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The low-Reynolds-number wake dynamics and stability of the flow past toroids placed
normal to the flow direction are studied numerically. This bluff body has the attrac-
tive feature of behaving like the sphere at small aspect ratios, and locally like the
straight circular cylinder at large aspect ratios. Importantly, the geometry of the
ring is described by a single parameter, the aspect ratio (4r), defined as a ratio of
the torus diameter to the cross-sectional diameter of the ring. A rich diversity of
wake topologies and flow transitions can therefore be investigated by varying the
aspect ratio. Studying this geometry allows our understanding to be developed as to
why the wake transitions leading to turbulence for the sphere and circular cylinder
differ so greatly. Strouhal-Reynolds-number profiles are determined for a range of
ring aspect ratios, as are critical Reynolds numbers for the onset of flow separation,
unsteady flow and asymmetry. Results are compared with experimental findings
from the literature. Calculated Strouhal-Reynolds-number profiles show that ring
wakes shed at frequencies progressively closer to that of the straight circular cylinder
wake as aspect ratio is increased from Ar =3. For Ar > 8, the initial asymmetric
transition is structurally analogous to the mode A transition for the circular cylinder,
with a discontinuity present in the Strouhal-Reynolds-number profile. The present
numerical study reveals a shedding-frequency decrease with decreasing aspect ratio for
ring wakes, and an increase in the critical Reynolds numbers for flow separation and
the unsteady flow transition. A Floquet stability analysis has revealed the existence
of three modes of asymmetric vortex shedding in the wake of larger rings. Two
of these modes are analogous to mode A and mode B of the circular cylinder wake,
and the third mode, mode C, is analogous to the intermediate wavelength mode found
in the wake of square section cylinders and circular cylinder wakes perturbed by a
tripwire. Furthermore, three distinct asymmetric transition modes have been identified
in the wake of small aspect ratio bluff rings. Fully developed asymmetric simulations
have verified the unsteady transition for rings that exhibit a steady asymmetric wake.

1. Introduction

Wake flows of two-dimensional bluff-body geometries, and the inherent transitions
with increasing Reynolds number from steady two-dimensional wake flow, through
unsteady and three-dimensional flows, to fully turbulent wakes have been of interest
to researchers for many decades. A recent comprehensive review of the work on
the circular cylinder wake has been provided by Williamson (1996). The wake
transitions for another widely studied bluff body, the sphere, are markedly different
(e.g. Johnson & Patel 1999; Ormieres & Provansal 1999; Tomboulides & Orszag 2000;
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Thompson, Leweke & Provansal 2001a). There are also relevant related studies into
the wakes from other body geometries such as the square cross-sectioned cylinder (e.g.
Robichaux, Balachandar & Vanka 1999), and long rectangular plates (e.g. Hourigan,
Thompson & Tan 2001; Mills, Sheridan & Hourigan 2002, 2003). Although these
studies indicate some similarities in the bifurcations and wake dynamics from different
bodies, there are also significant differences that warrant further investigation. In this
paper, we are especially interested in the differences between the sphere and circular
cylinder wakes which show major differences in the wake bifurcations as a function
of Reynolds number. The characteristics of these geometries are now presented. The
characteristics of both the mode C instability for the square cylinder and the wakes
of bluff rings are also presented.

1.1. The sphere wake

A major difference in the wake transition behaviour of the sphere and circular cylinder
wakes is that the sphere wake becomes asymmetrical prior to a transition to unsteady
flow (Magarvey & Bishop 1961a, b), whereas the cylinder wake becomes unsteady
before asymmetric structures become present in the wake (Williamson 1988a, b).

For the sphere wake, the transition from attached to separated flow at the rear of
the sphere has been interpolated from direct numerical simulations to be Reg; =20
(Tomboulides, Orszag & Karniadakis 1993; Johnson & Patel 1999; Tomboulides &
Orszag 2000). On increasing the Reynolds number, the wake remains steady and
axisymmetric up to Regs; =211 (Johnson & Patel 1999). Magarvey & Bishop (1961b)
provided early flow visualizations of a liquid sphere falling through a liquid phase.
The experimental layout enabled striking images of the trailing wakes to be captured,
as they were motionless in the reference frame of the camera. The transition to
asymmetry is through a regular bifurcation (i.e. steady to steady flow) of the m =1
azimuthal mode (Tomboulides et al. 1993; Tomboulides & Orszag 2000). Their studies
located the transition at Reg,=212. In good agreement, the numerical stability
analysis of Natarajan & Acrivos (1993) also found the m =1 azimuthal mode to
undergo a regular bifurcation at Reg, =210. Experiments and numerical simulations
(Johnson & Patel 1999) found the resulting wake to undergo a regular bifurcation
through a shift of the steady recirculating bubble behind the sphere from the axis.
Two threads of vorticity trail downstream from the recirculation bubble. This wake
structure has become known as the double-threaded wake, and has also been predicted
numerically by Tomboulides & Orszag (2000). The beautiful early dye visualizations of
Magarvey & Bishop (1961b) found that the double-threaded wake exists in the range
200 < Re < 350. Since then, more accurate experiments and numerical simulations
have refined this range considerably, as described below.

The steady asymmetric wake undergoes a further transition to unsteady flow at
a higher Reynolds number. Through stability analysis, Natarajan & Acrivos (1993)
found a time-dependent instability of the m =1 azimuthal mode at Reg; =277.5, and
the visualizations from numerical simulations (Tomboulides et al. 1993; Johnson &
Patel 1999; Tomboulides & Orszag 2000) support this bifurcation scenario, with
unsteady wakes being observed for Re > 280. In all instances, the unsteady wake
consisted of vortex loops or hairpins shedding downstream from the sphere, in the
same plane as that of the initial steady asymmetric structures. Magarvey & Bishop
(1961b) observed this periodic wake pattern at Re =350. An analysis of the transition
to the periodic wake was also performed by Magarvey & MacLatchy (1965). They
observed the equilibrium in transport of vorticity into and out of the near field
of the double-threaded wake in the approximate range 200 < Re < 300. For higher
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Reynolds numbers, the formation of the periodic hairpin-shedding wake was required
to transport the vorticity generated behind the sphere downstream. The periodic wake
of the sphere remains planar-symmetric up to a Reynolds number of approximately
Re =375, as observed numerically by (Mittal 1999a, b). Johnson & Patel (1999) esti-
mated the unsteady transition to occur in the range 270 < Reg3 < 280.

Stability of the sphere wake has been studied using the complex wave amplitude
Landau equation (Ghidersa & Dusek 2000; Thompson et al. 2001a). The coefficients
of the linear and cubic terms of the Landau model were estimated from asymmetric
numerical simulations close to the transition Reynolds numbers. The initial asym-
metric transition was found to be a regular type transition, occurring at Reg, =212,
and the subsequent transition was identified as being a Hopf transition at Reg; =272.
The critical Reynolds numbers of the transitions are in agreement with previous
studies. The analysis demonstrates that both transitions were shown to be supercritical
(non-hysteretic).

Tomboulides et al. (1993) observed fine-scale flow structures in large-eddy numerical
simulations in the Reynolds-number range 500 < Re < 1000. Magarvey & Bishop
(1961b) observed a breakdown in periodicity of the hairpin shedding for Re > 600
also. These results are considered to mark the onset of turbulence, and hence are
beyond the scope of the present study.

1.2. The circular cylinder wake

The initial transition for the cylinder wake occurs with the separation of flow from
the rear of the cylinder, resulting in a steady recirculation bubble. This transition was
predicted by numerical stability analysis to occur at Rec; =5 (Noack & Eckelmann
1994b). The recirculation zone remains steady two-dimensional and symmetrical about
the centreline of the flow until a subsequent transition to periodic flow occurs. This
transition was predicted to occur at Rec, = 54 (Noack & Eckelmann 1994a); however,
the Galerkin method used appeared to have too few modes to capture the instability
accurately. The experimentally derived results of Williamson (1988a, 1989) at Re =49
are widely regarded as more accurate. Sheard, Thompson & Hourigan (2001) validated
this finding through application of a spectral-element method, achieving Rec, =47,
in good agreement with Dusek, Frauni¢ & Le Gal (1994), who obtainined a value
of Rec; =47.1 through numerical simulation and the application of the theoretical
Landau model. Dusek et al. (1994) identified the transition as a Hopf bifurcation.

Two three-dimensional wake states are observed in the wake behind the circular
cylinder: oblique shedding and instabilities of the parallel vortex street. At Reynolds
numbers Re > 64, oblique shedding is observed (Williamson 1988a, 1996), where
the vortex rollers are shed at an angle to the cylinder resulting in a reduction of
Strouhal number. Oblique shedding is a phenomenon associated with the interaction
of nonlinear long-wavelength azimuthal modes disrupting the parallel vortex street,
and as such is beyond the scope of the present work.

Experiments have found the parallel periodic vortex shedding street becomes
unstable to three-dimensional instabilities at Re > 178 (Williamson 1988a, 1996).
This transition was studied using a linear Floquet stability analysis (Barkley &
Henderson 1996). They found that at Re = 188.5, the cylinder wake becomes unstable
to three-dimensional perturbations with a spanwise wavelength of 3.96 diameters (d).
A second instability on the two-dimensional base flow was found at Re =259, with
a spanwise wavelength of 0.822d. These instabilities and their respective spanwise
wavelengths agree closely with experimental observations of the mode A and mode B
wake structures observed experimentally by Williamson (1988b). Three-dimensional
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simulations by Thompson, Hourigan & Sheridan (1994, 1996) captured detailed im-
ages of the saturated three-dimensional streamwise vortical structures corresponding
to these two different bifurcations.

Henderson (1997) performed three-dimensional simulations on the wake of the cir-
cular cylinder through the mode A and mode B transitions. The span of the simula-
tions was varied up to 4 times the spanwise wavelength of the mode A instability. The
interaction between the mode A and mode B instabilities was studied by monitoring
the energy present in the various spanwise Fourier modes of the simulations. Wake
visualizations were captured at Re =265 showing the coexistence of both mode A
and mode B wake structures. This spontaneous switching between one mode and
the other may explain the presence of two distinct Strouhal frequencies in the wake
in the Reynolds-number range 230 < Re <260 as observed by Williamson (1988b).
An attempt was made to study the physical mechanism leading to the formation
of streamwise vortical wake structures (Mittal & Balachandar 1995); however, the
computational domain only spanned a single cylinder diameter, resulting in the
artificial suppression of mode A structures. They did, however, observe the formation
of well-defined vortical structures in the braid region of the vortex street, associated
with mode B shedding. A detailed Floquet analysis was performed (Thompson,
Leweke & Williamson 2001b) in an attempt to identify the physical mechanism of
the mode A transition showing, although complex, it is consistent with an elliptic
instability of the vortex cores. Evidence suggests that the transition is in fact a
cooperative elliptic instability (Leweke & Williamson 1998), with the elliptic instability
dominant in initiating the growth of the three-dimensional flow structures in the near
wake. Advection then transports some perturbation into the braid regions as the wake
convects downstream.

A geometric analogy exists between the two-dimensional circular cylinder placed
close to a wall, and the circular cross-section bluff ring at small aspect ratios, where the
ring cross-section lies in the vicinity of the axis. Essentially, both the axis of the ring
and the boundary near the cylinder constrain and deform the resulting wake. A free
surface with a Froude number (Fr =0) dominated by gravity is essentially a boundary
with zero tangential stresses. Hourigan, Reichl & Thompson (2002) modelled such
a case with numerical simulations at a Reynolds number Re =180. They showed
that as the cylinder approached the free surface, the Strouhal number for the vortex
shedding street increased by 10% from the reference cylinder with no boundaries in
its vicinity. This maximum shedding frequency occurred where the gap between the
cylinder and the wall was 0.7 times the diameter of the cylinder (0.7d). A further
reduction in this gap saw a rapid drop in frequency, until for gap ratios less than 0.1d
no vortex shedding was observed. The numerical bluff ring study by Sheard et al.
(2001) presents Strouhal-number profiles showing a similar reduction in Strouhal
number with decreasing aspect ratio (i.e. a decreasing gap between the axis and
the circular ring cross-section) to the work of Hourigan et al. (2002). Despite this,
no Strouhal-number rise with decreasing aspect ratio can be found for bluff rings,
although a small rise in Strouhal number as the gap ratio approached 0.7d was
observed for the cylinder near a free surface.

1.3. Square cylinder wake

When studying the three-dimensional stability of the square cylinder, Robichaux et al.
(1999) found an intermediate wavelength mode (2.8d) that they designated mode S.
This mode was periodic over two shedding cycles of the base flow (2T symmetry). This
symmetry is in contrast to modes A and B, which are periodic over a single period of
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Sphere transition type Reynolds number
Boundary-layer separation 20
Regular asymmetric transition — regular bifurcation 210 to 212
Hopf transition — Hopf bifurcation 270 to 280

TaBLE 1. Transition Reynolds numbers for the wake around a sphere (Johnson & Patel 1999;
Tomboulides & Orszag 2000).

Circular cylinder transition type Reynolds number
Boundary-layer separation 4t05
Hopf transition — Hopf bifurcation 47
Three-dimensional transition — Hopf bifurcation 188.5

TaBLE 2. Transition Reynolds numbers for the wake around a circular cylinder (Noak &
Eckelmann 19945 ; Williamson 1988a; Barkley & Henderson 1996).

the base flow (1T symmetry). Their study also found analogous mode A and mode B
instabilities in the wake; however, the spanwise wavelengths of both modes were about
40% larger than those for a circular cylinder. This is consistent with the diagonal
length being the dimension controlling the scaling of the spanwise wavelengths of
the instability modes for this particular geometry. The mode S topology and periodi-
city is identical to the mode C instability observed for the circular cylinder wake
(Zhang et al. 1995) when a tripwire is placed close to the body. The wavelength of
the mode C instability was predicted to be 2d. The circular cylinder wake has not
been found to exhibit this mode C type instability without artificial forcing.

A summary of the sphere and cylinder transitions is presented in tables 1 and 2,
respectively.

1.4. Wake of a toroidal body

A Dbluff-body geometry that spans the extremes of wake behaviour shown by the
sphere and circular cylinder as a single geometric parameter is varied, is the torus
(or ring) with its axis placed parallel to the flow. This particular geometry has been
studied previously by Leweke & Provansal (1995), with the main motivation to remove
the end effects that experimentally hinder circular cylinder wake studies.

The parameters specifying the bluff ring geometry are defined as in Leweke &
Provansal (1995), consistent with earlier work by the current authors. We define the
aspect ratio as Ar = D/d, where D is the major diameter of the circular centreline of
the ring cross-section, and d is the minor diameter of the cross-section of the ring.
The geometry is represented schematically in figure 1. By varying the single geometric
parameter Ar, a uniform axisymmetric body is described varying from a sphere at
Ar =0, to a straight cylinder in the limit Ar — oo. The hole in the centre of the ring
first appears at the axis at Ar = 1.

The Reynolds number is based on the uniform free-stream velocity, U, the length
dimension d, and the kinematic viscosity, v, consistent with the previous definitions
for both the sphere and cylinder.

The flow around a bluff ring has been afforded limited attention in the literature.
Roshko (1953) showed experimentally that laminar vortex shedding from rings occur-
red at frequencies lower than for the circular cylinder by up to a few per cent. This
behaviour was quantified experimentally by Leweke & Provansal (1995). They defined
a Strouhal-Reynolds-curvature relationship for laminar shedding for a ring diameter
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FIGURE 1. Schematic diagram of the bluff ring system.

at least 10 times greater than its cross-sectional diameter. Their study also investigated
the transition regimes for Re <400, modelling the straight circular cylinder wake
without end effects as a torus. Roshko (1953) noted that at smaller aspect ratios,
the ring wake exhibited a vastly different Strouhal-Reynolds number variation. The
numerical investigation by Sheard et al. (2001) complemented these experimentally
derived Strouhal profiles for the range of aspect ratios 5 < Ar < 40.

The analogy between the wakes of spheres and disks and those of rings with aspect
ratios Ar <5 was investigated at Reynolds numbers Re = 10* by Bearman & Takamoto
(1988). Their findings supported the observations of Roshko (1953) pertaining to
the low-aspect-ratio (4r <5) behaviour. The Reynolds numbers they studied were
far larger than in the present study; here, only the range Re <400 is considered,
consistent with the range over which transitions to unsteady asymmetric flow are
expected.

Asymmetric wakes were observed by both Monson (1983) and Leweke & Provansal
(1995), in the form of helical vortex rings analogous to the oblique shedding observed
by Williamson (1989) for circular cylinders. Whereas the oblique wake of a circular
cylinder can be observed at arbitrary angles to the cylinder axis depending on the
experimental end conditions and cylinder length, the helical vortex rings were observed
to shed as discrete modes consisting of single, double or triple helices. This is due
to the imposed periodicity of the bluff ring geometry. The experiments of Monson
(1983) involved observing a ring falling through a liquid, rendering Strouhal-number
measurements difficult. However, the study by Leweke & Provansal (1995) involved
passing fluid over a fixed ring, which allowed accurate measurements of the Strouhal
number. The appearance of the three helical modes was studied for different aspect
ratios, and it was found that the double and triple helices could only be observed for
larger rings of aspect ratio approximately Ar > 18. The stability of the helical modes
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was also studied. Higher-order helical modes were less stable, being observed only at
higher Reynolds numbers than for parallel shedding. Furthermore, it was observed
that a decrease in aspect ratio led to a corresponding increase in the relative critical
Reynolds numbers for the respective helical modes.

The Strouhal-Reynolds number profiles of Leweke & Provansal (1995) over the
asymmetric transition range for the bluff rings compare in an interesting way to the
corresponding profiles reported by Williamson (1988a, 1996) for the circular cylinder.
The former observed a discontinuity, marked by a drop in Strouhal frequency of
about 5%, in the vicinity of the mode A transition for the cylinder, consistent with
the corresponding drop in the cylinder profile. At the mode B transition, however,
Strouhal-number profiles for the ring exhibit a difference in the behaviour. For the
circular cylinder, there is evidence of two distinct frequencies in an overlap region
before the wake becomes dominated by the mode B instability at Re &260. In
contrast, the wake of the bluff ring appears to undergo a continuous transition as
the Reynolds number increases. At higher Reynolds numbers (Re > 300), there is a
return to consistency between the cylinder and ring profiles for the range of aspect
ratios studied.

At present, no understanding of the transition regimes that exist over the aspect
ratio parameter space for the bluff ring is known. The axisymmetric computations
and associated linear stability analysis of the present study enables both axisymmetric
and primary asymmetric instabilities of the bluff ring wakes to be predicted, and a
corresponding stability parameter space for all bluff rings to be mapped.

1.5. Structure of paper

The remainder of the paper consists of the following sections: numerical formulation,
axisymmetric flow characteristics, axisymmetric wake stability, linear asymmetric wake
stability, asymmetric flow visualization, and discussion and conclusions. The numerical
formulation section outlines the numerical methods used for both the axisymmetric
and asymmetric flow simulations, and the linear stability analysis of the axisym-
metric flow to asymmetric perturbations. The following section on axisymmetric flow
characteristics summarizes and expands on the Strouhal-number profiles of the system.
Flow visualizations are provided and compared to the wakes of the reference wake
flows of the sphere and cylinder. The section covering axisymmetric wake stability
provides profiles of the transition from attached to separated flow, as well as the
transition to unsteady flow for the axisymmetric wakes. Mathematical fits describing
these transitions are provided, as well as for the Strouhal number as a function of
both the Reynolds number and aspect ratio. Results of linear stability analysis are
then presented. As well as highlighting the dominant shedding modes and visualizing
the acquired perturbation fields of both steady and unsteady wake flows, the change
in the dominant azimuthal instability mode with aspect ratio will also be considered.
The final results section presents the predicted behaviour of the critical Reynolds
number for the transition to unsteady flow from the steady asymmetric wakes of
rings with Ar <4.

2. Numerical formulation
2.1. The spectral-element method

A spectral-element method was used for the numerical simulations in this investi-
gation. This method is described in detail in Patera (1984), Karniadakis (1990),
and Thompson et al. (1994, 1996), so only a brief outline is provided here. The
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spectral-element method is based on the Galerkin finite-element method, incorporating
high-order Lagrangian polynomial shape functions within each element. The node
points of the Lagrangian polynomials correspond to the Gauss—Legendre—Lobatto
quadrature points, allowing accurate and efficient integration over each element. For
non-axisymmetric calculations, axisymmetric grids were expanded in the azimuthal
direction using a Fourier expansion, allowing asymmetric evolution of the flow
fields.

The axisymmetric and asymmetric formulation of the code has been applied success-
fully to both the sphere (Thompson et al. 2001a), and the circular cylinder (Thompson
et al. 1994, 1996), so further validation is not presented here.

The axisymmetric simulations are sufficient to determine both the critical Reynolds
numbers for transitions to separated wake flow, and the subsequent axisymmetric
transition to unsteady flow. To determine the wake stability of the axisymmetric base
flow to asymmetric perturbations, application of Floquet stability analysis is under-
taken.

2.2. Linear Floquet stability analysis

Floquet stability analysis can be used to determine the stability of a periodic axisym-
metric base flow to asymmetric perturbations. Barkley & Henderson (1996) applied
this technique successfully to study the asymmetric transitions of the straight circular
cylinder. Natarajan & Acrivos (1993) performed a similar study for the stability of
the sphere wake. Both the sphere wake stability results, as well as the straight circular
cylinder results are replicated in this paper to validate the current formulation and
implementation of the stability analysis technique. The present numerical technique
has been successfully applied to the wake of a circular cylinder (Thompson et al.
2001b). The asymmetric Floquet modes are determined from the linearized Navier—
Stokes equations assuming sinusoidal variation in the azimuthal direction with mode
number, m. This corresponds to a spanwise wavelength of A=2n/m for the bluff
ring geometry. In the cylindrical polar coordinate formulation of this technique, the
wavelength is expressed in radians. Only integer mode numbers are considered, as the
azimuthal wavelength must be a whole factor of 2 radians because of periodicity
imposed by the geometry. The implementation of the method in this case is similar
to the implementation of Barkley & Henderson (1996). Effectively, the perturbation
field satisfying the linearized Navier—Stokes equations is evolved at each time step in
parallel to the base flow. The L, norm of the perturbation field is normalized to unity
at the beginning of each period, and the global growth or decay of the perturbation
field is measured at the end of each period. This gives the amplitude growth factor
which converges after many periods to the dominant Floquet multiplier (u) of the
system for a given Reynolds number and spanwise wavelength 4 (or equivalent m).
Floquet multipliers @ > 1 indicate an exponentially growing perturbation and hence
an unstable base flow. Conversely, if the multipliers for all possible wavelengths are
less than unity, the base flow is stable. A Floquet multiplier of = 1 represents neutral
stability, where an imposed low-amplitude perturbation neither grows nor decays. The
aim is to determine the critical Reynolds numbers and wavelengths at which neutral
stability is reached.

2.3. Validation of spectral-element method and stability analysis technique

The implementation of the spectral-element method used here is the same as that
employed by Thompson et al. (1994, 1996), and Sheard et al. (2001, 2002), hence only
validation of the meshes used is necessary.
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A thorough grid-resolution study determined an acceptable compromise between
computational efficiency and allowable accuracy in this investigation. After con-
siderable testing, meshes consisting of approximately 400 elements were found to
resolve the flow field within an accuracy of better than 1%. Blockage and outflow
boundary effects were minimized by employing domain sizes for the inlet, outer
transverse domain and outlet of 15, 30 and 25 units, respectively. These domain
sizes maintained an accuracy for global wake parameters of better than 1%, 0.1%
and 0.1%, respectively. Elements with 64 nodes (8 x 8) were used predominantly;
however, in order to retain an accuracy of better than 1% for Re > 300, elements
with 81 (9 x 9) nodes were used.

For small aspect ratios, and especially those in the vicinity of Ar =1, where the
ring exhibits singular points on the axis upstream and downstream, careful attention
was paid to the meshing of these cases to limit the skewness of mesh elements, and
to include sufficient spatial resolution in the vicinity of the ring to model the flow, as
discussed in the next paragraph. To ensure the consistency between the axisymmetric
and asymmetric formulations of the numerical scheme, a computation was performed
using both methods for an Ar = 1.2 ring at Re = 300, with asymmetric flow suppressed.
Both methods provided global quantities such as the drag coefficient to within 0.5%,
and a measure highly sensitive to numerical accuracy, the velocity components at a
point in the wake were within 0.9%.

An approximate boundary-layer thickness (§) is analytically calculated at several
points around the bluff ring cross-section for flow at a Reynolds number Re = 300.
At distances from the front to the rear of a quarter, a half, and the full distance,
the thickness was estimated as 0.18d, 0.26d and 0.36d. The macro-element closest
to the ring cross-section for all meshes employed in this study is 0.0872d thick, and
the second element extends to 0.2383d. Thus, even with a polynomial order of only
N? =64, between 11 and 19 nodes resolve the boundary layer around the ring cross-
section.

As mentioned above, the Floquet stability analysis technique was validated by
comparing results obtained for both the straight circular cylinder wake and the
sphere wake, with accepted values from experiment and numerical work.

A numerical stability analysis of the sphere wake has been performed by Natarajan
& Acrivos (1993). They determined that the sphere wake becomes asymmetric at a
Reynolds number Re =210, undergoing a regular bifurcation and adopting a non-
axisymmetric wake with a mode number m = 1.

For the current validation exercise, Floquet analysis conducted on the steady
axisymmetric flow around a sphere was carried out over several Reynolds numbers to
determine the neutral stability for the m = 1 mode of the wake. Quadratic interpolation
over Reynolds number indicated that this transition occurred at Re =211.5. Note that
this value is in good agreement with the numerical stability analysis of Natarajan &
Acrivos (1993), the numerical simulations of Tomboulides & Orszag (2000), and the
experimental studies by Johnson & Patel (1999).

A similar study was performed for the flow past a straight circular cylinder. Barkley
& Henderson (1996) predicted the critical Reynolds number for mode A shedding to
be Re =188.54 1.0 at a wavelength of 2 =3.96+0.02. For the present study, Floquet
multipliers were obtained at 7 discrete wavelengths over the range 3.9 <1<4.02 and
at 3 distinct Reynolds numbers in the range 185 < Re < 190. The critical transition
was estimated using cubic interpolation over the spanwise wavelength and quadratic
interpolation over the Reynolds number. The critical Reynolds number for the onset
of mode A shedding was found to be Re=188.3 with a spanwise wavelength of
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FIGURE 2. Computed Strouhal-Reynolds-number profiles for the axisymmetric flow around
bluff rings. The solid black line highlights the circular cylinder Strouhal number profile for
reference. Although axisymmetric profiles of the Ar =3 and Ar = 3.5 rings are presented, it will
be shown later that the wakes of these rings would in fact be asymmetric for these Reynolds
numbers.

A=3.96. These values are within the error bounds of the previous studies, validating
both the resolution and domain size of the meshes used, and also the stability analysis
code. Furthermore, they indicate that both dominant modes and the corresponding
critical Reynolds numbers will be found with an accuracy