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ABSTRACT

Stance detection has gained increasing interest from the research

community due to its importance for fake news detection. The goal

of stance detection is to categorize an overall position of a subject

towards an object into one of the four classes: agree, disagree, dis-

cuss, and unrelated. One of the major problems faced by current

machine learning models used for stance detection is caused by a

severe class imbalance among these classes. Hence, most models

fail to correctly classify instances that fall into minority classes. In

this paper, we address this problem by proposing a hierarchical

representation of these classes, which combines the agree, disagree,

and discuss classes under a new related class. Further, we propose

a two-layer neural network that learns from this hierarchical rep-

resentation and controls the error propagation between the two

layers using the Maximum Mean Discrepancy regularizer. Com-

pared with conventional four-way classi�ers, this model has two

advantages: (1) the hierarchical architecture mitigates the class im-

balance problem; (2) the regularization makes the model to better

discern between the related and unrelated stances. An extensive ex-

perimentation demonstrates state-of-the-art accuracy performance

of the proposed model for stance detection.
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1 INTRODUCTION

The quality of online news is usually less substantiated than that

of traditional news services such as magazines or newspapers [1,

45, 47]. A large volume of fake news is being produced for political

or economical purposes [8, 22, 41]. Fake news are those news ar-

ticles that purport to be factual, but which contain misstatements

of fact with intention to arouse passions, attract viewership, or

deceive [25, 37, 44]. Verifying news content needs to retrieve evi-

dences and determine their stance with respect to the news claims,

which proposes new challenges for the conventional stance detec-

tion task [31, 36]. We specify evidence as text, e.g. web-pages and

documents, that can be used to prove if news content is or is not

true. Moreover, automatic stance detection has broad applications

in information retrieval and text entailment [34, 42].

The task of stance detection is to identify the stance of an evi-

dence towards a given news claim [12, 13]. Stances can be catego-

rized into four classes: agree, disagree, discuss and unrelated [17].

Two characteristics make the stance detection task peculiar. On the

one hand, news claims and evidences are often unrelated – gener-

ating a severe class imbalance problem; On the other hand, since

the non-related classes are by de�nition related, intuitively, the

identi�cation of an evidence as related or unrelated to a news claim

is semantically di�erent from the identi�cation of an evidence as

belonging to one of the other three classes. These two characteris-

tics suggests the natural presence of a hierarchical structure among

stance classes.

Stance detection has been studied in areas of information ex-

traction and natural language processing [11, 40]. However, previ-

ous methods tackle the task as a multiclass classi�cation problem,

neglecting the hierarchical structure in stance classes. Also, the

commonly-used four-way classi�ers are easily in�uenced by the

class imbalance problem. In this paper, we address this issue by

modeling the stance detection task as a two-layer neural network.

The �rst layer aims at identifying the relatedness of the evidence,

while the second layer aims at classifying, those evidences iden-

ti�ed as related, into the other three classes: agree, disagree and

discuss. Moreover, by studying various level of dependence assump-

tions between the two layers: (1) independent, when there is no

error propagation between the two layers; (2) dependent, when the

error propagation is left free, and; (3) learned, when the error prop-

agation is controlled by Maximum Mean Discrepancy (MMD), we
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show that when learned, the neural network (a) better separates the

distributions of related and unrelated stances and (b) outperforms

the state-of-the-art accuracy for the stance detection task.

The remainder of the paper is organized as follows: § 2 summarizes

the related work; § 3 de�nes the stance detection task; § 4 details the

proposed hierarchical classi�cation model and the regularization

term; § 5 describes the used datasets and experimental setup; § 6 is

devoted to experimental results, and; § 7 concludes the paper.

2 RELATED WORK

Machine learning techniques are widely researched to tackle the

stance detection task. Previous works focus on political or congres-

sional �oor debates [11, 40, 46] and online forums [2, 19, 27, 38, 39,

42]. Most of these works rely on content-based features, such as

sentiment analysis and topic-speci�c features learned from labeled

datasets for a closed set of topics.

Two methods only consider the agree, disagree and discuss

classes: Bar-Haim et al. [7] split the stance detection task to three

sub-tasks and propose a Contrast Classi�cation Algorithm to distin-

guish agree and disagree classes; Augenstein et al. [4] build a neural

network architecture based on bidirectional conditional encoding

on a Tweeter dataset. A long-short term memory (LSTM) encodes

the claim and another LSTM encodes the text with the encoded

claim as initial states. These methods fail to consider the unrelated

class.

Two other methods consider all the classes, but use two di�erent

models: Bourgonje et al. [10] use the lemmatized n-gram matching

and a rule-based procedure to decide the evidence relatedness, and

a three-way logistic regression classi�er to distinguish among the

relevant classes; Wang et al. [43] �rstly develop a gradient boosted

decision tree (GBDT) model [28] to determine the evidence related-

ness, then another GBDTmodel is used to distinguish stances of the

text towards the claim. These methods involve feature engineering

in separate models and cannot be jointly optimized to achieve the

best performance.

Other methods that also consider all the classes have been de-

veloped during the Fake News Challenge stage 1 (FNC-1) [18]. The

winner team uses a 50%/50% weighted average between a GBDT

model and a convolutional neural network (CNN) [5]. The second

best performance is achieved by an ensemble of �ve multi-layer

perceptrons (MLPs) where input features include bag-of-words,

semantic analysis in addition to the baseline features developed

by the challenge organizers [16]. Compared to the above two solu-

tions, the third best team does not try ensemble methods. They use

TF-IDF features and an MLP as a four-way classi�er [33]. Zhang

et al. [48] propose a ranking method to tackle the task and achieve

empirical performance improvements. However, these methods all

neglect the hierarchical structure among the four types of stances

and su�er from class imbalance.

Deep learning-based methods have also been applied in the

FNC-1. Bajaj [6] utilizes LSTM, CNN and their variants to detect

stances. Bajaj �nds that an attention-augmented CNN obtains the

best performance. Rakholia and Bhargava [32] analyze the e�ective-

ness of di�erent ways of text coding, such as independent coding,

bidirectional conditional encoding and attentive readers, and con-

clude that the attentive reader model is the most suitable for the

task. Ma et al. [23] propose a multi-task learning algorithm that

jointly detect rumours and stances. However, all these methods fail

to achieve high accuracy for the agree and disagree classes.

There are three major defects in all the aforementioned meth-

ods: (a) they neglect the hierarchical relationships among the four

stances; (b) they su�er from the class imbalance problem, and; (c)

they fail to achieve acceptable detection performance for the agree

and disagree classes.

3 STANCE DETECTION TASK

The stance detection task consists in classifying the stance of an

evidence towards a claim as one of the four classes: agree, disagree,

discuss and unrelated. Formal de�nitions of these four stances are:

agree – the evidence supports the claim;

disagree – the evidence denies the claim;

discuss – the evidence does not have a position about the claim;

unrelated – the evidence is not about the claim.

4 HIERARCHICAL CLASSIFICATION

In this section, we detail our proposed two-layer neural network

for stance detection. § 4.1 outlines the model. In order to better

di�erentiate between the related and unrelated classes, we design

an MMD regularization term in § 4.2. This is then integrated into

the two-layer neural network loss function in § 4.3. In Figure 1, we

show the architecture of our model.

4.1 Two-Layer Neural Network

Let the input space be formed bym-dimensional real vectors in a

neural network, denoted as v ∈ Rm . The four-class label can be

transformed into a one-hot vector y. The i-dimension of y (yi ) is 1

when the stance is the i-element in the label set {aдree,disaдree,

discuss,unrelated } and 0 otherwise. The hidden layer with param-

eters θu learns to map v to a k-dimensional hidden representation

u ∈ Rk :

u = f (v;θu ). (1)

For the two-layer classi�cation, the �rst layer decides whether the

evidence is related to a claim. Hence, the �rst classi�cation layer is

called the relatedness layer. This layer is parameterized by θr and

learns to produce a 2-dimensional normalized vector r̂ as follows:

r̂ = д(u;θr ). (2)

Note that the So�max function is included in д to normalize the

2-dimensional vector, so each component of the vector r̂ denotes

the probability that the neural network assigns v to the related and

unrelated classes, i.e., p (related ) and p (unrelated ).

The second layer classi�es the evidence into the related classes,

i.e., agree, disagree, or discuss stances. Hence, the second classi�ca-

tion layer is called the stance layer. The stance layer is parameterized

by θs and learns to produce a 3-dimensional normalized vector ŝ:

ŝ = h(r̂ · (1, 0);θs ), (3)

where the vector multiplication r̂ · (1, 0) extracts the �rst element

of r̂. Note that the So�max function is also included in h to nor-

malize the 3-dimensional vector, so that each component of the

vector ŝ denotes the conditional probability that the neural network
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u = 𝑓(𝑣; 𝜃𝑢)v

Relatedness Layer

Ƹ𝑟 = g(u; 𝜃r)
𝑝(𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑)

Ƹ𝑠 = h( Ƹ𝑟 ⋅ (1,0); 𝜃s)
𝑝(𝑎𝑔𝑟𝑒𝑒|𝑟𝑒𝑙𝑎𝑡𝑒𝑑)

𝑝(𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒|𝑟𝑒𝑙𝑎𝑡𝑒𝑑)
𝑝(𝑑𝑖𝑠𝑐𝑢𝑠𝑠|𝑟𝑒𝑙𝑎𝑡𝑒𝑑)

d(𝜃u; 𝜃d)

Stance Layer

MMD

Input Output

1 𝑝(𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑)
𝑝(𝑎𝑔𝑟𝑒𝑒)

𝑝(𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒)
𝑝(𝑑𝑖𝑠𝑐𝑢𝑠𝑠)

Figure 1: The architecture of our proposed two-layer neural network.

assigns v to agree, disagree and discuss given that v is related, i.e.,

p (aдree |related ), p (disaдree |related ), and p (discuss |related ).

We de�ne the classi�cation loss by the Kullback-Leibler (KL) di-

vergence [21], which measures the di�erence between the network

outputs and labels:

lr (θu ,θr ) := KL(r∥r̂), (4)

where r is the ground-truth relatedness of the input data. r is com-

puted from a label y as follows:

r = (✶(y , e4),✶(y = e4)), (5)

where ✶ is the indicator function, e4 is a 4-dimensional one-hot

vector with fourth element equal to 1. When y = e4 is veri�ed, it

indicates that the label belongs to the unrelated class. Similarly, the

stance classi�cation loss can be de�ned as:

ls (θu ,θr ,θs ) := KL(s∥ŝ), (6)

where s is the ground-truth stance of the input data. s is computed

from a label y as follows:

s = (✶(y = e1),✶(y = e2),✶(y = e3)), (7)

where e1, e2, e3 are 4-dimensional one-hot vectors with �rst, second,

and third elements equal to 1. When y = e1 is veri�ed, it indicates

that the label belongs to the agree class, when y = e2 is veri�ed,

it indicates that the label belongs to the disagree class, and when

y = e3 is veri�ed, it indicates that the label belongs to the discuss

class.

Finally, we now de�ne the loss function for the two-layer neural

network as the linear combination between the loss function of the

relatedness layer (lr ) and the loss function of the stance layer (ls ):

lc (θu ,θr ,θs ) := l
r (θu ,θr ) + α · l

s (θu ,θr ,θs ), (8)

where α leverages the importance of the two classi�cation layers.

4.2 MaximumMean Discrepancy

The classi�cation of related/unrelated stances is a di�erent task

from that of agree/disagree/discuss stances. Therefore, data repre-

sentations from the relatedness layer and the stance layer can be

seen as samples drawn from two di�erent distributions. In order

to measure distribution discrepancy between these two layers, we

employ the Maximum Mean Discrepancy (MMD) [9] as a regular-

ization term. The MMD does not involve density estimation and

thus is a non-parametric way of measuring the di�erence between

distributions. MMD has achieved success in face recognition and

image annotation [15].

MMD is de�ned as follows:

De�nition 4.1. Maximum Mean Discrepancy [9]: “Let p and q be

two Borel probability distributions over a space X and let X and

Z be sets with independent identically distributed samples drawn

from p and q. The MMD is de�ned by a class Ψ of map functionsψ :

X → H as:

MMD (p,q,Ψ) = sup
ψ ∈Ψ

(Ep [ψ (x )] − Eq [ψ (z)]). (9)

Here, x and z are samples from X and Z .”

In other words, the MMD equation de�nes the largest possible

distance between two expectations over the set of function Ψ. More-

over, “whenH is the reproducing kernel Hilbert space (RKHS) [3],

this means that for all x ∈ X, the linear point evaluation function

mapping ψ → ψ (x ) exists and is continuous. When Ψ is the unit

ball in a universal RKHS, it is guaranteed that MMD (p,q,Ψ) will

detect any discrepancy between p and q [9, 35].”

Let p denote the distribution for the �rst layer samples (un-

related hidden representations) in our model, with sample set

U1
= {u11, . . . , u

1
n1
} and according to Eq. (1) their generating set

V1
= {v11, . . . , v

1
n1
}. And, q denotes the distribution for the second
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layer samples (agree, disagree and discuss hidden representations),

with sample setU2
= {u21, . . . , u

2
n2
} and according to Eq. (1) their

generating set V2
= {v21, . . . , v

2
n2
}. n1 and n2 are the number of

samples inU1 andU2. Thus we have X = Rk andH = R j with

ψ (x ) = θdx , where θd is a j × k matrix in the projection layer. k and

j are the space dimensions. According to Eq. (1), the hidden repre-

sentation u is parameterized by θu , thus the empirical expression

of MMD is parameterized by θu and θd :

d (θu ,θd ) =
1

n1

n1∑

i=1

θdu
1
i −

1

n2

n1+n2∑

i=n1+1

θdu
2
i (10)

=

1

n1

n1∑

i=1

θd f (v
1
i ;θu ) −

1

n2

n1+n2∑

i=n1+1

θd f (v
2
i ;θu ). (11)

By constantly changing the projection layer parameterized by θd ,

we �nd the maximum expectation di�erence between the represen-

tations of the two classi�cation layers.

4.3 Optimization

The more di�erent two distributions are, the larger the MMD is.

Hence, in order to make the distributions easier to be distinguished,

a larger MMD regularization term is preferred, and we treat the

regularization term as an extra goal besides classi�cation. We in-

tegrate the two-layer classi�cation loss (see Eq. (8)) and the MMD

regularization term (see Eq. (10)) into a single objective function

(L). Speci�cally, we add these two sub-goals with a hyperparameter

β as follows:

L(θu ,θr ,θs ,θd ) = l
c (θu ,θr ,θs ) − β · d (θu ,θd ), (12)

where β leverages the importance of the regularization. The larger

the MMD regularization term is, the easier is for the classi�er to

distinguish between the related and unrelated stances. Thus, the

sign of the regularization term is negative.

The optimization involves the minimization of the classi�cation

loss L with respect to θu , θr , θs , and θd as follows:

min
θu ,θr ,θs ,θd

L(θu ,θr ,θs ,θd ). (13)

Optimizing the model consists of two sub-goals. On the one hand,

we want to maximize the distribution discrepancy between the

two classi�cation layers. On the other hand, we want to minimize

the classi�cation loss of both layers. Both of these two sub-goals

involve the feature layer parameter θu update, but in opposite

update directions. The optimization process will not stop until

a saddle point (the feature layer parameters can be well applied

in both sub-goals) is reached. Algorithm 1 shows the parameter

update process, which is based on the mini-batch gradient descent

algorithm.

4.4 Prediction

Given as input a feature vector v, the classi�er outputs the following

probabilities: p (unrelated ), p (aдree |related ), p (disaдree |related ),

and p (discuss |related ). However, these last 3 probabilities are not

comparable with the �rst one. To make them comparable we derive

Algorithm 1: Parameter update process based on the mini-

batch gradient descent algorithm.

input :Sample mini-batch {vi , ri , si }
n
i=1, mini-batch size n,

00000 hyperparameters α , β , and µ

output :θu , θr , θs , θd
1 begin

2 Initialize θu , θr , θs , θd ;

3 repeat

4 /* forward propagation */

5 lr , ls ← 0;

6 for i from 1 to n do

7 ui ← f (vi ;θu );

8 r̂i ← д(ui ;θr );

9 lri ← KL(ri ∥r̂i );

10 lr ← lr + lri ;

11 if ri · (1, 0) = 1 then

12 /* classify related */

13 ŝi ← h(r̂i · (1, 0);θs );

14 lsi ← KL(si ∥ŝi );

15 else

16 /* unrelated */

17 lsi = 0;

18 ls ← ls + lsi ;

19 d = MMD({ui , ri }
n
i=1;θd );

20 /* backward propagation */

21 θs ← θs − µ · α ·
∂l s

∂θs
;

22 θr ← θr − µ · (
∂l r

∂θr
+ α · ∂l

s

∂θr
);

23 θd ← θd + µ · β ·
∂d
∂θd

;

24 θu ← θu − µ · (
∂l r

∂θu
+ α · ∂l s

∂θu
− β · ∂d

∂θu
);

25 until θu , θr , θs , θd converge;

p (aдree ), p (disaдree ) and p (discuss ). By observing that the class

agree is assumed as related, thus p (aдree, related ) = p (aдree ), we

derive that:

p (aдree ) = p (aдree, related )

= p (aдree |related ) × p (related )

= p (aдree |related ) × (1 − p (unrelated )). (14)

Similarly, for the other two classes we derive that:

p (disaдree ) = p (disaдree |related ) × (1 − p (unrelated )),

p (discuss ) = p (discuss |related ) × (1 − p (unrelated )). (15)

Thereby, the model actual output ŷ is:

ŷ = (p (aдree ),p (disaдree ),p (discuss ),p (unrelated )), (16)

where the class with the highest probability corresponds to the

predicted stance.
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5 EXPERIMENTAL SETUP

We start this section by presenting the datasets and evaluation

measures relevant to the stance detection task. Then, we describe

the features used by our model and the model parameterization.

Finally, we present the baselines. The software used to run the

experiments of this paper is available on the website of the �rst

author.

5.1 Datasets

Experiments are conducted on two publicly available datasets: the

Emergent dataset1 [14] and the FNC-1 dataset2. In these two datasets,

a claim consists of a news article headline and an evidence of a

news article content. These datasets are split into train and test

subsets; see Table 1 for statistics about the splits.

The FNC-1 dataset consist of 75,385 instances. Each instance

in the dataset is a pair claim-evidence labeled as one of the four

stances: agree, disagree, discuss and unrelated. The ratio of training

data over testing data in the FNC-1 dataset is ∼2:1. Every class

accounts for a similar percentage in the train and test subsets. The

unrelated stances are the majority (over 70%) in both subsets, while

the disagree stances are less than 3%. The agree and discuss stances

are less than 20% and 10%.

The Emergent dataset is similar to the FNC-1 dataset, however it

contains only agree, disagree and discuss stances. Hence, it needs to

be augmented with unrelated stances. Similarly to how the FNC-1

dataset unrelated stances have been labeled, we manually labeled

unrelated stances by pairing a claim with an unrelated evidence, i.e.,

paired with another claim. Moreover, to make the class distributions

less imbalanced, we make the ratio of related stances and unrelated

ones ∼1:1. The augmented Emergent dataset contains 4,071 training

labels and 1,024 testing labels with a ratio of∼4:1. Class distributions

between train and test subsets are similar.

Compared to the FNC-1 dataset, the class distributions of the

augmented Emergent dataset is more balanced. The percentage of

unrelated stances is about 50%, whereas the percentages of agree

and disagree stances are about 24% and 8%. Both datasets have

similar percentages of the discuss stances.

5.2 Evaluation Measure

In line with the FNC-1 challenge, the evaluation is based on a

weighted two-level scoring system based on the accuracy mea-

sure. This evaluation measure, called relative score, evaluates a

model by splitting the stance detection task into two sub-tasks, re-

lated/unrelated and agree/disagree/discuss classi�cation sub-tasks.

To the former sub-task is given a 25% weight. This is done because

this sub-task is considered to be easier than the latter sub-task to

which is given a 75% weight.

We report the evaluation measures: relative score, accuracy, and

accuracy on a per class basis.

5.3 Feature Extraction

To represent claims and evidences we use a bag-of-words approach.

For each claim and evidence we generate a TF-IDF vector, and for

1https://github.com/willferreira/mscproject.
2https://github.com/FakeNewsChallenge/fnc-1.

each pair claim-evidence we compute their cosine similarity. We

also include the FNC-1 o�cial features into the input feature vector.

The �nal set of features include:

• TF-IDF vectors of claims;

• TF-IDF vectors of evidences;

• Cosine similarity (CosSim) between the claim vector and the

evidence;

• Ratio of word overlap (WordLap) between the claim and the

evidence;

• An Indicator whether a claim has refuting words (RefWord);

• The polarity (Pol) of the claim and the evidence;

• The number of overlapping n-grams (NGrams) for n ∈ {2, 3,

4, 5, 6} between the claim and the evidence.

For the TF-IDF vectors, we only use the top 2,000 most frequent

terms except stop-words. All of these features are concatenated to

form the input feature vector v.

5.4 Experimental Setting

The following hyperparameters have been set via a �ve-cross vali-

dation on the train subsets:

• The dimension k of hidden representations is set to 100;

• The dimension j of the MMD is set to 10;

• The activation function used in the hidden layers is set to

ReLu;

• The parameters α are set to 1.5 and 1.3 for the Emergent and

FNC-1 datasets.

• The parameter β is set to 0.001;

We include a L2 regularization term [29] for the MLP weight

parameters in the �nal loss function tomitigate over�tting. Dropout

is also used to mitigate over�tting with rate set to 0.6. We train

in mini-batches of size 64 over the entire train subset. Note that

the gradient steps in Algorithm 1 can easily be alternated with a

more powerful optimizer such as the Adam optimizer [20]. Early

stopping is applied when the classi�cation loss on the validation

subset does not get smaller for three continuous iterations. The

whole model is implemented with TensorFlow.

5.5 Baselines

We compare our model against the methods mentioned in Section 2.

These methods are detailed in the following. Among them we dis-

tinguish between methods that use the same features as ours and

methods that learn their representations. We start with the latter

type, we call these representation learning-based baselines:

Bidirectional LSTM (BiLSTM). Augenstein et al. [4] build a neu-

ral network architecture based on bidirectional LSTM on a

Tweeter dataset. A LSTM encodes the claim, and another

LSTM encodes the evidence with the encoded claim set as

initial states. The 100-d GloVe word embedding is used as

input [30];

Attentive CNN (AtCNN). Bajaj [6] builds an attention-augmented

CNN. The claim and the evidence are input to a convolu-

tional neural network to obtain hidden representations, and

the attention mechanism is employed to locate the most

in�uential words or phases on the �nal results;
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Table 1: Statistics of the datasets.

Subset Stance Emergent FNC-1

Number Percentage Number Percentage

Training agree 992 24.37 3,678 7.36

disagree 303 7.44 840 1.68

discuss 776 19.06 8,909 17.83

unrelated 2,000 49.13 36,545 73.13

4,071 49,972

Testing agree 246 24.02 1,903 7.49

disagree 91 8.89 697 2.74

discuss 776 19.06 4,464 17.57

unrelated 500 48.83 18,349 72.20

1,024 25,413

Memory Network (MN). Mohtarami et al. [26] develop an end-

to-end memory network for stance detection. The network

operates at the paragraph level and integrates convolutional

and recurrent neural networks, as well as a similarity matrix

as part of the overall architecture;

Ranbking Model (RM). Zhang et al. [48] build a ranking method

to tackle the stance detection and achieve empirical perfor-

mance improvements. A ranking loss function is proposed to

replace Softmax and maximize the representation di�erence

between four classes of stance.

We now review the second type of baselines: those methods

that use the same features as our method, we call these feature

engineering-based baselines:

O�cial Baseline (OB). This is the FNC-1 o�cial baseline that

uses one gradient boosting decision trees model for four-

way classi�cation;

Logistic Regression (LR). Bourgonje et al. [10] usen-grammatch-

ing and a rule-based procedure to decide relatedness, and

three-way logistic regression to distinguish among the re-

lated classes;

Gradient Boosted Decision Trees (GBDT). Wang et al. [43] de-

velop two GBDT models, one to determine the relatedness

of an evidence to a claim, and another to distinguish among

the related classes;

Multi-Layer Perception (MLP). This model [33] achieved the

third best performance in FNC-1. It extracts TF-IDF and

cosine similarity between claims and evidences as input fea-

tures, and uses a MLP as the four-class classi�er.

6 RESULTS AND DISCUSSION

In this section, we start by analyzing the dependency assumption.

Then, we compare and contrast our model against the baselines.

Next, we provide a sensitivity analysis of the hyperparameters. We

conclude with an impact analysis of the features used by the model.

6.1 Dependency Assumption

In Figure 2 we show the e�ect of the 3 dependency assumptions

by visualizing the learned representations using a t-SNE projec-

tion [24]. We observe that when the classi�ers are assumed inde-

pendent, i.e., the classi�cation is performed in cascade — no error is

propagated from the second layer to the �rst during training — then

the learned representation well separates the unrelated class from

the unrelated ones. When the classi�ers are assumed dependent,

i.e., the two classi�ers are trained together — the error is left free

to propagate from the second layer to the �rst — then the learned

representation is not very well separated. However, when the de-

pendence assumption of the two classi�ers is learned via the MMD

regularization, i.e., the two classi�ers are trained together with the

error propagation controlled by the regularizer, then the learned

representation is again well separated like in the �rst case. Well-

separated representations suggest a greater discriminative power

of the model — the unrelated and related classes are almost linearly

separable.

The last three rows of Tables 2 and 3 show the performance

of our model on the two test subsets for each one of the three

assumptions: independent, dependent, and learned. Looking at the

accuracy of the unrelated class, we observe that the accuracy is

greater when the learned representations are well-separated, as in

the independent and learned cases. Furthermore, looking at all the

other scores, we observe that the learned assumption outperforms

both the independent and dependent assumptions in all other cases,

demonstrating that learning together both, relatedness and stance

of the evidences towards claims, is bene�cial to the stance detection

task.

6.2 Overall Performance

In Tables 2 and 3 we compare our model against the state-of-the-art

models. Our model achieves the best stance detection performance

for the relative score on both datasets. The model achieves 89.30%

on the augmented Emergent test subset and 88.15% on the FNC-1

test subset.

By comparing with four-way classi�cation baselines (OB, MLP,

BiLSTM, AtCNN, MN and RM) we demonstrate the advantage of

separating the relatedness detection from the stance detection. We

observe that these classi�ers perform poorly on the disagree class,

which is caused by the large percentage di�erence between the

minority disagree class and the majority unrelated class. Further,

the more imbalanced the evaluation dataset becomes, the worse per-

formance the four-way classi�ers achieve on the minority disagree

class.

By comparing with baselines that separate the relatedness detec-

tion from the stance detection (LR and GBDT) we demonstrate the
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Figure 2: t-SNE visualization of the hidden representations on the training data. The hidden representations of model trained

(a) with separated layers (b) together but without regularization, and (c) with MMD regularization.

Table 2: Performance comparison of our model against the State-of-the-Art models on the augmented Emergent dataset.

Model Accuracy (%) Relative Score (%)

agree disagree discuss unrelated

Feature Engineering-Based Baselines

OB 33.56 23.44 70.23 84.00 74.86

LR (Bourgonje et al.) 66.73 40.51 78.33 78.00 83.45

GBDT (Wang et al.) 80.62 50.42 83.52 88.00 87.53

MLP (Riedel et al.) 58.53 23.64 79.05 95.00 85.43

RM (Zhang et al.) 64.56 40.42 85.45 96.00 87.69

Representation Learning-Based Baselines

BiLSTM (Augenstein et al. ) 43.21 12.57 78.55 96.00 81.37

AtCNN (Bajaj) 44.78 14.60 72.44 97.00 83.56

MN (Mohtarami et al.) 54.64 40.05 72.10 89.00 85.92

Our Models

Independent 74.54 45.32 82.59 95.49 86.33

Dependent 63.54 44.68 68.35 95.00 86.72

Learned 82.52 69.05 84.30 97.00 89.30

superiority of a single end-to-end model. LR and GBDT are better

on the disagree class, although their overall performance is worse

than our model.

In Figure 3 we show the confusion matrix of our model. Here

we observe the detection performance on a per class basis. For the

related/unrelated classi�cation, we correctly classify 97.00% and

99.53% unrelated instances on the augmented Emergent and the

FNC-1 test subsets. We can see that there is some misclassi�cation

between the agree and unrelated classes, and between the discuss

and unrelated classes. The misclassi�cation of the disagree class

accounts for the largest error of the unrelated instances.

Our model achieves an accuracy of 69.05% and 72.35% for the

disagree class on the Emergent and the FNC-1 test subsets. The

classi�cation accuracy is largely improved compared to the state-

of-the-art. Some misclassi�cation error exists between agree and

disagree. However, our model can distinguish between the discuss

and the disagree with few errors. While the number of discuss cases

is the largest and the number of disagree instances is the smallest,

our model does not mistake disagree instances as discuss ones, i.e.,

the model has learned the core representation di�erence between

these two classes. Due to ambiguous expressions, misclassi�cation

between agree and discuss is the cause of most errors between these

classes, which leads to a slightly worse accuracy for the discuss

class on the Emergent (84.30%) and FNC-1 (77.49%) test subsets.

Two reasons account for the improved empirical performance

observed on our model. On the one hand, the mitigation of the
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Table 3: Performance comparison of our model against the State-of-the-Art models on the FNC-1 dataset.

Model Accuracy (%) Relative Score (%)

agree disagree discuss unrelated

Feature Engineering-Based Baselines

OB 10.51 1.00 79.66 97.98 75.20

LR (Bourgonje et al.) 67.42 31.61 75.23 95.36 80.63

GBDT (Wang et al.) 82.93 69.82 33.52 95.42 86.72

MLP (Riedel et al.) 44.04 6.60 81.38 97.90 81.72

RM (Zhang et al.) 64.90 27.26 84.41 99.12 86.66

Representation Learning-Based Baselines

BiLSTM (Augenstein et al.) 35.96 0.94 80.33 98.54 78.70

AtCNN (Bajaj ) 38.67 8.24 70.63 91.25 75.77

MN (Mohtarami et al.) 16.92 60.22 81.27 95.50 79.92

Our Models

Independent 72.41 37.90 68.23 97.43 83.47

Dependent 61.34 42.93 59.38 99.05 85.32

Learned 80.61 72.35 77.49 99.53 88.15

Figure 3: The confusion matrices of our model for the augmented Emergent (on the left) and FNC-1 (on the right) datasets.

class imbalance problem. Contrary to the four-way classi�ers that

directly compare the disagree and unrelated instances, the hierar-

chical model avoids the direct comparison of this minority disagree

class (which is less than 2% in the FNC-1 dataset) with the majority

unrelated one (which is more than 70% in the FNC-1 dataset). On

the other hand, the MMD term that maximizes the discrepancy be-

tween the unrelated class and the aggregated related classes. Since

the agree, disagree and discuss belong to the same class, the related

class, the MMD regularization promotes the emergence of features

that are useful to separate the class pairs: agree with unrelated,

disagree with unrelated, and discuss with unrelated.

6.3 Hyperparameters Sensitivity

In this subsection we discuss the sensitivity to the hyperparame-

ters of our model. The most in�uential hyperparameters for the

proposed model are α and β . The former controls the relative impor-

tance of classi�cation layers. The latter leverages the regularization.

In Figures 4(a) and 4(b) we show how the performance of the

model changes when varying α and β for the augmented Emergent

and FNC-1 test subsets. α is searched between 0.1 and 3.0 with

steps of 0.1, and β is searched in {0, 0.1, 0.01, 0.001, 0.0001, 0.00001}.

For α , we observe that the performance of the model improves

quickly as α increases and peaks at 1.5 and 1.3 for the FNC-1 and

augmented Emergent datasets, then the performance experiences

a slight decrease when α is increased. We hypothesize that the

optimal α is related to the class balance between the unrelated class

and the related ones. The more unbalanced the dataset is towards

the unrelated class, larger is the optimalα . For β , we observe that the

performance is the highest when β is set to 0.001. This happens for

both augmented Emergent and FNC-1 test subsets. These optimal

values of α and β observed on the test subsets are equal to the one

found when training the model.

6.4 Feature Analysis

In this subsection we evaluate and discuss the importance of each

feature towards the �nal prediction. To examine the in�uence of

each feature on the �nal performance, we do a leave-one feature set-

out approach and record the classi�cation accuracy on the stance
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Figure 4: Sensitivity of the trained model when varying the parameters α and β on the test subset of the augmented Emergent

(on the left) and FNC-1 (on the right) datasets.

Table 4: Performance of our model with di�erent feature sets on the FNC-1 dataset. “/” denotes no feature set is removed.

Removed Feature Set Accuracy (%)

agree disagree discuss unrelated

CosSim 71.53 85.08 78.76 69.37

WordLap 67.43 80.49 77.31 77.89

RefWord 74.43 64.37 77.03 97.49

Pol 60.49 67.93 80.92 98.79

NGrams 74.27 75.73 87.82 84.52

/ 80.61 82.35 77.49 99.53

detection task. The following analysis is only based on the FNC-1

dataset. Similar results are observed on the augmented Emergent

dataset.

In Table 4 we show the results of this analysis. We observe that

removing the CosSim feature leads to a large decrease in accuracy

for the unrelated class. Similarly, the use of WordLap has a positive

e�ect for the agree class, and it also contributes to the unrelated

class. The RefWord and Pol features help for the classes agree and

disagree, while removing the NGram feature leads to an increase on

the discuss class, i.e., the NGram feature causes confusion between

the discuss and the other classes.

7 CONCLUSION

In this paper, we studied the problem of stance detection: the clas-

si�cation of the stance of an evidence towards a claim into one of

the four classes: agree, disagree, discuss and unrelated.

We proposed a hierarchical representation of the stance classes,

where the classes agree, disagree and discuss are combined together

into a class referred as the related class. The main idea here is to

divide a concept into sub-concepts that are organized in a hierar-

chical structure, and design constraints between sub-concepts in

order to make the model parameter optimization more sensible.

The primary advantage of this hierarchical representation is that it

is useful to overcome the class imbalance problem.

This hierarchical representation has inspired the proposed two-

layer neural network to tackle the stance detection task. The �rst

layer performs a related-unrelated classi�cation, while the second

layer performs a more �ne-grained classi�cation among the related

classes. Furthermore, we have empirically demonstrated that (1) it

is advantageous to learn these two classi�cation tasks together, and

(2) the dependency between these two layers can be learned through

a MMD regularization term, which measures the representation

discrepancy between the two layers. Experiments on two publicly

available datasets have shown that our model is able to outperform

the state-of-the-art stance detection methods.

As future work we consider the enriching of the proposed model

as follows. First, integrating a credibility evaluation of information

sources as features. Second, improving the explainability of the

model by showing which words or phrases are the most in�uential

in predicting the stance via attention mechanisms.
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