authors [20] [11] (50% recall and 20% for precision).
We can not say which mechanism is better, nor that these mechanisms are
similar, since several other factors could influence the result. The same set of
components and queries should be replicated to all mechanisms in order to obtain
a more meaningful comparison result. However, this indicates that the research
on Maracatu is on the right direction.

7 Related Work

The Agora [21] is a prototype developed by the SEI/CMU4. The objective of the
Agora system is to create a database (repository), automatically generated, in-
dexed and available on the Internet, of software products assorted by component
type (e.g. JavaBeans or ActiveX controls). The Agora combines introspection
techniques with Web search mechanisms in order to reduce the costs of locating
and retrieving software components from a component market.

The Koders [22] connects directly with version control systems (like CVS
and Subversion) in order to identify the source code, being able to recognize

4 Software Engineering Institute at Carnegie Mellon University.

94 V.C. Garcia et al.

30 different programming languages and 20 software licenses. Differently from
Maracatu, which can be used in an Intranet, Koders can be only used via its Web
Site, which makes it unattractive for companies that want to promote in-house
reuse only, without making their repositories public.

In [23], Holmes and Murphy present Strathcona, an Eclipse plug-in that locates
samples of source code in order to help developers in the codification process.
The samples are extracted from repositories through six different heuristics. The
Strathcona, differently from Maracatu, is not a Web Service client, and thus it
is not as scalable as Maracatu. Besides, Maracatu can access different remotely
distributed repositories, while the Strathcona can access only local repositories.

Another important research work is the CodeBroker [11], a mechanism for
locating components in an active way, according to the developer’s knowledge
and environment. Empirical evaluations have shown that this kind of strategy
is effective in promoting reuse. From the functional view, Maracatu follows the
same approach as CodeBroker, except for being passive instead of active.

8 Maracatu’s Agenda for Research and Development

As a result of the research and tests made with the tool, the team responsible for
the project identified the necessity for the development of new features and new
directions for research. A formal schedule of these requirements is being defined
by C.E.S.A.R. and RiSE group, and will address the following issues.

8.1 Non-functional Requirements

Usability. Macaratu’s usability might be enhanced with features such as giving
the user the possibility to graphically view the assets and its interdependencies.
This would help the user to keep track of assets cohesion and to learn more about
the assets relationships and dependencies. Another usability feature could be to
highlight the searched text. And finally, it would be interesting for the user to
select the repositories he/she wants to search, as an additional filter.
Scalability. On the server side, there are not features for load balancing. This
will be an important feature in the future, as the tool starts to be used with a
larger number of developers simultaneously searching for assets on the Intranet
or even on the Internet.
Security. A common problem that a company may face when promoting reuse
is the unauthorized access to restricted code. The idea is to improve software
reuse, but there are cases where not every user can access every artifact. User
authentication and authorization need to be implemented in order to solve these
questions.

8.2 Functional Requirements

Improved facet search. The facet search might be enhanced, by using more
complex, flexible and dynamic rules. Currently, facet rules are specific for Java
source code, and use a very simple structure. A rule engine should be used to

From Specification to Experimentation 95

improve it. This would bring the necessary flexibility for the administrator or the
developer to define specific semantic-aware rules to associate pre-defined facets.
Besides, a more flexible facet extractor would be easier to adapt to organizational
structures, facilitating the adoption of the search engine.
Semantic Search. Semantic search might be added to improve recall, since it
would retrieve not only the specific assets the user searched for, but also others
that are semantically related. Current facet search is a form of semantic search,
since the facets are semantically defined to represent and group some information
on the repository. However, new semantic engines could provide more benefits.
Specialized Algorithm. On its second prototype, Maracatu uses the Lucene
Search system to index and retrieve source code. This algorithm is not optimized
or specialized for source code search. A feature that might be added is to count
the source code dependencies when indexing and ranking it. So a developer could
choose to retrieve the assets with less dependencies, for example. One example
of such work can be seen on Component Rank [24].
Metrics. The use of more complex metrics than JavaNCSS might be interesting.
Currently the only metric information used is the amount of Javadoc documen-
tation. We can evaluate other code quality features in order to improve the filter
process.
Query by reformulation. There is a natural information loss when the reuser
is formulating a query. As pointed out by [10], there is also the conceptual gap
between the problem and the solution, since usually components are described
in terms of functionality (“how”), and queries are formulated in terms of the
problem (“what”). In [11], the authors state that retrieval by reformulation “is
the process that allows users to incrementally improve their query after they
have familiarized themselves with the information space by evaluating previous
retrieval results.”.
Information Delivery. Most tools expect user’s initiative to start searching for
reusable assets. Unfortunately, this creates a search gap, because the user will
only search for components he/she knows or believes to exist in the repository
[11]. On the other hand, using context-aware features, the tool can automatically
search for relevant information without being requested, bringing components
that the user would not even start looking for, increasing the chance of reuse.

We are aware that this is not a definitive set of improvements. However, these
are proved solutions that could increase Maracatu’s performance and usefulness.

9 Concluding Remarks

Since 1968 [1], when McIlroy proposed the initial idea of a software component
industry, the matter has been the subject of research. Over from decades [9], the
component search and retrieval area evolved, with mechanisms that, initially,
facilitated the reuse of mathematical routines, up to robust mechanisms, which
help in the selection and retrieval of black-box components, either in-house or in
a global market.

96 V.C. Garcia et al.

In this paper, we presented Maracatu, a search engine for retrieving source
code components from development repositories. The tool is structured in a
client-sever architecture: the client side is a plug-in for Eclipse IDE, while the
server side is represented by a web application responsible for accessing the repos-
itories in the Internet or Intranets. Two versions of the engine were developed
so far, with new features being added as it is used in industrial practise. We also
presented two experiments, comparing the text matching mechanism (first ver-
sion) with the facet mechanism implemented in the last version. The experiment
showed that the facet-based mechanism alone does not have good performance
but, when combined with text-based search, is a better overall solution.

Additionally, we discussed Maracatu’s agenda for future research and devel-
opment, listing it features still to be implemented. Issues concerned with usabil-
ity, scalability and security gain importance in future releases, as pointed out
by the experiments and pactical usage. Particularly, the facet searching mecha-
nism could benefit from more sophisticated, flexible and dynamic rules. Semantic
search would be another important approach to be studied, as well as more spe-
cialized algorithms for component ranking.

In the view of the RiSE framework for software reuse [25], Maracatu is a
search tool to incorporate the first principles and benefits of reuse into an or-
ganization. However, reusability will not occur by itself, and it is an illusion
to think that the adoption of tools could do it either. There must be a strong
organizational commitment to reuse program; adherence to a reuse process; an
effective management structure to operate a reusability program with the re-
sources and authority required to provide the overall culture to foster reuse.
Maracatu facilitates the task of reusing software artifacts, but we hope that the
first benefit it brings can encourage project managers and CIOs to pay attention
to the software reuse as a viable and mandatory investment in their software
development agenda.

References

1. McIlroy, M.D.: Software Engineering: Report on a conference sponsored by the
NATO Science Committee. In: NATO Software Engineering Conference, NATO
Scientific Affairs Division (1968) 138–155

2. Frakes, W.B., Isoda, S.: Success Factors of Systematic Software Reuse. IEEE
Software 11(01) (1994) 14–19

3. Rine, D.: Success factors for software reuse that are applicable across Domains
and businesses. In: ACM Symposium on Applied Computing, San Jose, California,
USA, ACM Press (1997) 182–186

4. Morisio, M., Ezran, M., Tully, C.: Success and Failure Factors in Software Reuse.
IEEE Transactions on Software Engineering 28(04) (2002) 340–357

5. Ravichandran, T., Rothenberger, M.A.: Software Reuse Strategies and Component
Markets. Communications of the ACM 46(8) (2003) 109–114

6. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Addison Wesley (2002)

7. Gallardo, D., Burnette, E., McGovern, R.: Eclipse in Action. A Guide for Java
Developers. In Action Series. Manning Publications Co., Greenwich, CT (2003)

From Specification to Experimentation 97

8. Griss, M.: Making Software Reuse Work at Hewlett-Packard. IEEE Software
12(01) (1995) 105–107

9. Lucrédio, D., Almeida, E.S., Prado, A.F.: A Survey on Software Components
Search and Retrieval. In Steinmetz, R., Mauthe, A., eds.: 30th IEEE EUROMI-
CRO Conference, Component-Based Software Engineering Track, Rennes - France,
IEEE/CS Press (2004) 152–159

10. Henninger, S.: Using Iterative Refinement to Find Reusable Software. IEEE Soft-
ware 11(5) (1994) 48–59

11. Ye, Y., Fischer, G.: Supporting Reuse By Delivering Task-Relevant and Person-
alized Information. In: ICSE 2002 - 24th International Conference on Software
Engineering, Orlando, Florida, USA (2002) 513–523

12. Banker, R.D., Kauffman, R.J., Zweig, D.: Repository Evaluation of Software Reuse.
IEEE Transactions on Software Engineering 19(4) (1993) 379–389

13. NetBeans: Javacvs project (2005)
14. Hatcher, E., Gospodnetic, O.: Lucene in Action. In Action series. Manning Pub-

lications Co., Greenwich, CT (2004)
15. Lee, C.: JavaNCSS - A Source Measurement Suite for Java (2005)
16. Stal, M.: Web services: beyond component-based computing. Communications of

ACM 45(10) (2002) 71–76
17. Prieto-Dı́az, R.: Implementing faceted classification for software reuse. Communi-

cations of the ACM 34(5) (1991) 88–97
18. Grossman, D.A., Frieder, O.: Information Retrieval. Algoritms and Heuristics.

Second edn. Springer, Dordrecht, Netherlands (2004)
19. Robin, J., Ramalho, F.: Can Ontologies Improve Web Search Engine Effectiveness

Before the Advent of the Semantic Web? In Laender, A.H.F., ed.: XVIII Brazilian
Symposium on Databases, Manaus, Amazonas, Brazil, UFAM (2003) 157–169

20. Frakes, W.B., Pole, T.P.: An Empirical Study of Representation Methods for
Reusable Software Components. IEEE Transactions on Software Engineering 20(8)
(1994)

21. Seacord, R.C., Hissam, S.A., Wallnau, K.C.: Agora: A Search Engine for Soft-
ware Components. Technical Report CMU/SEI–98–TR–011, ESC–TR–98–011,
CMU/SEI - Carnegie Mellon University/Software Engineering Institute (1998)
CMU/SEI - Carnegie Mellon University/Software Engineering Institute.

22. Koders: Koders - Source Code Search Engine, URL: http://www.koders.com
(2006)

23. Holmes, R., Murphy, G.C.: Using structural context to recommend source code
examples. In: 27th International Conference in Software Engineering, St. Louis,
MO, USA, ACM Press (2005) 117–125

24. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto,
S.: Component Rank: Relative Significance Rank for Software Component Search.
In: 25th International Conference on Software Engineering (ICSE2003). (2003)
14–24

25. Almeida, E.S., Alvaro, A., Lucrédio, D., Garcia, V.C., Meira, S.R.L.: RiSE Project:
Towards a Robust Framework for Software Reuse. In: IEEE International Con-
ference on Information Reuse and Integration (IRI), Las Vegas, USA, IEEE/CMS
(2004) 48–53

	Introduction
	Basic Component Search Requirements
	Features and Technical Requirements

	Design of the First Maracatu Search Engine
	Maracatu Search Engine: Current Stage
	Usability Issues
	Facet-Based Search

	Practical Usage in the Industry
	Experiments
	Context
	Preparation of the Experiments
	Analysis of Experimental Results
	Discussion

	Related Work
	Maracatu's Agenda for Research and Development
	Non-functional Requirements
	Functional Requirements

	Concluding Remarks

