
From Standard to Implementation
Denotational Semantics

i~artin Raskovsky
and Phil Collier

January 1080

Under the Sun of t4enorca

Computinq Science
University of E s s e x

England

Abstract

#e are developing a compiler compiler. It takes as input the formal
definition of a programming lanquage in Denotational Semantics and
produces as output a fairly efficient compiler written in a systems
programming language which in turn will produce code for a real
machine. This wor:c ~ainly deals with the code qeneration parts.

Contents

O Introduct/on
1 A simple case study. TL: a Toy Language
2 Further Hevelopments, RTL: a Recursuve Toy kanuage

A Notation
B Syntax of TL
C Standard Oenot~tional Semantics of TL
D Implementation Oenotational Semantics of EL
E The Oeneratm~ Compiler
F R e f e r e n c e s

95

From Standard to Implementation Denotational Semantics

9, ~mlro£m~LLon

According to the tradition of denotational/functional sementics(DS)
of programming lanquaaes(PL), the meaning/referent of a program is a
function from states to states of some underlying store. Compilers,
on the other hand. generate code for some machlna given the program
as input, t]n the face of it these enterprises - writing semantic
equations in the Scott-Strachey style and compiler-writing -seem very
different. The former requires a certain degree of mathematical
sophistication and the latter a certain competence as a system
programmer. Moreover, the end products of tha two enterprises appear
to be differentl un the one hand the result is a precise mathematical
description of the proqramminq language and on the other one ends up
with a set of procedures which constitute a compiler for the language
in question. In the original liter~ture on functional
semantics[Scott20] it was claimed that the semantic equations should
serve as a guide for the compiler writerl any notion of correctness
for the coapiler would have to make reference to the semantic
equations.

~e believe that semantic equations can provide us with the
information req~ired to implement a compiler for ti~e language in
question. In other words, the DS of a particular Pk at an appropriate
level of abstraction coul,d embody detailed information about control,
environment and state servinq as an input for a co~piler-compiler.

Let's try and make this a little clearer. Given a D5 eqrJation, the
process of code ~eneration closely follows its text. [-'or e×ample the
equation for the assignment co}~mand in a particular PL could be:

C,[e • =e"]pc=

R~ e~l p{ ~v.L.[elp (~l. Update l v c } } .

R h i l e r e a d i n g t h i s e q u a t i o n we can i m a g i n e a c o m p i l e r t h a t , i n the
p resence o f an e n v i r o n m e n t (p) , w i l l g e n e r a t e code f i r s t to f i n d a
value, then to find a location, then to update the store and finally
to jump if necessary to the given continuation. In fact, it is
reasonable to argue that DS has formalised, at aq appropriate level
of abstraction, the behaviour of a program. A compiler needs to
understand the behaviour called for by a program in order to plant
code to execute it. Thus it is reasonable to conjecture that there
may be a close relationship between semantic equations and compilers.
If one could automate the production of a compiler from semantic
equations then this could be viewed as a kind of compiler-compiler.

Indeed i t i s a p a r t o f o u r c o n j e c t u r e c o n c e r n i n g the r e l a t i o n s h i p
between compilers and semantic equations that not only could the
semantic equat ions dictate the structure of the compiler but

96

O. Introduction

conversely intuitions and experience of compiler writers should
influence the DS equations themselves.

However, ~e do appreciate the need to have a "standard" denotational
semantics without any bias t o~ar ds implementation ideas. So we
propose to distinguish between two different forms of DS which for
any particular language we shall have to prove congruent, namely:

~ tan¢a rd 9 e n o t a t i o n a l Semant i cs (SDS) : A c a n o n i c a l d e f i n i t i o n free of
bias towards any particular i m p l e m e n t a t i o n .

impl~L~D~ation Der~otatioqal Semantics(IDS):
implementation strategies desired.

E~Oodyi ng all

~e have developed a transl~tion process which, starting from the IOS
equations of ~ simple PL, generates a number of BCPL
procedures[Richards6o][BCPL77], de have written the primitive
functions and machine code interface to produce code for the DEC-IO
system. To generate the parser an appropriate generator is
interfaced[Sufrin77]

The final result is the following:

-An efficient compiler using standard compiling-techniques.
-Efficient cude g~ne ra ted .
-Flexibility to i;nplemer~t different "styles p of code.
-Flexibility to i~plement in different machines.

Research related to ours is the work by [~1osses 74-5-6-8] and
[Jones80] where semantic equations are uniforaly translated to an
intermediate code which in turn is interpreted. 3oth systems achieve
generality by explicity selaarating the concept of a correct compiler
from that of a usef,d one, and it is instructive to see why. ~hiie
uniformly encoding all "functions" and 'values', both methods throw
away a gre~t deal of the knowledge contained in the semantic
equations. For e×a',Iple the [L ~ V] function is simulated, instead of
making "natural" use of the m~chine store; and the familiar and
useful concept of a pointer to the code is none×latent. Standard
semantic equations as developed by the (]×ford school provide us with
certain information about how to implement the language efficiently
and this is lost in a uniform translation. These observations have
been paramount in guiding our translation process.

The first step of our work was to consider simple language constructs
and to i~plement a translator accepting languages whose
characteristics were similar to those. In Section i of this paper we
describe a lang~age within this framework, r~e briefly motivate its
Implementation Oenotational Semantics and then we informally describe

97

From Standard to Imolementation 9enotationa! Semantics

the transformation [process to generate a compiler for it. Appendices
B, C, D and i show respectively its Syntax, SDS, IPS a~d Compiler.

Currently we are enlarging the set of programming constructs accepted
by our system. In Section 2 we consider recursion sho4ing the impact
that this featqre has in the domains of its IDS specification.
Finally we show ho,~ to prove the congruence between both SOS and Ir)S
definitions.

The toy lanjuage(TL) chosen contains a number of basic commands like
assignment, conditional, while, parameter-less procedure call,
structured ju~al)s (B~£AK, LOOP, RI-'TURr,J), input/output and blocks. It
has arithmetic and boolean expressions, as well as data types:
integers and procedures.

R e c u r s i o n is n o t a l l o w e d , so t h a t e v e r y s t o r a g e l o c a t i o n can be

determined at compilation time (Static storage allocation). ~oreovar,
a crucial attrib,Jte of such a language, which amounts to a
simplification relative to ALGOL-like languages, LISP or SI,~{ULA, is
that for every procedure, a single unique data area[OriesTi]
(Analogous to an ALGOL stack frame or template[Bornat76-7]) can be
set at compile tine. In this respect TL resembles F(]~T~A'4.

J_,l The Imo]ementatiun D~_~otq~.teEZLLl_$_~LiiaBjZj~s o#._TL

In this section we will briefly motivate the IOS of TL. The three
issues we (Jisc~]ss are the meaning of boolean expressions, the
allocation of locations and efficiency in arithmetic expressions. The
complete SDS and lOS specifications can be found in Appendices A, B,
C and D.

98

I. A simple case study, TL: a Toy Language

l . l . I BoQlean_/x;~/ /9_iaion~

Consider a fragment of the syntax of boolean expressions in TL:

b ::= b" "and" b'" I b" "or" b'" I "true" ', "false ~' I . ..

and the c o r r e s p o n d i n g s e m a n t i c e q u a t i o n s :

B ; [B e x ~ U ~" S ~ T] .

B4b t , and ~, b r - r l p=
B4b~lp ~ C o n d < B [b " l p 0 X s . FALSE>.

B i b 't " o r " b H l p =

& l b ~ l p @ C o n d < X s . T R U E , B [b ' ' l p > .

B.[-" t r u e " l p s =

TRUE.

BJ[j' f a l s e"] ps=
FALSE.

Boo lean e x p r e s s i o n s v i ewed i n t h i s way a re l i k e any o t h e r e x p r e s s i o n
w i t h t he e x c e p t i o n t h a t t hey e v a l u a t e t o b o o l e a n v a l u e s . But i t
happens t h a t these can be e v a l u a t e d i n a c o m p l e t e l y d i f f e r e n t way,
The e v a l u a t i o n o f a b o o l e a n e x p r e s s i o n need no t p roduce a v a l u e b u t
can s e l e c t t he n e x t p a t h o f the c o m p u t a t i o n . T h i s i s e x a c t l y how Cond
can be t h o u g h t t o behave : g i v e n two e x p r e s s i o n s , i t p i c k s one on the

b a s i s o f a g i v e n ooo lean v a l u e .

To model t h i s b e h a v i o u r we r e d e f i q e the f u n c t i o n B, as a s e m a n t i c
v a l u a t o r t a k i n g two c o n t i n u a t i o n s , one to be applied i f the s u p p l i e d
boo lean e × p r e s s i o q e v a l u a t e s t o t r u e , and a n o t h e r i f i t e v a l u a t e s t o

f a l s e .

99

From Standard to Implementation Denotational Semantics

B:[Bex ~ U ~* C ~ C ~ C].

Bib" "and" b''lpcc'=
B] b" |p(Blb" "Ipcc'}c"

BJ[b" "or" b"Ipcc'=
Bib']pc(Bib'" |pcc'} .

B.[" t rue"] pcc" =
C.

B.[" f a l s e " ~ p c c ' =

C ' ,

The o n l y t i m e t h a t a t r u t h v a l u e i s r e a l l y p r o d u c e d i s when a g e n e r a l
expression contains boolean subexpress~ons.

This model of boolean expressions with two continuations corresponds
precisely to e way that efficient compilers implement them, namely as
true and false chains.

l._L~2_Ld~rkiEmz lo~_~tions "il_~se"

Consider - now the allocation of locations in the SDS of TL:

s ' S = [[t ~ V] x V~ x R* x [k ~ T]] .
p : U = [[I d e ~ O] × C x C x C] .
N e w : [S ~ [L x S]] .

S t a t e s
e n v i r o n m e n t s

~[tibegin" dlc" " e n d "] p c s =
{ D l d l p _* ~ p ' . C l c ' l p ' (~ a ' . c < a ' t l , s ' 9 2 , s ' ~ 3 , s ~ 4 >)) s .

Dl"integer" lip=
New * ~ls.<p[[i]/i] ,s>.

The f u n c t i o n "New'° w h i c h o b t a i n s u n u s e d l o c a t i o n s when n e c e s s a r y ,
seems t o be a b s t r a c t i n g a " f r e e s t o r a g e p m e c h a n i s m w h i c h i s n o t t h e
one d i c t a t e . i b y a b l o c k s t r u c t u r e d d i s c i p l i n e . A l s o t h e l o c a t i o n
d e a l l o c a t i o n m e c h a n i s m , w h e r e t h e a r e a f u n c t i o n [L ~ T] i n d i c a t e s
which locations are in use, is not satisfactory from an
implementation point of view. (The area function is stored on entry

100

I. A simple case study, TL: a Toy Language

t o each b l J c k , so t h a t i t can be r e s t o r e d on e x i t .) I t would seem
reasonable that locations be marked "in use" in the environment
allowing 'automatic" deellocation of locations at the end of a block,
as environments, and therefore details of the amount of storage in
use are bound into the continuation following the end of the block.

Accordingly, we rewrite in IDS the SDS definitions as follows:

a:A=[L ~ T].
s:S=[[L ~ V] × V* x q*].
p : U = [[I d e ~ D] x C × C x C x A] .

New:[U ~ [L x U]].

C/ "beg i r t " d ; o " "end"]pc=
C/c"] ([~Id] p) c.

D["integer" i|p=
New p=>~<l,p'>,p.'[lil/l],

Area f u n c t i o n
S ta tes
env i ronmen ts

i . ! . # C r u c i a l code fr~ments:_ Exp ress ions

In o r d e r to c l a i m t o be p roduc ing an e f f i c i e n t c o m p i l e r , we must
ensure that expressions are compiler] into efficient coJe, For example
the semantic equation for arithmetic expressions in SDS is:

Rle,aeS']p=
R I e " l p ~ ~v.(RIe"]p ~ A l a l v) .

I f we leave t h i s as i t s tands the c o r r e s p o n d i n g f ragment o f the
generated compiler will be:

CASE Exp. Aop:
RR(FLTst 0, Node, Reg)
RR(Tni rd O/ Node, NextReg{Reg))
AA(Second OF Node, Reg, NextReg(Reg))
ENDCASE

where RR ~nd AA are the g e n e r a t e d p rocedures t o p l a n t code
r e s p e c t i v e l y f u r e x p r e s s i o n s and o p e r a t o r s . I f we f o r g e t abou t
restrictions on the maximun number of registers available, this

101

From Standard to Implementation Denotational Semantics

procedure will work but will produce very inefficient code. For
example

a + b * IO

w i l l generate the following DEC-]O code:

M{}~/E t , a
~4()V E 2 , b
~()VEI 3 . J O
IMUL 2 , 3
ADD 1 .2

but we can do better:

~OVE 1 .b
IMULI] , I0
ADD 1 ,a

To generate this code a better algorithm can easily be immlemented~
we will follow the one given in [Bornat77] :

Rle'ae'" Ip=
If~]eedToRev erse[e'a e'"]~R(Reverse.[e'ae'"] ', E×p)p,

~v. Iskeaf[e'" l~Rkeaf[e''l.[alpv,
I f N e e d f oDu rap.[e ' - "]-.>

Dump p¢ * ~<l,p">. (R[e''lp" ~ ~v.A(qeverseIa]:Aop)vl).
(Rle''lp i Aia|v)).

In fact. this equation abstracts the Pregister-allocation" technique
of ~tree welqhtinq" and 'dumping'.

102

I. A simple case study, TL: a Toy Language

1.2 lh~_~r ami L~kio n

ae now descriae the translation that takes as input the IDS equations
and produces 8CPL procedures which are the code geqeratioq part of a
compiler for the language defined. (These procedures can be found in
Appendix E.)

i~L_ l_E#i~ova l ot.__~h~ State.

In the first stage of the translation process we remove all
references to the state. This is in keeping with the fact that a
state to state transformation is a function performed by the code
generated together with the hardware of a partlculgr machine. The
compiler is perfor~iqq e translation that ends oqe step behind the
state to state function. As an example, coqsider the semantic
equation for assignq~ent :

C[i:=e]pc=
R l e] p #~ A s s i q n (p [i | IL) o c.

For a detailed specification of the operators refer to Apendix A.
After the analysis of the operator ~ we end up with the following
procedural text:

Lh~ C [i : = e] p c ~3£
{ Assign(p[i| ~L)(l~le]p) o c
}

To emphasize that this is not a mathematical equation we enclose the
new pr_Qcgdural-~ext within curly brackets.

The a n a l y s i ~ o f the o p e r a t o r ~2 w i l l i n f a c t produce two s~atements ,
and after uncurrying the assignment example will now look like:

LET C (. [i : = e] , p, c) BE
(A s s i g n (p (I i l) I L , R (I e l , p))

c
}

103

From S tandard to I m p l e m e n t a t i o n D e n o t a t i o n a l Semant ics

1.2.2_~to re d_zal ues

Next we iqtroduce hardware registers to replace direct references to
stored values. The introduction of fast registers transforms the
procedural text for the compilation of the assignment command into:

LET C(li:=e|, o, c) BE
(R(le], p. FirstReg)

Assign~p(Iil):L, FirstRe~)
c

}

so that R will know where to store the result of evaluating the
expression and Assiqn where to get it from.

i, 2 • ~i__~on tlnuati ons

Consider the semantic equation for a vIHILE loop:

C[J'while '' b "do °' c'Ipc=
Fi x{~c" .BIo Jp{Clc"] (pC BRK/c] [LO0/c"])c" }c}.

Before the analysis of continuations it will be translated into:

LET C(["while" b "do" c'l, p, c) BE
{ Fix(~c'.B([bl, p, C([c'l, p[BRK/c][LO0/c'], c'), c))
>

The t r a n s l a t o r , knowing what a c o n t i n u a t i o n i s , and be ing ab le t o
analyse the conte'<t in which it appears will be able to translate
this text into:

104

1. A s i m p l e case s t u d y ° TL : a Toy Language

LET C(l"while" b "do" c'l, p, c, t) BE
{ thT c" = T,qisContinuation()

LET c'" = ForwardContinuatioq()
B(,lbl0 p, c". c, FALSE)
FixContiquation(c'")
C(] [C"]o p[~R</c][LO0/c'], C'o TRUE)

}

dhere the three procedures This, Forward and Fix-Continuation are
used in such a way that they leave to the compiler writer the final
choice of implementation. For example they could respectively be
-Current Proqr a~nCount aT, NewChain and FixChain- in a "chaining
mechanism-" or -Plant~ewLabel, ForwardLabel and PlantLabel- relying on
the activity of a loader.

~ie argue that a simulation of the mathematical environment function
is not feasible if efficiency is desired. Thus we translate in a way
to have only one global environment around at a time, for which we
provide a Iota structure and primitives to declare and undeclare
denoted elements. Environments disappear from parameter lists, The
inverse of some functiops are defined in order to undo any alteration
to the global environment, so that we normally end up with a
"sandwich" of the form:

Update environment(...something...)
Call to some procedure
Undo environneqt(...same something...)

Thus, after these transformations the procedural text corresponding
to the ~HIL£ 9ecomes:

105

From S t a n d a r d to Implementation Denotational Semantics

LET C(i"while" b "do" c'], c, t) BE
(LET c" = ThisContinuation()

LET c H = ForwardContinuation()
8(ib|, c H, c. False)
FixCont inuation(c")
Declare (BRK, c)
Declare(L(X). c')
C([c~]. c ~. True)
UnDeclare (L (~))
UnDec I are (BRK)

}

Note that the procedure Declare and UnDeclare (and also This, Forward
and Fix Continuation] do not generate code. They are part of the
"compile time r" activity.

1.2.5 ~CPL

Finally we translate into BCPL. This involves only syntactic
transformations, i.e. renaming curly functions and making them
procedures selecting by cases via a S~IITCHON statement, renaming
decorated variables, making syntactic references into node references
via selectors, and a translation for those procedures returning a

tuple. The fragment of the resultant procedure to generate code for
commands corresponding to the assignment and ~IHILE commands is:

106

I. A simple case study. TL: a Toy Language

LET CC(Node. c. t) BE S~IITCHON Type OF Node INTO
(

CASE Com. ass ignment ;
RR(Second OF Node, F i r s t R e g)
U p d a t e (U q (F i r s t OF Node) , F i r s t R e g)
JumpCoqti n,]a t i o q (c, t)
ENDCASE

CASE Com.wnile :
(LET ci = ThisOontinuetion(.)

LET c2 = F o r w a r d C o n t i n u a t i o n ()
B B (F i r s t OF Node. c2, c . FALSE)
FixCont inuat ion (c2)
Dec la re (BRK. c)
D e c l a r e (L o o . c l)
CC(Second OF ~lode, c l , TRUE)
UnDeclare(LOO)
UnDecl~re(BRK)

}

ENDCASE

)

l~.P_~6E~ample_Qi_gode qenera~iD_B

Cons ider a frag~aent of a program in TL which is a p rocedure to
compute the f u n c t i o n f a c t o r i a l by i t e r a t i o n :

beg in i n t e g e r '4;
i n t e g e r FI
p rocedure Fec t l
beg in ,~ := Ii

dhile N > 0 do begin F := F * NI N := N -I end
endl

ca~l Factl

end

The c o r r e s p o n d i n g code f o r the DEC-IO, p l a n t e d by our gene ra ted
c o m p i l e r w i l l be

107

From S t a n d a r d t o I m p l e m e n t a t i o n D e n o t a t / o n a l S e m a n t i c s

L2-"

L5:

L3-"

LI:

L 4 :
~ r o n q /]

L6=

#1:
R2:
W3:

3 RST

M()~E4

MOrEl
MOVE#4

MOVE
JUMPLE

t4OVE
I MUL
M()VEM
~4OVE
SUBI
MOVF,'4
JRST

JRST

PRINTs

XtID
XWD
X~D

O,L t

1 6 , 4 3

,^D1

.~2
, ~I

, L 3

,W2
,WI
,~2
.~I
.^DI
,Wl

0, L5

0.@~3

t 6 ,L2

O,L6

O, (AS C I Z /

O,
O,
O.

i integer N
i Newt#l)
I Declare(N, #I)
i integer F
; New(W2)
i DeclareLF. W2)

procedure Fact; ...
; N e w ~ 3)

; D e c l a r e . (R E T , L3)
D e c l a r e (B R K , L4)

D e c l a r e (L O 0 , L4)
i F : = I

i while N>O do ...
I Declare(BRK, L3)

Declare.(L[)O , L5)
I F := F*N

i N "= F - I

I U n D e c l a r e (L (X) , LS)
U n D e c l a r e (B R K . L3)
U n D e c l a r e (L O 0 , L4)

U n D e c l a r e (B R K , L4)

U n D e c l a r e (R E T , L3)

D e c l a r e (F a c t , L2)

; call Fact

U n D e c Z a r e (F a c t , L2)
I F r ee (R2)
i U n D e c l a r e (F , ¢t2)
; Free (~I I)
; U n D e c l a r e (P , ~ I)

108

2. Further d e v e l o p m e n t s , RTL: a Recursive Toy Language

2. Eur th r~T__dey_~opmen~_~:_ml_~{ec ursi_ze T o : ~ L _ i a ~

In this section, we introduce recursion in our toy language, so that
now we talk about a language RTk(Recursive TL). ~e develop the IDS
equations and then we indicate how to carry out a proof that the SDS
and IDS are congruent.

2,1, D e c l a r a t i o n and [[L~oc~atieo_/o_v_iZO/3/&ent

If we simply add recursion to the IDS of TL, we obtain an equation
like the following (we ~iso ac~J one call-by-value para,~eter):

Dl"procedure" i(i');c]p=
Fix(kp'.p[[i]/~avc.(New(p'[ARE/a])=>

~<l,O's>.C/c|
(pH[[i']/l][RET/c][BRK/~rong]
[LOO~rong])c}]).

Aga in we a re i n t e r e s t e d i n an e q u a t i o n wh ich w i l l i n d i c a t e how to
p l a n t e f f i c i e n t code, bu t i t seems t h a t t h i s e q u a t i o n does not h e l p
us. I f we c o n s i d e r t h e v i r t u a l machine b e h a v i o u r at the d i f f e r e n t
t i m e s o f d e c l a r a t i o n , i n v o c a t i o n and e x e c u t i o n of a p r o c e d u r e , we can
i s o l a t e f i v e d i f f e r e n t o b j e c t s , wh ich are m a n i p u l a t e d in a way t h a t
c h a r a c t e r i s e s most o f the f l a v o u r o f d i f f e r e n t p rog ramming l a n g u a g e s .
Namely, associateJ with every procedure there is:

(LL_L~ai bi:idin ~
A function to map everything which is bound within the procedure.

(] ~ _ [. K t e ~na i _~ i ELdiZlg
A s i m i l a r (b u t no t e q u a l) f u n c t i o n t o map e v e r y t h i n g wh ich is f r e e .

IIII) L<lcal_~work~a~_~
A function to keep track of those locations defined within the
procedure which follow a block structured discipline as opposed to
those following a heap discipline.

I I V) _ R e t u r n c o q t i n u a t i o n
The f u n c t i o n mapping what
a c t l v a t i o n t e r n / h a t e s .

r ema ins t o be done when the p r o c e d u r e

I V) Cu r r~n t c<)3~inua~Lon
The f u n c t i o n mappin~ what rema ins to be done w i t h i n the p r o c e d u r e .

I09

From Standard to Implementation Denotational Semantics

Some of these are defined at declaration time. For example part of
(I), ~II). part of (llI) and (V) are defined at this time in
languages with static binding like Algol.

At invocation time, a copy of what was created at declaration time is
made and some other functions are defined, for example (IV) and in
dynamically Do,and languages (If).

At execution time, some functions may be updated. For example (1) and
(] I I) may be e x t e n d e d by new d e c l a r a t i o n s . For a f u l l d e s c r i p t i o n o f
this model, the reader is refered to [Hayes78].

If .we now look at our domain definitions and equations we can see
that there is no clear mathematical machinery to abstract our model
at the diffe'rent times of declaration and invocation. The environment
appears to be abstracting most of the objects above, but they are not
structured in the same way:

p : U = [[I d e ~ D] x C x C x C x A] . e n v i r o n m e n t s

Secondly, there is no distinction whatsoever between free and bound
identifiers. From a (purely) mathematical point of view, it is not
necessary to distinguish between them. However, from an
implementation standpoint, we have to be able to tell whether a
variable has been declared within the current procedure or in an
external one. leading to a completely different behaviour of the look
up function. For example it might be necessary to walk down a link
chain in a stack.

Finally the domain of locations is not absracted at an appropriate
level. In the implementation of block structured languages it is
reasonable to associate variables to "offsets" within the workspace
of a procedure or block at compilation time. Locations are only
allocated at execution time when a "base" is calculated for all the
offsets of the local variables.

To overcome these problems we are going to modify the environment so
that it precisely aostracts the model described above. The first four
functions are qoing to be members of the environment while (V), the
current continuation is still going to be passed as an explicit
parameter to the valuations.

110

2 . F u r t h e r d e v e l o p m e n t s , RTI_: a R e c u r s i v e Toy L a n g u a g e

I:L. block structured Locations
b:B. Bases
o:0. Offsets

f : F = [M x U x 0 x 9] .
p:U=EA4 x U × [B x O] x C].

I I I I l l IV

Function closures
environments

In relation to [Hayes78], F is an Invocation Record Frame and U is an
I n v o c a t i o n R e c o r d , o r i n t e r m s o f [B o r n a t 7 7] a P r o c e s s S t a t e
D e s c r i p t o r .

#e now describe the parts of the environment, or invocation record in
detail :

(I) L o c a l binding
The b i n d i n g map:

m:,~=[[Ide ~, D] x C × C]. binding ,~ap

is quite similar to the original environment domain. It binds
identifiers to their denoted values and the structured jumps BREAK
and LOOP to their respective continuations, The empty binding map is
defined to be"

Nilm:M.

Nilm=
< ~ l l . N i l d , 4 r u n g , ~ r o q g > .

(If) External binding or an Environment link
This is a reference to the environment of the textually enclosing
procedure where the denotation of free identifiers can be found. The
function

L o o k U p : [I d e ~ U * E] .

Look Up[i i p=
p.[i 1=>

kd . d = ~ i ld~L ook U p [i i (pb×T) o
d ? O ~ L o c (N l o c < p B A S , d l O >) ' , I E , d ? F ~ d l F I I E , T e .

111

F rom S t a n d a r o t o I m p l e m e n t a t i o n D e n o t a t i o n a l S e m a n t i c s

defined recursively, implies a behaviour which searches down thls
c h a i n of environments when the denotation of a free identifier is
required. Bound identifiers are found in the binding map. Looku p also
converts offsets in D to their corresponding locations by reference
to the Base iq the local workspace component of U.

The semantic equation for a single identifier inside an expression
then becomes:

R Ii ip--
Load (LookUpli l p ~L) .

(I I I) L o c a l w o r k s p a c e

I n a f u n c t i o n c l o s u r e , o r d e c l a r a t i o n r e c o r d f r a m e , t h e l o c a l
w o r k s p a c e i s an o f f s e t . I t i n d i c a t e s w h i c h i s t h e f i r s t f r e e o f f s e t
at declaration time, whereas in an environment in IDS it is a pair
<b, o> indicating where the workspace starts and ends, respectively:
<pBAS, First()> and <pgAS, proP>.

I t w o u l d be n i c e to i d e n t i f y l o c a t i o n s w i t h t h e p r o d u c t o f b a s e s and
offsets in ti~e follo~ing manner:

L = [B x o] .

H o w e v e r , i f we do t h i s we c a n n o t a c h i e v e a r e a l i s t i c i m p l e m e n t a t i o n
semantics. As it stands identifying k with B x 0 (assuming B and 0
are countably infinite domains, so that for any B and 0 that might
occur in a program the corresponding location exists) means we have
an infinite number of locations - which is certainly not required in
an implementation semantics. However, if we restrict B and () to being
finite domains, we then imply an arbitrary limit to the number of
blocks that can appear in a program, and an arbitrary number of
locations that can be used in each. [¢either of these two
possibilities matches up with the standard semantics of the language.

So we are forced to postulate that there are a finite number of
locations and a function:

koc:[N ~ L]. Undefined

which gives a proper location when given an integer in
(i: I <= i <= n}, where n is the number of locations, and otherwise
indicates an error. Also we need a function:

t12

2. Further developments. RTL: a Recursive Toy Language

Nloc:[[B X (]] ~ N]. Undefined

to indirectly find the location correspondinq to each B x O. (~de do
not make Nloc: lib x ,')] ~ L] as we may want to store a <b, o> pair
without assu~iqq that the correspondinq location exists,)

As we have already indicated, the existence of <b, o>. for some b and
o does not g,Jarentee the existence of the correspondin9 location, and
we therefore need the function "New" again, this time with
functionality •

New" liB x O) ~ k].

New<b,o>=
Loc(Nloc<b,o>) .

We m u s t , o f c o u r s e , i n s i s t t h a t t h e l o c a t i o n s a r e used i n a s c e n d i n g
numeric order, with Nloc<FirstB, First()> = I. and i n fact B and 0
could be identified with N, but we prefer not to do this. Instead we
define two primitive functions to obtain new bases and offsets, which
we assume satisfy the above two conditions:

NewB:[[B x o] ~ B]. Undefined
Next():[(] ~ 0]. Undefined

and two constants which are the first base and first offset:

FirstB:B. Undefined
First():(). Undefined

To increase the size of the workspace at invocation time we use the
post-fix operator:

p[TOP / NextO(pTOP)] = p', where p'TOP = Next()(pTOP),
and p'X = pX otherwise

Getting a block structured location and binding it to an identifier
is now a single activity modelled by the primitive functions BindF at
declaration time, add Dy B i q d P at invocation time:

113

From S t a n d a r d t o I m p l e m e n t a t i o n D e n o t a t i o n a l S e m a n t i c s

BindF'[Ide ~ ,1 ~ O ~ [4 x O]].
B indF.| i I mo=

<m[iil/o],t!extO o>.

B i n d P ' [I d e ~ U ~ U] .
B i n d P & / I p =

New(pLOC)=>X l . l = T l ~ T p , p [TOP/Nex tO(pTOP)] [I L I /pTOP] .

(IV) The fourth element in a function closure is a member of P, the
domain of procedure values:

P=[U ~ V ~ C]. Procedure values

It models the meaning of the procedure which is expecting an
environment end an actual value for its formal parameter, dhile in an
environment, it is a member of C, the domain of (return)
continuations. In relation to [Hayes78], (IV) can be seen as a
reference to the current continuation field of the calling invocation
record (envlronmeqt).

The action of activatiqq a function closure (creating a new
invocation environment), is modelled by:

Activate'IF ~ [[3 × O] ~ C ~ V ~ C].

Activate f<b.o>cv:
{ f94}<fgl , f 92, <~,~ew~ <b ,o> ,f93>,c>v.

Assuming contiguity of caller ~nd cellee, activatin3 means pushing
the call ee's base on top of the worksoace of the caller's invocation
environment.

After incorporating the .new environment structure and their
associated pr in.it iv e functions the IDS definition of procedure
declaration in P, Tk is:

D&"procedur e" i(i')~c|p=
Fix(~p'.(BindF[i,l[]ilm FirstO=>

~<m,o>.p[[il/<m,p',o,~p,,v.{New<p,,BAS,p,,[i,|~O>=>
~i. {Assic/n iv o

C~clp'" {p"RET} } } >])) .

114

2. Fu r t he r developmeqts. RTL: a Recurs ive Toy Lanquaqe

The equation shows how the binding map (m) is formed from the empty
one ~Nilm) with an additional binding of the parameter [i'] to the
first free offset, an external binding (p') which is the newly
created fixed point environment, an indication of how many offsets
have already been claimed (one in this case) and finally the
procedure value in P.

The IDS equation for a procedure call in RTL is:

C/"call .'' i(e)]pc=
QIelp ~ Activate(LogkUplilp:F}(pLOC)c.

2,2 Relationshio between the_def/j3itLozl~

~e indicate here how a proof of congruence between IDS and SDS of TL
can be obtained. This is based on the proof of congruence between IDS
and SDS of the recurslve version of TL, which is similar in many
respec ts .

There are two suoataqtial changes between the two semantics given for
TL: the structure of the environment is altered and the semantic
function for boolean expressions has different functionality. As
these are entirely separate issues we propose to split the proof into
two parts so they don't become confused (which they could do as the
environment is a parameter to the valuation (semantic function) for
boolean expressions). The disadvantage of splitting the proof into
two parts is that we need an intermediate semantics between SDS and
IDS which nas one of the changes referred to above, but not the
other. This is a little unfortunate especially as later on we need
two further intermediate semantics for the environment part of the
proof, but we persist with the method in the belief that it is the
easier to follow.

As the proof of congruence between the valuations for boolean
expressions i'~ considerably easier than that between the two
environment domains we consider that first by defining a semantics
SDS(B) differing from SDS by having the boolean expression valuation
from IDS. Later we consider the congruence between SDS(B) and IDS
which will eat eblish that the new environment domain does not
significantly alter the semantics of the language.

115

From S t a n d a r d to I m p l e m e n t a t i o n D e n o ~ a t i o n a l S e m a n t i c s

3 ~ h e Congruence b e t w o ~ D : ; ; ~ _ ~ n d SDS.([~)

Definition of SDS(B).

As SDS except: B:[Bex ~ U ~ C ~ C ~ C], and of course all the clauses
in the definition of B ~re altered to look Like those in IDS, where p
refers to the environment in SDS rather than IDS. Also change the
following clauses:

C..["if ~I b "then" c" '"else" c'-']pc=
13.[b l p { C,[c"] pc } { C_,.[c " "] p c } .

C.["while" b "do" c"~pc=
F i x { ~ c ~ . B I b l p { c £ c "] (p [B R K / c] [t O O / c "]) c ' } c) .

Theorem : SDS i s c o n g r u e n t w i t h SDS(B) .

P r o o f :

We assume h e r e t h a t a l l t h e f u n c t i o n s s t a r t i n g I f . . . end I s . . . i n t h e
IDS valuation fur B[ere'] give false for any argument. So

B.[er e"] p c c " =

R . l e |p ~ ~,v.{l~le-'lp L{ ~ , v ' . O . [r l v v ' e c ' } .

We need t h e f o l l o w i n g lemma (whe re BJ r e f e r s t o 8 i n SOS and B2
refers to B in IDS):

Bl.[b]p ~ C o n d < c , c ' > = B2.[blpo

w h i c h i s e a s i l y p r o v e d by i n d u c t i o n o v e r t h e s t r u c t u r e o f b . The
result follows immediately from this lemma.

116

2. F u r t h e r deve lopmen ts , RTL: a Recurs i ve Toy Language

3.2 Ib.e_cong~s~c.nce [)e ~.~/._~e./1 .S,OS(~.I._a.Q~L_.LD_~

~dany o f the equa t i ons [n the SDS(8) and IDS o f TL now l o o k a l i k e , and
although th~ state and environment domains in the two semantics are
different, the proofs of their congruence are trivial. The interest,
therefore, lies in the equations in the two definitions which look
different, and in particular in the semantic function D. Although we
only have a handful of cases to consider the task is more difficult
than appears at first sight for reasons we now outline.

The alterations to the state and environment domains appear to be
minor, but they arc very fundamental. }le are taking information out
of the state underlying SDS(B) and putting it into the environment in
IDS. For these two semantics to be congruent we }]ave to insist that
this information corresponds at all times, otherwise they could be
using the locations in different ways.

An establisned metnod[Milne76][Stoy77-9] for relating two domaiqs in
semantics WhiCh are to be proved congruent, is by imposing inclusive
predicates on them. In particular here we have to relate the
information in the L ~ T component of the SDS(B) state and the L ~ T
component of U in IDS. which contain information about the locations
in use in either semantics. As this information is kent in different
domains in SDS (8) and IDS, predicates defined on corresoondi ng
domains cannot insist that it is the same.

One way to overcome this problem might seem to be to define a
composite predicate on pairs of states and environments, so we can
relate the locations in use. Unfortunately this does not work for at
least one reason: environments are bound into continuations in IDS
(as well as in SOS), and when we are supplyin/ a state to a
continuation in IDS there is no way of checking that the environment
bound into that continuatioq contains the same "location in use"
information as the state supplied in SDS(B). lqfact we cannot find
out anything about the environment bound into a continuation. A
possible solution to this might seem to be to split a continuation so
that it is a member of the domain [U ~ S ~ S] x U, leaving the
environment explicit, but this involves changing the semantics in
such a way that it is not implementation oriented. In any case we are
trying to find a proof that SDS(B) and IDS are congruent, not find a
proof and then make up IDS.

Unfortunately we are led to the conclusion that two intermdiate
semantics are req, Jired to prove the congruence bet'veen SDS(,3) and
[DS. These ar~ SDS(~4), which is $DS(B) modified by having a copy of
the L ~ T co,~Iponent of the state in the environment, and IDS('~), as
IDS except that the state has a copy of the L ~ T co~nponent of the
environment in it. The details of the semantics have to be altered a
little to Keep the new parts of the domains in step (ie containing
the same infor~nation) as the originals. This still does not solve all

i17

brom Standard to !mplementation Denotational Semantics

the problems, though, as we still have environments ~ound into
continuations, and even though the state now also contains the
"location in use" information we must ensure that it is the same as
that in the bound in environment when a state is applied to a
cont~nuatlon. To take care of this problem we propose "continuation
transforming" functions which take as arguments a continuation and
the envlronqent to ;ge bound into it, and only allow the continuation
to be applied to a supplied state, when the 'location in use"
information agrees with that in the bound in environment. These
functions appear in the semantics everywhere where a new continuation
is being cre~ted 9s argument to a semantic function (aqd a few other
places where they help in the proof - don't forget we are now
creating a semantics for this purDose). The net result is that every
continuation in the semantics contains a check that the supplied
state contains the same "location in use" information as the bound in
environment before it is appli~dl this is because every time a
continuation is created the check is incorporgted, end all
continuations have to be created somewhere in the semantics.

~hat then have we achieved after all this effort, and how is the
proof to proceed? ~ell we now }]ave four semantics:

SDS(B) <-> SOS(~{) <-> IDS(!~O <-> IDS

(where the two (~) semantics contain the "continuatio] transforming"
functions referred to above) which are all congruent. For SDS(B) and
SDS(M) to be congruent we have to show that the added co~nponent of
the environme~ d)es not affect the semgntlcs of any program in any
siqnificant way, and that the checks for identity of location
information in each continuation have no effect. Similarly for the
congruence between IDS(~) and IDS. ~hen we have established these
results, and they are intuitively fairly clear, all we have to do is
show the congruence between SDS(M) and IDS(~) to finish the whole
proof.

~e acknowledge the h e l p and s u o p o r t f rom Ray T u r n e r and the SRC. ~ i ke
Brady has at.~ays g i v e n e n c o u r a g i n g s u p o o r t .

118

A. ~Jotat ion

A ._2ot at£o~

O p e r a t o r s

d:D=Any D o m a i n

O1:

. - > . ' [[T x k) ~(O] ~ D]

T h i s i s t h e c o n d i t i o n a l f , ~ n c t i o n . An e x p r e s s i o n t - > I . d " w i l l t a k e
t h e v a l u e d 4hen t i s T r u e a n d t h e v a l u e d " when t i s F a l s e .

02:
.o.:[[[D ~ O'] x [D" ~ D'']] ~ [D > D"]]

g'[D" ~ g"]

(f o g) d = q (f d)

T h i s i s t h e r e v e r s e d f o r m o f t h e c o m p o s i t i o n o p e r a t o r .

03:
.*.'[[[D" ~ [D x D"]] × [D ~ [D'" ~ D'"]]] ~ [D" ~ D''']]

f'[D s ~ [D x D'']]
g:[D ~ [D'" ~ J)'"]]

(f * q) d ' = 7 d d ' " ¢4here f d " = < d . d " >

R e v e r s e d fo r ,~ o f t h e S t a r o p e r a t o r u s e d b y C . S t r a c h e y i n t h e s e m a n t i c
e q u a t i o n f o r t h e d h i l e - l o o p .

0 4 t

. . ~ . - ' [[[D " ~- D] x [D ~- [D " ~" D ' ']]] ~- [D t ~ D t ']]

f : [D" -~ D]

g : [D ~" [D" ~ D P ']]

(f -~ q) d p-- 9 (f 4 ") d t

This operator will normally be used for expressions without side
effects.

119

From Standard to Implementation Denotational Semantics

05:
.=>.:[[[D x [D ~ D']] ~ D']

f:[D ~ D']
x.~D

d => ~ x.fx is the same as (kx.fx)(d)

This operator, wn ich reads a s "produce" is the reverse
application, so that we can read equations from left to right.

of

0 6 :

d:[DI + ... + Dn]
i:N and I <= i <= n

d~Di i s the projection
[DI + ... + Dn]

of d into the subdomain Di of

07"
.:l.

d:Di
i.'N and I <= i <= n

d~:[[Di + ... + Dn] is the injection of d into [D1 + ... + Dn]

08"

.~.'[[[D] x ... x Dn] x N] ~ D]

d=<dl, ... , di dn >.~[DI x ... x Di × ... x Dn]
i:N And I <= i <= n

d # i=di

So that # is used to extract individual components of tuples.

0 9 :

+J'.

d=< dl, ... , di, d(i+l), dn >:[Di x ... x Dn]
i:N And I <= i < n

d+i=< d(i+l) Dn >

Operator used to remove elements from tuples.

120

A. Notation

0 1 0 :

d=< d l d i > : [DI x . . . x D i]

d ' = < d j dq > : [D j x . . . x Dr]]

i,j:N and j=i+l <= n

d ~ d ' = < d l , . . . , dn >

Operator u s e d to c o n c a t e n a t e tuples.

0 1 1 :
. ? . ,

d : [D1 + . . . + Dn]

i : N and 1 <= i <= n

d?Di Is True if d

o t h e r w i s e i f F a l s e

is in the Di subdomain of [Di + ... + Dn]o

(] 1 2 :
[/] : [[U x D x D"] ~, U]

x ' O r < (~ x . x : , J - > d , . (p ~ l) x) , p 9 2 , . . . >

p [d / d ~] =

t < p g l p g (i - l) , d ' , p g (i + l)

if J:Ide

> if '~ is a selector
a n d p d = p g i

This is the postfix operator to create new environments. (The
notation DS£L, where SEL has been defined as a semantic selector, is

equivalent to SEkp.)

121

F r o m S t a n d a r d to I m p l e m e n t a t i o n D e n o t a t i o n a l S e m a n t i c s

~. S v n t a x o f]-L

ZyD%act~Q do, nain&_(commoD__b~_bQ~h SD~__a/I~ IDS v e r s i o n s)

a " A o p .
b : B e x .

C "Com.
d'Dec.
e ; E x p .
i:Ide.
j:Jmp.
n :Num.
q . ' O u o .
r : R o p .
w:#ri.

Arithmetic operators
B o o l e a n e × p r e s s i o n s

Commands
D e c l a r a t i o n s

n o n b o o l e a n E x p r e s s i o n s
Identifiers (U n d e f i n e d)

structured J u m p s

~ u m b e r s (U n d e f i n e d)
Quotations (U n d e f i n e d)
Relational operators
Writable expressions

S y n l ; ~ x (common t o b o t b _ S D S and ._ IDS v e r s i Q n s)

a : ; = + I - I * ', /

b ; ; = b`, " a n d " L)`,`, ~ b`, " o r " b `,t ', " t r u e " ', " f a l s e " I (b ` ,)
e r e - "

C : ; = C'lC ,̀t ', i.'=e ', "if" b "then" c̀ , "else" c t-" ',
"while" b "do" c p : "call" i ', "dummy" ', j ', "read" i
"write" w ~ "begin" c`, "end" I "begin" d;c" "end"

d "'= "procedure" ilc I "integer" i ', d`,Id`,`,
e " ' = i I e ' a e ` , ` , I n I (e ` ,)

j ":= J'break" I aloop" ', "return"
r ; ' = > : < ', = I >= I <= ', <>
w ; : = e : q

122

C. Standard)eqotational Semantics of TL

C, S t a n d a r d 3%qot_ation~l_,~emaOZiGa_ef TL

ISL: _SDS_Qf [i

~ r ~ i a n ~ L i & _ d o m ~ i n s

c:C=[S ~ S].
D=[P + L].

1 :t.
N,
P=[C > C].
O.

r:R=[N + O].
s:S=[[L ~ V] x V* x R* x [L ~ T]].

T=[{ TRUE } + (FALSE)].
p : O = [[I d e -', '3] "4 C '< C x C] .

v:V=[N].

Command cont.
Denoted values
Locations
integers
Procedure values
Q u o t a t i o n s

printable values
States
Truth values
environments
storable Values

S ~ m a n t i c s e l e c t o r s

BRK==~p. plz2.
L(X)==Xp. p#3.
RET==Xp. p#4.

123

From S t a n d a r d to Implementation Denotational Semantics

S 9/na.o.t. i £_f u n¢ tio ns

B : [B e x ~ U ~ S ~ T] .

C : [C o m ~ U ~ P] .
D : [O e c ~ U ~ S ~ [U ~ S]] .

J:[Jmp ~- U ~- C].
R : [E x p ~. U ~- S ~, V] .

~ ' [v ~ r i ~, U ~- P] .

~ula~tic primilives

A:fAop ~ V ~ V ~ V].
N:[Num ~ N].
O:[Ouo ~ 0].
O'[Rop ~ V ~ V ~ T].
~rong :C.
A s s i q n ' [L ~ V ~ C] .

A s s i g n l v s =

< ~ l ' . l = l ' ~ v , (s g l) l ' , s # 2 , s ~ 3 , s % 4 > .

U n d e f i n e d

U n d e f i n e d

U n d e f i n e d

U n d e f i n e d

U n d e f i n e d

L o a d : [L ~ S ~ V] .

L o a d i s =

(s # l) l .

New: IS ~ [L x S]] .
R e a d ' [S ~ IV × S]] .

Read s=

(s # 2) = O ~ < T v , s > , < s # 2 # i , < s ~ t , s # 2 f l , s # 3 , s # 4 > > .

y~rite:[R ~ C].
~Irit e rs=

<s#i ,s#2, s93~-r, s94>.

124

C. Standard ;eqotational Semantics of TL

Semantic_valuator for_~xpr es~LQns

E l i l p =
Load (p,[i] : k) .

RIe" ae ' "]p=
R. [e ']p ~ X v . (R [e " l p D k [a] v) ,

R / n i p s =
N[n l .

RI (e~ ') l p=
R[e"]p .

Semant i c _ v a l u a t o r far_b_QD19_a[l_~xpre~s/ons

K[b" "and" b''|p=
Blb'lp ~ Coqd<B[b"Ip,~s.FALSE>.

B[b" "or" O'']p=
B[b']p ~ Cond<~s.TRUE,B[b'']p>.

B.[" true"]ps=
TR UE.

B,l"f alse"]ps=
FALSE,

B / (b ")]p=
B,[b J] p.

B/e re ~ |p=
R l e l p ~ ~ v . (R [e ' | p o (] d r] v) .

125

From Standard to Implementation Denotational Semantics

~ c va lu~ to r__ fo r c O ~ d ~

C~[c ,p ~c p-z] p c =

C[c '] p (C [c t " l p c } .

C.l i : = e l p c =
R I e l p ~, A s s i g n (p l i l ;L) o c .

C ~ [" i f ~' b " t h e n Jf c I " e l s e " c t Z] p c =
& [b]p ~ Cond<C[oP]pc,C[c H] p c > .

C [" w h i l e " b "do" c- ' lpc =
F i x (~ c ' . (B l b l p ~ Cond<C[c - '] (p [BRK/c] [LO0 /c - t]) c r ° c > } } .

C [" c a l l " i l p c =
{p,[i] ', P}c.

C,["dummy"]pc=
c.

C~ j l pc=
J.[j l p .

C[" r ead" i l p c =
Read _~ A s s i g n (p l i l l L) o c.

C~writ e" wlpc=
W[wlpc.

C . [' ° b e q i n " c ~ " e r l d "] p c =

C[c ~] pc.

C. ["beg in ~ d~c t ~end" l .pcs=
(D.[d]p _~ ~ p ~ . C . [c r l p t (~ s t , c < s P ~ l , J ~ 2 , s t ~ 3 , s ~ 4 > } } s .

126

C. Standard Denotational Semantics of TL

Z ~ l a n t ~ c _ v a l u a t # r f o r d e c l a r a i i _ Q n ~

D/"procedure" ilclps=
<p [li]/~c.CJ[c I (p[RFT/c] [BRK/Wrong] [LOo/~irong]) c], s>.

Di~'integer 'j ilp--
New _* ~is.<p[[i]/l].s>.

illd'ld'-'lp=
D [d J l p -* Did'" 1.

~emantic_valuator fgJl_i~Euctured jumps and writable_~alues.

J l " b r e a k "]p=
pB RK.

J,[~' 1 oop ~' lp=
pL 00.

J4 " r e t u r n"]p=
pRET.

Wle]pc=
RJ[e]p @ ¢~r i te o c.

~tlq] pc=
r l t e (O E q]) o c.

127

From Standard to Implementation Denotational Semantics

D ~ mp I ~m enta t i o [LDe~ ota tion a l__~eman tic a_~C_ iL

I~_K_IDS of fL

ema ni~t~_doEla ins

a.'A=[L ~ T].
c : C = [S ~ S].

D=[P + L].
l:k.

N.
P=[A ~ C ~ C].
Q.

r.'R=[N + Q].
s'S=[[k ~ V] x v* x R*].

T=[{ TRUE } + (FALSE }].
p'U=[[Ide ~ D] x C x C x C x A].
v:V=[N].

~ = [V + k].
Y = [A o p + Be× + Exp + R o p] .

A r e a f u n c t i o n
Command c o n t .
D e n o t e d v a l u e s
L o c a t i o n s
iFtegers
P r o c e d u r e v a l u e s

O u o t a t l o n s
p r i n t a b l e v a l u e s

St ates
Truth values
environments
storable Values
dumped ~alues
reversed sYntax

~ m ~ c _ . s ~ c t o r s

B R K = = X p . p e 2 .

L (X) = = ~ p . p ~ 3 .
RET==Xp .p~4 .

A R E = = ~ p . p ~ 5 .

128

D. Implementation Deqotational Semantics of TL

ema nt i q~_/_~nc tio qs

B:[Bex ~ U ~ C ~ C ~ C].
C'[Com * U ~ C * C].
D:[Dec ~ U ~ U].
Jz[Jmp ~ U ~ C].
~ : [E × p ~ U ~ S ~ V] .

~l:[#ri ~ U ~ C ~ C].

Semantic or imiti yes

A : [A o p * V ~ # ~ S ~ V] .

N : [N u m ~ N] .

O s [O u o ~ O] .

O : [R o p ~ V ~ # ~ C ~ C ~ C] .

B J u m p : [R o p ~ V ~ C * C ~ C] .

B L e a f : [E x p ~ Rop ~ U ~ V ~ C ~ C ~ C] .

D u m p : [U ~ V ~ S ~ [L x U x S]] .

IfNeedToDump:[Exp ~ T].
IfNeedToReverse:[[Bex + Exp] ~ T].
IfZero:[Exp ~ T].
I s L e a f : [E x p ~ T] .

R e v e r s e : [Y ~ Y] .

R L e a f : [E x p ~ Aop ~ U ~ V * S ~ V] .

r o n g : C .
A s s i g n z [L ~ V ~ C] .

Assign ivs=
<~l'.l=}'~v,(sfl)l',s#2,s#3>.

U n d e f i n e d

U n d e f i n e d

U n d e f i n e d

U n d e f i n e d

U n d e f i n e d

U n d e f i n e d

Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

Load:[L ~ S ~ V].
Load is=

(s#l)l.

New'[U ~ [L × U]].
Read:IS ~ IV x S]].
Read s=

#(s#2)=O-<Tv.s>.<s#2#l ,<s~l ,s#2+l ,s@3>>.

~rlte:[R ~ C].
#r~te rs=

<s#l ,s#2,s¢3~r>.

129

From Standard to implementation Denotational Semantics

Semanti f~_Atnl/~ator f~r__~x~ns

it.[i l p =
Load(p . [i l IL).

R~ e" a e ~"] p=
IfNeedToReversele'a e'"]~R(Reversef etae "."] ~ Exp)p,
(RJ [e" lp

Xv. I s L e a f £ e ' " |~RLeaf_ [e ' . " l~ a | p v ,
I fN eedToOu mpl e ' . " !~

Dump pv _* ~ < l , p ~ > . (R & e H] p ~] X v . A (R e v e r s & | a] ; A o p) v l) ,
(R] : e ' ' i p @ / L l : a l v)) .

R~ln]ps=
NI n] .

t~.1" (e~')] p=
1%[e~" l p .

Semal: l t ic val~a;zr__for bool_g_az~__~zpressions

B~[b" -"and j' b'-'Ipcc'=
B~ b J |p(~[b''|pcc" }c ~.

B~[b" "or" b " i p c c ' =
B][b"]pc {B ib z,] pcc" } .

BE~wt rue ~]pcc'=
c.

l~L["tal se" |pcc~=
C "p .

B.I: (b J) .1 pcc "=

&[b"]p cc " ,

B#e r e." | pcc S:

I / Z e r o l e l ~ - I ~ e ' | p ~ ~v. B d u m p (R e v e r s e ~ r | I R o p) v c c - .
t f Z e r o ~ e - ' l ~ , R . l e l p ~ :~v. BJump. [r i vcc . " ,
I t N e e d T o R e v e r s e [e r e t] ~ B (R e v e r s e] e r e p ! I Bex)pcc -t ,
(RJ[el p]

~v . I s L e a f [e"] ~ B L e a f . [e " | [r l pvcc t ,
I fJ~ eed7 oDumpl e"]~

Dump pv * ~ < l . p - ' > . (l%[eP]p ,] ~ v . O (R e v e r s e . [r] : R o p) v l c c - - } ,
{ R i e ' l p 2 ~ v ' . O . [r | v v ' c c ' } } .

130

D. Implementation Denotational Semantics of T

5 ~ l a m L k c __y_~l~ at~r_ for _c~ l;:~a nds

C[c'~c"lpc=
Cic']p{O~-'Ipc].

C[i'=elpc=
Rlelp ~ Assign(p.iillL) o c.

C I - " i f " b " t h e n " c" " e l s e " c ' "] p c =
B[b] p { C [c "] pc } {C.[ct-t] p c } .

GP'while" b i'do" c-'Ipc =
Fix{~c -t.B[o]p(Clc"] (p[BRK/c] [LO0/c t])c ~ }c).

CIJic a l l '' i l p c =
{ p I i l IP} (pARE) c,

C~"dummy" Ipc=
c°

C.[j I pc=
J-[j l p ,

C~[" r e ad" ilpc=
Read _~ Assigq(plil;L) ~ c.

C~"writ e" w]pc=
Wlwlpc.

CpIbegin" c r "end~llpc =
CI c -t I p c.

C.[. "begin" d l c -I " e n d l t l p c =
C[c"] (D 1 d l p) c .

131

From Standard to I m p l e m e n t a t i o n D e n o t a t i o n a l S e m a n t i c s

ema~Iti ~ va hJ a%o r__ fQr __~ec i a/za ii~lla

D [" p r o c e d u r e " i l c l p =
p [~ i] / X a c . C lc] (p [ARE /a] [RET/c] [BRK/~trong] [L (x) /Wrong]) c] .

D.[" i nt eger" ilp=
New p=.>~<l ,p'>,p~ [! i]/l],

Dlr d , ~d,~,] p =
D[d"] p = > D [d " "] .

~emant~ C y @ l u a t o r foE__~tr_i/g_~/jF_e~d_j//~ips ~nd _~wr~ tab.l#__Z~Lues.

J.[" b r e a k "]p=
pBRK.

J l " 1 oop"]p=
pLOO.

Jl"return"lp=
pRET.

t',ll e] pc=
R[e]p ~ flrite o

W.lq] pc=
#rite(Olql) o c.

C.

132

E. The Generated Compiler

/ /
/ /
/ /

File OSK:TLBCL. MS
Compiled by ISL IA(23) at 10:32 21/2/80
Output of phase 6

LET RR([,ode, Rag) BE S}tITCHON Type OF ~,~ode Ih~TO
(CASE S . . i :

Load(UU(t!ode), Reg)
ENDCASE

CASE £xp.Aop"
TEST t fNeedToReverse(Node, Reg) THEb RR(Reverse(Node) , Reg)
OR
{ RR(First OF }~ode, Req)

TEST IsLeaf(Third OF Node)
THE~ RLeaf(Thlrd OF Node, Second OF [~ode, Req)
OR
TEST Ift4eedToDump(Third OF ~Tode)
THEN
{ LET i = Oulnp(Req)

RR(Tnird OF :/ode, Reg)
AA(Reverse(Second OF Node), Rag, 1)
Free(1)

}

OR
{ R R (I z i r d OF [,'ode, },]extReg(Reg))

kA(Second OF Node, Rag, NextReg(Reg))
}

}

ENDCASE

CASE S..n:
~ (~ o d e , Reg)
ENDCAS£

CASE Exp. brac, (e t s"
RR(F I r s t OF Node, Req)
ENDCAS E

133

From Standard to Implementation Denotational Semantics

LET BB(~:ode, c. c l, t) BE SI~ITCHO~! Type OF Lode INTO
{ CASE Bex.aqd:

(LET c2 = ForwardContinuetion()
B B (F i r s t OF h'ode, c 2 . c l ° FALSE)
F i × C o n t i n u a t i o n (c 2)
BB(SecJnd OF Node , c , c l , t)

)

ENDCASE

CASE Bex.or"
(LET c2 = ForwardContinuation()

BB(First OF Node, c, c2, TRUE)
FixContiquatioa (c2)
BB(Second OF l'.:ode, c , c l , t)

)

ENDCASE

CASE Bex.true:
JumpComtinuatioa(c. t)
ENDCASE

CASE B e x . f a l s e :
J u m p C o n t i n u a t i o q (c l , NOT t)
ENDCASE

CASE B e x . b r a c k e t s :
B B (F i r s t r)F Node, c , c l , t)
ENDCASE

134

E. The Generated Compi le r

CASE Bex. Rop:
TEST IfZero(First OF Node)
THEN
(RR(Third OF Node. FirstReg)

B Jump(Reverse(Second OF Node), FirstReg. c, ci. t)
)
OR
TEST IfZero(Third OF Node)
THE~
{ RR(F i r s t OF No~e. F i r s t R e g)

9Jump(Second OF Node, F i r s t R e g . c , c l . t)
}

OR
TEST I fNeedToReverse(Node) THEN BB(Reverse,(Node), c , c l0 t)
OR
(R R (F i r s t OF Node. F i r s t R e g)

TEST I s L e a f (T h i r d OF Node)
THEN BLea f (ThL rd OF Node. Second OF Node, F i r s t R e g , c , c l , t)
OR
"TEST IfNeedToUump (T h i r d OF Fode)
THEN
{ LET £ = Dump(FirstReg)

RR(Tni rd OF Node, F i r s t R e g)
O0(Reverse(Second OF Node), F i r s t R e g . i . c, c l . t)
Free(l)

)
OR
(RR(Tnird OF ~lode. NextReg(FirstReg))

()()(Second OF ~,~ode. FirstReq, NextReg(FirstReg)° c, cl, t)
}

)
E~,;DCAS£

!35

From S t a n d a r d t o I m p l e m e n t a t i o n D e n o t a t i o n a l S e m a n t i c s

LET CC(Fode, c, t) BE S~tTCHOf.! Type OF ~3ode II~lO
{ CASE Com.semicolon:

{ LET c l = F o r w a r d C o n t i n u a t i o n ()
CC(Flrst OF Node, c l . FALSE)
F i x O o n t i q u a t l o n (c t)
CC(Second OF Node , c , t)

)

ENDCASE

CASE C o m . a s s i g n , n e q t "
RR(Second r)F Node, F i r s t R e g)
Ass ign(Lr , J (F i r s t OF N o d e) , F i r s t R e g)
JumpCont i n u a t i o n (c , t)
ENDCASE

CASE Com. i f t h e m e l s e :
{ LET c l = F o r w a r d C o n t i n u a t i o n ()

LET c2 = F o r w a r d C o n t l n u a t i o n (.)
B B (F i r s t OF b!ode, c l , c 2 , FALSE)
F i x C o n t i q u a t l o n (c 1)
CC(Second OF Node, c , TRUE)
Fi xCont i m u a t i o n (c 2)
CC(Third OF ~ade, c, t)

)
ENDCASE

CASE Com. w n i l e d o :
(LET c l = T h i s C o n t i n u a t i o n (.)

LET c2 = ForwardOonti~uat~on()
BB(First OF Node, c2, c, FALSE)
FixContlquatlon (c2)
Declare (BRK, c)
Declare (LO0. cl)
CC(Second OF Node , c l , TRUE)
UnOeclare(LO0)
Un[}eclare(BRK)

)

ENDCASE

CASE Corn.ca ii:
CallContinuation(UU(First OF Node))
JumpCoqti n,Jation (c, t)
ENDCASE

CASE Corn.dummy"
JumpCont i nuat ioq(c,
Eb~DCASE

t)

136

E. The Generated Comp i l e r

CASE Jmp.break" CASE Jmp. loop: CASE Jmp.return"
JJ (Fode)
£NDCASE

CASE Corn. re ad"
Read(F i rs tqeq)
A s s i g n (U U (F i r s t OF Node) , F i r s t R e g)
JumpConti n,Ja t / o n (c. t)
EFDCASE

CASE Com. write:
~d(First ()F Node. c. t)
ENDCAS6

CASE Com. b e q i q end."

C C (F i r s t OF 4 o d e , c , t)
ENDCASE

CASE Com.beq insemico l onend :
(LET c l = F o r w a r d C o n t i n u e t i o n ()

J u m p C o q t £ q u a t i o n (c l , D e c l a r e i n g C o n t i n u a t i o n (F i r s t OF Node))

DD(FLrst OF TIode)
FixCont in,]at ion (c I)
CC(Secoqd OF f:ode, c, t)
UnDO(First ()F Node)

}
ENDCASE

LET ##(Node, c, t) ~E S~ITCHON Type OF Node INTO
{ CASE S . . i : CASE S . . n : CASE Exp. Aop:

CASE E x p . b r e c k e t s "
RR(Node, F i r s t R e q)
~'~ri t e (F i r s t R e ~)
JumpContinuation(c, t)
ENDCASE

CASE S . . q :
} i r i t e (OO(Node))
J u m p C o n t i n u a t i o n (c , t)
E~DCASE

137

From Standard to Implementation Deqotational Semantics

LET DD(Node) BE S~'~II'CHON Type OF Node INTO
(CASE D e c . p r o c e d u r e :

(LET cl : ' f h i s C o n t i n u a t i o q ()
LET c : EntryContlnuat/on(.)
Declare (REr. c)
Declare(BRK, drong
Declare(LOO. ~'~roqq
CC(Second OE ~'ode, c, FAESE)
UnOeclare (LOO)
UnOeclare (BRK)
UnDeclare (RET)
EXi tCoqt~ qua tio n (c
Oeclar;(First of ~'ode, c l)

}

£NDCASE

CASE Dec.inteqer:
{ LET i : ~ew()

beclard(Yirst OF Node, i)
)
E~.'DCASE

CASE D e c . s e m i c o l o n :
D D (F I r s t OF Node)
DD(Second OF Node)
ENOCASE

LET JJ(t .ode) BE S~,~ITCHO~: Type OF Node
(CASE J m p . b r e a k :

JumpCoqtiquation(UU(BRK), TRUE)
ENDCASE

CASE Jmp. loop:
JumpContiq,iatioq(UU(LO0), TRUE)
ENDCASE

CASE Jmp.re t,lrq :
JumpContiquatioq(UU(RET), TRUE)
EYDCASE

I bTO

138

F. References

E. References

[BCPL77] Reference manual , Depar tment Of Computer Sc ience . Essex
University. 1977.

[Bornat76]R.~{ornat. Notes for Comparative Study of Programming
Languages, D~partment Of Computer Science. Essex University. 1976.

[Bornat77]R.8ornat. Understanding and ~riting Compilers. Macmillan
1977.

[G r i es71]D .G . G r i e s . C o m p i l e r
J .~1 i l ey and Sons. 197i .

Construction for 9igal Computers,

[Hayes78]P .J .Hayes . Invocation Records" A concep tua l Framework f o r
E v a l u a t i n g Program T e x t . Department Of Computer S c i e n c e . Essex
U n i v e r s i t y . I 9T9.

[Jones80]t~.D. Jones and D.A. Schmid t . Compi le r G e n e r a t i o n f rom
D e n o t a i o n a l Se,aant ics (P r e l i m i n a r y Repor t) Workshop on
Semantics-Directed Compiler Generation. Department Of Computer
Sc ience . Aaraus U n i v e r s i t y . 1980.

[~ l n e 7 6] R . ~ i l n e and C . S t r a c h e y . A Theory of programming language
semantics, Chaoman 3rid Hall. 1976.

[Mosses74]P.O,qosses . The Semant ics o f Semant ic E q u a t i o n s ,
@athemat ica l F o u n d a t i o n s o f Computer Sc ience . L e c t u r e Notes i n
Computer Sc ience 28. Sprinqer-Verla~. Proc . 3rd ~FCS Symposium.
~arsaw. 1974. pp.40o-422

[Mosses75]P .D.~osses . ~ t h e m a t i c a l Semant ics and Comp i l e r G e n e r a t i o n ,
PhD. thesis. 7qiverslty of Oxford. Io75.

[Mosses76]P.D.~4osse~. Comp i l e r G e n e r a t i o n us i ng D e n o t a t i o n a l
Semant i cs , 4 a t h e m a t i c a l Founda t i ons o f Computer S c i e n c e . L e c t u r e
Notes i n Computer Sc ience 45. S p r i n g e r - V e r I a g . Proc . 5 th MFCS
Symposium. O,tansk Po land . t976. pp.436-441

[Mosses78]P.D. ~Io ss es. SIS: A Comp i le r Genera to r System us ing
D e n o t a t i o q a l Semant ics , Reference ~anua l . U n i v e r s i t y of Aarhus . IO78.

[Raskovsky7O]~ .R.Raskovsky and R . T u r n e r . Compi le r G e n e r a t i o n and
Denotational Semantics, Fundamentals of Computation Theory, 1970.

[RaskovskySOl~4.R.Raskovsky. ISL (I n p r e p a r a t i o n) Depar tment Of
Computer Sc ience . Essex U n i v e r s i t y . 1980.

[R i c h a r d s 6 0] 1 . 9 i c h a r d s . SCPL: A t o o l f o r c o m p / l e r w r i t i n g and system
programminq, Proceedings of the 1969 Spring Joint Computer

139

From Standard to Implementat ion Denotational Semantics

Conference. ~]oston AFIPS /~ontvale 1969 pp.557-566.

[ScottTO]D. Scott. Outline of a Mathematical Theory of Computation,
PRO-2. Oxford University Computing Laboratory. 1970.

[Scott71]D.Scott and C, Strachey. Toward a Mathematical Semantics for
Computer Languages, PRG-6. Oxford University Computing Laboratory.
1971 .

[Scott76]D.Scott. Data Types as Lattices, Procedings of the 1974
Colloquium in ~athematlcal Logic. Klel. Sprlnger-Verlag. Berlin 1976.
pp.579-650.

[Stoy77]J.E.Stoy. Oenotatlonal Semantics: The Scott-Strachey Approach
to Programming Language Theory. HIT Press. 1977.

[Stoy77] J .E .S toy . The congruence of Two Programming Language
Definitions. (manuscript). 1979.

[S t rachey66]C.St rachey. Towards a formal semant ics, Formal Language
Description Languages for Computer Programming. (ed i t ed by
T.B.Steel). North-Holland. Amsterdam 1966. pp.198-220,

[S t rachey67]C.St rachey. Fundamental Concepts in Programming
Languages, International Summer School in Computer Programming, 1967
(Typescript).

[St rachey74]C. St rachey and C.P.#adswor th . Con t inua t ions , A
Mathematical Semant i cs fo r handl ing f u l l jumps, PRG-11. Oxford
U n i v e r s i t y Computinq Labora to ry . t974.

[S u f r i n 7 7] B . S u f r i n . L i t : A Parser Generator . Department Of Computer
Science. Essex U n i v e r s i t y . 1978.

