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Abstract

Authentication and authenticated encryption with associated data (AEAD) are applied
in cryptographic protocols to provide message integrity. The definitions in the literature
and the constructions used in practice all protect against forgeries, but offer varying levels
of protection against replays, reordering, and drops. As a result of the lack of a systematic
hierarchy of authentication and AEAD security notions, gaps have arisen in the literature,
specifically in the provable security analysis of the Transport Layer Security (TLS) protocol.
We present a hierarchy of authentication and AEAD security notions, interpolating between
the lowest level of protection (against forgeries) and the highest level (against forgeries,
replays, reordering, and drops). We show generically how to construct higher level schemes
from a basic scheme and appropriate use of sequence numbers, and apply that to close the
gap in the analysis of TLS record layer encryption.

Keywords: authentication, authenticated encryption with associated data (AEAD), Transport
Layer Security (TLS) protocol, secure channels

1 Introduction

Message integrity is a vital security service demanded of cryptographic protocols, and is usually
provided either by a message authentication code (MAC) or by a combined authenticated
encryption scheme. The standard security property for a MAC is existential unforgeability under
a chosen message attack.

There has been an extensive line of research on security notions and constructions for
authenticated encryption schemes, with initial definitions given by Katz and Yung [KY01],
Bellare and Namprempre [BN00], and Krawczyk [Kra01]. For message confidentiality, an
authenticated encryption scheme could achieve indistinguishability under either an adaptive
chosen plaintext (IND-CPA) or an adaptive chosen ciphertext (IND-CCA a.k.a. IND-CCA2)
attack. For message integrity, an authenticated encryption scheme could achieve either integrity
of plaintexts (INT-PTXT) or of ciphertexts (INT-CTXT). Shrimpton [Shr04] combined the
separate INT-CTXT and IND-CCA experiments into a single experiment which he called
IND-CCA3.
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Bellare and Namprempre [BN00] and Krawczyk [Kra01] also investigated how to construct
authenticated encryption schemes from MACs and symmetric encryption, evaluating three
construction paradigms: encrypt-and-MAC, MAC-then-encrypt, and encrypt-then-MAC.

Rogaway [Rog02] defined the notion of authenticated encryption with associated data (AEAD),
to capture the common real-world scenario in which some data (such as packet headers) needs
to be sent authentically alongside a ciphertext, but need not be encrypted, and AEAD has taken
prominence over plain authenticated encryption in recent years.

Despite the utility of authenticated encryption and AEAD, it is not enough to realize the
secure channel property expected of cryptographic protocols for two reasons. First, secure
channel protocols are often expected to perform an initial establishment of the encryption key
using a key exchange protocol; see for example the original paper on secure channels by Canetti
and Krawczyk [CK01] (and the follow-up by Namprempre [Nam02]) as well as recent realizations
such as the authenticated and confidential channel establishment (ACCE) model of Jager et
al. [JKSS12]. (In this paper, we will not focus on the key exchange establishment phase of secure
channels.) Second, and more important for this paper, applications often expect reliable delivery
of a sequence of messages: that no attacker can replay messages, deliver them in a different
order in which they were sent, or drop some messages without later detection.

To capture the notion of delivery of a sequence of messages, Bellare et al. [BKN02] in-
troduced stateful authenticated encryption, with two security properties: stateful integrity of
ciphertexts (INT-SFCTXT) and stateful indistinguishability of ciphertexts (IND-SFCCA). Kohno
et al. [KPB03] extended the statefulness to AEAD schemes, and gave a hierarchy of 5 integrity
notions: type 1) security against forgeries; type 2) type 1 plus security against replays; type 3)
type 2 plus security against reordering; type 4) type 3 plus detection of previous drops but still
accepting subsequent messages; type 5) type 4 plus but not accepting subsequent messages. The
type 5 notion of Kohno et al. [KPB03] is equivalent to the stateful authenticated encryption
notion of Bellare et al. [BKN02].

Paterson et al. [PRS11] revisit AEAD definitions in the context of the Transport Layer
Security (TLS) protocol. They present a combined AEAD security notion called length-hiding
authenticated encryption (LHAE), which provides message integrity and confidentiality similar to
the type-5 security of Kohno et al. [KPB03], even for messages of different length (hence “length-
hiding”), and in a single combined security property (following Shrimpton [Shr04]). Paterson et
al. then go on to show that, under appropriate length conditions on the message authentication
tag, a simplified form of the encode-then-MAC-then-encrypt form of encryption in the TLS
record layer in ciphersuites that use a block cipher in CBC mode is a secure length-hiding
authenticated encryption scheme. The simplification is that the statefulness aspects (sequence
numbers) are not considered.

Jager et al. [JKSS12] and Krawczyk et al. [KPW13], in their provable security analyses of
the full TLS protocol (covering both the authenticated key exchange in the TLS handshake and
the TLS record layer), rely on an extension of the work of Paterson et al. [PRS11], namely a
form of stateful length-hiding authenticated encryption (sLHAE). Unfortunately, the work of
Paterson et al. did not show that TLS encode-then-MAC-then-encrypt satisfies sLHAE, only
LHAE. To our knowledge, this gap remains in the literature until now.

1.1 Our contributions

In this work, we construct a hierarchy of authentication and AEAD security notions, show how
to construct schemes with higher levels of security from a scheme with the lowest level of security
combined with sequence numbers, and apply these techniques to TLS record layer encryption to
bridge the gap between LHAE [PRS11] and sLHAE [JKSS12].

First, we construct a hierarchy of authentication levels:

1. protection against forgeries,
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Figure 1: TLS channel analysis.

2. protection against forgeries and replays,

3. protection against forgeries, replays, and reordering of messages, and

4. protection against forgeries, replays, reordering of messages, and dropped messages.

We give a similar hierarchy of definitions for AEAD, with single-experiment AEAD notions that
combine integrity and indistinguishability, following Shrimpton [Shr04]. In both cases, these
hierarchy levels can be viewed as interpolating between existing stateless notions at our level 1
and existing stateful notions at our level 4.

Continuing, we show how to construct level 2, 3, and 4 schemes from level 1 schemes.
The constructions are not surprising: by appropriate incorporation and checking of sequence
numbers, the receiver can ensure it is receiving a valid sequence of sent messages. However, our
constructions incorporate a degree of generality: rather than fixing how the sequence numbers
are incorporated, we allow an encoding scheme to include them either implicitly or explicitly.
For example, in an explicit encoding scheme, the sequence number might be authenticated and
then transmitted alongside the ciphertext, in the manner of DTLS. Alternatively, in an implicit
encoding scheme, the sequence number might be incorporated into the authentication calculation
but not actually transmitted across the wire (since the receiving party ought to know what
packet number to expect); this is how TLS works, for example.

We use this generic construction to close the gap in the provable security analysis of TLS
record layer encryption. Paterson et al.’s analysis of a simplified form of TLS encode-then-MAC-
then-encrypt (ΠPRS) shows that it satisfies the LHAE notion, equivalent to our level 1. We can
formulate TLS’s use of sequence numbers as an encoding scheme in our generic construction,
and then see that the full form of TLS encode-then-MAC-then-encrypt (ΠTLS) is equivalent to
our level-4 generic construction applied to ΠPRS , and thus ΠTLS achieves level-4 AEAD security,
equivalent to sLHAE. Fig. 1 illustrates the connection between our work and that of Paterson
et al., Jager et al., and Krawczyk et al., depicting how the construction from level-1 AEAD to
level-4 AEAD builds a missing and necessary bridge in the analysis of TLS.

Relation with existing work. The work most closely related to ours is the manuscript of
Kohno et al. [KPB03], who gave a hierarchy of AEAD notions. Our AEAD hierarchy maps
on to theirs: our levels 1, 2, 3, and 4 correspond to their types 1, 2, 3, and 5, respectively.
There are several differences with our work. They give constructions of higher level schemes
directly from encryption and MAC schemes in the encrypt-and-MAC, MAC-then-encrypt, and
encrypt-then-MAC paradigms, whereas we show how to construct higher levels generically from
lower level schemes. Their AEAD hierarchy uses separate integrity and indistinguishability
experiments at each level, whereas we use a single combined experiment at each level. We
also give a hierarchy of authentication notions, not just AEAD notions, and thereby expand
applicability to schemes outside of the AEAD context. Finally, we connect the hierarchy and
our generic constructions with TLS record layer encryption.

Connection with secure channel definitions. One motivation of our work was to un-
derstand the difference between the original CK01 secure channel definition of Canetti and
Krawczyk [CK01] and the ACCE model of Jager et al. [JKSS12]. The confidentiality and integrity
notions in CK01 and their NetAut protocol correspond with level 1 of our AEAD hierarchy –
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stateless authenticated encryption. A comment in their paper does require that the receiver
“check for uniqueness of the incoming message”, which would upgrade to level 2 in our hierarchy,
and this is the notion that was used in a subsequent work by Namprempre [Nam02]. In contrast,
Jager et al.’s ACCE notion maps to level 4 of our AEAD hierarchy – sLHAE.

Application to real-world protocols. Each level of our AEAD hierarchy maps to the
requirements expected in some real-world protocols:

• Level 1: DTLS [RM06, RM12]: Datagram TLS provides basic authentication, allows
packets to be dropped, and will receive packets out of order, queuing them for future
processing.

• Level 2: IPsec Authentication Header (AH) [Ken05]: IPsec Authentication Header protocol
provides similar replay detection using a window of recently received packets combined
with dropping packets that are “too old”.

• Level 2: DTLS with optional replay detection: Datagram TLS does allow optional replay
detection [RM06, RM12, §3.3] using a similar technique to IPsec AH.

• Level 3: 802.11 [IEE12] is designed to preventing reordering and to detect replays but
allows for packet dropping.

• Level 4: TLS [DR08] is designed to receive a message sequence strictly as a sent, and will
be discussed at greater length in Section 4.

A recent analysis [LJBN15] of the QUIC protocol [LC15] employed an AEAD level comparable
to our level 1 AEAD; however, the replay-detection abilities of QUIC suggest that a higher
authentication level should be achievable.

1.2 Additional related work

There are several additional lines of work on authenticated encryption.
One line of research views data “as a stream”, rather than a discrete sequence of messages;

practical implementations receive data byte-by-byte rather than as atomic messages in security
definitions. Albrecht et al. [APW09] showed how to carry out a plaintext recovery attack against
the Secure Shell (SSH) protocol as a result of byte-by-byte processing. This motivated the need
for non-atomic authenticated encryption definitions [BDPS12, FGMP15]. The work of Fischlin et
al. [FGMP15] in particular is motivated by protocols such as TLS, SSH, and QUIC, and describes
checks that can again be correlated with our level-4 AEAD notion. It would be interesting to
expand stream-based analysis in the direction of our hierarchical levels for protocols that allow
packet dropping. For example, the QUIC protocol [LC15] runs over UDP and tolerates a degree
of packet loss, making analysis under a level-4 stream-based notion inappropriate.

Another line of research focuses on the use of nonces in authenticated encryption [Rog02,
RBBK01], and more recently for the specific purposes of protecting implementations that misuse
counters or nonces [RS06, FFL12, HRRV15]. Meanwhile, Hoang et al. [HKR14] define a notion
of robust authenticated encryption which incorporates padding properties similar to the stateless
form of LHAE of Paterson et al. [PRS11]. Finally, additional recent work focuses on defining
authenticated encryption results in the constructive cryptography framework [MT10, BMM+15].

2 Authentication Hierarchy

In this section, we formalize our 4-tier hierarchy of authentication notions, each level building
on the previous, and show how to achieve higher level notions from level-1 combined with
appropriate checks on sequence numbers.

4



ExpauthiΠ,A ():

1: k
$← Kgn()

2: stE ← ⊥, stD ← ⊥
3: u← 0, v ← 0
4: r← 0
5: ASend(·),Recv(·)()
6: return r

Oracle Send(m):

1: u← u+ 1
2: (sentu, stE)← Snd(k,m, stE)
3: return sentu to A

Oracle Recv(c):

1: v ← v + 1
2: rcvdv ← c
3: (m,α, stD)← Rcv(k, c, stD)
4: if (i = 4) ∧ (α = 1) ∧ [cond4 ∨ (αv−1 = 0)] then
5: r← 1
6: else if (α = 1) ∧ condi then
7: r← 1
8: return r from experiment
9: return ⊥ to A

1. Basic authentication:
cond1 = (@w : c = sentw)

2. Basic authentication, no replays:
cond2 = (@w : c = sentw) ∨ (∃w < v : c = rcvdw)

3. Basic authentication, no replays, strictly increasing:
cond3 = (@w : c = sentw) ∨ (∃w, x, y : (w < v) ∧ (sentx = rcvdw) ∧ (senty = rcvdv) ∧ (x ≥ y))

4. Basic authentication, no replays, strictly increasing, no drops:
cond4 = (u < v) ∨ (c 6= sentv)

Figure 2: Stateful authentication experiment authi with authentication condition condi for
stateful authentication scheme Π = (Kgn,Snd,Rcv) and adversary A.

2.1 Definitions

Definition 2.1. A stateful authentication scheme Π for a message space M, a key space K,
and an output space C is a tuple of algorithms:

• Kgn()
$→ k: A probabilistic key generation algorithm that outputs a key k.

• Snd(k,m, stE)
$→ (c, stE): A probabilistic authentication algorithm that takes as input a

key k ∈ K, a message m ∈ M, and an authentication state stE, and outputs a tagged
message c ∈ C and updated state stE.

• Rcv(k, c, stD) → (m,α, stD): A deterministic verification algorithm that takes as input
a key k ∈ K, a tagged message c ∈ C, and a verification state stD, and outputs either a
message m ∈M or an error symbol ⊥, a bit α ∈ {0, 1}, and an updated state stD.

On first use, stE and stD are initialized to ⊥.

Correctness is defined in the natural way: for all m ∈ M, all k
$← Kgn(), all stE and

stD defined in any sequence of sends and receives respectively, and all c such that (c, st′E) ←
Snd(k,m, stE), we have that Rcv(k, c, stD) = (m, 1, st′D).

Note that in the case of a Rcv (message authentication check) failure, the receive algorithm
outputs a failure symbol ⊥, α = 0 to denote a failed receipt, and an updated state stD:
(⊥, 0, stD)← Rcv(k, c, stD). Otherwise, the algorithm outputs the correctly received message m,
α = 1 to denote successful receipt, and an updated state stD: (m, 1, stD)← Rcv(k, c, stD).

Formally we define a stateful authentication security experiment that can be parameterized
with different authentication conditions to capture various levels of authentication. Four
graded levels of authentication are defined for the experiment, correlated to different conditions,
condi, under which an adversary A wins, as shown in Fig. 2. Note that cond4 is strongly
linked to authentication demands in analyses of TLS [PRS11, JKSS12], a protocol with strict
authentication requirements.
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Definition 2.2. Let Π be a stateful authentication scheme and let A be an adversary algorithm.
Let i ∈ {1, . . . , 4}. The stateful authentication experiment for Π with authentication condition
condi is given by ExpauthiΠ,A in Fig. 2. We define

Advauthi
Π (A) = Pr

[
ExpauthiΠ (A) = 1

]
.

We now give a brief explanation of the “winning” conditions in Figure 2. As we can see in
lines 4–8 of the Recv oracle, the receiver is processing its vth ciphertext c; if the ciphertext is
accepted by the receiving algorithm Rcv (in which case α = 1), then the adversary is deemed
to have “won” if condi is true, for i = 1, 2, 3. For i = 4, we do not restrict a win to a correct
receipt (α = 1); since level-4 does not allow drops, an adversary may win under a failed receipt
if it can succeed in having further messages correctly received.

• cond1: To capture basic authentication of ciphertexts, we say that the adversary has won
if the received ciphertext c was not one of the ciphertexts output by the Send oracle.

• cond2: To capture basic authentication of ciphertexts with no replays, we say that the
adversary has won if the received ciphertext c was not one of the ciphertexts output by the
Send oracle, or if it was output by the Send oracle and previously accepted by the Recv
oracle.

• cond3: To capture basic authentication of ciphertexts with no replays and strictly increasing
receipt, we say that the adversary has won if the received ciphertext c was not one of the
ciphertexts output by the Send oracle, or if there were two messages received out of order:
if rcvdw was received before rcvdv, but rcvdw was sent after rcvdv.

• cond4: To capture basic authentication of ciphertexts with no replays, strictly increasing
receipt, and no drops, we say that the adversary has won if the v-th ciphertext received
(c) is not the v-th ciphertext sent, or if fewer than v ciphertexts have been sent.

Remark. If the authenticated message c takes the form of a ciphertext, then level-1 authentication
is equivalent to INT-CTXT. If c is such that c = (m,MAC(m)), where MAC is a message
authentication code, then level-1 authentication is equivalent to SUF-CMA. In order to maximize
the application potential of our results, we provide the generality for either application.

2.2 Relations among authentication notions

Each of the authentication notions sequentially implies the security of the levels below it. In the
following theorem, the security implications between levels are formalized, with security at Level
2 implying security at Level 1, etc.

Theorem 2.1 (Level-(i+1) authentication implies level-i authentication). Let Π = (Kgn, Snd,Rcv)
be an authentication scheme and let i ∈ {1, 2, 3}. For any adversary A,

Advauthi
Π (A) ≤ Adv

authi+1

Π (A) .

The proof of Theorem 2.1 can be found in Appendix A.

2.3 Constructing higher level authentication schemes

In this section, we generically show how to build higher level authentication schemes based
on lower level authentication schemes and the inclusion of sequence numbers with appropriate
checks. Since currently implemented protocols use both implicit and explicit sequence numbers,
we generalize our model for an arbitrary encoding scheme which captures both implicit and
explicit sequence numbers.
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Definition 2.3 (Authentication encoding scheme). An (authentication) encoding scheme Coding
for a sequence number space S and message space M is a pair of algorithms:

• Ecd(sqn,m)→ mecd: A deterministic encoding algorithm that takes as input a sequence
number sqn ∈ S and a message m ∈ M, and outputs an encoded message mecd ∈ Mecd,
where Mecd is the encoded version of M.

• Dcd(sqnlist,mecd)→ (sqn,m, α): A deterministic decoding algorithm that takes as input
a sequence number list sqnlist ⊂ S and an encoded message mecd ∈ Mecd, and outputs a
sequence number sqn ∈ S, a message m ∈M or an error symbol ⊥, and a status variable
α = 1 if decoding was successful or α = 0 otherwise.

In our construction of higher level authentications, we will require that Ecd is collision-
resistant.

We can construct schemes that use either implicit or explicit sequence numbers using
Definition 2.3. For example, the scheme with Ecd(sqn,m) := sqn‖m has an explicit sequence
number, and may be very applicable in practice since sqn is sent explicitly with the message.
An alternative scheme with implicit sequence numbers would be Ecd(sqn,m) := m‖MAC(sqn).
Thus elements of the space Mecd may take various forms, contingent on the properties desirable
for Coding. We will see in Section 4.2 that the TLS record layer protocol uses an encoding
scheme based on the second example above. We formally distinguish explicit and implicit
sequence numbers as follows:

Definition 2.4. We say that authentication encoding scheme Coding uses explicit sequence
numbers if Dcd(∅, Ecd(sqn,m)) = (sqn,m, 1) for all sqn and all m, and that Coding uses implicit
sequence numbers otherwise.

We now present our generic constructions of level-i authentication schemes from a level-1
authentication scheme. The heart of our construction is a sequence number check TESTi that
will correspond to the authentication condition condi. Our constructions can accommodate any
collision-resistant encoding scheme Coding, with either implicit or explicit sequence numbers;
this requirement is specifically important in implicit authentication where the sequence number
is not physically present on receipt. For conciseness, the notation Π′i for P (Π, Ecd, TESTi) will
be generally employed.

Definition 2.5 (P construction). Let Π be a (level-1) authentication scheme, Coding be an
encoding scheme, and let TESTi be one of the conditions specified in Fig. 3. Define Π′i :=
P (Π, Coding, TESTi) as the authentication scheme resulting from apply construction P in Fig. 3.

In this construction, the check TEST2 corresponds to the condition for level-2 authentication.
Basic level-1 authentication is assumed, so TEST2’s protection against replays implies replay
protection for condition cond2. Namely, if ∃w < v : c = rcvdw then ∃j : sqn = stD.sqnlistj , since
identical authenticated messages must contain identical sequence numbers. Similar connections
exist between TEST3 and cond3 and TEST4 and cond4. Note that to check TEST2 it is necessary
to maintain a record of all previously received sqn; thus stD.sqnlist must be a complete record.
However, for TEST3 and TEST4, it is strictly only necessary for stD.sqnlist to contain the last
received sqn.

The following theorem shows that the P construction with TESTi achieves level-i authentica-
tion. Notably Theorem 2.2 depends on the collision-resistance of Ecd. For many encoding schemes,
this follows immediately. For example, the simple concatenation scheme Ecd(ctr,m) = ctr‖m
is clearly collision-resistant when assuming unambiguous concatenation. When such a scheme
is used, the advantage of A is then directly reducible to the advantage of F . For the proof of
Theorem 2.2, see appendix A.
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Π′i.Kgn():

1: return Π.Kgn()

Π′i.Snd(k,m, st′E):

1: (c, st′E.subst)← Π.Snd(k, Ecd(st′E.ctr,m), st′E.subst)
2: st′E.ctr← st′E.ctr + 1
3: return (c, st′E)

Π′i.Rcv(k, c, st′D):

1: if st′D.status = failed then
2: return (⊥, 0, stD)
3: (mΠ, α, st

′
D.subst)← Π.Rcv(k, c, st′D.subst)

4: if α = 1 then
5: (sqn,m, α)← Dcd(st′D.sqnlist,mΠ)
6: if (α = 0) ∨ TESTi then
7: st′D.status = failed
8: return (⊥, 0, st′D)
9: st′D.sqnlist = st′D.sqnlist||sqn

10: return (m,α, st′D)

Sequence number tests for building Π′, correlated to authentication levels:

• Basic authentication, no replays:
TEST2 = (∃j : sqn = st′D.sqnlistj)

• Basic authentication, no replays, strictly increasing:
TEST3 = (∃j : sqn ≯ st′D.sqnlistj)

• Basic authentication, no replays, strictly increasing, no drops:
TEST4 = (∃j : sqn ≯ st′D.sqnlistj) ∨ (sqn 6= max{st′D.sqnlistj}+ 1)

Description of states st′E and st′D:

• st′E.subst := stE, where stE is the state in Π

• st′E.ctr. When Π′.Snd is initialized, st′E.ctr← 0.

• st′D.subst := stD, where stD is the state in Π

• st′D.status. Once st′D.status = failed it is not reset and all subsequently received messages are also
immediately aborted.

• st′D.sqnlist, an ordered list of sequence numbers previously received. It is required that |st′D.sqnlist| ≥ 1
after the first received sqn; i.e. the size of the ordered set is maintained at 1 or greater. When Π′.Snd is
initialized, st′D.sqnlist← ⊥.

Figure 3: Construction P of a level-i authentication scheme Π′i from a level-1 authentication
scheme Π and encoding scheme Coding = (Ecd, Dcd).

Theorem 2.2. Let Π be a secure level-1 authentication scheme and Coding be an authen-
tication encoding scheme with collision-resistant encoding. Let i ∈ {2, 3, 4}. Then Π′i =
P (Π, Coding, TESTi), constructed as in Fig. 3, is a secure level-i authentication scheme. Specifi-
cally, let A be an adversary algorithm that runs in time t and asks qs Send queries and qr Recv
queries, and let q = qs + qr. Then there exists an adversary B that runs in time tB ≈ t and asks
no more than qB = 1

2qs(qs − 1) queries, and an adversary F that runs in time tF ≈ t and asks
qF = q queries, such that

Advauthi
P (Π,Coding,TESTi)(A) ≤ Advauth1

Π (F) + Advcollision
Ecd (B) .

The time-cost for checking using implicit sequence numbers could be considerable when using
a Level 2 or Level 3 authentication notion due to the need to check against all previously received
messages (see appendix A for details). However, to our knowledge, there are no real-world
implementations using implicit sequence numbers at these levels. Implicit sequence numbers have
been used in instances where Level 4 authentication is desired, but explicit sequence numbers
are usually employed at the lower levels. Logically, this also corresponds to desirable real-world
instantiation formats; if a protocol allows packets to be dropped then it would be inconvenient
to base authentication upon information that is not explicitly sent in each packet. Alternatively,
if no drops are allowed, authentication can be checked against explicit or implicit information.
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3 Authenticated Encryption Hierarchy

In this section, we build equivalent notions for authenticated encryption with associated data
(AEAD) schemes. AEAD security is typically defined by extending the authentication notion
with a type of left-or-right encryption game.

3.1 Definitions

Definition 3.1. A stateful AEAD scheme Π for a message space M, an associated data space
AD, a key space K, and a ciphertext space C, is a tuple of algorithms:

• Kgn()
$→ k: A probabilistic key generation algorithm that outputs a key k

• E(k, `, ad,m, stE)
$→ (c, st′E): A probabilistic encryption algorithm that takes as input a key

k ∈ K, a length ` ∈ Z, associated data ad ∈ AD, a message m ∈ M, and an encryption
state stE, and outputs a ciphertext c ∈ C and updated state st′E.

• D(k, ad, c, stD)→ (ad,m, α, st′D): A deterministic decryption algorithm that takes as input
a key k ∈ K, associated data ad ∈ AD, a ciphertext c, and a decryption state stD, and
outputs either associated data ad or an error symbol ⊥, a message m ∈ M or an error
symbol ⊥, a bit α ∈ {0, 1}, and an updated state st′D.

Compared with stateful authentication schemes in Definition 2.1, AEAD schemes utilize two
further fields: ad, which is for associated data (such as authenticated but unencrypted header
data), and an optional length field `.

Correctness is defined in an analogous manner to that of stateful authentication schemes.
Correspondingly we define 4 levels of stateful AEAD security.

Definition 3.2. Let Π be a stateful AEAD scheme and let A be an PPT adversarial algorithm.
Let i ∈ {1, . . . , 4} and let b ∈ {0, 1}. The stateful AEAD experiment for Π with condition condi
and bit b is given by Expaeadi−bΠ (A) in Fig. 4. We define

Advaeadi
Π (A) =

∣∣∣Pr
[
Expaeadi−1

Π (A) = 1
]
− Pr

[
Expaeadi−0

Π (A) = 1
]∣∣∣ .

The Encrypt and Decrypt oracles in Fig. 4 work together to provide both an authentication
experiment and ciphertext indistinguishability experiment. When b = 0, the adversary always
gets m0 encrypted and never receives any decryption information. When b = 1, the adversary
always gets m1 encrypted and potentially receives decryption information. If the adversary
makes an attempt to forge ciphertexts or violate the sequencing condition, then a secure stateful
AEAD scheme should return ⊥ in all subsequent decryption queries. If the adversary has
caused the encryptor and decryptor to get out of sync (by forging a ciphertext or violating the
sequencing condition) and ever receives non-⊥ from Decrypt, the adversary learns b = 1.

When ` is not used, the level-1 notion aead1 corresponds to IND-CCA and INT-CTXT
security of a stateless AEAD scheme.

When ` is used for length, the level-4 notion aead4 corresponds to the stateful length-
hiding authenticated encryption security notion of Krawczyk et al. [KPW13] which is a slight
modification of that of Jager et al. [JKSS12].

Analogously to Section 2.2, level-(i+ 1) AEAD security implies level-i AEAD security.

3.2 Constructing higher level AEAD schemes

Similarly to Section 3, we can construct higher level AEAD schemes based on a level-1 AEAD
scheme with the inclusion of sequence numbers with appropriate checks. We again generalize the
approach using an encoding scheme that captures both implicit and explicit sequence numbers.
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Expaeadi−b
Π,A ():

1: k
$← Kgn()

2: stE ← ⊥, stD ← ⊥
3: u← 0, v ← 0
4: out-of-sync← 0

5: b′
$← AEncrypt(·),Decrypt(·)()

6: return b′

Oracle Encrypt(`, ad,m0,m1):

1: u← u+ 1
2: (sent.c(0), st

(0)
E )← E(k, `, ad,m0, stE)

3: (sent.c(1), st
(1)
E )← E(k, `, ad,m1, stE)

4: if sent.c(0) = ⊥ or sent.c(1) = ⊥ then
5: return ⊥
6: (sent.adu, sent.cu, stE) := (ad, sent.c(b), st

(b)
E )

7: return sent.cu

Oracle Decrypt(ad, c):

1: if b = 0 then
2: return ⊥
3: v ← v + 1
4: rcvd.cv ← c
5: (ad,m, α, stD)← D(k, ad, c, stD)
6: if (i = 4) ∧ cond4 then
7: out-of-sync← 1
8: else if (α = 1) ∧ condi then
9: out-of-sync← 1

10: if out-of-sync = 1 then
11: return m
12: return ⊥

1. Basic authenticated encryption:
cond1 = (@w : (c = sent.cw) ∧ (ad = sent.adw))

2. Basic authenticated encryption, no replays:
cond2 = (@w : (c = sent.cw) ∧ (ad = sent.adw)) ∨ (∃w < v : c = rcvd.cw)

3. Basic authenticated encryption, no replays, strictly increasing:
cond3 = (@w : (c = sent.cw) ∧ (ad = sent.adw)) ∨ (∃w, x, y : (w < v) ∧ (sent.cx = rcvd.cw) ∧ (sent.cy =
rcvd.cv) ∧ (x ≥ y))

4. Basic authenticated encryption, no replays, strictly increasing, no drops:
cond4 = (u < v) ∨ (c 6= sent.cv) ∨ (ad 6= sent.adv)

Figure 4: Stateful AEAD experiment aeadi with authentication condition condi for stateful
AEAD scheme Π = (Kgn,E,D) and adversary A.

Definition 3.3 (AEAD encoding scheme). An AEAD encoding scheme Coding for a sequence
number space S, a message space M, and an associated data space AD is a pair of algorithms:

• Ecd(sqn, ad,m)→ (adecd,mecd): A deterministic encoding algorithm that takes as input a
sequence number sqn ∈ S, associated data ad ∈ AD, and a message m ∈M, and outputs
an encoded associated data value adecd ∈ ADecd and message mecd ∈Mecd, where ADecd

and Mecd are the encoded versions of associated data space AD and message space M,
respectively.

• Dcd(sqnlist, adecd,mecd)→ (sqn, ad,m, α): A deterministic decoding algorithm that takes
as input a sequence number list sqnlist ⊂ S, an encoded associated data value adecd, and an
encoded message mecd ∈Mecd, and outputs a sequence number sqn ∈ S, associated data
ad ∈ AD or an error symbol ⊥, a message m ∈ M or an error symbol ⊥, and a status
variable α = 1 if decoding was successful or α = 0 otherwise.

We similarly distinguish between schemes with explicit and implicit sequence numbers:

Definition 3.4. We say that AEAD encoding scheme Coding uses explicit sequence numbers if,
for all sqn, ad, and m, when Ecd(sqn, ad,m) = (adecd,mecd), we have that Dcd(⊥, adecd,mecd) =
(sqn, ad,m, 1). Otherwise, we say that Coding uses implicit sequence numbers.

Our construction of level-i AEAD schemes from a level-1 AEAD scheme is as follows:

Definition 3.5 (PAEAD construction). Let Π be a (level-1) AEAD scheme, Coding be an
AEAD encoding scheme, and let TESTi be a condition specified in Fig. 3. Define Π′i :=
PAEAD(Π, Ecd, TESTi) as the AEAD scheme resulting from applying construction PAEAD in
Fig. 5.
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Π′i.Kgn():

1: return Π.Kgn()

Π′i.E(k, `, ad,m, st′E):

1: (adΠ,mΠ)← Ecd(st′E.ctr, ad,m)
2: (c, st′E.subst)← Π.E(k,mΠ, adΠ, l, st

′
E.subst)

3: st′E.ctr← st′E.ctr + 1
4: return (c, st′E)

Π′i.D(k, ad, c, st′D):

1: if st′D.status = failed then
2: return (⊥, 0, stD)
3: (adΠ,mΠ, α, st

′
D.subst)← Π.D(k, ad, c, st′D.subst)

4: if α = 1 then
5: (sqn, ad,m, α)← Dcd(st′D.sqnlist, adΠ,mΠ)
6: if (α = 0) ∨ TESTi then
7: st′D.status = failed
8: return (⊥, 0, st′D)
9: st′D.sqnlist = st′D.sqnlist‖sqn

10: return (m,α, st′D)

Description of states st′E and st′D:

• st′E.subst := stE, where stE is the state in Π

• st′E.ctr. When Π′.E is initialized, st′E.ctr← 0.

• st′D.subst := stD, where stD is the state in Π

• st′D.status. Once st′D.status = failed it is not reset and all subsequently received messages are also
immediately aborted.

• st′D.sqnlist, an ordered list of sequence numbers previously received. It is required that |st′D.sqnlist| ≥ 1
after the first received sqn; i.e. the size of the ordered set is maintained at 1 or greater. When Π′.E is
initialized, st′D.sqnlist← ⊥.

Figure 5: Construction PAEAD of a level-i AEAD scheme Π′i from a level-1 AEAD scheme Π
and AEAD encoding scheme Coding = (Ecd, Dcd), with TESTi as shown in Fig. 3.

Security of the PAEAD construction follows analogously:

Theorem 3.1. Let Π be a secure level-1 AEAD scheme and Coding be an AEAD encoding
scheme with collision-resistant encoding. Let TESTi be defined as in Fig. 3 and i ∈ {2, 3, 4}.
Then Π′i = PAEAD(Π, Coding, TESTi), constructed as in Fig. 5, is a secure level-i AEAD scheme.
Specifically, let A be an adversary algorithm that runs in time t and asks qe Encrypt queries and
qd Decrypt queries, and let q = qe + qd. Then there exists an adversary B that runs in time
tB ≈ t and asks no more than qB = 1

2qe(qe − 1) queries, and an adversary F that runs in time
tF ≈ t and asks qF = q queries, such that

Advaeadi
PAEAD(Π,Coding,TESTi)(A) ≤ Advaead1

Π (F) + Advcollision
Ecd (B) .

The proof of Theorem 3.1 is similar to that of Theorem 2.2 (Appendix A).

4 Authenticated Encryption in TLS

The work of Paterson et al. [KPW13] showed that the MAC-then-encode-then-encrypt mode of
CBC encryption in TLS 1.2 (with sufficiently long MAC tags) is a secure length-hiding authenti-
cated encryption (LHAE) scheme, assuming the encryption function is a strong pseudorandom
permutation and the MAC is a pseudorandom function. Their definition corresponds to level
1 of our AEAD hierarchy. Several subsequent work on the provable security of TLS, such as
that of Jager et al. [JKSS12] and Krawczyk et al. [KPW13], assume that the TLS record layer
is a secure stateful length-hiding authenticated encryption (sLHAE) scheme, corresponding to
level 4 of our AEAD hierarchy. To our knowledge, there has as of yet been no formal connection
between the LHAE result of Paterson et al. and the sLHAE requirement of subsequent works;
we address that gap in this section by bringing sequence numbers into the modeling using the
framework in the previous sections.
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4.1 TLS sequence numbers and authentication level

The TLS record layer utilizes sequence numbers to ensure detection of deleted or reordered
records [DR08, p. 94]. Being 64-bits long, sequence number exhaustion for any given connection
is unlikely and the specification demands renegotiation should it occur. Sequence numbers are
sent implicitly by inclusion under the MAC (or AEAD). When instantiated, “the first record
transmitted under a particular connection state MUST use sequence number 0” [DR08, §6.1]
and each subsequent record increments the sequence number. Sequence numbers are continuous
across record types (application and alert).

When the ciphersuite uses MAC-then-encode-then-encrypt, the MAC tag is computed as
follows, where k is the MAC key (either MAC write key or MAC read key, depending on the
direction), sqn is the 64-bit sequence number, and m is the (possibly compressed) TLS plaintext
object (called TLSCompressed) [DR08]:

MAC(k, sqn ‖ m.type ‖ m.version ‖ m.length ‖ m.fragment) .

Since the sequence number is implicit, a receiver will check the MAC verification using the
expected sequence number. If the check fails, a bad record mac alert (type 20) will be generated
– an alert that is always fatal [DR08, §7.2.2].

When the ciphersuite is uses a combined AEAD scheme, the sequence number, as well as
several other values, are included in the additional data field [DR08]:

ad = sqn ‖ m.type ‖ m.version ‖ m.length .

The ciphertext is then

c← Encrypt(k, m.length, ad, m.fragment, stE) .

The sequence number is not transmitted in the ciphertext. AEAD decryption is applied using
the expected sequence number. Decryption failure must also result in a bad record mac fatal
alert [DR08, §6.2.3.3].

4.2 From TLS Level-1 AEAD to Level-4 AEAD

Paterson et al. [PRS11] show that a simplified version of TLS MAC-then-encode-then-encrypt,
which we call ΠPRS and describe in the top half of Fig. 6, satisfies level-1 AEAD security. By
design, ΠPRS includes the sequence number field in the ad, but never initializes it as ΠPRS is not
stateful. However, the TLS record layer protocol as actually used is stateful and, as such, ought
to achieve a higher level of AEAD; namely, it should satisfy level-4 AEAD. The bottom half
of Fig. 6 shows the TLS MAC-then-encode-then-encrypt record layer with the use of sequence
numbers as specified in the standard.

Our framework allows us to immediately show that ΠTLS satisfies level-4 AEAD security:
we incorporate the sequence numbers in an implicit AEAD encoding scheme CodingTLS , and
then view ΠTLS as the result of applying the PAEAD construction to ΠPRS and CodingTLS .

Define AEAD encoding scheme CodingTLS = (EcdTLS , DcdTLS) as follows:

• EcdTLS(sqn, ad,m) = (sqn‖ad,m)

• DcdTLS(sqnlist, sqn‖ad,m) = (sqn, ad,m, α)

where α = 1 if and only if sqn and sqnlist satisfy TEST4 in Fig. 3, ad 6= ⊥, and m 6= ⊥.

Theorem 4.1. ΠTLS = PAEAD(ΠPRS , CodingTLS , TEST4).
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ΠPRS .E(k, `, ad,m,⊥):

1: (km, ke)← k
2: t← MAC(km, ad,m)
3: c← E(ke, `,m, t)
4: return (c,⊥)

ΠPRS .D(k, ad, c,⊥):

1: (km, ke)← k
2: (m, t, α)← D(ke, c)
3: if MAC(km, ad,m) 6= t then
4: return (⊥, 0,⊥)
5: return (m,α,⊥)

ΠTLS .E(k, `, ad,m, stE):

1: (km, ke)← k
2: t← MAC(km, stE.ctr‖ad,m)
3: c← E(ke, `,m, t)
4: stE.ctr← stE.ctr + 1
5: return (c, stE)

ΠTLS .D(k, ad, c, stD):

1: (km, ke)← k
2: if stD.status = failed then
3: return (⊥, 0, stD)
4: (m, t, α)← D(ke, c)
5: if MAC(km, stD.ctr‖ad,m) 6= t then
6: α← 0
7: if α = 0 then
8: stD.status← failed
9: return (⊥, 0, stD)

10: stD.ctr← stD.ctr + 1
11: return (m,α, stD)

Figure 6: Construction of AEAD schemes ΠPRS (Paterson et al. [PRS11] variant of TLS
MAC-then-encode-then-encrypt) and ΠTLS (TLS MAC-then-encode-then-encrypt) from encode-
then-encrypt scheme (E,D).

Theorem 4.1 follows semantically comparing ΠTLS and the scheme resulting from the
construction PAEAD(ΠPRS , CodingTLS , TEST4).

Clearly, EcdTLS is collision-resistant due to the unambiguous parsing of sqn as a fixed-length
64-bit value. We can thus apply Theorem 3.1 to obtain Corollary 4.1.1.

Corollary 4.1.1. The TLS record layer with MAC-then-encode-then-encrypt in CBC mode
satisfies level-4 AEAD security. Specifically, let A be an adversary algorithm that runs in time t
against ΠTLS. Then there exists an adversary F that runs in time tF ≈ t such that

Advaead4
ΠTLS

(A) ≤ Advaead1
ΠPRS

(F) .

From Paterson et al. [PRS11] we know that the TLS record layer encryption in MAC-
then-encode-then-encrypt CBC mode satisfies AEAD level-1 security when a secure cipher and
message authentication code is used. Combined with Corollary 4.1.1, this means that the sLHAE
security definition used by Jager et al. [JKSS12] and Krawczyk et al. [KPW13] in their analyses
of full TLS ciphersuites is achieved, and thus TLS is ACCE secure in this scenario.
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A Appendix

A.1 Proof of Theorem 2.1

Proof. A starts Π.
For i = 1 . A wins as a level-1 adversary with a message cwin, where @w : cwin = sentw. Then A
will also win against Π as a level-2 adversary.
For i = 2 .
Case 1: A wins by forging cwin. This follows as for i = 1, above.
Case 2: A wins against Π as a level-2 adversary with cwin = rcvdv, where there exists some
w < v such that cwin = rcvdw for some sentw ∈ Sent.

In this case A wins by replay with cwin = rcvdv = senty, for some y, since cwin is not a forgery.
Let rcvdw = sentx, for some x. Then it follows that senty = rcvdv = cwin = rcvdw = sentx and,
since A wins by replay, x = y. Finally, combining the above facts, there exist w, x, y such that
(w < v) ∧ (sentx = rcvdw) ∧ (senty = rcvdv) ∧ (x = y). Ergo, A wins as a level-3 adversary .
For i = 3 .
Case 1: This follows as for i = 1, above.
Case 2: A wins as a level-3 adversary against Π with cwin = rcvdv, where there exist w, x, y
such that (w < v)∧ (sentx = rcvdw)∧ (senty = rcvdv)∧ (x ≥ y). By assumption, it follows that
cwin 6= sentv; therefore A also wins as a level-4 adversary.

A.2 Proof of Theorem 2.2

Due to the similarities in the proofs for the various levels in Theorem 2.2, we underscore the key
differences in the proofs using a substitutable inhibitor step for conciseness, which indicates the
section that changes appropriately for the different conditions being checked.

Proof. Let A be an adversary against the authentication scheme Π′ with TESTi, winning according
to the Level i authentication experiment. Let Adv0 and Adv1 denote A’s advantage in games
0 and 1, respectively.

Game 0. Real experiment: Adv0 = Advauthi
P (Π,Coding,TESTi)(A).

Game 1. Proceed as in Game 0. Should the adversary select messages m and m′ such that
(sqnm,m) and (sqnm′ ,m

′) are distinct, but Ecd(sqnm,m) = Ecd(sqnm′ ,m
′), then the challenger

will abort.
If A does output messages m and m′ as described above, an adversary B can be constructed

against the collision resistance of Ecd. Let B have an Ecd oracle. For every message m output
by A, B incorporates the appropriate sequence number to make the pair (sqnm,m) and checks
if Ecd(sqnm,m) = Ecd(sqnm∗ ,m

∗) for all m∗ previously queried by A. When A outputs m and
m′, B will detect that Ecd(sqnm,m) = Ecd(sqnm′ ,m

′), and will use (sqnm,m) and (sqnm′ ,m
′)

to win against the collision resistance of Ecd. Hence,

Adv0 ≤ Adv1 + Advcollision
Ecd (B) .

For Adv1, an upper bound can be obtained as follows:
Adversary F starts schemes Π and Π′. Per the scheme, all the following variables are set:
stE ← ⊥, stD ← ⊥, u← 0, and v ← 0. A selects sqn0. F answers all of A’s Π′.Snd and Π′.Rcv
queries with his Π.Snd and Π.Rcv oracles, applying new sequence numbers for each new Snd
query (i.e. incrementation of u) with his Ecd and Dcd algorithms.

When A asks a Π′.Snd query with a message mΠ′ , F encodes st′E.ctr with mΠ′ , creating the
new message mΠ = Ecd(st′E.ctr,mΠ′). In turn, F forwards this message to his Π.Snd oracle and
passes the result, c back to A. When A asks a Π′.Rcv query with an authenticated message
c, F passes c to his Π.Rcv oracle which outputs either ⊥ or a successfully received message
mΠ = Ecd(st′E.ctr,mΠ′).
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If sqn is sent explicitly, Π.Rcv uses the Dcd algorithm to check mΠ′ and sqn. If the decoding
fails, F outputs ⊥. If sqn is sent implicitly, F checks the decoding against {st′E.ctr}; a list of all
counters previously encoded with messages by F before being input into Π.Snd, in response to
Π′.Snd queries. If @j such that st′E.ctrj yields a valid decoding, F passes ⊥ back to A; else he
decodes the message into sqn and mΠ′ .

Inhibitor Step i = 2: Should A attempt to win by replay and issue a Π′.Rcv query on a
previously queried authenticated message c, F ’s Π.Rcv oracle and subsequent Dcd algorithm will
output sqn and mΠ′ . F checks sqn against stD.sqnlist and will discover that sqn = stD.sqnlistj
for some j, passing ⊥ back to A.

Inhibitor Step i = 3: Should A attempt to win by replay, F will act as in the Inhibitor Step
for i = 2, passing ⊥ to A. If the sequence number corresponding to c is not strictly greater than
the one previously output by Π.Rcv, F ’s call to its Π.Rcv oracle on c will output an encoded
message on which F will subsequently use his Dcd algorithm to obtain sqn. F then checks that
sqn > stD.sqnlistj for all j, passing ⊥ back to A if the check fails.

Inhibitor Step i = 4: Should A attempt to win by replay with a authenticated message c or
if the sequence number corresponding to c is not strictly greater than the previous one received,
F behaves as described in the Inhibitor Step for i = 2 and i = 3, respectively, passing ⊥ to A.

Should the sequence number corresponding to c not be the next expected sequence number,
F ’s call to its Π.Rcv oracle on c will output an encoded message from which F subsequently
obtains sqn via his Dcd algorithm. F then checks sqn against the ordered list of all previously
received sequence numbers; if sqn 6= max{st′D.sqnlistj}+ 1, i.e. if sqn is not precisely the next
expected sequence number, then F passes ⊥ back to A.

SinceA wins the level-i game against Π′ with non-negligible advantage Advauthi
P (Π,Coding,TESTi)(A),

and A is not able to win by any other means than forgery, by the above behavior of F , then
at some time A must make a Π′.Rcv query on a message cwin such that @w : c = sentw. By
the success of A, cwin will be successfully received. Moreover, due to the collision resistance of
Coding, cwin must break the authentication attributes of Π – consequently F will also win the
level-1 game against Π with cwin. Hence,

Adv1 ≤ Advauth1
Π (F) .
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