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Abstract 

#e are developing a compiler compiler. It takes as input the formal 
definition of a programming lanquage in Denotational Semantics and 
produces as output a fairly efficient compiler written in a systems 
programming language which in turn will produce code for a real 
machine. This wor:c ~ainly deals with the code qeneration parts. 
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9, ~mlro£m~LLon 

According to the tradition of denotational/functional sementics(DS) 
of programming lanquaaes(PL), the meaning/referent of a program is a 
function from states to states of some underlying store. Compilers, 
on the other hand. generate code for some machlna given the program 
as input, t]n the face of it these enterprises - writing semantic 
equations in the Scott-Strachey style and compiler-writing -seem very 
different. The former requires a certain degree of mathematical 
sophistication and the latter a certain competence as a system 
programmer. Moreover, the end products of tha two enterprises appear 
to be differentl un the one hand the result is a precise mathematical 
description of the proqramminq language and on the other one ends up 
with a set of procedures which constitute a compiler for the language 
in question. In the original liter~ture on functional 
semantics[Scott20] it was claimed that the semantic equations should 
serve as a guide for the compiler writerl any notion of correctness 
for the coapiler would have to make reference to the semantic 
equations. 

~e believe that semantic equations can provide us with the 
information req~ired to implement a compiler for ti~e language in 
question. In other words, the DS of a particular Pk at an appropriate 
level of abstraction coul,d embody detailed information about control, 
environment and state servinq as an input for a co~piler-compiler. 

Let's try and make this a little clearer. Given a D5 eqrJation, the 
process of code ~eneration closely follows its text. [-'or e×ample the 
equation for the assignment co}~mand in a particular PL could be: 

C,[e • =e" ]pc= 

R~ e~l p{ ~v.L.[elp ( ~l. Update l v c } } .  

R h i l e  r e a d i n g  t h i s  e q u a t i o n  we can i m a g i n e  a c o m p i l e r  t h a t ,  i n  the  
p resence  o f  an e n v i r o n m e n t ( p ) ,  w i l l  g e n e r a t e  code f i r s t  to  f i n d  a 
value, then to find a location, then to update the store and finally 
to jump if necessary to the given continuation. In fact, it is 
reasonable to argue that DS has formalised, at aq appropriate level 
of abstraction, the behaviour of a program. A compiler needs to 
understand the behaviour called for by a program in order to plant 
code to execute it. Thus it is reasonable to conjecture that there 
may be a close relationship between semantic equations and compilers. 
If one could automate the production of a compiler from semantic 
equations then this could be viewed as a kind of compiler-compiler. 

Indeed i t  i s  a p a r t  o f  o u r  c o n j e c t u r e  c o n c e r n i n g  the  r e l a t i o n s h i p  
between compilers and semantic equations that not only could the 
semantic equat ions dictate the structure of the compiler but 
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conversely intuitions and experience of compiler writers should 
influence the DS equations themselves. 

However, ~e do appreciate the need to have a "standard" denotational 
semantics without any bias t o~ar ds implementation ideas. So we 
propose to distinguish between two different forms of DS which for 
any particular language we shall have to prove congruent, namely: 

~ tan¢a rd  9 e n o t a t i o n a l  Semant i cs (SDS) :  A c a n o n i c a l  d e f i n i t i o n  free of 
bias towards any particular i m p l e m e n t a t i o n .  

impl~L~D~ation Der~otatioqal Semantics(IDS): 
implementation strategies desired. 

E~Oodyi ng all 

~e have developed a transl~tion process which, starting from the IOS 
equations of ~ simple PL, generates a number of BCPL 
procedures[Richards6o][BCPL77], de have written the primitive 
functions and machine code interface to produce code for the DEC-IO 
system. To generate the parser an appropriate generator is 
interfaced[Sufrin77] 

The final result is the following: 

-An efficient compiler using standard compiling-techniques. 
-Efficient cude g~ne ra ted .  
-Flexibility to i;nplemer~t different "styles p of code. 
-Flexibility to i~plement in different machines. 

Research related to ours is the work by [ ~1osses 74-5-6-8] and 
[Jones80] where semantic equations are uniforaly translated to an 
intermediate code which in turn is interpreted. 3oth systems achieve 
generality by explicity selaarating the concept of a correct compiler 
from that of a usef,d one, and it is instructive to see why. ~hiie 
uniformly encoding all "functions" and 'values', both methods throw 
away a gre~t deal of the knowledge contained in the semantic 
equations. For e×a',Iple the [L ~ V] function is simulated, instead of 
making "natural" use of the m~chine store; and the familiar and 
useful concept of a pointer to the code is none×latent. Standard 
semantic equations as developed by the (]×ford school provide us with 
certain information about how to implement the language efficiently 
and this is lost in a uniform translation. These observations have 
been paramount in guiding our translation process. 

The first step of our work was to consider simple language constructs 
and to i~plement a translator accepting languages whose 
characteristics were similar to those. In Section i of this paper we 
describe a lang~age within this framework, r~e briefly motivate its 
Implementation Oenotational Semantics and then we informally describe 
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the transformation [process to generate a compiler for it. Appendices 
B, C, D and i show respectively its Syntax, SDS, IPS a~d Compiler. 

Currently we are enlarging the set of programming constructs accepted 
by our system. In Section 2 we consider recursion sho4ing the impact 
that this featqre has in the domains of its IDS specification. 
Finally we show ho,~ to prove the congruence between both SOS and Ir)S 
definitions. 

The toy lanjuage(TL) chosen contains a number of basic commands like 
assignment, conditional, while, parameter-less procedure call, 
structured ju~al)s (B~£AK, LOOP, RI-'TURr,J), input/output and blocks. It 
has arithmetic and boolean expressions, as well as data types: 
integers and procedures. 

R e c u r s i o n  is n o t  a l l o w e d ,  so t h a t  e v e r y  s t o r a g e  l o c a t i o n  can be 

determined at compilation time (Static storage allocation). ~oreovar, 
a crucial attrib,Jte of such a language, which amounts to a 
simplification relative to ALGOL-like languages, LISP or SI,~{ULA, is 
that for every procedure, a single unique data area[OriesTi] 
(Analogous to an ALGOL stack frame or template[Bornat76-7]) can be 
set at compile tine. In this respect TL resembles F(]~T~A'4. 

J_,l The Imo]ementatiun D~_~otq~.teEZLLl_$_~LiiaBjZj~s o#._TL 

In this section we will briefly motivate the IOS of TL. The three 
issues we (Jisc~]ss are the meaning of boolean expressions, the 
allocation of locations and efficiency in arithmetic expressions. The 
complete SDS and lOS specifications can be found in Appendices A, B, 
C and D. 
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l . l . I  BoQlean_/x;~/ /9_iaion~ 

Consider a fragment of the syntax of boolean expressions in TL: 

b ::= b" "and" b'" I b" "or" b'" I "true" ', "false ~' I . .. 

and the c o r r e s p o n d i n g  s e m a n t i c  e q u a t i o n s :  

B ; [ B e x  ~ U ~" S ~ T ] .  

B4b t , and  ~, b r - r l p=  
B4b~lp  ~ C o n d < B [ b " l p 0 X s .  FALSE>. 

B i b  't " o r "  b H l p  = 

& l b ~ l p  @ C o n d < X s . T R U E , B [ b ' ' l p > .  

B.[ -" t  r u e "  l p s =  

TRUE. 

BJ[ j' f a l  s e"  ] ps= 
FALSE. 

Boo lean e x p r e s s i o n s  v i ewed  i n  t h i s  way a re  l i k e  any o t h e r  e x p r e s s i o n  
w i t h  t he  e x c e p t i o n  t h a t  t hey  e v a l u a t e  t o  b o o l e a n  v a l u e s .  But i t  
happens t h a t  these  can be e v a l u a t e d  i n  a c o m p l e t e l y  d i f f e r e n t  way, 
The e v a l u a t i o n  o f  a b o o l e a n  e x p r e s s i o n  need no t  p roduce  a v a l u e  b u t  
can s e l e c t  t he  n e x t  p a t h  o f  the  c o m p u t a t i o n .  T h i s  i s  e x a c t l y  how Cond 
can be t h o u g h t  t o  behave :  g i v e n  two e x p r e s s i o n s ,  i t  p i c k s  one on the  

b a s i s  o f  a g i v e n  ooo lean  v a l u e .  

To model t h i s  b e h a v i o u r  we r e d e f i q e  the  f u n c t i o n  B, as a s e m a n t i c  
v a l u a t o r  t a k i n g  two c o n t i n u a t i o n s ,  one to  be applied i f  the  s u p p l i e d  
boo lean  e × p r e s s i o q  e v a l u a t e s  t o  t r u e ,  and a n o t h e r  i f  i t  e v a l u a t e s  t o  

f a l s e .  
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B:[Bex ~ U ~* C ~ C ~ C]. 

Bib" "and" b''lpcc'= 
B] b" |p(Blb" "Ipcc'}c" 

BJ[b" "or" b"Ipcc'= 
Bib']pc(Bib'" |pcc'} . 

B.[" t rue" ] pcc" = 
C. 

B.[" f a l s e " ~ p c c ' =  

C ' ,  

The o n l y  t i m e  t h a t  a t r u t h  v a l u e  i s  r e a l l y  p r o d u c e d  i s  when a g e n e r a l  
expression contains boolean subexpress~ons. 

This model of boolean expressions with two continuations corresponds 
precisely to e way that efficient compilers implement them, namely as 
true and false chains. 

l._L~2_Ld~rkiEmz lo~_~tions "il_~se" 

Consider - now the allocation of locations in the SDS of TL: 

s ' S = [ [ t  ~ V] x V~ x R*  x [ k  ~ T ] ] .  
p : U = [ [ I d e  ~ O] × C x C x C ] .  
N e w : [ S  ~ [L  x S ] ] .  

S t a t e s  
e n v i r o n m e n t s  

~[tibegin" dlc" " e n d " ] p c s =  
{ D l d l p  _* ~ p ' . C l c ' l p ' ( ~ a ' . c < a ' t l , s ' 9 2 , s ' ~ 3 , s ~ 4 > ) ) s .  

Dl"integer" lip= 
New * ~ls.<p[[i]/i] ,s>. 

The f u n c t i o n  "New'°  w h i c h  o b t a i n s  u n u s e d  l o c a t i o n s  when  n e c e s s a r y ,  
seems t o  be a b s t r a c t i n g  a " f r e e  s t o r a g e  p m e c h a n i s m  w h i c h  i s  n o t  t h e  
one d i c t a t e . i  b y  a b l o c k  s t r u c t u r e d  d i s c i p l i n e .  A l s o  t h e  l o c a t i o n  
d e a l l o c a t i o n  m e c h a n i s m ,  w h e r e  t h e  a r e a  f u n c t i o n  [L  ~ T ]  i n d i c a t e s  
which locations are in use, is not satisfactory from an 
implementation point of view. (The area function is stored on entry 



100 

I. A simple case study, TL: a Toy Language 

t o  each b l J c k ,  so t h a t  i t  can be r e s t o r e d  on e x i t . )  I t  would seem 
reasonable that locations be marked "in use" in the environment 
allowing 'automatic" deellocation of locations at the end of a block, 
as environments, and therefore details of the amount of storage in 
use are bound into the continuation following the end of the block. 

Accordingly, we rewrite in IDS the SDS definitions as follows: 

a:A=[L ~ T]. 
s:S=[[L ~ V] × V* x q*]. 
p : U = [ [ I d e  ~ D] x C × C x C x A ] .  

New:[U ~ [L x U]]. 

C/ "beg i r t "  d ; o "  "end" ]pc= 
C/c"  ] ([~Id] p ) c. 

D["integer" i|p= 
New p=>~<l,p'>,p.'[lil/l], 

Area f u n c t i o n  
S ta tes  
env i ronmen ts  

i . ! . #  C r u c i a l  code fr~ments:_ Exp ress ions  

In  o r d e r  to c l a i m  t o  be p roduc ing  an e f f i c i e n t  c o m p i l e r ,  we must 
ensure that expressions are compiler] into efficient coJe, For example 
the semantic equation for arithmetic expressions in SDS is: 

Rle,aeS']p= 
R I e " l p  ~ ~v.(RIe"]p ~ A l a l v ) .  

I f  we leave t h i s  as i t  s tands the c o r r e s p o n d i n g  f ragment  o f  the  
generated compiler will be: 

CASE Exp. Aop: 
RR(FLTst 0, Node, Reg) 
RR(Tni rd  O/ Node, NextReg{Reg))  
AA(Second OF Node, Reg, NextReg(Reg))  
ENDCASE 

where RR ~nd AA are the g e n e r a t e d  p rocedures  t o  p l a n t  code 
r e s p e c t i v e l y  f u r  e x p r e s s i o n s  and o p e r a t o r s .  I f  we f o r g e t  abou t  
restrictions on the maximun number of registers available, this 
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procedure will work but will produce very inefficient code. For 
example 

a +  b *  IO 

w i l l  generate the following DEC-]O code: 

M{}~/E t , a  
~4()V E 2 , b  
~( )VEI  3 . J O  
IMUL 2 , 3  
ADD 1 .2  

but we can do better: 

~OVE 1 .b  
IMULI  ] , I0  
ADD 1 ,a  

To  generate this code a better algorithm can easily be immlemented~ 
we will follow the one given in [Bornat77] : 

Rle'ae'" Ip= 
If~]eedToRev erse[e'a e'" ]~R(Reverse.[ e'ae'" ] ', E×p)p, 

~v. Iskeaf[ e'" l~Rkeaf[e''l.[ alpv, 
I f N e e d f  oDu rap.[ e ' - "  ]-.> 

Dump p¢ * ~<l,p">. (R[e''lp" ~ ~v.A(qeverseIa]:Aop)vl). 
(Rle''lp i Aia|v)). 

In fact. this equation abstracts the Pregister-allocation" technique 
of ~tree welqhtinq" and 'dumping'. 
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1.2 lh~_~r ami L~kio n 

ae now descriae the translation that takes as input the IDS equations 
and produces 8CPL procedures which are the code geqeratioq part of a 
compiler for the language defined. (These procedures can be found in 
Appendix E.) 

i~L_ l_E#i~ova l  ot.__~h~ State. 

In the first stage of the translation process we remove all 
references to the state. This is in keeping with the fact that a 
state to state transformation is a function performed by the code 
generated together with the hardware of a partlculgr machine. The 
compiler is perfor~iqq e translation that ends oqe step behind the 
state to state function. As an example, coqsider the semantic 
equation for assignq~ent : 

C[i:=e]pc= 
R l e ] p  #~ A s s i q n ( p [ i |  IL) o c.  

For a detailed specification of the operators refer to Apendix A. 
After the analysis of the operator ~ we end up with the following 
procedural text: 

Lh~ C [ i : = e ] p c  ~3£ 
{ Assign(p[i| ~L)(l~le]p) o c 
} 

To emphasize that this is not a mathematical equation we enclose the 
new pr_Qcgdural-~ext within curly brackets. 

The a n a l y s i ~  o f  the o p e r a t o r  ~2 w i l l  i n  f a c t  produce two s~atements ,  
and after uncurrying the assignment example will now look like: 

LET C ( . [ i : = e ] ,  p, c) BE 
( A s s i g n ( p ( I i l ) I L ,  R ( I e l ,  p ) )  

c 
} 
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1.2.2_~to re d_zal ues 

Next we iqtroduce hardware registers to replace direct references to 
stored values. The introduction of fast registers transforms the 
procedural text for the compilation of the assignment command into: 

LET C(li:=e|, o, c) BE 
( R(le], p. FirstReg) 

Assign~p(Iil):L, FirstRe~) 
c 

} 

so that R will know where to store the result of evaluating the 
expression and Assiqn where to get it from. 

i, 2 • ~i__~on tlnuati ons 

Consider the semantic equation for a vIHILE loop: 

C[J'while '' b "do °' c'Ipc= 
Fi x{~c" .BIo Jp{Clc" ] (pC BRK/c ] [LO0/c" ] )c" }c}. 

Before the analysis of continuations it will be translated into: 

LET C(["while" b "do" c'l, p, c) BE 
{ Fix(~c'.B([bl, p, C([c'l, p[BRK/c][LO0/c'], c'), c)) 
> 

The t r a n s l a t o r ,  knowing what a c o n t i n u a t i o n  i s ,  and be ing  ab le  t o  
analyse the conte'<t in which it appears will be able to translate 
this text into: 
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LET C(l"while" b "do" c'l, p, c, t) BE 
{ thT c" = T,qisContinuation() 

LET c'" = ForwardContinuatioq() 
B(,lbl0 p, c". c, FALSE) 
FixContiquation(c'" ) 
C( ] [C" ]o  p[~R</c][LO0/c'], C'o TRUE) 

} 

dhere the three procedures This, Forward and Fix-Continuation are 
used in such a way that they leave to the compiler writer the final 
choice of implementation. For example they could respectively be 
-Current Proqr a~nCount aT, NewChain and FixChain- in a "chaining 
mechanism-" or -Plant~ewLabel, ForwardLabel and PlantLabel- relying on 
the activity of a loader. 

~ie argue that a simulation of the mathematical environment function 
is not feasible if efficiency is desired. Thus we translate in a way 
to have only one global environment around at a time, for which we 
provide a Iota structure and primitives to declare and undeclare 
denoted elements. Environments disappear from parameter lists, The 
inverse of some functiops are defined in order to undo any alteration 
to the global environment, so that we normally end up with a 
"sandwich" of the form: 

Update environment(...something...) 
Call to some procedure 
Undo environneqt(...same something...) 

Thus, after these transformations the procedural text corresponding 
to the ~HIL£ 9ecomes: 
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LET C(i"while" b "do" c'], c, t) BE 
( LET c" = ThisContinuation() 

LET c H = ForwardContinuation() 
8(ib|, c H, c. False) 
FixCont inuation(c" ) 
Declare (BRK, c) 
Declare(L(X). c') 
C([c~]. c ~. True) 
UnDeclare (L (~)) 
UnDec I are ( BRK ) 

} 

Note that the procedure Declare and UnDeclare (and also This, Forward 
and Fix Continuation] do not generate code. They are part of the 
"compile time r" activity. 

1.2.5 ~CPL 

Finally we translate into BCPL. This involves only syntactic 
transformations, i.e. renaming curly functions and making them 
procedures selecting by cases via a S~IITCHON statement, renaming 
decorated variables, making syntactic references into node references 
via selectors, and a translation for those procedures returning a 

tuple. The fragment of the resultant procedure to generate code for 
commands corresponding to the assignment and ~IHILE commands is: 
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LET CC(Node. c. t )  BE S~IITCHON Type OF Node INTO 
( 

CASE Com. ass ignment  ; 
RR(Second OF Node, F i r s t R e g )  
U p d a t e ( U q ( F i r s t  OF Node) ,  F i r s t R e g )  
JumpCoqti n,]a t i o q (  c, t )  
ENDCASE 

CASE Com.wnile : 
( LET ci = ThisOontinuetion(.) 

LET c2 = F o r w a r d C o n t i n u a t i o n ( )  
B B ( F i r s t  OF Node. c2,  c .  FALSE) 
FixCont inuat ion (c2) 
Dec la re  (BRK. c) 
D e c l a r e ( L o o .  c l )  
CC(Second OF ~lode, c l ,  TRUE) 
UnDeclare(LOO) 
UnDecl~re(BRK) 

} 

ENDCASE 

) 

l~.P_~6E~ample_Qi_gode qenera~iD_B 

Cons ider  a frag~aent of  a program in  TL which is  a p rocedure  to  
compute the f u n c t i o n  f a c t o r i a l  by i t e r a t i o n  : 

beg in  i n t e g e r  '4; 
i n t e g e r  FI 
p rocedure  Fec t l  
beg in  ,~ := Ii 

dhile N > 0 do begin F := F * NI N := N -I end 
endl  

ca~l Factl 

end 

The c o r r e s p o n d i n g  code f o r  the  DEC-IO, p l a n t e d  by our gene ra ted  
c o m p i l e r  w i l l  be 
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L2-" 

L5: 

L3-" 

LI: 

L 4 :  
~ r o n q / ]  

L6= 

#1:  
R2: 
W3: 

3 RST 

M()~E4 

MOrEl 
MOVE#4 

MOVE 
JUMPLE 

t4OVE 
I MUL 
M()VEM 
~4OVE 
SUBI 
MOVF,'4 
JRST 

JRST 

PRINTs 

XtID 
XWD 
X~D 

O,L t  

1 6 , 4 3  

,^D1 

.~2  
, ~I  

, L 3  

,W2 
,WI 
,~2 
.~I 
.^DI 
,Wl 

0, L5 

0.@~3 

t 6 ,L2  

O,L6 

O, (AS C I Z /  

O, 
O, 
O. 

i integer N 
i Newt#l) 
I Declare(N, #I) 
i integer F 
; New(W2) 
i DeclareLF. W2) 

procedure Fact; ... 
; N e w ~ 3 )  

; D e c l a r e . ( R E T  , L3 )  
D e c l a r e ( B R K  , L4)  

D e c l a r e ( L O 0  , L4)  
i F : =  I 

i while N>O do ... 
I Declare(BRK, L3) 

Declare.(L[)O , L5) 
I F := F*N 

i N "= F - I  

I U n D e c l a r e ( L ( X )  , LS) 
U n D e c l a r e ( B R K  . L3 )  
U n D e c l a r e ( L O 0  , L4 )  

U n D e c l a r e ( B R K  , L4)  

U n D e c l a r e ( R E T  , L3 )  

D e c l a r e ( F a c t ,  L2)  

; call Fact 

U n D e c Z a r e ( F a c t ,  L2 )  
I F r  ee (R2)  
i U n D e c l a r e ( F ,  ¢t2) 
; Free (~I I ) 
; U n D e c l a r e ( P ,  ~ I )  
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2.  Eur th r~T__dey_~opmen~_~:_ml_~{ec  ursi_ze T o : ~ L _ i a ~  

In this section, we introduce recursion in our toy language, so that 
now we talk about a language RTk(Recursive TL). ~e develop the IDS 
equations and then we indicate how to carry out a proof that the SDS 
and IDS are congruent. 

2,1, D e c l a r a t i o n  and [ [L~oc~atieo_/o_v_iZO/3/&ent 

If we simply add recursion to the IDS of TL, we obtain an equation 
like the following (we ~iso ac~J one call-by-value para,~eter): 

Dl"procedure" i(i');c]p= 
Fix(kp'.p[[i]/~avc.(New(p'[ARE/a])=> 

~<l,O's>.C/c| 
(pH[[i']/l][RET/c][BRK/~rong] 
[LOO~rong])c}]). 

Aga in  we a re  i n t e r e s t e d  i n  an e q u a t i o n  wh ich  w i l l  i n d i c a t e  how to  
p l a n t  e f f i c i e n t  code,  bu t  i t  seems t h a t  t h i s  e q u a t i o n  does not  h e l p  
us.  I f  we c o n s i d e r  t h e  v i r t u a l  machine b e h a v i o u r  at  the  d i f f e r e n t  
t i m e s  o f  d e c l a r a t i o n ,  i n v o c a t i o n  and e x e c u t i o n  of  a p r o c e d u r e ,  we can 
i s o l a t e  f i v e  d i f f e r e n t  o b j e c t s ,  wh ich  are m a n i p u l a t e d  in  a way t h a t  
c h a r a c t e r i s e s  most o f  the  f l a v o u r  o f  d i f f e r e n t  p rog ramming  l a n g u a g e s .  
Namely, associateJ with every procedure there is: 

(LL_L~ai bi:idin ~ 
A function to map everything which is bound within the procedure. 

( ] ~ _ [ . K t  e ~na i _~ i  ELdiZlg 
A s i m i l a r  ( b u t  no t  e q u a l )  f u n c t i o n  t o  map e v e r y t h i n g  wh ich  is  f r e e .  

IIII ) L<lcal_~work~a~_~ 
A function to keep track of those locations defined within the 
procedure which follow a block structured discipline as opposed to 
those following a heap discipline. 

I I V ) _ R e t u r n  c o q t i n u a t i o n  
The f u n c t i o n  mapping what 
a c t l v a t i o n  t e r n / h a t e s .  

r ema ins  t o  be done when the  p r o c e d u r e  

I V )  Cu r r~n t  c<)3~inua~Lon 
The f u n c t i o n  mappin~ what rema ins  to  be done w i t h i n  the p r o c e d u r e .  
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Some of these are defined at declaration time. For example part of 
(I), ~II). part of (llI) and (V) are defined at this time in 
languages with static binding like Algol. 

At invocation time, a copy of what was created at declaration time is 
made and some other functions are defined, for example (IV) and in 
dynamically Do,and languages (If). 

At execution time, some functions may be updated. For example (1) and 
( ] I I )  may be e x t e n d e d  by  new d e c l a r a t i o n s .  For  a f u l l  d e s c r i p t i o n  o f  
this model, the reader is refered to [Hayes78]. 

If .we now look at our domain definitions and equations we can see 
that there is no clear mathematical machinery to abstract our model 
at the diffe'rent times of declaration and invocation. The environment 
appears to be abstracting most of the objects above, but they are not 
structured in the same way: 

p : U = [ [ I d e  ~ D] x C x C x C x A ] .  e n v i r o n m e n t s  

Secondly, there is no distinction whatsoever between free and bound 
identifiers. From a (purely) mathematical point of view, it is not 
necessary to distinguish between them. However, from an 
implementation standpoint, we have to be able to tell whether a 
variable has been declared within the current procedure or in an 
external one. leading to a completely different behaviour of the look 
up function. For example it might be necessary to walk down a link 
chain in a stack. 

Finally the domain of locations is not absracted at an appropriate 
level. In the implementation of block structured languages it is 
reasonable to associate variables to "offsets" within the workspace 
of a procedure or block at compilation time. Locations are only 
allocated at execution time when a "base" is calculated for all the 
offsets of the local variables. 

To overcome these problems we are going to modify the environment so 
that it precisely aostracts the model described above. The first four 
functions are qoing to be members of the environment while (V), the 
current continuation is still going to be passed as an explicit 
parameter to the valuations. 
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I:L. block structured Locations 
b:B. Bases 
o:0. Offsets 

f : F = [ M  x U x 0 x 9 ] .  
p:U=EA4 x U × [B x O] x C]. 

I I I  I l l  IV  

Function closures 
environments 

In relation to [Hayes78], F is an Invocation Record Frame and U is an 
I n v o c a t i o n  R e c o r d ,  o r  i n  t e r m s  o f  [ B o r n a t 7 7 ]  a P r o c e s s  S t a t e  
D e s c r i p t o r .  

#e now describe the parts of the environment, or invocation record in 
detail : 

(I) L o c a l  binding 
The b i n d i n g  map: 

m:,~=[[Ide ~, D] x C × C]. binding ,~ap 

is quite similar to the original environment domain. It binds 
identifiers to their denoted values and the structured jumps BREAK 
and LOOP to their respective continuations, The empty binding map is 
defined to be" 

Nilm:M. 

Nilm= 
< ~ l l . N i l d ,  4 r u n g , ~ r o q g > .  

(If) External binding or an Environment link 
This is a reference to the environment of the textually enclosing 
procedure where the denotation of free identifiers can be found. The 
function 

L o o k U p : [ I d e  ~ U * E ] .  

Look Up[ i i p= 
p.[ i 1=> 

kd . d = ~ i  ld~L ook U p [ i  i ( pb×T)  o 
d ? O ~ L o c ( N l o c < p B A S , d l O > )  ' , I E , d ? F ~ d l F I I E , T e .  
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defined recursively, implies a behaviour which searches down thls 
c h a i n  of environments when the denotation of a free identifier is 
required. Bound identifiers are found in the binding map. Looku p also 
converts offsets in D to their corresponding locations by reference 
to the Base iq the local workspace component of U. 

The semantic equation for a single identifier inside an expression 
then becomes: 

R Ii ip-- 
Load (LookUpli l p  ~L) .  

( I I I )  L o c a l  w o r k s p a c e  

I n  a f u n c t i o n  c l o s u r e ,  o r  d e c l a r a t i o n  r e c o r d  f r a m e ,  t h e  l o c a l  
w o r k s p a c e  i s  an o f f s e t .  I t  i n d i c a t e s  w h i c h  i s  t h e  f i r s t  f r e e  o f f s e t  
at declaration time, whereas in an environment in IDS it is a pair 
<b, o> indicating where the workspace starts and ends, respectively: 
<pBAS, First()> and <pgAS, proP>. 

I t  w o u l d  be n i c e  to  i d e n t i f y  l o c a t i o n s  w i t h  t h e  p r o d u c t  o f  b a s e s  and 
offsets in ti~e follo~ing manner: 

L = [B x o ] .  

H o w e v e r ,  i f  we do t h i s  we c a n n o t  a c h i e v e  a r e a l i s t i c  i m p l e m e n t a t i o n  
semantics. As it stands identifying k with B x 0 (assuming B and 0 
are countably infinite domains, so that for any B and 0 that might 
occur in a program the corresponding location exists) means we have 
an infinite number of locations - which is certainly not required in 
an implementation semantics. However, if we restrict B and () to being 
finite domains, we then imply an arbitrary limit to the number of 
blocks that can appear in a program, and an arbitrary number of 
locations that can be used in each. [¢either of these two 
possibilities matches up with the standard semantics of the language. 

So we are forced to postulate that there are a finite number of 
locations and a function: 

koc:[N ~ L]. Undefined 

which gives a proper location when given an integer in 
(i: I <= i <= n}, where n is the number of locations, and otherwise 
indicates an error. Also we need a function: 



t12 

2. Further developments. RTL: a Recursive Toy Language 

Nloc:[[B X (]] ~ N]. Undefined 

to indirectly find the location correspondinq to each B x O. (~de do 
not make Nloc: lib x ,') ] ~ L ] as we may want to store a <b, o> pair 
without assu~iqq that the correspondinq location exists, ) 

As we have already indicated, the existence of <b, o>. for some b and 
o does not g,Jarentee the existence of the correspondin9 location, and 
we therefore need  the function "New" again, this time with 
functionality • 

New" liB x O) ~ k]. 

New<b,o>= 
Loc(Nloc<b,o>) . 

We m u s t ,  o f  c o u r s e ,  i n s i s t  t h a t  t h e  l o c a t i o n s  a r e  used i n  a s c e n d i n g  
numeric order, with Nloc<FirstB, First()> = I. and i n  fact B and 0 
could be identified with N, but we prefer not to do this. Instead we 
define two primitive functions to obtain new bases and offsets, which 
we assume satisfy the above two conditions: 

NewB:[[B x o] ~ B]. Undefined 
Next():[(] ~ 0]. Undefined 

and two constants which are the first base and first offset: 

FirstB:B. Undefined 
First():(). Undefined 

To increase the size of the workspace at invocation time we use the 
post-fix operator: 

p[TOP / NextO(pTOP)] = p', where p'TOP = Next()(pTOP), 
and p'X = pX otherwise 

Getting a block structured location and binding it to an identifier 
is now a single activity modelled by the primitive functions BindF at 
declaration time, add Dy B i q d P  at invocation time: 
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BindF'[Ide ~ ,1 ~ O ~ [4 x O]]. 
B indF.| i I mo= 

<m[iil/o],t!extO o>. 

B i n d P ' [ I d e  ~ U ~ U] .  
B i n d P & / I p  = 

New(pLOC)=>X l .  l = T l ~ T p ,  p [TOP/Nex tO(pTOP)  ] [ I  L I /pTOP ] .  

(IV) The fourth element in a function closure is a member of P, the 
domain of procedure values: 

P=[U ~ V ~ C]. Procedure values 

It models the meaning of the procedure which is expecting an 
environment end an actual value for its formal parameter, dhile in an 
environment, it is a member of C, the domain of (return) 
continuations. In relation to [Hayes78], (IV) can be seen as a 
reference to the current continuation field of the calling invocation 
record (envlronmeqt). 

The action of activatiqq a function closure (creating a new 
invocation environment), is modelled by: 

Activate'IF ~ [[3 × O] ~ C ~ V ~ C]. 

Activate f<b.o>cv: 
{ f94}<fgl , f 92, <~,~ew~ <b ,o> ,f93>,c>v. 

Assuming contiguity of caller ~nd cellee, activatin3 means pushing 
the call ee's base on top of the worksoace of the caller's invocation 
environment. 

After incorporating the .new environment structure and their 
associated pr in.it iv e functions the IDS definition of procedure 
declaration in P, Tk is: 

D&"procedur e" i(i')~c|p= 
Fix(~p'.(BindF[i,l[]ilm FirstO=> 

~<m,o>.p[[il/<m,p',o,~p,,v.{New<p,,BAS,p,,[i,|~O>=> 
~i. {Assic/n iv o 

C~clp'" {p"RET} } } >] ) ) . 
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The equation shows how the binding map (m) is formed from the empty 
one ~Nilm) with an additional binding of the parameter [i'] to the 
first free offset, an external binding (p') which is the newly 
created fixed point environment, an indication of how many offsets 
have already been claimed (one in this case) and finally the 
procedure value in P. 

The IDS equation for a procedure call in RTL is: 

C/"call .'' i(e)]pc= 
QIelp ~ Activate(LogkUplilp:F}(pLOC)c. 

2,2 Relationshio between the_def/j3itLozl~ 

~e indicate here how a proof of congruence between IDS and SDS of TL 
can be obtained. This is based on the proof of congruence between IDS 
and SDS of the recurslve version of TL, which is similar in many 
respec ts .  

There are two suoataqtial changes between the two semantics given for 
TL: the structure of the environment is altered and the semantic 
function for boolean expressions has different functionality. As 
these are entirely separate issues we propose to split the proof into 
two parts so they don't become confused (which they could do as the 
environment is a parameter to the valuation (semantic function) for 
boolean expressions). The disadvantage of splitting the proof into 
two parts is that we need an intermediate semantics between SDS and 
IDS which nas one of the changes referred to above, but not the 
other. This is a little unfortunate especially as later on we need 
two further intermediate semantics for the environment part of the 
proof, but we persist with the method in the belief that it is the 
easier to follow. 

As the proof of congruence between the valuations for boolean 
expressions i'~ considerably easier than that between the two 
environment domains we consider that first by defining a semantics 
SDS(B) differing from SDS by having the boolean expression valuation 
from IDS. Later we consider the congruence between SDS(B) and IDS 
which will eat eblish that the new environment domain does not 
significantly alter the semantics of the language. 
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3 ~ h e  Congruence  b e t w o ~ D : ; ; ~ _ ~ n d  SDS.([~) 

Definition of SDS(B). 

As SDS except: B:[Bex ~ U ~ C ~ C ~ C], and of course all the clauses 
in the definition of B ~re altered to look Like those in IDS, where p 
refers to the environment in SDS rather than IDS. Also change the 
following clauses: 

C..["if ~I b "then" c" '"else" c'-']pc= 
13.[ b l p  { C,[c" ] pc } { C_,.[ c " "  ] p c  } . 

C.["while" b "do" c"~pc= 
F i x { ~ c  ~ . B I b l p { c £ c "  ] ( p [ B R K / c  ] [  t O O / c "  ] ) c ' } c ) .  

Theorem : SDS i s  c o n g r u e n t  w i t h  SDS(B) .  

P r o o f  : 

We assume h e r e  t h a t  a l l  t h e  f u n c t i o n s  s t a r t i n g  I f . . .  end I s . . .  i n  t h e  
IDS valuation fur B[ere'] give false for any argument. So 

B.[er e" ] p c c " =  

R . l e |p  ~ ~,v.{l~le-'lp L{ ~ , v ' . O . [ r l v v ' e c ' } .  

We need t h e  f o l l o w i n g  lemma (whe re  BJ r e f e r s  t o  8 i n  SOS and B2 
refers to B in IDS): 

Bl.[b]p ~ C o n d < c , c ' >  = B2.[blpo 

w h i c h  i s  e a s i l y  p r o v e d  by i n d u c t i o n  o v e r  t h e  s t r u c t u r e  o f  b .  The 
result follows immediately from this lemma. 
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3.2 Ib.e_cong~s~c.nce [)e ~.~/._~e./1 .S,OS(~.I._a.Q~L_.LD_~ 

~dany o f  the equa t i ons  [n the SDS(8) and IDS o f  TL now l o o k  a l i k e ,  and 
although th~ state and environment domains in the two semantics are 
different, the proofs of their congruence are trivial. The interest, 
therefore, lies in the equations in the two definitions which look 
different, and in particular in the semantic function D. Although we 
only have a handful of cases to consider the task is more difficult 
than appears at first sight for reasons we now outline. 

The alterations to the state and environment domains appear to be 
minor, but they arc very fundamental. }le are taking information out 
of the state underlying SDS(B) and putting it into the environment in 
IDS. For these two semantics to be congruent we }]ave to insist that 
this information corresponds at all times, otherwise they could be 
using the locations in different ways. 

An establisned metnod[Milne76][Stoy77-9] for relating two domaiqs in 
semantics WhiCh are to be proved congruent, is by imposing inclusive 
predicates on them. In particular here we have to relate the 
information in the L ~ T component of the SDS(B) state and the L ~ T 
component of U in IDS. which contain information about the locations 
in use in either semantics. As this information is kent in different 
domains in SDS (8) and IDS, predicates defined on corresoondi ng 
domains cannot insist that it is the same. 

One way to overcome this problem might seem to be to define a 
composite predicate on pairs of states and environments, so we can 
relate the locations in use. Unfortunately this does not work for at 
least one reason: environments are bound into continuations in IDS 
(as well as in SOS), and when we are supplyin/ a state to a 
continuation in IDS there is no way of checking that the environment 
bound into that continuatioq contains the same "location in use" 
information as the state supplied in SDS(B). lqfact we cannot find 
out anything about the environment bound into a continuation. A 
possible solution to this might seem to be to split a continuation so 
that it is a member of the domain [U ~ S ~ S] x U, leaving the 
environment explicit, but this involves changing the semantics in 
such a way that it is not implementation oriented. In any case we are 
trying to find a proof that SDS(B) and IDS are congruent, not find a 
proof and then make up IDS. 

Unfortunately we are led to the conclusion that two intermdiate 
semantics are req, Jired to prove the congruence bet'veen SDS(,3) and 
[DS. These ar~ SDS(~4), which is $DS(B) modified by having a copy of 
the L ~ T co,~Iponent of the state in the environment, and IDS('~), as 
IDS except that the state has a copy of the L ~ T co~nponent of the 
environment in it. The details of the semantics have to be altered a 
little to Keep the new parts of the domains in step (ie containing 
the same infor~nation) as the originals. This still does not solve all 
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the problems, though, as we still have environments ~ound into 
continuations, and even though the state now also contains the 
"location in use" information we must ensure that it is the same as 
that in the bound in environment when a state is applied to a 
cont~nuatlon. To take care of this problem we propose "continuation 
transforming" functions which take as arguments a continuation and 
the envlronqent to ;ge bound into it, and only allow the continuation 
to be applied to a supplied state, when the 'location in use" 
information agrees with that in the bound in environment. These 
functions appear in the semantics everywhere where a new continuation 
is being cre~ted 9s argument to a semantic function (aqd a few other 
places where they help in the proof - don't forget we are now 
creating a semantics for this purDose). The net result is that every 
continuation in the semantics contains a check that the supplied 
state contains the same "location in use" information as the bound in 
environment before it is appli~dl this is because every time a 
continuation is created the check is incorporgted, end all 
continuations have to be created somewhere in the semantics. 

~hat then have we achieved after all this effort, and how is the 
proof to proceed? ~ell we now }]ave four semantics: 

SDS(B) <-> SOS(~{) <-> IDS(!~O <-> IDS 

(where the two (~) semantics contain the "continuatio] transforming" 
functions referred to above) which are all congruent. For SDS(B) and 
SDS(M) to be congruent we have to show that the added co~nponent of 
the environme~ d)es not affect the semgntlcs of any program in any 
siqnificant way, and that the checks for identity of location 
information in each continuation have no effect. Similarly for the 
congruence between IDS(~) and IDS. ~hen we have established these 
results, and they are intuitively fairly clear, all we have to do is 
show the congruence between SDS(M) and IDS(~) to finish the whole 
proof. 

~e acknowledge the  h e l p  and s u o p o r t  f rom Ray T u r n e r  and the SRC. ~ i ke  
Brady has at.~ays g i v e n  e n c o u r a g i n g  s u p o o r t .  
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A ._2ot at£o~ 

O p e r a t o r s  

d:D=Any D o m a i n  

O1:  

. - > . ' [ [  T x k) ~( O ] ~ D ] 

T h i s  i s  t h e  c o n d i t i o n a l  f , ~ n c t i o n .  An e x p r e s s i o n  t - >  I .  d "  w i l l  t a k e  
t h e  v a l u e  d 4hen  t i s  T r u e  a n d  t h e  v a l u e  d "  when t i s  F a l s e .  

02: 
.o.:[[[ D ~ O'] x [ D" ~ D'']] ~ [ D > D"]] 

g'[ D" ~ g"] 

( f o g ) d = q (  f d ) 

T h i s  i s  t h e  r e v e r s e d  f o r m  o f  t h e  c o m p o s i t i o n  o p e r a t o r .  

03: 
.*.'[[[ D" ~ [ D x D"]] × [ D ~ [ D'" ~ D'"]]] ~ [ D" ~ D''']] 

f'[ D s ~ [ D x D'']] 
g:[ D ~ [ D'" ~ J)'"]] 

( f * q ) d ' =  7 d d ' "  ¢4here f d "  = < d .  d " >  

R e v e r s e d  fo r ,~  o f  t h e  S t a r  o p e r a t o r  u s e d  b y  C . S t r a c h e y  i n  t h e  s e m a n t i c  
e q u a t i o n  f o r  t h e  d h i l e - l o o p .  

0 4  t 

. . ~ . - ' [ [ [  D "  ~- D ] x [ D ~- [ D "  ~" D ' ' ] ] ]  ~- [ D t ~ D t ' ] ]  

f : [  D" -~ D ] 

g : [  D ~" [ D" ~ D P ' ] ]  

( f -~ q ) d p-- 9 ( f 4 " )  d t 

This operator will normally be used for expressions without side 
effects. 
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05: 
.=>.:[[[D x [D ~ D']] ~ D'] 

f:[D ~ D'] 
x.~D 

d => ~ x.fx is the same as (kx.fx)(d) 

This operator, wn ich reads a s  "produce" is the reverse 
application, so that we can read equations from left to right. 

of 

0 6 :  

d:[ DI + ... + Dn ] 
i:N and I <= i <= n 

d~Di i s  the projection 
[ DI + ... + Dn ] 

of d into the subdomain Di of 

07" 
.:l. 

d:Di 
i.'N and I <= i <= n 

d~:[[ Di + ... + Dn ] is the injection of d into [ D1 + ... + Dn ] 

08" 

.~.'[[[ D] x ... x Dn ] x N ] ~ D ] 

d=<dl, ... , di ..... dn >.~[ DI x ... x Di × ... x Dn ] 
i:N And I <= i <= n 

d # i=di 

So that # is used to extract individual components of tuples. 

0 9 :  

+J'. 

d=< dl, ... , di, d(i+l), .... dn >:[ Di x ... x Dn ] 
i:N And I <= i < n 

d+i=< d(i+l) ..... Dn > 

Operator used to remove elements from tuples. 
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0 1 0 :  

d=< d l  . . . . .  d i  > : [  DI x . . .  x D i  ] 

d ' =  < d j  . . . . .  dq > : [  D j  x . . .  x Dr] ] 

i,j:N and j=i+l <= n 

d ~ d ' = <  d l ,  . . .  , dn > 

Operator u s e d  to c o n c a t e n a t e  tuples. 

0 1 1 :  
. ? . ,  

d : [  D1 + . . .  + Dn ] 

i : N  and  1 <= i <= n 

d?Di Is True if d 

o t h e r w i s e  i f  F a l s e  

is in the Di subdomain of [ Di + ... + Dn ]o  

( ] 1 2 :  
[ / ] : [ [  U x D x D" ] ~, U ] 

x ' O  r < ( ~ x .  x : , J  - >  d , .  ( p ~ l ) x ) ,  p 9 2 ,  . . .  > 

p [ d / d  ~ ] = 

t < p g l  . . . . .  p g ( i - l ) ,  d ' ,  p g ( i + l )  . . . .  

if J:Ide 

> if '~ is a selector 
a n d  p d  = p g i  

This is the postfix operator to create new environments. (The 
notation DS£L, where SEL has been defined as a semantic selector, is 

equivalent to SEkp.) 
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~. S v n t a x  o f  ]-L 

ZyD%act~Q do, nain&_(commoD__b~_bQ~h SD~__a/I~ IDS v e r s i o n s )  

a " A o p .  
b : B e x .  

C "Com. 
d'Dec. 
e ; E x p .  
i:Ide. 
j:Jmp. 
n :Num. 
q . ' O u o .  
r : R o p .  
w:#ri. 

Arithmetic operators 
B o o l e a n  e × p r e s s i o n s  

Commands 
D e c l a r a t i o n s  

n o n  b o o l e a n  E x p r e s s i o n s  
Identifiers ( U n d e f i n e d )  

structured J u m p s  

~ u m b e r s  ( U n d e f i n e d )  
Quotations ( U n d e f i n e d )  
Relational operators 
Writable expressions 

S y n l ; ~ x  ( common t o  b o t b _ S D S  and ._ IDS  v e r s i Q n s )  

a : ; =  + I - I * ', / 

b ; ; =  b`, " a n d "  L)`,`, ~ b`, " o r "  b `,t ', " t r u e "  ', " f a l s e "  I ( b ` , )  
e r e - "  

C : ; =  C'lC ,̀t ', i.'=e ', "if" b "then" c̀ , "else" c t-" ', 
"while" b "do" c p : "call" i ', "dummy" ', j ', "read" i 
"write" w ~ "begin" c`, "end" I "begin" d;c" "end" 

d "'= "procedure" ilc I "integer" i ', d`,Id`,`, 
e " ' =  i I e ' a e ` , ` ,  I n I ( e ` , )  

j ":= J'break" I aloop" ', "return" 
r ; ' =  > : < ', = I >= I <= ', <> 
w ; : =  e : q 
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C, S t a n d a r d  3%qot_ation~l_,~emaOZiGa_ef TL 

ISL: _SDS_Qf [i 

~ r ~ i a n ~ L i & _ d o m ~ i n s  

c:C=[S ~ S]. 
D=[P + L]. 

1 :t. 
N, 
P=[C > C]. 
O. 

r:R=[N + O]. 
s:S=[[L ~ V] x V* x R* x [L ~ T]]. 

T=[{ TRUE } + ( FALSE )]. 
p : O = [ [ I d e  -', '3]  "4 C '< C x C ] .  

v:V=[N]. 

Command cont. 
Denoted values 
Locations 
integers 
Procedure values 
Q u o t a t i o n s  

printable values 
States 
Truth values 
environments 
storable Values 

S ~ m a n t i c  s e l e c t o r s  

BRK==~p. plz2. 
L(X)==Xp. p#3. 
RET==Xp.  p#4. 



123 

From S t a n d a r d  to Implementation Denotational Semantics 

S 9/na.o.t. i £_f u n¢ tio ns 

B : [ B e x  ~ U ~ S ~ T ] .  

C : [ C o m  ~ U ~ P ] .  
D : [ O e c  ~ U ~ S ~ [U ~ S]  ] .  

J:[Jmp ~- U ~- C]. 
R : [ E x p  ~. U ~- S ~, V ] .  

~ ' [ v ~ r i  ~, U ~- P ] .  

~ula~tic primilives 

A:fAop ~ V ~ V ~ V]. 
N:[Num ~ N]. 
O:[Ouo ~ 0]. 
O'[Rop ~ V ~ V ~ T]. 
~rong :C. 
A s s i q n ' [ L  ~ V ~ C ] .  

A s s i g n  l v s =  

< ~ l ' . l = l ' ~ v , ( s g l  ) l ' , s # 2 , s ~ 3 , s % 4 > .  

U n d e f i n e d  

U n d e f i n e d  

U n d e f i n e d  

U n d e f i n e d  

U n d e f i n e d  

L o a d : [ L  ~ S ~ V ] .  

L o a d  i s =  

( s # l ) l .  

New: IS ~ [L  x S ] ] .  
R e a d ' [ S  ~ IV × S ] ] .  

Read s=  

# ( s # 2 ) = O ~ < T v ,  s > , < s # 2 # i  , < s ~ t  , s # 2 f l , s # 3 ,  s # 4 > > .  

y~rite:[R ~ C]. 
~Irit e rs= 

<s#i ,s#2, s93~-r, s94>. 
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Semantic_valuator for_~xpr es~LQns 

E l i l p =  
Load (p,[ i ]  : k ) .  

RIe"  ae ' "  ]p= 
R. [e ' ]p  ~ X v . ( R [ e " l p  D k [ a ] v ) ,  

R / n i p s =  
N[ n l .  

RI (e~ ' ) l p=  
R[ e" ]p .  

Semant i c _ v a l u a t o r  far_b_QD19_a[l_~xpre~s/ons 

K[b" "and" b''|p= 
Blb'lp ~ Coqd<B[b"Ip,~s.FALSE>. 

B[b"  "or" O'']p= 
B[b']p ~ Cond<~s.TRUE,B[b'']p>. 

B.[" true" ]ps= 
TR UE. 

B,l"f alse" ]ps= 
FALSE, 

B / ( b " )  ]p= 
B,[ b J ] p.  

B/e re  ~ |p= 
R l e l p  ~ ~ v . ( R [ e ' | p  o ( ] d r ] v ) .  



125 

From Standard to Implementation Denotational Semantics 

~ c  va lu~ to r__ fo r  c O ~ d ~  

C~[c ,p ~c p-z ] p c  = 

C[ c ' ] p ( C [ c t  " l p c } .  

C.l i  : = e l p c =  
R I e l p  ~, A s s i g n ( p l i l  ;L) o c .  

C ~ [ " i f  ~' b " t h e n  Jf c I " e l s e "  c t Z ] p c  = 
& [b ]p  ~ Cond<C[oP]pc,C[c  H ] p c > .  

C [ " w h i l e "  b "do"  c- ' lpc  = 
F i x ( ~ c ' . ( B l b l p  ~ Cond<C[c - ' ] ( p [BRK/c ] [LO0 /c  - t ] ) c  r ° c > } } .  

C [ " c a l l "  i l p c =  
{p,[ i ]  ', P}c. 

C,["dummy" ]pc= 
c. 

C~ j l pc=  
J.[ j l p .  

C["  r ead" i l p c =  
Read _~ A s s i g n ( p l i l l L )  o c. 

C~writ e" wlpc= 
W[ wlpc. 

C . [ ' ° b e q i n "  c ~ " e r l d " ] p c =  

C[ c ~ ] pc. 

C. [ "beg in  ~ d~c t ~end" l .pcs= 
(D.[d]p _~ ~ p ~ . C . [ c r l p t ( ~ s t , c < s P ~ l , J ~ 2 , s t ~ 3 , s ~ 4 > } } s .  
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Z ~ l a n t  ~ c _ v a l u  a t # r  f o r  d e  c l a  r a i i _ Q n ~  

D/"procedure" ilclps= 
<p [li]/~c.CJ[c I (p[RFT/c ] [ BRK/Wrong] [LOo/~irong] ) c], s>. 

Di~'integer 'j ilp-- 
New _* ~is.<p[[i]/l ].s>. 

illd'ld'-'lp= 
D [ d J l p  -* Did'" 1. 

~emantic_valuator fgJl_i~Euctured jumps and writable_~alues. 

J l " b r e a k "  ]p= 
pB RK. 

J,[~' 1 oop ~' lp= 
pL 00. 

J4 " r  e t u r  n"  ]p= 
pRET. 

Wle]pc=  
RJ[e]p @ ¢~r i te o c.  

~tlq ] pc= 
# r l t e ( O E q ] )  o c.  
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D ~ mp I ~m enta t i o [LDe~ ota tion a l__~eman tic a_~C_ iL 

I~_K_IDS of fL 

ema ni~t~_doEla ins 

a.'A=[L ~ T]. 
c : C = [ S  ~ S]. 

D=[P  + L]. 
l:k. 

N. 
P=[A ~ C ~ C]. 
Q. 

r.'R=[N + Q]. 
s'S=[[k ~ V] x v* x R*]. 

T=[{ TRUE } + ( FALSE } ]. 
p'U=[[Ide ~ D] x C x C x C x A]. 
v:V=[N]. 

~ = [ V  + k]. 
Y = [ A o p  + Be× + Exp + R o p ] .  

A r e a  f u n c t i o n  
Command c o n t .  
D e n o t e d  v a l u e s  
L o c a t i o n s  
iFtegers 
P r o c e d u r e  v a l u e s  

O u o t a t l o n s  
p r i n t a b l e  v a l u e s  

St ates 
Truth values 
environments 
storable Values 
dumped ~alues 
reversed sYntax 

~ m ~ c _ . s ~ c t o  r s 

B R K = = X p . p e 2 .  

L ( X ) = = ~ p . p ~ 3 .  
RET==Xp .p~4 .  

A R E = = ~ p . p ~ 5 .  
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ema nt i q~_/_~nc tio qs 

B:[Bex ~ U ~ C ~ C ~ C]. 
C'[Com * U ~ C * C]. 
D:[Dec ~ U ~ U]. 
Jz[Jmp ~ U ~ C]. 
~ : [ E × p  ~ U ~ S ~ V ] .  

~l:[#ri ~ U ~ C ~ C]. 

Semantic or imiti yes 

A : [ A o p  * V ~ # ~ S ~ V ] .  

N : [ N u m  ~ N ] .  

O s [ O u o  ~ O ] .  

O : [ R o p  ~ V ~ # ~ C ~ C ~ C ] .  

B J u m p : [ R o p  ~ V ~ C * C ~ C ] .  

B L e a f : [ E x p  ~ Rop ~ U ~ V ~ C ~ C ~ C ] .  

D u m p : [ U  ~ V ~ S ~ [L  x U x S ] ] .  

IfNeedToDump:[Exp ~ T]. 
IfNeedToReverse:[[Bex + Exp] ~ T]. 
IfZero:[Exp ~ T]. 
I s L e a f : [ E x p  ~ T ] .  

R e v e r s e : [ Y  ~ Y ] .  

R L e a f : [ E x p  ~ Aop ~ U ~ V * S ~ V ] .  

# r o n g : C .  
A s s i g n z [ L  ~ V ~ C ] .  

Assign ivs= 
<~l'.l=}'~v,(sfl)l',s#2,s#3>. 

U n d e f i n e d  

U n d e f i n e d  

U n d e f i n e d  

U n d e f i n e d  

U n d e f i n e d  

U n d e f i n e d  

Undefined 
Undefined 
Undefined 
Undefined 
Undefined 
Undefined 
Undefined 
Undefined 

Load:[L ~ S ~ V]. 
Load is= 

(s#l)l. 

New'[U ~ [L × U]]. 
Read:IS ~ IV x S]]. 
Read s= 

#(s#2)=O-<Tv.s>.<s#2#l ,<s~l ,s#2+l ,s@3>>. 

~rlte:[R ~ C]. 
#r~te rs= 

<s#l ,s#2,s¢3~r>. 
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Semanti f~_Atnl/~ator f~r__~x~ns 

it.[i l p =  
Load(p . [  i l  IL ). 

R~ e" a e ~" ] p= 
IfNeedToReversele'a e'" ]~R(Reversef etae "." ] ~ Exp)p, 
(RJ [e" lp  

Xv. I s L e a f £  e ' "  |~RLeaf_ [e ' . "  l~ a | p v ,  
I fN eedToOu mpl e ' . "  !~ 

Dump pv _* ~ < l , p ~ > . ( R & e H ] p  ~ ] X v . A ( R e v e r s & | a ] ; A o p ) v l ) ,  
( R ] : e ' ' i p  @ / L l : a l v ) ) .  

R~ln]ps= 
NI n] .  

t~.1" (e~') ] p= 
1%[ e~" l p .  

Semal: l t ic  val~a;zr__for bool_g_az~__~zpressions 

B~[b" -"and j' b'-'Ipcc'= 
B~ b J |p(~[b''|pcc" }c ~. 

B~[b" "or" b " i p c c ' =  
B][b" ]pc  {B ib  z, ] pcc"  } . 

BE~wt rue ~ ]pcc'= 
c. 

l~L["tal se" |pcc~= 
C "p . 

B.I: (b J ) .1 pcc "= 

&[ b" ]p  cc " ,  

B#e r e." | pcc S:  

I / Z e r o l e l ~ - I ~ e ' | p  ~ ~v.  B d u m p ( R e v e r s e ~ r | I R o p ) v c c - .  
t f Z e r o ~ e - ' l ~ , R . l e l p  ~ :~v. BJump. [ r i vcc . " ,  
I t N e e d T o R e v e r s e [ e r e t ] ~ B ( R e v e r s e ] e r e  p ! I Bex )pcc  -t ,  
(RJ[el p ] 

~v .  I s L e a f [  e" ] ~ B L e a f . [ e "  | [ r l  pvcc  t ,  
I fJ~ eed7 oDumpl e" ]~ 

Dump pv * ~ < l . p - ' > .  ( l%[eP]p , ] ~ v . O ( R e v e r s e . [ r ] : R o p )  v l c c - - } ,  
{ R i e ' l p  2 ~ v ' . O . [ r | v v ' c c ' } } .  
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5 ~ l a m L k  c __y_~l~ at~r_ for _c~ l;:~a nds 

C[c'~c"lpc= 
Cic']p{O~-'Ipc]. 

C[i'=elpc= 
Rlelp ~ Assign(p.iillL) o c. 

C I - " i f "  b " t h e n "  c" " e l s e "  c ' " ] p c =  
B[ b ] p { C [ c "  ] pc } {C.[ct-t ] p c } .  

GP'while" b i'do" c-'Ipc = 
Fix{~c -t.B[o ]p(Clc" ] (p[BRK/c ] [LO0/c t ] )c ~ }c). 

CIJic a l l  '' i l p c =  
{ p I i l  IP}  (pARE) c,  

C~"dummy" Ipc= 
c° 

C.[j I pc= 
J-[ j l p ,  

C~[" r e ad" ilpc= 
Read _~ Assigq(plil;L) ~ c. 

C~"writ e" w]pc= 
Wlwlpc. 

CpIbegin" c r "end~llpc = 
CI c -t I p c. 

C.[ . "begin"  d l c  -I " e n d l t l p c  = 
C[ c" ] ( D 1 d l p ) c .  
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From Standard to I m p l e m e n t a t i o n  D e n o t a t i o n a l  S e m a n t i c s  

ema~Iti ~ va hJ a%o r__ fQr __~ec i a/za ii~lla 

D [ " p r o c e d u r e "  i l c l p =  
p [ ~ i ] / X a c .  C lc  ] ( p [ARE /a  ] [RET/c  ] [BRK/~trong ] [ L ( x ) /Wrong ] )  c ] .  

D.[" i nt eger" ilp= 
New p=.>~<l ,p'>,p~ [! i]/l ], 

Dlr d ,  ~d,~, ] p =  
D[ d"  ] p = > D [ d " "  ] .  

~emant~ C y @ l u a t o r  foE__~tr_i/g_~/jF_e~d_j//~ips ~nd _~wr~ tab.l#__Z~Lues. 

J.[" b r e a k "  ]p= 
pBRK. 

J l "  1 oop" ]p= 
pLOO. 

Jl"return"lp= 
pRET. 

t',ll e ] pc=  
R[e]p ~ flrite o 

W.lq ] pc= 
#rite(Olql) o c. 

C. 
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E. The Generated Compiler 

/ /  
/ /  
/ /  

File OSK:TLBCL. MS 
Compiled by ISL IA(23) at 10:32 21/2/80 
Output of phase 6 

LET RR([,ode, Rag) BE S}tITCHON Type OF ~,~ode Ih~TO 
( CASE S . . i :  

Load(UU(t!ode),  Reg) 
ENDCASE 

CASE £xp.Aop"  
TEST t fNeedToReverse(Node,  Reg) THEb RR(Reverse(Node) ,  Reg) 
OR 
{ RR(First OF }~ode, Req) 

TEST IsLeaf(Third OF Node) 
THE~ RLeaf(Thlrd OF Node, Second OF [~ode, Req) 
OR 
TEST Ift4eedToDump(Third OF ~Tode) 
THEN 
{ LET i = Oulnp(Req) 

RR(Tnird OF :/ode, Reg) 
AA(Reverse(Second OF Node), Rag, 1) 
Free( 1 ) 

} 

OR 
{ R R ( I z i r d  OF [,'ode, }, ]extReg(Reg)) 

kA(Second OF Node, Rag, NextReg(Reg))  
} 

} 

ENDCASE 

CASE S..n: 
~ ( ~ o d e ,  Reg) 
ENDCAS£ 

CASE Exp. brac, (e t  s" 
RR(F I r s t  OF Node, Req) 
ENDCAS E 
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LET BB(~:ode, c. c l, t) BE SI~ITCHO~! Type OF Lode INTO 
{ CASE Bex.aqd: 

( LET c2 = ForwardContinuetion() 
B B ( F i r s t  OF h'ode, c 2 .  c l °  FALSE) 
F i × C o n t  i n u a t  i o n  ( c 2 )  
BB(SecJnd OF Node ,  c ,  c l ,  t )  

) 

ENDCASE 

CASE Bex.or" 
( LET c2 = ForwardContinuation() 

BB(First OF Node, c, c2, TRUE) 
FixContiquatioa (c2) 
BB(Second OF l'.:ode, c ,  c l ,  t )  

) 

ENDCASE 

CASE Bex.true: 
JumpComtinuatioa(c. t) 
ENDCASE 

CASE B e x . f a l s e :  
J u m p C o n t i n u a t i o q ( c l ,  NOT t )  
ENDCASE 

CASE B e x . b r a c k e t s :  
B B ( F i r s t  r)F Node, c ,  c l ,  t )  
ENDCASE 
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CASE Bex. Rop: 
TEST IfZero(First OF Node) 
THEN 
( RR(Third OF Node. FirstReg) 

B Jump(Reverse(Second OF Node), FirstReg. c, ci. t) 
) 
OR 
TEST IfZero(Third OF Node) 
THE~ 
{ RR(F i r s t  OF No~e. F i r s t R e g )  

9Jump(Second OF Node, F i r s t R e g .  c ,  c l .  t )  
} 

OR 
TEST I fNeedToReverse(Node)  THEN BB(Reverse,(Node), c ,  c l0  t )  
OR 
( R R ( F i r s t  OF Node. F i r s t R e g )  

TEST I s L e a f ( T h i r d  OF Node) 
THEN BLea f (ThL rd  OF Node. Second OF Node, F i r s t R e g ,  c ,  c l ,  t )  
OR 
"TEST IfNeedToUump ( T h i r d  OF Fode) 
THEN 
{ LET £ = Dump(FirstReg) 

RR(Tni rd  OF Node, F i r s t R e g )  
O0(Reverse(Second OF Node), F i r s t R e g .  i .  c,  c l .  t )  
Free(l) 

) 
OR 
( RR(Tnird OF ~lode. NextReg(FirstReg)) 

()()(Second OF ~,~ode. FirstReq, NextReg(FirstReg)° c, cl, t) 
} 

) 
E~,;DCAS£ 
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LET CC(Fode,  c, t) BE S~tTCHOf.! Type OF ~3ode II~lO 
{ CASE Com.semicolon: 

{ LET c l  = F o r w a r d C o n t i n u a t i o n (  ) 
CC(Flrst OF Node, c l .  FALSE) 
F i x O o n t i q u a t l o n ( c t  ) 
CC(Second OF Node ,  c ,  t )  

) 

ENDCASE 

CASE C o m . a s s i g n , n e q t "  
RR(Second r)F Node,  F i r s t R e g )  
Ass ign(Lr ,  J ( F i r s t  OF N o d e ) ,  F i r s t R e g )  
JumpCont i n u a t  i o n  ( c ,  t )  
ENDCASE 

CASE Com. i f t h e m e l s e :  
{ LET c l  = F o r w a r d C o n t i n u a t i o n ( )  

LET c2 = F o r w a r d C o n t l n u a t i o n ( . )  
B B ( F i r s t  OF b!ode, c l ,  c 2 ,  FALSE) 
F i x C o n t  i q u a t l o n ( c  1 ) 
CC(Second OF Node,  c ,  TRUE) 
Fi  xCont  i m u a t i o n  ( c 2 )  
CC(Third OF ~ade, c, t) 

) 
ENDCASE 

CASE Com. w n i l e d o :  
( LET c l  = T h i s C o n t i n u a t i o n ( . )  

LET c2 = ForwardOonti~uat~on() 
BB(First OF Node, c2, c, FALSE) 
FixContlquatlon (c2) 
Declare (BRK, c) 
Declare (LO0. cl ) 
CC(Second OF Node ,  c l ,  TRUE) 
UnOeclare(LO0) 
Un[}eclare(BRK) 

) 

ENDCASE 

CASE Corn.ca ii: 
CallContinuation(UU(First OF Node)) 
JumpCoqti n,Jation ( c, t )  
ENDCASE 

CASE Corn.dummy" 
JumpCont i nuat ioq( c, 
Eb~DCASE 

t )  
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CASE Jmp.break" CASE Jmp. loop: CASE Jmp.return" 
JJ ( Fode ) 
£NDCASE 

CASE Corn. re ad" 
Read(F i rs  tqeq)  
A s s i g n ( U U ( F i r s t  OF Node) ,  F i r s t R e g )  
JumpConti n,Ja t / o n (  c. t )  
EFDCASE 

CASE Com. write: 
~d(First ()F Node. c. t) 
ENDCAS6 

CASE Com. b e q i  q end." 

C C ( F i r s t  OF 4 o d e ,  c ,  t )  
ENDCASE 

CASE Com.beq insemico l  onend : 
( LET c l  = F o r w a r d C o n t i n u e t i o n ( )  

J u m p C o q t £ q u a t i o n ( c l ,  D e c l a r e i n g C o n t i n u a t i o n ( F i r s t  OF Node)) 

DD(FLrst OF TIode) 
FixCont in,]at ion (c I ) 
CC(Secoqd OF f:ode, c, t) 
UnDO(First ()F Node) 

} 
ENDCASE 

LET ##(Node, c, t )  ~E S~ITCHON Type OF Node INTO 
{ CASE S . . i :  CASE S . . n :  CASE Exp. Aop: 

CASE E x p . b r e c k e t s "  
RR(Node, F i r s t R e q )  
~'~ri t e ( F i r s t R e ~ )  
JumpContinuation(c, t) 
ENDCASE 

CASE S . . q :  
} i r i t e (OO(Node) )  
J u m p C o n t i n u a t i o n ( c ,  t )  
E~DCASE 
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LET DD(Node) BE S~'~II'CHON Type OF Node INTO 
( CASE D e c . p r o c e d u r e :  

( LET cl  : ' f h i s C o n t i n u a t i o q ( )  
LET c : EntryContlnuat/on(.) 
Declare (REr. c) 
Declare(BRK, drong 
Declare(LOO. ~'~roqq 
CC(Second OE ~'ode, c, FAESE) 
UnOeclare (LOO) 
UnOeclare (BRK) 
UnDeclare (RET) 
EXi tCoqt~ qua tio n (c 
Oeclar;(First of ~'ode, c l )  

} 

£NDCASE 

CASE Dec.inteqer: 
{ LET i : ~ew() 

beclard(Yirst OF Node, i) 
) 
E~.'DCASE 

CASE D e c . s e m i c o l o n :  
D D ( F I r s t  OF Node) 
DD(Second OF Node) 
ENOCASE 

LET JJ( t .ode)  BE S~,~ITCHO~: Type OF Node 
( CASE J m p . b r e a k :  

JumpCoqtiquation(UU(BRK), TRUE) 
ENDCASE 

CASE Jmp. loop: 
JumpContiq,iatioq(UU(LO0), TRUE) 
ENDCASE 

CASE Jmp.re t,lrq : 
JumpContiquatioq(UU(RET), TRUE) 
EYDCASE 

I bTO 



138 

F. References 

E. References 

[BCPL77] Reference manual ,  Depar tment  Of Computer Sc ience .  Essex 
University. 1977. 

[Bornat76]R.~{ornat. Notes for Comparative Study of Programming 
Languages, D~partment Of Computer Science. Essex University. 1976. 

[Bornat77]R.8ornat. Understanding and ~riting Compilers. Macmillan 
1977. 

[G r i es71 ]D .G .  G r i e s .  C o m p i l e r  
J .~1 i l ey  and Sons. 197i .  

Construction for 9igal Computers, 

[Hayes78 ]P .J .Hayes .  Invocation Records" A concep tua l  Framework f o r  
E v a l u a t i n g  Program T e x t .  Department  Of Computer S c i e n c e .  Essex 
U n i v e r s i t y .  I 9T9. 

[Jones80]t~.D. Jones and D.A. Schmid t .  Compi le r  G e n e r a t i o n  f rom 
D e n o t a i o n a l  Se,aant ics  ( P r e l i m i n a r y  Repor t )  Workshop on 
Semantics-Directed Compiler Generation. Department Of Computer 
Sc ience .  Aaraus U n i v e r s i t y .  1980. 

[ ~ l n e 7 6 ] R . ~ i l n e  and C . S t r a c h e y .  A Theory  of programming language 
semantics, Chaoman 3rid Hall. 1976. 

[Mosses74]P.O,qosses .  The Semant ics  o f  Semant ic  E q u a t i o n s ,  
@athemat ica l  F o u n d a t i o n s  o f  Computer Sc ience .  L e c t u r e  Notes i n  
Computer Sc ience 28. Sprinqer-Verla~. Proc .  3rd ~FCS Symposium. 
~arsaw. 1974. pp.40o-422 

[Mosses75]P .D.~osses .  ~ t h e m a t i c a l  Semant ics  and Comp i l e r  G e n e r a t i o n ,  
PhD. thesis. 7qiverslty of Oxford. Io75. 

[Mosses76]P.D.~4osse~. Comp i l e r  G e n e r a t i o n  us i ng  D e n o t a t i o n a l  
Semant i cs ,  4 a t h e m a t i c a l  Founda t i ons  o f  Computer S c i e n c e .  L e c t u r e  
Notes i n  Computer Sc ience  45. S p r i n g e r - V e r I a g .  Proc .  5 th  MFCS 
Symposium. O,tansk Po land .  t976. pp.436-441 

[ Mosses78 ]P.D. ~Io ss es. SIS:  A Comp i le r  Genera to r  System us ing  
D e n o t a t i o q a l  Semant ics ,  Reference ~anua l .  U n i v e r s i t y  of Aarhus .  IO78. 

[Raskovsky7O]~ .R.Raskovsky  and R . T u r n e r .  Compi le r  G e n e r a t i o n  and 
Denotational Semantics, Fundamentals of Computation Theory, 1970. 

[RaskovskySOl~4.R.Raskovsky.  ISL ( I n  p r e p a r a t i o n )  Depar tment  Of 
Computer Sc ience .  Essex U n i v e r s i t y .  1980. 

[ R i c h a r d s 6 0 ]  1 . 9 i c h a r d s .  SCPL: A t o o l  f o r  c o m p / l e r  w r i t i n g  and system 
programminq, Proceedings of the 1969 Spring Joint Computer 



139 

From Standard to Implementat ion Denotational Semantics 

Conference. ~]oston AFIPS /~ontvale 1969 pp.557-566. 

[ScottTO]D. Scott. Outline of a Mathematical Theory of Computation, 
PRO-2. Oxford University Computing Laboratory. 1970. 

[Scott71]D.Scott and C, Strachey. Toward a Mathematical Semantics for 
Computer Languages, PRG-6. Oxford University Computing Laboratory. 
1971 . 

[Scott76]D.Scott. Data Types as Lattices, Procedings of the 1974 
Colloquium in ~athematlcal Logic. Klel. Sprlnger-Verlag. Berlin 1976. 
pp.579-650. 

[Stoy77]J.E.Stoy. Oenotatlonal Semantics: The Scott-Strachey Approach 
to Programming Language Theory. HIT Press. 1977. 

[ Stoy77 ] J .E .S toy .  The congruence of Two Programming Language 
Definitions. (manuscript). 1979. 

[S t rachey66]C.St rachey.  Towards a formal  semant ics,  Formal Language 
Description Languages for Computer Programming. (ed i t ed  by 
T.B.Steel). North-Holland. Amsterdam 1966. pp.198-220, 

[S t rachey67]C.St rachey.  Fundamental Concepts in  Programming 
Languages, International Summer School in  Computer Programming, 1967 
(Typescript). 

[ St rachey74]C. St rachey and C.P.#adswor th .  Con t inua t ions ,  A 
Mathematical Semant i cs fo r  handl ing f u l l  jumps, PRG-11. Oxford 
U n i v e r s i t y  Computinq Labora to ry .  t974. 

[ S u f r i n 7 7 ] B . S u f r i n .  L i t :  A Parser Generator .  Department Of Computer 
Science. Essex U n i v e r s i t y .  1978. 


