From Standard to Implementation
Denotational Semantics

sartin Raskovsky
and Phil Cellier
January 1930

Under the Sun of #Menorca

Computing Science
University of Essex
England

Abstract

e are developing a compiler compiler. It takes as input the formal
definition of a programming language in Denotational Semantics and
produces as output a fairly efficient compiler written in 3 systems
programming languagje which in turn will produce code for a real
machine. This work nainly deals with the corde generation parts.

Contents

Introduction
A simple case study. TLt a Toy Langiage
Further developments, RTL: a Recursuve Toy Lanuage

Notation

Syntax of TL

Standard Denotational Semantics of TL
Implementation Dznotational Semantics of TL
The Generated Compiler

References

mm o W N e O

95

rFrom Standard to Implementation Denotational Semantics

Q. Introduction

According to the tradition of denotational/functional semantics(DS:
of programming languages{PL}, the meaning/referent of a program is a
function from states to states of some underlying store. Compilers,
on the other hand. generate code for some machine given the program
as input. On the face of it these enterprises - writing semantic
equations in the Scott-Strachey style and compiler-writing —seem very
different. The former requires a certain degree of mathematical
sophistication and the latter a certain competence as a systenm
programmer. Moreover, the end products of the two enterprisss appear
to be differants on the one hand the result is a precise mathematical
description of the programming language and on ths other one ends up
with a set of procedures which constitute a compiler for the language
in question. In the original literature on functional
semantics[Scott/0] it was claimed that the semantic equations should
serve as a gulde for the compiler writers any notlion of correctness
for the coapiler would have to make reference to the semantic
equations,

We believe that semantic equations c¢an provide us with the
information reqguired to implement & compiler for tine languag=z in
guestion. In other words, the DS of a particular PL at an appropriate
level of abstraction could embody detailed information about control,
environment and state serving as an input for a counpilar-compiler,

Let’s try anid make this a little clearer, Given a D3 eguation, the
process of code generation closely follows its tevt., Ffor sxample ths
equation for the assignment command in a3 particular PL could be:

Clet=e¢’Ipc=
RlesIp{xv.LIelp{xl.Update lvc}}.

while reading this equation we can imagine a3 compiler that, in the
presence of an environment(p), will generate code first to find a
value, then to find a location, then to update the store and finally
to Jump 1if necessary to the given continuation. In fact, it is
reasonable to argue that DS hss formalised, at an aporopriate level
of abstraction, the ©behaviour of a program. A compiler needs to
understand the behaviour called for by a program in order to plant
code to exscute it. Thus it is reasonable to conjecture that there
may be a close relationship between semantic equations and compilers.
[f one could automate the production of a compiler from semantic
equations then this could be viewed as a kind of compiler—compiler.

Indeed It is a part of our conjecture concerning the relationship
between compilers and semantic equations that not only could the
semantic equat ions dictate the structure of the compiler but

96

0. Introduction

conversely intuitions and experience of compiler writers should
influence the DS eguations themselves.

However, we do appreciste the need to have a “standari’ denotational
semantics without any blas tLtowards implementation 1ideas. 50 we
propose to distinguish between two different forms of DS which for
any particular language we shall have to prove congruent, namely:

Standard Denotational Semantics{(SDS)t A canonical definition free of
bias towards any particular implemsntation.

loplementation Denotational Semantics(IDS): Enbodying all
implementation strategies desired.

We have developed a3 translation process which, starting from the IDS
equations of A sinple Pl generates 3 nurnber of BCPL

procedures(Richardsé0 JIBCPL77]., We have written the primitive
functions and machiaz code interface to produce code for the DEC-10
system. To generate the parser an appropriate generastor Iis

interfacediSufrini7l

The final result is the following:®

~-An efficlent compiler using standard compiling-technijues.
~Efficient cude gznerated,

~Flexibility to implement different “styles’ of code.
-Flexibility to implzment in different machines.

Research related to ours 1is the work by [Mosses74-5-6-3] and
[JonesB80] where semantic equations are uniformly translated to an
intermediate code which in turn is interpreted. Both systems achleve
generality by explicity separating the concept of a correct compiler
from that of a useful one, and it is instructive to see why. #dhile
uniformly encoding all “functions’” and ’values’, bota methods throw
away a great deal of the knowledge contained 1in the semantic
equations. For example the [L » VI function is simulated, instead of
making “natural’ use of the machine store; and the familiar and
useful concept of a pointer to the code is nonexistent. Standard
semantic equations as developed by the Oxford school provide us with
certain information about how to implement the language efficiently
and this is lost in a uniform translation., Thes2 observations have
been paramount in guiding our translation process.

The first step of our work was to consider simple langiage constructs
and to implement a translator accepting languages whose
characteristics were similar to those. In Section | of this paper we
describe a language within this framework., We briefly motivate its
Impl ementation Denotational Semantics and tnen we informally describe

97

From Standard to Imolementation Denotational 3Semantics

the transformation process to gensrate a compiler for it. Appendices
B, C. D and = show respsctively its Syntax, SD3, IDS avi Compiler.

Currently we are enlarging the set of programming constructs accepted
by our systam. In Section 2 we consider recursion shoving the impact
that this feature has in the domains of its IDS specification.
Finally we show how to prove the congruence between both SDS and INS
definitions.

i. A simple case stirly., TL: a Tov Lanaouage

The toy lanjuage(TL) chosen contains a number of hasic commands like
assignment, conditional, while, parameter-less procerdure c¢all,
structured Jumps (BREAK, LOOP, RETURN), input/output and blocks. It
has arithmetic and boolean expressions, as well as data types:
integers and procedures.

Recursion 15 not allowed, so that every storage location can be
determined at compilation time (Static storage allocation). Voreover,
a crucial attribute of such a language, which amounts to a
simplification relative to ALGOL-like languages, LIS? or SIMULA, is
that for =avary procedure, a single wunique data arealGries7l]
{Analogous o an ALGOL stack frame or templatelBornat76~71) can be
set at compile tine. In this respect TL resembles FORTIAN.

dal The Implementation Denotational Semaniics of TL

In this section we will briefly motivate the IDS of TL. The three
issues we discuss are the meaning of boolean expressions, the
allocation of locations and efficlency in arithmetic expressions. The
complete SDS and IUS specifications can be found in Aopendices A&, B,
C and D,

98

. A simple case study, TL: a Toy Language

Lul.l Boglean gxpressions
Consider a fragment of the syntax of boolean expressions in TL:

b $:= b’ Mand* b/’ | b’ “or" b’/ | "true" | Yfalse" | ...

and the corrssponding semantic equations:

B:[Bex » U » S > TIl.

BIb’ "and" b’~Ip=
BIb’1p @ Cond<BIb%’ Ip,Xs.FALSE>.

B.[b“’ Horit p2s]‘p=
BIb’1p @ Cond<xs. . TRUE,BIb”” Ip>.

BI“trueIps=
TRUE.

Bl'false® Ips=
FALSE.

Boolean expressions viewed in this way are like any other expression
with the exception that they evaluate to boolean values, But it
happens that these can be evaluated in a completely different way.
The evaluation of a boolean expression need not produce a value but
can select the next path of the computation. This is exactly how Cond
can be thought to behave: given two expressions, it picks one on the
basis of a given boolean value.

To model tnis behaviour we redefine the function B, as a semantic
valuator taking two continuations, one to be applied if the supplied
boolean expression evaluates to true, and another if it evaluates to
false.

99

From Standard to Implementation Denotational Semantics

Bi[Bex > U > C » C > Cl.

Blbf Handli bl 'IDCC’-'-'
BIb’Ip{(BIb’“lIpcc’ic”.

Bib’ tor® b//lIpcc’/=
BIo’Ipc{BIb’’1pcc’).

BItrue¥lpcc’/=
C.

Bitfalselpcc’=
c’.

The only time that a truth value is really produced is when a general
gxpression contains pboolean subexpressions.

This model of boolean expressions with two continuations corresponds
precisely to a way that efficient compilers implement them, namely as
true and false chains.

lale2 Marking locations Zin use’
Consider now the allocation of locations in the SDS of TL:

s3S=[[L » VI x V& x R%x x [L » T1]. States
ptU=s[lIde > V]l x C x C x C1l. environments
New:[5 » [L v« S1I.

Cltbegint dic”’ "end"lpcs=
{DIdIp % %7.Clc’¥p”’{xs’ .c<s5/¥1,s’¥2,57¥3,5%4>})35.,

DI%integer? ilp=
New % Xls.<pllil/l],35>.

The function “New’/, which obtains unused locations when necessary,
seems to be abstracting a “free storage’ mechanism which is not the
one dictated by a block structured discipline. Also the location
deallocation mechanism, wherse the area function [L » TI indicates
which locations are in use, is not satisfactory from an
implementation point of view, (The area function is stored on entry

100

. A simple case study, TL: a Toy Language

to each bluock. so that it can be restored on exit.) It would seem
reasonable that locations be marked “in wuse’ in the environment
allowing “automatic’ deallocation of locations at the end of a block,
as environments. and therefore details of the amount of storage in
use are bound into the continuation following the end of the block.

Accordingly, we rewrite in IDS the SDS definitions as follows:?

atA=[L > TI. Area function
si5=[[L » V] x V*x x R*], States
ptU=[{Ide > DI ¥ C x Cx C x Al. environments

News{U » [L x Ul].

Clvbegin" dic’ “end'lpc=
Clc’1(DIdlp)c.

DIvinteger® ilp=
New p=>x<l.p’>.p’/([i1/11.

1,1.3 Crucial _code fragments: Expressions

In order tuo «claim to be producing an efficient compiler, we must
ensure that expressions are compiled into efficient code. For example
the semantic equation for arithmetic expressions in SDS is:

RIe’ae”’’lp=
Rie’lp @ M .(RIe’’1p g Alalv).

If we leave this as it stands the corresponding fragment of the
generated compiler will bes

CASE Exp.Aop:
RR(First O. Node, Req)
RR(Third orF dode, NextReg(Reg))
AA(Second OF Node. Reg, NextReg(Reg))
ENDCASE

where RR and AA are the generated procedures to plant code
respectively for expressions and operators. If we forget about
restrictions on the maximun number of registers available, this

101

From Standard to Implemeniation Denotational Semantics

procedure will work but will produce very inefficient code. For
example

a+ b *x |0

will generate the following DEC-10 code:

MOVE I,a
MOVE 2,0
MOVET 3,10
IMUL 243
ADD 142

but we can do batters:

MOVE I.b
IMULI 1,10
ADD lva

To generate this code a better algorithm can easily e implementeds
we will follow the one given in [Bornat771:

Rle’ae’’Ip=
[fNeedToReversele’ae’” J»R(Reversele’ae’’1iExp)p,
(RIe’lp @
xv.Isleafl=2/71>RLeaffes1Llalpv,
I fNeedoDumples 1>
Dump pv * %x<1l,p/>,(Rie’“Ip’ @ “v.A(ReverselaliAon)ivl),
(RIe’’1p 2 Alalv)).

In fact. this equation abstracts the “register-allocation’ technique
of “tree weighting’ and “dumping”’.

102

1. A simple case study, TL: a Toy Language

1.2 The translation

He now descrioe the translation that takes as input the IDS eguations
and produces BCPL procedures which are the code generation part of a
compiler for the language defined. (These procedures can be found in
Appendix E.)

1l.2.1 Removal of the State

In the first stage of the translation process we remove all
references to the state. This 1is in keeping with the fact that a
state to state transformation 1is a function performed by the code
generated together with the hardware of a particular machine., The
compiler is performning a translation that ends one step behind the
state to state function. As an example, <consider the semantic
equation for assignment:

Cli:=elpc=
Rlielp @ Assign(plildiL) o c.

For a detailed specification of the operators refer to Apendix A.
After the analysis of the operator @ we end up with the following
procedural texts

LET Cliz:=elpc Bt
{ Assign(plilil) (RIelp) o ¢
)

To emphasize that this is nol a mathematical equation we enclose the
new procedural-text within curly brackets.

The analysis of the operator g will in fact produce two statements.
and after uncurrying the assignment example will now look like:

LET CtIliz=el, p. ¢’ BE

{ Assign(pdibhiL, R(Iel, p»)
c

)

103

From Standard to Implementation Denotational Semantics

leda2 Stored values

Next we introduce hardware registers to replace direct references to
stored values. The introduction of fast registers transforwms the
procedural text for the compilation of the assignment command into:

LET C(Iis=el, n, c) BE

{ R{Iel, p, FirstRey)
AssignipIil)iL, FirstReq)
c

}

so that R will know where to store the result of evaluating the
expression and Assign where to get it from.

1l.2.3 Continuations

Consider the semantic equation for a wHILE loop:

Cl"while¥ b "rdo" c’/)pc=
Fix{xc’ .BInIp{CIc’1(p[BRK/cI[LOO/c’1)c’}c).

Before the analysis of continuations it will be translated into:

LET C(I"while® b "do" ¢’1, p. ¢) BE
{ Fix(xc”.B([pbl, p. Ctlc’1l, p(BRK/cII[LOO/c’], c’), c))
b

The translator, knowing what a continuation is, and being able to
analyse the context 1in which it appears will be able to translate
this text into:

104

1. A simple case stuly, TL: a Toy Language

LET CItwhile" b “do" c¢’¥, p, ¢, t) BE
{ LT ¢ = TnisContinuation()
LET ¢’/ = ForwardContinuation()
B(Ibl, p. ¢c’*. c, FALSE)
FixContinuation(c’’)
C(Ic”l. pIBRK/cI{LOO/c’]. ¢’ TRUE)
}

Where the ¢three procedures This, Forward and Fix-Continuation are
used in such a way that they leave to the compiler writer the final
choice of implementation. For example they could respectively be
-CurrentProgr anCounter, NewChain and FixChain- in a “chaining
mechanism’ or =Planttewbabel, ForwardLabel and Plantlanel- relying on
the activity of a loader.

1.2.4 Environments

We argue that a simuletion of the mathematical environment function
is not feasible if cfficiency is desired. Thus we translate in a way
to have only one global environment around at 2 time, for which we
provide a +ata structure and primitives to declare and undeclare
denoted elements. Environments disappear from parameter lists, The
inverse of some functions are defined in order to undo any alteration
to the global environment, so that we normally end up with a
/sandwich’ or the form:

Update environment(..,.something...}
Call to some procedire
Undo environnent(,..same sometaing...’

Thus, after these transformations the procedural text corresponding
to the WHILE Decomes:

105

From Standard to Implementation Denotational Semantics

LET C{I*while® b fido" ¢’¥, ¢, t) BE

{ LET ¢” = ThisContinuation{)
LET ¢/ = ForwardContinuation{()
B(Ibl, ¢’’, ¢c. False)
FixContinuation(c’”)
Declare(BRK, ¢)
Declare(LOO, c’)
Ctlc”1, ¢, True)
UnDeclare(L O
UnDeclare(BRK)

}

Note that the procedure Declare and UnDeclare (and also This, Forward
and Fix Continuation) do not generate code. They are part of the
Zcompile time’ activity.

1.2.5 8CPL

Finally we translate into BCPL. This 1involves only syntactic
transformations, 1i.e. renaming curly functions and making them
procedures. selecting by cases via a SWITCHON statement, renaming
decorated variables, making syntactic references intoc node references
via selectors, and a translation for those procedures returning a
tuple. The fragment of the resultant procedure to generate code for
commands corresponding to the assignment and WHILE commands is:

106

1. A simple case study, TL: a Toy Language

LET CC(Node, c. t) Bk SWITCHON Type OF Node INTO
{
CASE Com.assignments
RR(Second OF Node, FirstReg)
Update(UJ(First OF Node), FirstReg)
JumpContinuationl{c. T)
ENDCASE

CASE Com.wnile?

{ LET ¢! = ThisContinuation()
LET c2 = ForwardContinuation()
BB(First OF Node, c2. ¢, FALSE)
FixCont inuation(c2)
Declare (BRK, ¢)
Declar=(LOO, cl)
CC(Second OF Mode, cl, TRUE)
UnDeclare(L0OO)}
UnDeclare(BRK)

)

ENDCASE

}

1.2.6 Example of code generation

Consider a fragment of a program in TL which 1s a procedure to
compute the function factorial by iteration :

begin integer i
integer Fj
procedire Facts
begin » = 13
#hile W > 0 do begin F #= F * N3 M 3= N -1 end
endsj

call Facts

‘e e e

end

The corresponding code for the DEC-10, planted by our generated
compiler will be

From Standard to

JRST O,LI
L2: MOVES 16,03
MOVEL 1,”DI
MOVEM 1.2
L5: MOVE L owl
JUMPLE 1.L3
MOVE 102
IMUL 1o
MOVEM 1,W2
MOVE 1.l
SUBI 1 D1
MOVES 1.4l
JRST 0.15
L3t JRST 0.an3
Li: ...
Jsp 16,12
JRST o.Le
L4t PRINTs 0,[ASCIZ/
Wrong/l
L6 P
Wi XHD 0.
Wos XD 0.
3 XAD 0.

107

Implementation Denotational Semantics

EURR TR)

-

we

-a “a A we e 4s we we . ge ws we e 90 mw s wa

we wn we o

we

integer N
New(Wi)
Declars(N,
integer F
New(W2)
Declare(F, W2)
procedure Facts ...
New(HW3)

Declare(RET . L3
Declare(BRK . L4}
Declare{(L00O , L4}
Foe=

Wi

while N»>0 do ...
Declare(BRK , L3)
Declare(LOO , L5)
F F%N

N 2= N~

UnDeclare (L0
UnDeclare(BRK
UnDeclare(LOO , L4)
UnDeclare(BRK , L4)
UnDeclare(RET , L3)
Declare(Fact, L2)

» L5}
. L3

call Fact

UnDeclare(Fact, L2)
Free(w2)
UnDeclare(F, W2)
Free(yll)
UnDeclare(lM, W)

108

2. Further developments, RTL: a Recursive Toy Language

2. Eurther developments. RIL: a Recursive Toy Lapguage

In this section, we introduce recursion in our toy language, so that
now we talik about a language RTL(Recursive TL). We davelop the IDS
equations and then we indicate how to carry out a proof that the SDS
and IDS are congruent,.

2.1 Declaration and [nvogation Environment

If we simply add recursion to the IDS of TL, we obtain an equation
like the following (we also add one call-by-value parameter):

DIYprocedure® 1i(i“)3clp=
Fix(xp’.pllil/xavc. {New(p’ [ARE/al)=>
%<l .p’’>».Clcl
(p?*{1i*1/11IRET/c1[BRK/Wrong]l
[LOO/Mronglic 1),

Again we are interested 1in an equation which will indicate how to
plant efficient code, but it seems that this equation does not help
us. If we consider the virtual machine behaviour at the different
times of declaration, invocation and execution of a procedure, we can
isolate five Jifferent objects, which are manipulated in a way that
characterises most of the flavour of different programming languages.
Namely, associated with every procedure there is:

L1 _Local binding
A function to map everything which is bound within the procedure.

LI1) External binding
A similar (but not =squal) function to map everything which is free.

L111) Local workspace
A function to keep track of those locations defined within the

procedure wnich follow a block structured discipline as opposed to
those following a heap discipline.

LIV) _Return continuation
The function mapping what remains to be done when the procedure

activation terminates.

(V) Current continuation
The function mappingy what remains to be done within thes procedure.

109

From Standard to Implementation Denotational Semantics

Some of these are defined at declaration time. For =xample part of
(I, (II), part of (III) and (V) are defined at this time in
languages with static binding like Algol.

At invocation time, a copy of what was created at declaration time is
made and some other functions are defined, for example (IV) and in
dynamically bound languages (II).

At execution time, some functions may be updated. For example (I} and
(IIL) may be extended by new declarations. For a full description of
this model, the reader is refered to [Hayes781.

If we now look at our domain definitions and equations we can see
that there 1is no clear mathematical machinery to abstract our model
at the different times of declaration and invocation. The environment
appears to be abstracting most of the objects above, but they are not
structured in the same way:

ptU=[{Ide > D] x C x Cx C x Al. environments

Secondly, there 1is no distinction whatsoever between free and bound
identifiers. From a (purely) mathematical point of view, it is not
necessary to distinguish between them. However, from an
implementation standpoint, we have to be able to tell whether a
variable has heen declared within the current procedure or in an
external one. leading to a completely different behaviour of the lock
up function. For example it might be necessary to walk down a link
chain in a stack.

Finally the domain of locations is not absracted at an appropriate
level. In the implementation of block structured languages it is
reasonable to associate variables to “offsets’ within the workspace
of a procedure or block at compilation time. Locations are only
allocated at execution time when a ’base’ is calculated for all the
offsets of the local variables.

To overcome these problems we are going to modify the environment so
that it precisely avstracts the model described above. The first four
functions are going to be members of the environment while (V), the
current continuation 1is still going to be passed as an explicit
parameter to the valuations.

110

2. Further developmants, RTILt a Recursive Toy Language

1:1. block structured Locations
b:B. Bases

0:0. Offsets

fiF={M x Ux 0 x Pl., Function closures

psU=[M x U x [B x 0] x Cl. environmants

I II III 1v

In relation to [Hayes781, F is an Invocation Record Frame and U is an
Invocation Record, or in terms of [Bornat77] a Process State
Descriptor.

Ne now describe the parts of the environment, or invocation record in
details

(I) Local binding
The binding map:*

meM=[{Ide > D] x C x Cl. binding Map

is quite similar to the original environment domnain. It binds
identifiers to their denoted values and the structured jumps BREAK
and LOOP to their respective continuations. The empty binding map is
defined to be:

Nilm:sM.

Nilm=
<x[il.Nild,drong,nwrong>.

(II) External binding or an Environment link

This 1is a reference to the environment of the textually enclosing
procedure where the denotation of free identifiers can be found. The
function

LookUpslIde > U > EJ.

LookUplilp=
plil=>
Nd .d=Nild>L ook UpliJ (pEXT) .
d?0>Loc(Nloc<pBAS,di0>) i 1E,d?F>diFiiE,Te.

m

From Standarc to Implementation Denotational Semantics

defined recursively, 1implies a behaviour which searches down this
chain of environments whaen the denotation of a free identifier is
required. Bound identifiers are found in the binding map. LookUp also
converts offsets in D to their corresponding locations by reference
to the Base in the lucal workspace component of U,

The semantic equation for a single identifier inside an expression
then becomes:

RIlilp=
Load{LookUpfilpil).

(III) Local workspace

In a function closure, or declaration record frame, the local
workspace 1is an offset. It indicates which is the first free offset
at declaration time, whereas in an environment in IDS it is a pair
<b, 0> indicating where the workspace starts and ends, respectively:
<pBAS, FirstO> and <pBAS, pTOP>,

It would be nice to identify locations with the product of bases and
offsets in the following manner:

L =1(B x 01.

However, 1If we do this we cannot achieve a reslistic implementation
semantics. As it stands identifying L with B x O (assuming B and 0
are countably infinite domains, so that for any B and 0 that might
occur in a program the corresponding location exists) means we have
an Infinite number of locations - which is certainly not required in
an implementation semantics. However, if we restrict B and O to being
finite domains, we then imply an arbitrary limit to the number of
blocks that can appear in a program, and an arbitrary number of
locations that can be wused in each., HNeither of these two
possibilities matches up with the standard semantics of the language.

So we are forced to postulate that there are a finite number of
locations and a functions

LocsIN » L1J. Undefined
which gives a proper location when given an integer in
{it 1 <=1 <= n}, where n is the number of locations, and octherwise

indicates an error. Also we need a function:

112

2. Further developments. RTL: a Recursive Toy Language

Nlocs[[B x O} = NI, Undefined

to indirectly find the location corresponding to each B x 0., (We do
not make Nloc:[IB x 0 1 » L 1 as we may want to store a <b, o> pair
without assuming that the corresponding location exists.)

As we have already indicated, the existence of <b., o>, for some b and
o does not guarentes the existence of the corresponding location, and
we therefore need the function “‘/Hew’” again, this time with
functionality:

New: [[B x 01 » L1,

New<b,0>=
Loc(Nloc<b,o>).

We must, of course, insist that the locations are us2d in ascending
numeric order, with Nloc<FirstB, First0O> =1, and in fact B and O
could be identified with N, but we prefer not to do this. Instead we
define two primitive functions to obtain new bases and offsets, which
we assume satisfy the above two conditions:

NewB:[[B x 0} * BI, Undefiner
NextQ:{0 » O}. Undefined

and two conscants which are the first base and first offset:

FirstBs:B, Undefined
First0:0. Undefined

To 1increase the size of the workspace at invocation time we use the
post-fix operators:

plTOP / Nextn(pToP)] = p’, where p’TOP = NextO(pTOP),
and p’X = pX otherwise

Getting a olock structured location and binding it to an ldentifier
is now a single activity modelled by the primitive functions BindF at
declaration time, and by BindP at invocation times

13

From standard to Implementation Denotational Semantics

BindFe:llIde > ¥ » 00 > [4d x O11.
BindFIiImo=
<milil/o) MextO o>,

BindP:l[Ide » U » Ul.
BindpPlIilp=
New(pLOC)=>X1.1=TLl>Tp .pl TOP/NextO(pTOP)Y 1L il/pTOP].

(I¥) The fourth element in a function closure is a member of P, the
domain of procedure values:

P=[U » V » (1, Procedure values

It models the meaning of the procedure which 1is expecting an
environment and an actual value for its formal parameter. wWhile in an
environment, it is 3 member of C, the domain of (return)
continuations. In relation to [Hayes781, (IV) can be seen as a
reference to the current continuation field of the calling invocation
record (environment).

The action of activeting a function closure (creating a new
invocation environment), 1s modelled by:

Activates:[F » [B x 0] » C > V » CI,

Activate f<b,o>cv=
{E¥43<f¥1,0¥2 <NewB<b,0> f¥3>,cov.

Assuming contiguity of caller and callee, activatiny means pushing
the callee’s base on top of the worksoace of the caller’s invocation
environment.

After incorporating the new environment structure and their
associated oporimitive functions the ID3 definition of procedure
declaration in RTL is:

DIMprocedure" 1(i/)iclp=
Fix(xps.(BindFILiZINilm Firsto=>
X<m,0>.plLil/<m.p”’,0,%p””v.{New<p’’BAS,p’7[i’1i0>=>
Xl.{Assign lv g
Clclp’/{p’*RET}})>1)).

114

2. Further developments, RIL: a Recursive Toy Language

The equation shows how the binding map (m) is formed from the empty
one (Nilm) with an additional binding of the parameter [i“] to the
first free offset, an external binding (p’) which is the newly
created fixed point environment, an indication of how many offsets
have already been claimed <(one in this case) and finally the
procedure valus in P,

The IDS equation for a procedure call in RTL is:

Cl"call® i(e)lpc=
Rielp @ Activate{LookUplilpiF} (pLOCic.

2.2 Relationship between the definitions

We indicate here how a proof of congruence between IDS and SDS of TL
can be obtained. This is based on the proof of congruence between IDS
and SDS of the recursive version of TL, which is similar in many
respects.

There are two substantial changes between the two semantics given for
TL: the structure of the environment is altered and the semantic
function for boolesan expressions has different functionality. As
these are entirely separate issues we propose to split the proof into
two parts so they don’t become confused (which they could do as the
environment 1s a parameter to the valuation (semantic function) for
boolean expressions). The disadvantage of splitting the proof into
two parts is that we peed an intermediate semantics between 5DS and
IDS which nas one of the changes referred to above, but not the
other. This 1is a little unfortunate especially as later on we need
two further intermediate semantics for the environmant part of the
proof, but we persist with the method in the belief that it is the
easier to follow.

As the proof of congruence between the valuations for hoolean
expressions is considerably easier than that between the two
environment domains we consider that first by defining a semantics
SDS(B) differing from SDS by having the boolean expression valuation
from IDS. Later ws consider the congruence between SDS(B) and IDS
which will estsblish that the new environment domain does not
significantly alter the semantics of the language.

115

From Standard to Implementation Denotational Semantics

3.1 Jhe Congruence between SDS and SDS(H
Definition of SD3(B).

As SDS excepts: B:(Bex > U > C » C » Cl., and of course all the clauses
in the definition of B Aare altered to look like those in IDS, where p
refers to the environment in SDS rather than IDS. Also change the
following clauses:

CI"if" b ¥then" ¢/ velse" c¢c”’lpc=
BIblp{Clc”lpc){Clc’“Ipc)}.

Cl"while® b YdoY c¢c’lpc=
Fix{Xxc”’ .BIbIp(CIlc’¥(pIBRK/cIILOO/c’])c”)c).

Theorem 3 SDS is congruent with SDS(B).
Proof:

We assume here that all the functions starting If... 3nd Is... in the
IDS valuation fur Blere’] give false for any argument. So

Blere’lpce’=
RIelp @ xv.{RI="1p @ Av’/.0Irdvv’cc’}.

We need the following lemma (where Bl refers to 8 in SDS and B2
refers to B in [DS):

Bliblp @ Conr<c,c”> = B2iblp.

which 1s easily proved by induction over the structure of b. The
result follows immediately from this lemma.

116

2. Further dsvelopments, RTL: a Recursive Toy Language

3.2 The congruence pefween SDO(B) and 1DS

Many of the 2quations in the 3NDS(B) and IDS of TL now look alike, and
although ths: state and environment domains in the two semantics are
different, the proofs of their congruence are trivial, The interest,
therefore, 1lies in the equations in the two definitions which look
different, ant in particular in the semantic function D. Although we
only have a handfil of cases to consider the task 1s more difficult
than appears at first sight for reasons we now outline.

The alterations to the state and environment domains appear to be
minor, but they are very fundamental. We are taking information out
of the state underlyiny SDS(B) and putting it into the environment in
IDS. For these two semantics to be congruent we have to insist that
this information corresponds at all times, otherwise they could be
using the locations in different ways.

An establisned method{Milne76][Stoy 77-91 for relating two domains in
semantics wnich ars to be proved congruent, is by imposing inclusive
predicates on them. In particular here we have to relate the
information 1in the L » T component of the SD3(B) state and the L » T
component of U in IDS. which contain information about the locations
in use in either semantics. As this information is kept in different
domains in SDS(B) and IDS, predicates defined on corresponding
domains cannot insist that it 1s the same.

One way to overcome this problem might seem to be to define a
composite predicate on pairs of states and environments. so we can
relate the locations in use. Unfortunately this does not work for at
least one reasont environments are bound into continuations in IDS
(as well as In 32S), and when we are supplyiny a state to a
continuation in IDS there is no way of checking that the environment
bound into that continuation c¢ontains the same “location in use”
information as the state supplied in SDS(B). Infact we csnnot find
out anything about the environment bound into a continuation. A
possible soclution to this might seem to be to split a continuation so
that it is a member of the domain [U > S » S]1 x U, leaving the
environment explicit, but this involves changing the semantics in
such a way that it is not implementation oriented. In any case we are
trying to find a proof that SDS(B) and IDS are congruent, not find a
proof and then make up IDS.

Unfortunately we are led to the conclusion that two intermdiate
semantics are required to prove the congruence between SDS(3) and
IDS. These are SD3(M), which is SDS(B) modified by having a copy of
the L » T component of the state in the environment, and IDS(4), as
IDS except that the state has a copy of the L » T component of the
environment in it. The details of the semantics have to be altered a
little to keep the new parts of the domains in step (ie containing
the same information) as the originals. Tnis still do=s not solve all

"7

trom Standard to Implemezntation Denotational Semantics

the propblems. though., as we still have environments oound into
continuations, and even though the state now also contains the
7location in wuse’ information we must ensure that it iIs the same as
that in the bound in environment when a state is applied to a
continuation, To take care of this problem we propose “continuation
transforming’ functions which take as arguments a continuation and
the environment to ne bound into it, and only allow the continuation
to be applied to a supplied state, when the “location in use’
information agrees with that 1in the bound in environment. These
functions appear in the semantics everywhere where a new continuation
is being created as argument to a semantic function (and a few other
places where thay help in the proof - don’t forget we are now
creating a semantics for this purpose). The net result is that every
continuation in the semantics contains a check that the supplied
state contains the same “location in use’ information as the bound In
environment bhefore it 1s applied; this 1is because every time a
continuation is created the check 1is incorporated, and all
continuations have to be created somewhere in the semantics.

What then have we achieved after all this effort, and how is the
proof to proceed? #ell we now have four semantics:

SDS{B) <—> SDS(M) <—> IDS{#) <-> IDS

{where the two (#) semantics contain the “continuation transforming”
functions referred to above) which are all congruent. For 5DS(B) and
SDS(M) to be conyruent we have to show that the added component of
the environment dses not affect the semantics of any program in any
significant way, and that the checks for identity of location
information in each continuation have no effect, Similarly for the
congruence between IDS(M) and IDS. shen we have established these
results, and they are intuitively fairly clear, all w2 have to do is
show the congruence betwesn SDS(M) and IDS(M) to finish the whole
proof.

Acknowledgement

We acknowledge the help and support from Ray Turner and the SRC. ¥ike
Brady has alvays given encouraging support,

118

A. hotation

A. Notation

Operators

d:D=Any Domain

0l:
Lt T YD x D) »n]

This 1is the conditional function. An expression t -> 4, d/ will take
the value d #hen £ is True and the value d7 when t is False.

02z
L300 DT x 0D > D73 > LD > D24

f:{ D> D*]
Q:{ D’ » nss g

(foqg)Yd=glf d)

This is the reversed form of the composition operator.

03s
XKLL D, » [Dx D211 x [D> [D2 > D/77111 » [¥ » D’’7]]

f:e{ D/ > [D x D’’1])
gl D> [D7 >» 1777]]

(f xqg) d’= 3 d J2 Where f d’7 = <d, d’’>

Reversed form of the Star operator used by C.Strachey in the semantic
equation for the #hile-1loop.

04z
LAl D> DI x [O» [D2> D711 >0 D2 » D771

f:0 D’ » D1
gtl D> [D/ » Ds”1]

(f @qg) 4= g (f A%y d7

This operatur will normally be used for expresslons without side
effects.

119

From Standard to Implementation Denotational Semantics

052
y=3, 5 {IID x ID » D211 » D7)

f:(D » D1
x D

d => X x.fx is the same as (xx.fx)(d}

This operaror. wn ich reads as ‘Yproduce" is the reverse of
application, so that we can read equations from left to right.

06:
dsl DI + ... + Dn]
itN and | <= 1 <=

diDi is the pro jection of d into the subdomain Di of
[DI+ 4o # D]

diill DV + ...+ Dn 1 is the injection of d into [DI + ... + Dn I

(08¢
NI DI x ous xDn] x N 1 » D1

d=<dl, ... , di, sue. o dn >0 D! x .v. X DI X ... X Dn 1
isN And | <= { <= n

d ¥ i=di
So that ¥ is used to extract individual componants of tuples.

09:

.+
d=< dl, +ue o, di, dli+l)y wee o dn >2{ DI %X ... X Dn 1
isN And | <=1 < n

d¥i=< 4(i+1), ... , Dn >

Operator used to remove elements from tuples.

120

A, Notation

0102

d=< dl, vuee » di >3 DI x ... x Di 1
d’= < dj, eee ¢ dn >0 Dj X +.. x On 1
i,jsN and j=i+1 <= n

d2d’=< dly «ve 4 dn >

Operator used tu concatenate tuples.

Ol1ts
L2000
d:l DI + ... + Dbn]
itN and | <= i <= n

d?Di Is True if d is in the Di subdomain of [DI + ... + Dn 1,
otherwise if False

0i2s
[/ 1:{ UxDxD” 1> U]

x 3D
<(Xx. x=1 => 47, (p¥lix), p¥2, ... > if 1:lde
pld/d’ 1=
<p¥le +u. p¥Ci-1), d’, ptli+l), ... > 1f 4 is a selector
and pd = pt¥i

This is the postfix operator to create new environments. (The
notation pSEL, where SEL has been defined as a semantic selector, is

equivalent to StlLp.)

121

From Standard to Implementation Denotational Semantics

Ba Syntax of Tl

Syntactic domains (common. %o both SDS and INDS versions)

atAop, Arithmetic operators
b:Bex. Boolean expresssions
cCom., Commands

ds:Dec. Declarations

esExp. non boolean Expressions
i:lde. Identifiers (Undefined)
Jjsdmp. structured Jumps

n:Num, Numbers (Undefined)
g:Quo. Quotations (Undefined)
rs:Rop. Relational operators
WiNri, Writable expressions

Syntax (common to both SDS and IDS versions)

a 3=+ | - % | /

b s:= b’ Mand" b’/ | b’ "or" b/’ | "true" | "falsed | (b”’) |
ere’

c 3= c’3c’/’ 1 is=e | "if" b dthen" ¢/ "else® ¢c/7/ |
“while! b "do" ¢/ | Ycall® i1 | Ydummy" | J | "read" i !
Ywrite" w i Mbegin® ¢/ Mend” | "begin" dic’/ "end®

d 3:= "procedure" ijc | Minteger®™ i | d’/5d4/

e 3= 1 1 eZae’’ 1 n i (e”)

J 3= Mbreak? | #loop" ! “return®

roi= > 1 < o= | >= | <= | <

w itz e ! g

122

C. Standard Jenotational Semantics of TL

C. Standard Denotatiopal Semantics of TL

ISl: S80S of TL

Semantic.domains

c:C=[S » 51, Command cont.

D={pPp + LI, Denoted values
1L, Locations

N. iNtegers

p=IC » CI. Procedure values

Q. Nuotations
r:R=[N + QIl. pRintable values
s3S=[[L » V1 x Vx x R* x [L » Tl1. States

T=({ TRUE } + { FALSE)1, Truth values
p:U={[Ide » D] x C x Cx Cl. environments
viv=[N]. storable Values
Semantic selectors

BRK==Xp.p¥2.
LOO==Xp.p¥3.
RET==Xp.,p¥4.

123

From standard to Implementation Denotational Semantics

cemantic_ functions

B:[Bex
C:{Com
D:(Dec
J:ldmp
R:{Exp
Walviri

S » T1.

Pl1.

S» [(Ux S11,
Cl.

S » V],

P1.

v VvY Y WVY
cococaaca

¥ ¥ V¥ V¥ VvV

Semapntic pripitives

AzsfAop > V > V » VI, Undefined
N:[Num > NI, Undefined
Q:[Quo > Ql. Undefined
O:{Rop > V> Vv » TIl. Undefined
Wrong:C. Undefined
Assign:[L » v » (C].

Assign lvs=

<x17.1=1’>v (s¥1)17 ,s¥2,5V3,5%4>.

Load:(L » S » V],
Load is=
{(s¥irl.

News [S » [L x S11.

Read:{S » [V x §11.

Read s=
#(s¥2)=0><Tv,5>,<5¥2¥1 ,<s¥ ! ,5V2+1,5%3,s¥4>>.

Arite: (R > CI,
Nrite rs=
<s¥l,s¥2,5V32r,s¥4>.

124

C. Standard Jenotational Semantics of TL

Semantic valuator for expressions
RIilp=
Load(plil:il).

Rle’ae’’1p=
RIe’lp @ dv.(RIe’’1p o Alalv).

Rinlps=
Ninl.

RI(e”’)1p=
RIe’Ip.

Semantic valuator for boolean_expressions
BIb’ "and" b’“Ip=
BIb’1p @ Cond<BIb”/1p,Xxs.FALSE>.

Bibs “or" »n’/lp=
BIb“1lp @ Cond<Xxs.TRUE,BIb’” Ip>.

BI"true'lps=
TRUE.

Blfalse"Ips=
FALSE.

BI(b’)Ip=
BIb’1p.

Blere’lIp=
Rielp @ Xv.(RIe’Ip o GIrlv).

125

From Standard to Implementation Denotational Semantics

Semantic valuator for commands

Clc’ sc’” Jpc=
Clc’Ip{Clc’“Ipc}.

Cli:=elpc=
RIielp @ Assign(pfilil) ¢ c.

CIMif" b Ythen" ¢/ "else" ¢’“Ipc=
Biblp @ Cond<Clc’loc,Clc*” knc>.

Cl"while b do" c’lpc=
Fix{xc’.{(Blolp @ Cond<Clc” J(p{BRK/cJILON/c’ 1)c’ . c>}).

CIl"call" ilpc=
{pliliP}c.

CI"dummy™lIpc=
C.

Cljlpc=
JI ilp.

ClMread" ilpc=
Read * Assign(plilil) ¢ c.

Cltwrite wlpe=
Wlwlpc.

Cl"begin" c” "end"lIpc=
Clc’lpc.

Clbegin® dijc”’ "end"lpcss
{DIdlp % %xp”.Clc’¥p”’{xs’.c<5¥].,57¥2,5’¥3,s¥%4>})s.

126

C. Standard Denotational Semantics of TL

Semantic valyator for declaratiopns
Di¥procedure" ijclps=
<p{lid/Xxc.CIc) (plRET/cILBRK/Nrongl [LOO/Aronglicl s>,

DI*integer® {lp=
New * Xls.<pllil/ll.s>.

DId”§d”* 1p=
DId1p * DLd’”1.

Semantic valuator for structured jumps and writable values.
JI%breaktlp=
pBRK.,

JI"1oop' Ip=
pL00.

JI%return®lp=
pRET.

Wlelpc=
RIelp @ frite o c.

Wiglpc=
Nrite(QIql) ¢ c.

127

From Standard to Implementation Denotational Semantics

D. Implementation Renctalional Semantics of TL

1ol: IDO of IL

atA=[(L » TI]. Area function
ciC=[S » S1. Command cont.

pD={P + L1. Denoted values
1sLl. Locstions

N, iNtegers

P=[A > C > Cl. Procedure values

. Quotations
riR=[N + QI. pRintable values
s3S=[[L » V] x v*¥ x R*]1, St ates

T=0{ TRUE } + { FALSE 1, Truth values
ptU=[{Ide » D] x Cx Cx C x Al. environments
veVv=[N], storable Values

N=tv + LI, dumped Walues

Y=[Aop + Bex + Exp + Ropl. reversed sYntax
Semantic selectors

BRK==Xp,p¥2.
LOO==%xp.p¥3.
RET==xp.p¥4.
ARE==Xp.p¥5.

128

D. Implementation Denotational Semantics of TL

Semantic functions

B:[Bex » U>» C > C > Cl.

C:lCom > U » C» Cl.,

D:[Dec » U » U],

J:{Jmp » U » Cl,

RilExp » U>» S » VI,

Wslwri » U > C > CJ,

Semantic primitives

Az[Aop > V> A > 5 > V], Undef ined
N:[Num > NJ. Undef ined
Q:[Quo > Ql. Undef ined
O:[Rop » V> W >C>C > Cl. Undef ined
BJumps[Rop » V > C » C » Cl. Undef ined
BLeaf:[Exp » Rop > U » V » C » C » Cl. Undefined
Dump:{U=> V> S » [L xU x S1l. Undefined
IfNeedToDump: [Exp » T1. Undef ined
IfNeedToReverse: [[Bex + Expl » Tl. Undef ined
IfZerotlExp » T1. Undefined
IsLeafs[Exp > T1I. Undefined
Reverse:lY » Y1, Undef ined
RLeafs[Exp » Aop > U > V > S » V], Undefined
Wrong:C. Undefined

Assignt(L > V > CJ.
Assign lvs=
<x17,1=1"»v,{s¥1)17 ,s¥2,5¥%3>.

Load:[L » S » Vi.
Load 1s=
(s¥1)1.

News[U » [L x Ull.

Read:(S » [V x S1].

Read s=
#(s¥2)=0><Tv,s5>,<s¥2¥1 ,<s¥ ! ,s¢¥2+1,5¥3>>,

Write:[R » Ci.
Write rs=
<s¥l,s¥2,st3%r>,

129

rrom Standard to Implementation Denotational Semantics

Semantic valuator for expressions

RIilp=
Load(plililL).

RIe’ae’”1p=
IfNeedToReversele’ae’” I>R(Reversele’ae’” 1 Explp.
(RIe’3p @
xv,IslLeafle’”1>RLeafle’’ Ll alpv,
IfNeedToDumple’“}>
Dump pv % X<1l,p’>.(RIe’/Ip’ @ Xv.A(ReverselaliAop)vl),
(RIe’’lp @ Alalv)),

Rinlps=
NInl.

RI(e’)Ip=
Rie’1p.

Semantic valuator for hoolean expressions

Blb/ ,Hand.ﬁ bl~l]pcc =
Bib’1p{(BIb’“Ipcc’lic”.

BIb” Yor® b’/1pcc’=
BIb’Ipc{BIb*’1Ipcc’).

BIttruetlpcc’=
c.

BI"false"lpce’=
c’.

Bl(b’)lpcc’/=
BIb’1pce”.

Blere’lpcc’=
IfZerolel>Rie’ Ip @ »v.BJump(ReverselrliRop)vce”,
IfZerole’¥>Rielp 2 “v.BJumplrilvce~,
IfNeedToReverselere’}»>B(Reverselere’1!Bex)pcc’,
{RIelp @
av.Isleafle’ }>BLeafle’ ripvce’,
IftNeedl oDumpl=s” 1>
Dump pv % X<l.p’>. {(Rle’1p’ 2 Xv.0(ReverselrliRopivlice)},
{RIe’lp 2 xv2.0Ir¥vv’cc?)).

130

D. Implementation Denotational Semantics of T

Semantic valuator for commands
Clc’3c’ Ipc=
Cic/Ip{Clcr~Ipcy.

Cli:=elpc=
Rlelp @ Assign(plilil) o c.

C.[‘"if" b Ythen' ¢’ "else" C’*’IDC'—‘
Bliolp{CIc’Ipc){Clc”“Ipc}.

CI#*while" b #do" c’lIpc=
Fix{Xxc’.BIplp(Clc’}(p{BRK/cI{LOO/Cc’])c’)c).

Cl#call" ilpc=
{pIliliP)(pAREJC.

CIvdummy"lIpc=
C. :

Clilpc=
JI jlp.

Cl'read® ilpc=
Read % Assign(plilil) o c.

Ciwrite" wlpc=
Wiwlpc.

Cl%begin® ¢ Mendlpc=
Clc’lpc.

CIWpegin" dic”/ "end"'lpc=
Clcs1(Didlplc.

131

From Standard to Implementation Denotational Semantics

Semantic valuator for declarations
DIYprocedure® ijclp=
pllil/xac.Clcl(plARE/allRET/c1IBRK/WrongllLOO/Wronglic]l.

DI#*integer® ilp=
New p=>X<l.p’>,.p7Lil/1],

DId” 3d77 1p=
DId”Ip=>DIJ71.

semantic valuator for structured jumps and writable values.
JI"break"lp=
pBRK.

JI'] oop"lp=
pLOO.

JI¥returntlp=
pRET.

Wlelpc=
Rlelp @ Arite g c.

Wiglipc=
Arite(QIgl) ¢ c.

182

E, The Generated Compiler

E..Ihe Geperated Compiler

Ved File DSK:TLBCL.MS
Vo4 Compiled by ISL 1A(23}) at 10332 21/72/80
/7 Outpit of phase 6

LET RR(lMode, Reg) Bz SWITCHON Type OF Node INTO
{ CASE S..1i:

Load(UU(Mode), Heg)

-NDCASE

CASE Exp.Aop:
TEST IfNesdToreverse(Node, Reg) THEN RR{Reverse{(Node), Reg)
OR
{ RR(First OF MNode, Reg)
TEST Isleaf(Third OF Node)
THEN RLeaf(Third OF Node, Second OF liode, Reg)
OR
TEST IfNeedToDump (Third 0OF Node)
THEN
{ LET 1 = Dump(Reg)
RR(Tnird OF Node, Reg)
AA(Reversa(Second OF Node). Reg, 1)
Free(1)
}
OR
{ RR(Tnird OF Yode, NextReg(Reg))
AA(Second OF Node, Reg, NextReg(Reg))
}
¥
ENDCASE

CASE 3..n:
Mi{lode, Reg)
ENDCASE

CASE Exp.bracgetss:
RR(First OF Node, Reg)
ENDCASE

133

From Standard to Implementation Denotational Semantics

LET BB(Node, ¢. cl, t) BE SwITCHAON Type OF hode INTO
{ CASE Bex.and:
{ LET ¢2 = ForwardContinuation()
BB(First OF Node. c¢c2. cl, FALSE)
FixCont inuation(c2)
BB(Second OF Node, c. cl. t)

}
ENDCASE

CASE Bex.or:

{ LET c2 = ForwardContinuation()
BB(First OF Node, ¢, c¢2, TRUE)
FixContiquation{c2)

B8B(Second OF Node, ¢, ¢cl, t)

}

ENDCASE

CASE Bex.true:
JumpContinuation{c, ©)
ENDCASE

CASE Bex.false:
JumpContinuation(cl, NOT t)
ENDCASE

CASE Bex.bracketss
BB(First 0OF Node, c, cl, t)
ENDCASE

134

E. The Generated Compiler

CASE Bex.Rup:

TEST IfZero(First OF Node)
THEN
{ RR(Third OF Node, FirstReqg)
: BJump (Reverse(Second OF Node), FirstReg. c. ¢cl, t)
OR
TEST IfZero(Third OF Node)
THE}
{ BR(First OF Node. FirstReg)
8Jump(Second OF Node, FirstReg. c, ¢cl, t)
}
OR
TEST IfNeedToReverse(Node) THEN BB(Reverse{Node), ¢, cl, t)
OR
{ RR(First OF Node. FirstReqg)
TEST Isleaf(Third OF Node)
THEN BLeaf(Third OF Node, Second OF Node, FirstReg, ¢, ci,
OR
TEST If NeedTobDump (Third OF Fode)
THEN
{ LET 1 = Dump(FirstReqg?
RR(Tnird OF Node, FirstReg)
0O0(Reverse(Second OF Node), FirstReg. 1, ¢, cl,)
Free(l)
}
0OR
{ RR{Inird OF Node, NextReg(FirstReg))

}
)
ENDCASE

00(Second OF MNode. FirstReg. MextReg(FirstReg), c. cl, t)

€}

135

From Standard to Implementation Denotational Semantics

LET CC(tode, c. t) B SWITCAON Type OF Mode INTO
{ CASE Com.semicolon:
{ LET ¢! = ForwardContinuation()
CC(First OF Node, cl. FALSE)
FixContinuation{(cl)
CC{Second OF Kode, ¢, t}
}
ENDCASE

CASE Com.assignnents:
RR(Second OF Noda, FirstReg)
Assign(UJ(First OF Node), FirstReg)
JumpContinuationt(c, t)
ENDCASE

CASE Com.ifthenglse:

{ LET ¢! = ForwardContinuation()

LET ¢2 = ForwardContinuation()
BB(First OF Node, cl, ¢2., FALSE)
FixContinuation(ci)
CC(Second OF Node, ¢, TRUE)
FixContinuation(c2)
CC(Third OF lode, c, t)

}

ENDCASE

CASE Com.wniledos

{ LET ¢! = ThisContinuation()
LET ¢2 = ForwardContinuation()
BB(First OF Node, c¢2, ¢, FALSE)
FixContinuation(c2)
Declar=(BRK, ¢}
Declare(LOO, cl)
CC(Second OF Node, ¢!, TRUE)
UnDeclare(LOO)
UnDeclare(BRrRK)

}

ENDCASE

CASE Com.call:
CallContinuation(UU(First OF Node)}

JumpContinuation(c¢c., t)
ENDCASE

CASE Com.dummy 3
JumpContinuation(ec, t)
EMDCASE

136

E. The Generated Compiler

CASE Jmp.break: CASE Jmp.loopt CASE Jmp.returnt
JJ(Node)
ENDCASE

CASE Com.reads:
Read{FirstReqg)
Assign{UU(First OF Node), FirstReg)
JumpContinuation(c. t)
ENDCASE

CASE Com.write:?
WH{First OF Node, c, ©)
ENDCASE

CASE Com.beginend:
CC{First OF 4Yode, ¢, tJ)
ENDCASE

CASE Com.beginsemicolonends

{ LET ¢! = ForwardContinuation()
JumpContinuation(cl, DeclareingContinuation(First OF Node})
DD(First OF Mode)
FixContinuation(cl)
CC(Second OF Mode, c. t)
UnDD{(First OF Node)

}

ENDCASE

LET WW(Node, c, t) BE SwITCHON Type OF Node INTO
{ CASE S..i* CASE S..n: CASt Exp.Aop:
CASE Exp.bracketss:
RR(Node, FirstReg)
Arite(Firstiey)
JumpContinuation(c, t)
ENDCASE

CASE S..q®
Write(Q0(Nodeld)
JumpContinuation(c, t)
ENDCASE

137

From Standard to Implementation Denotational Semantics

LET DD(Node) B SwITCHON Type OF Node INTO
{ CASE Dec.procedures
{ LET ¢l = ThisContinuation()
LET ¢ = entryContinuation()
Declare(ReT. ¢)
Declare (BRK, drong)
NDeclare (LOO. wWrong)
CC{(Second 0Or lode, ¢, FALSE}
UnDeclare (LOO)
UnbDeclare(BRK)
UnDeclara(RET)
Exitlontinuation(c)
Declar:(First OF Node, cl)
}
ENDCASE

CASE Dec.integers:
{ LET 1 = New()
Declare (First OF Node., 1)

)
ENDCASE

CASE Dec.semicolons
DD(First OF Node)
DD{(Second OF Node)
ENDCASE

LET JJ{lode) Be SWITCHOM Type OF Node INTO

{ CASE Jmp.breaks:
JumpContinuation(UU{BRK), TRUE)
cNDCASE

CASE Jmp.loon:
JumpContinuation{UW(L0OO), TRUE)
ENDCASE

CASE Jmp.returns:
JumpContinuat ion(UJ(RET), TRUE)
EMDCASE

138

F. References

E. References

[BCPL77] Reference manual, Department Of Computer Science. Essex
University. 1977.

[Bornat761R.30rnat. Notes for Comparative Study of Programming
Languages, Department Of Computer Science. Essex University., 1076,

[Bornat771R.Bornat. Understanding and Ariting Compilers. MacMillan
1977,

[Gries711D.G.Cries. Compiler Construction for Digal Computers,
J.iley and sSons. 1971,

[Hayes781P.J.Hayes. Invocation Records: A conceptual Framework for
Evaluating Program Text., Department Of Computer 3Science. Essex
University. 1979.

[JonesB801H.D. Jones and D.A.Schmidt, Compiler Ganeration from
Denotalonal Semantics (Preliminary Report) Workshop on
Semantics-Directad Conpiler Generation., Department 0Of Computer
Science. Aarnus University. 1980,

[Milne761R.Milne and C.Strachey. A Theory of programming language
semantics, Chaoman and Hall, 1976.

[Mosses741P.D.Mosses,. The Semantics of Semantic Equations,
Mathematical Foundations of Computer Science. Lecture Notes 1in
Computer Science 28. Springer=~Verlag. Proc. 3rd MFCS Symposium.
Warsaw. 1974, »p.407-422

[Mosses751P.0.Mosses. Mathematical Semantics and Compiler Generation,
PhD, thesis. ‘Jniversity of Oxford. 1075.

[Mosses761P.) Mo sses., Compiler Generation using Denotational
Semantics., Aathematical Foundations of Computer Science. Lecture
Notes in Computer Science 45. Springer—-Verlag. Proc. 5th MFCS
Symposium. GCiansk Poland. [976. pp.436-44]

[MossesT781P.N,Yosses. 51S: A Compiler Generator System wusing
Denotational Semantics, Reference Manual. University of Aarhus. 1078,

[Raskovsky70lM.R.Raskovsky and R.Turner. Compilar Generation and
Denotational Semantics. Fundamentals of Computation Theory, 1979,

[RaskovskyS80l#¥,R.Raskovsky. ISL (In preparation) Department Of
Computer Sciznce. £ssex University. 1980.

{Richards6914,Richards. BCPL: A tool for compiler writing and system
programming. Proceedings of the 1969 Spring Joint Computer

139

From Standard to Implementation Denotational Semantics

Conference. 3oston AFIPS #Montvale 1969 pp.557-566.

[Scott701D.Scott., Outline of a Mathematical Theory of Computation,
PRG=-2. Oxfor+d University Computing Laboratory., 1970.

[Scott711D.Scott and C,Strachey. Toward a Mathematical Semantics for
Computer Lavguages, PRG-6. Oxford University Computing Laboratory.
1971,

[Scott761D.Scott. Data Types as Lattices, Procedings of the 1974
Colloguium in Mathematical Logic. Kiel. Springer-Verlag. Berlin 1976.
pp.579-650.

[Stoy771J.E.Stoy. Denotational Semantics: The Scott~Strachey Approach
to Programming Language Theory. MIT Press. 1977,

[Stoy771J.E.Stoy. Tha congruence of Two Programming Language
Definitions. (manuscript). 1979.

[Strachey661C.Strachey. Towards a formal semantics, Formal Language
Description Languages for Computer Programming. (edited by
T.B.Steel). North-Holland. Amsterdam 1966. pp.198~220.

[Strachey671l.5trachey. Fundamental Concepts in Programming
Languages. International Summer School in Computer Programming, 1967
(Typescript).

[Strachey741..Strachey and C.P.Nadswor th. Cont inuations, A
Mathematical Semantics for handling full jumps, PRG-I11, Oxford
University Computing Laboratory. 1974,

[Sufrin771B.Sufrin. [LLi: A Parser Generator. Department Of Computer
Science, Essex University. 1978,

