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ABSTRACT

Network neuroscience has become an established paradigm to tackle questions related to the

functional and structural connectome of the brain. Recently, interest has been growing in

examining the temporal dynamics of the brain’s network activity. Although different

approaches to capturing fluctuations in brain connectivity have been proposed, there have

been few attempts to quantify these fluctuations using temporal network theory. This theory is

an extension of network theory that has been successfully applied to the modeling of dynamic

processes in economics, social sciences, and engineering article but it has not been adopted

to a great extent within network neuroscience. The objective of this article is twofold:

(i) to present a detailed description of the central tenets of temporal network theory and

describe its measures, and; (ii) to apply these measures to a resting-state fMRI dataset to

illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory

in the context of the dynamic functional brain connectome. All the temporal network

measures and plotting functions described in this article are freely available as the Python

package Teneto.

AUTHOR SUMMARY

Temporal network theory is a subfield of network theory that has had limited application to

date within network neuroscience. The aims of this work are to introduce temporal network

theory, define the metrics relevant to the context of network neuroscience, and illustrate their

potential by analyzing a resting-state fMRI dataset. We found both between-subjects and

between-task differences that illustrate the potential for these tools to be applied in a wider

context. Our tools for analyzing temporal networks have been released in a Python package

called Teneto.

It is well known that the brain’s large-scale activity is organized into networks. The under-

lying organization of the brain’s infrastructure into networks, at different spatial levels, has

been dubbed the brain’s functional and structural connectome (Sporns, 2009; Sporns, Tononi,

& Kotter, 2005). Functional connectivity, derived by correlating the brain’s activity over a pe-

riod of time, has been successfully applied in both functional magnetic resonance imaging

(fMRI; Greicius, Krasnow, Reiss, & Menon, 2003; Fransson, 2005; Fox et al., 2005; Smith et al.,

2009) and magnetoencephalography (MEG; de Pasquale et al., 2010; Brookes et al., 2011;

Hipp, Hawellek, Corbetta, Siegel, & Engel, 2012), yielding knowledge about functional net-

work properties (Buckner et al., 2009; Power et al., 2011; Power, Schlaggar, Lessov-Schlaggar,
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Temporal network theory applied to brain connectivity

& Petersen, 2013; Nijhuis, van Cappellen van Walsum, & Norris, 2013) that has been applied

to clinical populations (Fox & Greicius, 2010; Zhang & Raichle, 2010).

In parallel to research on the brain’s connectome, there has been a focus on studying the

dynamics of brain activity. When the brain is modeled as a dynamic system, a diverse range

of properties can be explored. Prominent examples of this are metastability (Bressler & Kelso,

2001; Deco, Jirsa, & McIntosh, 2011; Kelso, 1995; Tognoli & Kelso, 2009, 2014) and oscilla-

tions (Buzsáki, 2006; Buzsáki & Draguhn, 2004; Siegel, Donner, & Engel, 2012). Brain oscil-

lations, inherently dynamic, have become a vital ingredient in proposed mechanisms ranging

from psychological processes such as memory (Buzsáki, 2005; Friese et al., 2013; Montgomery

& Buzsaki, 2007), and attention (Fries, 2005; Bosman et al., 2012), to basic neural communi-

cation in top-down or bottom-up information transfer (Bressler, Richter, Chen, & Ding, 2007;

Buschman & Miller, 2007; Bastos et al., 2012; Bastos et al., 2015; Richter, Thompson,

Bosman, & Fries, 2016; Richter, Coppola, & Bressler, 2016; Michalareas et al., 2016;

van Kerkoerle et al., 2014).

Recently, approaches to study brain connectomics and the dynamics of neuronal commu-

nication have started to merge. A significant amount of work has recently been carried out that

aims to quantify dynamic fluctuations of network activity in the brain using fMRI (Allen et al.,

2014; Hutchison et al., 2013; Zalesky, Fornito, Cocchi, Gollo, & Breakspear, 2014; Shine

et al., 2015; Thompson & Fransson, 2015a, 2016a; Shine, Koyejo, & Poldrack, 2016) as well

as MEG (de Pasquale et al., 2010; de Pasquale et al., 2012; Hipp, Hawellek, Corbetta, Siegel

& Engel, 2012; Baker et al., 2014; Michalareas et al., 2016). This research area which aims to

unify brain connectommics with the dynamic properties of neuronal communication, has been

called the “dynome” (Kopell, Gritton, Whittington, & Kramer, 2014) and the “chronnectome”

(Calhoun, Miller, Pearlson, & Adalı, 2014). Since the brain can quickly fluctuate between dif-

ferent tasks, the overarching aim of this area of research is to understand the dynamic interplay

of the brain’s networks. The intent of this research is that it will yield insight into the complex

and dynamic nature of cognitive human abilities.

Although temporal network theory has been successfully applied in others fields (e.g., theTemporal network:
A multigraph whose edges contain
temporal information

social sciences), its implementation in network neuroscience has been limited. In the Theory

and Methods section, we provide an introduction to temporal network theory, by extending

the definitions and logic of static network theory, and define a selection of temporal network

measures. In the Results section, we apply these measures to a resting-state fMRI dataset ac-

quired during eyes-open and eyes-closed conditions, revealing differences in dynamic brain

connectivity between subjects and conditions. Together this material illustrates the potential

and varying information available from applying temporal network theory to network neuro-

science.

THEORY AND METHODS

From Static Networks to Temporal Networks

We begin by defining temporal networks, by expanding upon the basic definitions of network

theory. In network theory, a graph (G) is defined as a set of nodes and edges:

G = (V , E), (1)

where V is a set containing N nodes. E is a set of tuples that represent the edges or connections

between pairs of nodes (i, j) : i, j ∈ V . The graph may have binary edges (i.e., an edge is either
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present or absent), or E may be weighted, often normalized between 0 and 1, to represent the

magnitude of connectivity. When each edge has a weight, the definition of E is extended to a

3-tuple (i, j, w), where w denotes the weight of the edge between i and j. E is often represented

as amatrix of the tuples, which is called a connectivity matrix, A (sometimes the term adjacency

matrix is used). An element of the connectivity matrix Ai,j represents the degree of connectivity

for a given edge. When G is binary, Ai,j = {0, 1}, and in the weighted version, Ai,j = w. In the

case of Ai,j = Aj,i, for all i and j, the matrix is considered undirected; when this is not the case,

the matrix is directed. With static networks, many different properties regarding the patterns

of connectivity between nodes can be quantified, for example through centrality measures,

hub detection, small-world properties, clustering, and efficiency (see Newman, 2010; Sporns,

2009; Bullmore & Sporns, 2009, for detailed discussion).

A graph is only a representation of some state of the world being modeled. The correspon-

dence between the graph model and the state of the world may decrease due to aggregations,

simplifications, and generalizations. Adding more information to the way that nodes are con-

nected can entail that G provides a better representation, thus increasing the likelihood that

subsequently derived properties of the graph will correspond with the state of the world be-

ing modeled. One simplification in Eq. 1 is that two nodes can be connected by one edge

only.

To capture such additional information in the graph, edges need to be expressed along

additional, nonnodal dimensions. We can modify Eq. 1 to

G = (V , E ,D), (2)

where D is a set of the additional, nonnodal dimensions. In the case of multiple additional di-

mensions, D is a class of disjoint sets where each dimension is a set. Equation 2 is sometimes

referred to in mathematics as a multigraph network, and in network theory as a multilayerMultigraph:
A network whose nodes can be
connected by multiple edges

network (Kivelä et al., 2014). For example, D could be a set containing three experimental

paradigms {“n back,” “go/no go,” “Stroop task”} and/or temporal indices in seconds

{0,1,2, … T}. A graph is said to be a temporal network when D contains an ordered set of

temporal indices that represents time. This type of multilayer network is sometimes called a

multiplex (Kivelä et al., 2014).

In a static graph, the edges E are elements that contain indices (2-tuples) for the nodes that

are connected. In a multilayer network, E consists of (|D|+ 2)-tuples for binary graphs, where

|D| expresses the number of sets in D. If time is the only dimension in D, then an element in

E is a triplet (i, j, t) : i, j ∈ V , t ∈ D. When G is weighted, E contains ((2 × |D|) + 2)-tuples

as w becomes the size of D, representing one weight per edge.

While shorter definitions of temporal graphs are often usedwithout using general definitions

of multigraph/multilayer networks instead starting directly with the multiplex (see e.g., Holme

& Saramäki, 2012; Masuda & Lambiotte, 2016), these formulations are mathematically equiv-

alent when D only contains temporal information in Eq. 2. We have chosen to define a tem-

poral network in terms of a multilayer network because this is appropriate when considering

what a detailed network description of the human connectome will require. A multilayer net-

work representation of the connectome could include many dimensions of information about

an edge—for example, (i) activity 100 ms after stimulus onset (time), (ii) activity in the gamma

frequency band, and (iii) activity associated with an n-back trial (task context). Thus we have

introduced temporal networks by extending static network definitions to the broader concept
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of multilayer networks. However, in more complex multilayer networks with additional,

nontemporal dimensions, the temporal-network measures presented in this article can be used

to examine relationships across time, but either fixation or aggregation over the other dimen-

sions will be required. However, more complex measures that consider all dimensions in D

have been proposed elsewhere (e.g., Berlingerio, Coscia, Giannotti, Monreale, & Pedreschi,

2011).

For the remainder of this article we will consider only the case in which D contains only

an ordered set of temporal indexes. In this case, each edge is indexed by i,j and t. To fa-

cilitate readability, connectivity matrix elements are written as At
i,j—that is, with the tem-

poral index of D in the superscript. Instead of referring to “At” as the “connectivity matrix

at time point t”, some refer to this as a graphlet (Basu, Bar-noy, Johnson, & Ramanathan, 2010;Graphlet:
A discrete connectivity matrix that
expresses part of a larger network

Thompson & Fransson, 2015a, 2016a); others prefer to call this a snapshot representation

(Masuda & Lambiotte, 2016), and still others call it a supra-adjacency matrix (Kivelä et al.,

2014). It should be noted that some dislike the term graphlet due to possible confusion

with the static network theory conception of a graphlet. Here a graphlet is a complete, in-

dependent two-dimensional connectivity matrix, but each graphlet is only a part of the en-

tire network. Because graphlets do not need to be snapshots of temporal information under

this definition, it is useful to describe what type of graphlet is being used. For example,

a graphlet that expresses temporal information can be called a time-graphlet or t-graphlet

(Thompson & Fransson, 2016a), and a graphlet carrying frequency information, an f-graphlet

(Thompson & Fransson, 2015a).

Instead of representing the data with multiple graphlets, E can be used to derive the contact

sequence or event-based representation containing the nodes and temporal index (Holme &

Saramaäki, 2012; Masuda & Lambiotte, 2016). Unlike the graphlet representations, which

must be discrete, contact sequences can also be used on continuous data and, when connec-

tions are sparse, can be a more memory-efficient way to store the data.

MEASURES FOR TEMPORAL NETWORKS

Once the t-graphlets have been derived, various measures can be implemented in order to

quantify the degree and characteristics of the temporal flow of information through the net-

work. We begin by introducing two concepts that are used in several of the temporal network

measures that will be defined later. The focus is on measures that derive temporal properties at

a local level (i.e., per node or edge) or a global level (see Discussion for other approaches). We

have limited our scope to describe only the case of binary, undirected, and discrete t-graphlets,

although many measures can be extended to continuous time, directed edges, and nonbinary

data.

Shortest temporal path:
The shortest path by which a node
communicates with another node
across multiple intermediate nodes

Concept: Shortest Temporal Path

In static networks, the shortest path is the minimum number of edges (or sum of edge weights)

that it takes for a node to communicate with another node. In temporal networks, a similar

measure can be derived. Within temporal networks, we can quantify the time taken for one

node to communicate with another node. This is sometimes called the “shortest temporal

distance” or “waiting time.” Temporal paths can be measured differently by calculating either

how many edges are traveled or how many time steps are taken (see Masuda & Lambiotte,

2016); here we quantify the time steps taken.
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Consider the temporal network shown in Figure 1A. Starting at Time Point 1, the shortest

temporal path for Node 1 to reach Node 5 is five time units (Figure 1B, red line). Shortest

temporal paths can never travel edges from a previous time point (i.e., backward in time), but

it is possible for multiple edges to be visited at each time step. It is thus necessary to determine

how many edges can be traveled at each time point. For example, Node 5 at Time Point 2 can

reach Node 3 in one time step if we allow multiple edges to be traveled (Figure 1C, red line). If

multiple edges cannot be traveled, then the shortest path for Node 5 to reach Node 2, starting

at Time Point 2, is five time units (Figure 1C, blue line). Thus, a parameter must be set that

restrains how many edges per time point can be traveled. This parameter should depend on

the temporal resolution of the data and is best chosen given previously established knowledge

of the dynamics of the data. For fMRI, where the temporal resolution is in seconds, it makes

sense to assume that several edges can be traveled per unit of time. Contrarily, in MEG, where

the resolution is in the range of milliseconds, it is more reasonable to place a limit on the

number of edges that can be traveled per time unit.

Figure 1. Illustration of the concept of the shortest temporal path. (A) The basic layout of a tempo-
ral network, viewed in a slice graph representation. (B) The red line indicates the shortest temporal
path possible for Node 1 to reach Node 5. (C) The difference in shortest paths that arises when a
single (blue line) or multiple (red line) edges can be traveled at a single time point.
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Regarding the shortest temporal path, it is useful to keep in mind that the path is rarely

symmetric, not even when the t-graphlets themselves are symmetric. This is illustrated by

considering the network shown in Figure 1A, in which it takes five units of time for Node 1

to reach Node 5 when starting at t = 1. However, for the reversed path, it takes only three

units of time for Node 5 to reach Node 1 (allowing for multiple edges to be traveled per time

point).

Some consideration is needed of whether thinking about shortest temporal paths makes

sense in all neuroimaging contexts. Shortest temporal paths represent information being trans-

ferred in a network. Thus, the concept of the shortest temporal path is appropriate in the situ-

ation in which one can assume that the transfer of information is continued across subsequent

time points. When the time scale is in the range of milliseconds (e.g., EEG and MEG), the short-

est temporal path should be unproblematic to interpret. In contrast, for a longitudinal study in

which the temporal resolution is in years, the concept of the shortest temporal path makes no

sense. Less clear-cut situations are neuroimaging techniques with sluggish temporal resolution

(e.g., fMRI). However, the shortest temporal path seems to be a reasonable measure for ongo-

ing BOLD signals that allow for considering previously observed temporal dynamics, includ-

ing avalanche behavior (Tagliazucchi, Balenzuela, Fraiman, & Chialvo, 2012), bursty behavior

(Thompson & Fransson, 2016a), and metastability (Deco & Kringelbach, 2016).

Intercontact time:
The time taken between two nodes
with a direct connection

Concept: Intercontact Time

The intercontact time between two nodes is defined as the temporal difference distinguishing

two consecutive nonzero edges between those nodes. This definition differs from the shortest

temporal path in so far as it only considers direct connections between two nodes. Considering

Figure 1A, the intercontact times between Nodes 4 and 5 become a list [2,2], since there are

edges present at Time Points 2, 4, and 6. Each edge will have a list of intercontact times. The

number of intercontact times in each list will be the number of nonzero edges between the

nodes minus one. Unlike with shortest temporal paths, graphs that contain intercontact times

will always be symmetric.

Nodal Measure: Temporal Centrality

A node’s influence in a temporal network can be calculated in a way akin to degree centrality

in the static case, where the sum of the edges for a node is calculated. The difference from its

static counterpart is that we also sum the number of edges across time. Formally, the temporal

degree centrality, DT, for a node i is computed as

DT
i =

N

∑
j=1

T

∑
t=1

At
i,j, (3)

where T is the number of time points, N is the number of nodes, and At
i,j is a graphlet.

While it provides an estimate of how active or central a node is in a temporal network,

temporal degree centrality does not quantify the temporal order of the edges. This is illustrated

in Figure 2, where Node 3 and Node 2 have identical temporal degree centralities, despite

having very different temporal ordering of their edges.
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Figure 2. A slice graph representation of a simple example of a temporal network that illustrates
the conceptual difference between temporal degree centrality and temporal closeness centrality.

Nodal Measure: Temporal Closeness Centrality

A centrality measure that does consider the temporal order is temporal closeness centrality

(Pan & Saramäki, 2011). This is an extension of the static closeness centrality, which is the

inverse sum of the shortest paths. Temporal closeness centrality is calculated as

CT
i,t =

1

N − 1

N

∑
j=1

1

dτ
i,j

, (4)

where dτ
i,j is the average shortest path between nodes i and j across all time points for which

a shortest path exists. As in the static counterpart, if a node has shorter temporal paths than

other nodes, it will have a larger temporal closeness centrality.

Consider the example given in Figure 2, which shows a temporal sequence of connectivity

among three nodes over 20 time points. Note that the temporal degree centralities are identical

for both Node 2 and Node 3, while the degree centrality for Node 1 is twice as large. Node 2

has the largest temporal closeness centrality, since the time between edges is longer for Node

2 than for Node 3, which has the lowest value of temporal closeness centrality.

Edge Measure: Bursts

By using temporal network theory, bursts have been identified as an important property of

many processes in nature (Barabási, 2005, 2010; Vázquez et al., 2006; Vazquez, Rácz,

Lukács, & Barabási, 2007; Min, Goh, & Vazquez, 2011). A hallmark of a bursty edge is the

presence of multiple edges with short intercontact times, followed by longer and varying inter-

contact times. In statistical terms, such a process is characterized by a heavy-tailed distribution

of intercontact time probabilities. Numerous patterns of social communication and behavior

have been successfully modeled as bursty in temporal network theory, including email com-

munication (Barabási, 2005; Eckmann, Moses, & Sergi, 2004), mobile phone communication

(Jo, Karsai, Kertész, & Kaski, 2012), spreading of sexually transmitted diseases (Vazquez, 2013),

soliciting online prostitution (Rocha, Liljeros, & Holme, 2010), and epidemics Takaguchi,

Masuda, & Holme, 2013. With regard to network neuroscience, we have recently shown that

bursts of brain connectivity can be detected in resting-state fMRI data (Thompson & Fransson,

2016a). Furthermore, bursty temporal patterns have also been identified in the amplitudes
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of the EEG alpha signal (Freyer, Aquino, Robinson, Ritter, & Breakspear, 2009; Freyer, Roberts,

Ritter, & Breakspear, 2012; Roberts, Boonstra, & Breakspear, 2015).

There are several strategies to quantify bursts. A first way to check whether a time series of

brain connectivity between two nodes is bursty is simply to plot the distribution of intercontact

times. Thus, the complete distribution of τ for a given edge contains information about the tem-

poral evolution of brain connectivity. However, other methods are available to quantify bursts.

One example is the burstiness coefficient (B), first presented in Goh and Barabási (2008) and

formulated for discrete graphs, Holme and Saramäki (2012):

Bij =
σ(τij)− µ(τi,j)

σ(τij) + µ(τij)
, (5)

where τij is a vector of the intercontact times between nodes i and j through time. When

B > 0, it is an indication that the temporal connectivity is bursty. This occurs when the

standard deviation σ(τ) is greater than the mean µ(τ). In Eq. 5, bursts are calculated per

edge, which can be problematic when only a limited number of data are available. Functional

imaging sessions must be long enough to accurately establish whether or not a given temporal

distribution is bursty (too few intercontact times will entail too poor an estimation of σ to

accurately estimate B). Typically, for resting-state fMRI datasets acquired over rather short

time spans (5–6 minutes) with low temporal resolution (typically 2–3 seconds), it might be

difficult to quantify B in a single subject. A potential remedy in some situations is to compute

B after concatenating intercontact times across subjects.

Equation 5 calculates the number of bursts per edge. This can easily be extended to a

nodal measure by summing over the bursty coefficients across all edges for a given node.

Alternatively, a nodal form of B can be calculated by using the intercontact times for all j instead

of averaging over j in Bij. Finally, if a process is known to be bursty, instead of quantifying B,

it is possible simply to count the number of bursts present in a time series.

Global Measure: Fluctuability

Although centrality measures provide information about the degree of temporal connectivity,

and bursts describe the distribution of the temporal patterns of connectivity at a nodal level,

one might also want to retrieve information about the global state of a temporal network. To

this end, fluctuability aims to quantify the temporal variability of connectivity. We define the

fluctuability F as the ratio of the number of edges present in A over the grand sum of At:

F =
∑i ∑j U(Ai,j)

∑i ∑j ∑t At
i,j

, (6)

where U is a function that delivers a binary output. U(Ai,j)is set to 1 if at least one of an edge

occurs between nodes i and j across times t = 1, 2, ..., T. If not, U(Ai,j)is set to 0. This can be

expressed as

U(Aij) =

⎧

⎨

⎩

1 if ∑
T
t At

ij > 0,

0 if ∑
T
t At

ij = 0,
(7)
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where T is the total number of time points and A has at least one nonzero edge. From the

definition given in Eq. 6, it follows that the maximum value of F is 1 and that this value only

occurs when every edge is unique and occurs only once in time.

While the above definition of fluctuability may seem counterintuitive, it is an adequate

measure to quantify the temporal diversity of edges. F reveals how connectivity patterns within

the network fluctuate across time. To see this, consider the networks shown in Figures 3A and

3B, for which two edges are present at each time point. There are only three unique edges

in Figure 3A, meaning that the sum of U is 3 for the network shown in Figure 3A. However,

there is greater fluctuation in edge configuration for the network shown in Figure 3B, and all six

possible edges are present (entailing that the sum of U is equal to 6). Since both networks have

in total 24 connections over time, it becomes easy to see that the network shown in Figure 3B

has twice as large a value of F as the network shown in Figure 3A.

Notably, fluctuability is insensitive to the temporal order of connectivity. For example, the

networks depicted in Figures 3B and 3C have the same fluctuability, despite having consid-

erably different temporal orders of edge connectivity. Thus, fluctuability can be used as an

indicator of the overall degree of spatial diversity of connectivity over time.

The definition of fluctuability can be changed to work at a nodal level. To achieve this, the

summation in Eq. 6 is applied over only one of the nodal dimensions. Note that for nodes with

Figure 3. Illustration of the fluctuability and volatility measures. The temporal networks shown
in panels A, B, and C all have the same numbers of nodes and edges, but they differ in fluctuability
and volatility. (A) This network has low fluctuability (F = 0.125) and volatility (V = 0.73). (B) This
network has the highest volatility (V = 2.55) of all three networks and a fluctuability (F = 0.25) equal
to that of the network in panel C. (C) This network has lower volatility than B (V = 1.27) but equal
fluctuability (F = 0.25).
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no connections at all, the denominator will be 0, and to circumvent this hindrance, the nodal

fluctuability FN
i is defined as

FN
i =

⎧

⎨

⎩

∑j U(Ai,j)

∑j ∑t At
i,j

if U(Ai,j) > 0,

0 if U(Ai,j) = 0.
(8)

Global Measure: Volatility

One possible global measure of temporal order is how much, on average, the connectivity

between consecutive t-graphlets changes. This indicates how volatile the temporal network is

over time. Thus, volatility (V) can be defined as

V =
1

T − 1

T−1

∑
t=1

D(At, At+1), (9)

where D is a distance function and T is the total number of time points. The distance function

quantifies the difference between a graphlet at t and the graphlet at t + 1. In all the following

examples in this article, for volatility we use the Hamming distance, because it is appropriate

for binary data.

Whereas there was no difference in fluctuability between the networks shown in Figures 3B

and 3C, there is a difference in volatility, since the network in Figure 3B has more abrupt

changes in connectivity than the network shown in Figure 3C.

Extensions of the volatility measure are possible. Like fluctuability, volatility can be defined

at a local level. A per-edge version of volatility can be formulated as

VL
i,j =

1

T − 1

T−1

∑
t=1

D(At
i,j, At+1

i,j ). (10)

Additionally, taking the mean VL
i,j over j would give an estimate of volatility centrality.

Global Measure: Reachability Latency

Measures of reachability focus on estimating the time taken to “reach” the nodes in a temporal

network. In Holme (2005), both the reachability ratio and reachability time are used. The

reachability ratio is the percentage of edges that have a temporal path connecting them. The

reachability time is the average length of all temporal paths. However, when applying reach-

ability to the brain, the two aforementioned measures are not ideal, given the noncontroversial

assumption that any region in the brain, given sufficient time, can reach all other regions.

With this assumption in mind, we define a measure of reachability, reachability latency,

that quantifies the average time it takes for a temporal network to reach an a-priori-defined

reachability ratio. This is defined as

Rr =
1

TN ∑
t

∑
i

dt
i,k, (11)

where dt
i is an ordered vector of length N of the shortest temporal paths for node i at time point

t. The value k represents the ⌊rN⌉th element in the vector, which is the rounded product of the

fraction of nodes that can be reached, r, with N being the total number of nodes in the network.
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In the case of r = 1, (i.e., 100% of nodes are reachable), Eq. 11 can be rewritten as

R1 =
1

TN ∑
t

∑
i

maxj dt
i,j. (12)

Equation 12 has been referred to as the temporal diameter of the network (Nicosia et al., 2013).

If Eq. 12 were modified and calculated per node instead of averaging over nodes, it would be

a temporal extension of node eccentricity.

Unless all nodes are reached at the last time point in the sequence of recorded data, there

will be a percentage of time points from which all nodes can not be reached. This effectively

reduces their value of R, because dt
i,j cannot always be calculated, but R is still normalized

by T. If this penalization is considered too unfair, it is possible to normalize R by replacing T

with T∗, which is the number of time points where dT
i,j has a real value.

Global Measure: Temporal Efficiency

A similar concept is the idea of temporal efficiency. In the static case, efficiency is computed as

the inverse of the average shortest path for all nodes. Temporal efficiency is first calculated at

each time point as the inverse of the average shortest path length for all nodes. Subsequently,

the inverse average shortest path lengths are averaged across time points to obtain an estimate

of global temporal efficiency, which is defined as

E =
1

T(N2 − N) ∑
i,j,t

1

dt
i,j

, i �= j. (13)

Although reachability and efficiency estimate similar temporal properties, since both are

based on the shortest temporal paths, the global temporal efficiency may result in different

results than the reachability latency. This is because efficiency is proportional to the average

shortest temporal path, whereas reachability is proportional to the longest shortest temporal

path to reach r percent of the network. Similar to the case of static graphs, temporal efficiency

could be calculated at a nodal level as well, and this would equal the closeness centrality.

Summary of Temporal Network Measures

In Table 1we provide a brief summary of the temporal network measures outlined here, accom-

panied by short descriptions. We also signify which measures are sensitive to temporal order.

Table 1. Summary of the temporal network measures outlined in this article

Measure Description Order Dependent? Variable

Temporal centrality Number of overall connections in time N DT

Closeness centrality Time between connections Y CT

Burstiness Distribution of subsequent connections Y Bij

Fluctuability Ratio of unique edges vs. all edges N F

Volatility Rate of change of graphlets per time point Y V

Reachability latency Time taken for all nodes to be able to reach each other Y Rr

Temporal efficiency Inverse average shortest temporal path Y E
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Statistical Considerations of Temporal Network Measures

When implementing temporal graph measures, it is important to perform adequate statistical

tests to infer differences between the subject groups, task conditions, or chance levels. For

group comparisons, nonparametric permutation methods are advantageous where the group

assignment of the calculated measure can be shuffled between the groups and a null distri-

bution can be created. Alternatively, to justify that a measure is significantly present above

chance levels, the construction of null graphs is required. There are multiple ways to create

temporal null graphs, and they each have their own benefits and drawbacks. One method

is to permute the temporal order of entire time series, but this will destroy any autocorrela-

tion present in the data. Another alternative is to permute the phase of the time series prior to

thresholding the t-graphlets. A third option would be to permute blocks of time series data, but

this may not be appropriate for all network measures (e.g., volatility). A fourth option would

be to use vector autoregressive null models (Chang & Glover, 2010; Zalesky et al., 2014). We

refer the reader to Holme & Saramäki (2012) for a full account of approaches to performing

statistical tests on measures derived from temporal network theory.

METHODS

fMRI data

Two resting-state fMRI sessions (3-tesla, TR = 2,000 ms, TE = 30 ms) from 48 healthy subjects

were used in the analysis (19–31 years, 24 female). The fMRI data were downloaded from

an online repository: the Beijing Eyes-Open/Eyes-Closed dataset, available at www.nitrc.org

(Liu & Duyn, 2013). Each functional volume comprised 33 axial slices (thickness/gap = 3.5/

0.7mm, in-plane resolution= 64× 64, field of view= 200× 200mm). The dataset contained

three resting-state sessions per subject, and each session lasted 480 s (200 image volumes,

two eyes-closed sessions and one eyes-open session). We used data only from the 2nd or 3rd

session, which were the eyes-open (EO) and second eyes-closed (EC) sessions, where the order

was counterbalanced across subjects. Two subjects were excluded due to incomplete data.

Further details regarding the scanning procedure are given in Liu & Duyn (2013).

All resting-state fMRI data was preprocessed using Matlab (Version 2014b, Mathworks,

Inc.) with the CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012) and SPM8 (Friston et al.,

1995) toolboxes. The functional imaging data were realigned and normalized to the EPI MNI

template as implemented in SPM. Spatial smoothing was applied using a Gaussian filter

kernel (FWHM = 8 mm). Additional image artifact regressors attributed to head movement

(Dijk, Sabuncu, & Buckner, 2012; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) were

derived by using the ART toolbox for scrubbing (www.nitrc.org). Signal contributions from

white brain matter, cerebrospinal fluid (CSF), and head movement (six parameters), as well

as the ART micromovement regressors for scrubbing, were regressed from the data using

the CompCor algorithm (Behzadi, Restom, Liau, & Liu, 2007; the first five principal compo-

nents were removed for both white matter and CSF). After regression, the data were band-

passed between 0.008 and 0.1 Hz, as well as linearly detrended and despiked. Time series

of fMRI brain activity were extracted from 264 regions of interest (ROIs; spherical with a

5-mm radius) using the parcellation scheme for cortex and subcortical structures described

in Power et al. (2011). Each ROI was normalized by demeaning and scaling the standard de-

viation to 1. These 264 ROIs were further divided into ten brain networks, as described in

Cole et al. (2013) (technically subgraphs, in network theory terminology). Automatic anatom-

ical labeling (AAL) regions associated with specific ROIs, shown in the Supplementary Tables

(Thompson, Brantefors, & Fransson, 2017), were determined by taking the AAL region at (or
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closest to) the center of the ROI. Note that this offers only an approximate anatomical labeling

of the positions of ROIs.

Creating Time-Graphlets (t-Graphlets)

While there are many proposed methods for dynamic functional connectivity (Smith et al.,

2012; Allen et al., 2014; Liu & Duyn, 2013; Lindquist, Xu, Nebel, & Caffo, 2014; Shine et al.,

2015; Thompson & Fransson, 2016a), we chose a weighted correlation strategy (described be-

low) because it does not require optimizing any parameters or clustering. The method is based

on our previous work (Thompson & Fransson, 2016a), using the same fundamental assump-

tions, which results in high temporal sensitivity to fluctuating connectivity. However, we here

extended the method presented in Thompson & Fransson (2016a) so that it would compute

unique connectivity estimates for each time point, and thereby avoid the necessity to cluster

the data using a clustering technique such as k-means.

Our logic was to calculate dynamic functional brain connectivity estimates based on a

weighted Pearson correlation. To calculate the conventional Pearson correlation coefficient,Weighted Pearson correlation:
A correlation coefficient for which
the significance of each observation
is determined by a weight

all points are weighted equally. In the weighted version, data points contribute differently to the

correlation coefficient, depending on what weight they have been assigned. These weights are

then used to calculate the weighted mean and weighted covariance to estimate the weighted

correlation coefficient. By using a unique weighting vector per time point, we were able to

get unique connectivity estimates for each time point.

The weighted Pearson correlation between the signals x and y is defined as

r(x, y; w) =
Σx,y;w

Σx,x;wΣy,y;w
, (14)

where Σ is the weighted covariance matrix and w is a vector of weights that is equal in length

to x and y. The weighted covariance matrix is defined as

Σx,y;w =
∑

n
i wi(x − µx;w)(y − µy;w)

∑
n
i wi

, (15)

where n is the length of the time series. Note that Σ is the covariance matrix and ∑
n
i is a sum

over time points. The variables µx;w and µy;w are the weighted means, defined as

µx;w =
∑

n
i wixi

∑
n
i wi

, µy;w =
∑

n
i wiyi

∑
n
i wi

. (16)

Equations 14–16 define the weighted Pearson coefficient with the exception of the weight

vector w. If every element in w is identical, we can easily observe that the unweighted (conven-

tional) Pearson coefficient will be calculated. Here, we instead wished to calculate a unique

w for each time point, providing a connectivity estimate based on the weighted mean and

weighted covariance.

Different weighting schemes could be applied. In fact, many of the different dynamic con-

nectivity methods proposed in the literature are merely different weighting schemes (e.g., a

nontapered sliding window approach is just a binary weight vector).

We decided upon a global weighting of the spatial dimensions by calculating the distance

between the nodes at a specific time point with all other nodes for every other time point.
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This entails that the weights for the covariance estimates at t are larger for other time points

that display a global spatial pattern across all nodes similar to that of the nodes at t. A new

weight vector is calculated for each time point. The unique weight vector per time point pro-

duces a unique weighted Pearson correlation at each time point. This reflects the weighted

covariance, where time points with similar global spatial brain activation are weighted higher.

This produces, for each edge, a connectivity time series with fluctuating covariance.

More formally, the weights for estimating the connectivity at time t are derived by taking

the distance between the activation of the ROIs at t and at each other time point (indexed

by v):

wt
v =

1

D(yt, yv)
, (17)

where D is a distance function and y is the multivariate time series of the ROIs. For the distance

function, we used Euclidean distance (i.e., D(a, b) =
√

[∑n
i (ai − bi)2]).

The weight vector of t is created by applying Eq. 17 for all v ∈ T, v �= t. This implies that at

the time point of interest, t, we calculate a vector of weights (indexed by v) that reflects how

much the global spatial pattern of brain activity (i.e., all ROIs) differs from the brain activity

at t. Each collection of weight vectors wt can form a t by t matrix w for each subject and

each condition. The values of each matrix are scaled to range between 0 and 1. Finally, the

diagonal of w is set to 1. The collection of weight vectors for a single subject is shown for both

EO and EC sessions in Figures 4A–4C. Although this is not explicitly assumed in our method,

neighboring time points have the highest weights (Figure 4C).

After the derivation of the connectivity time series, a Fisher transform and a Box–Cox trans-

formwere applied. For the Box–Cox transform, the λ parameter was fit by taking the maximum

likelihood after a grid-search procedure from -5 to 5 in increments of 0.1 for each edge. Prior

to the Box–Cox transformation, the smallest value was scaled to 1 to make sure the Box–Cox

transform performed similarly throughout the time series (Thompson & Fransson, 2016b). Each

connectivity time series was then standardized by subtracting the mean and dividing by the

standard deviation. Snapshots of the weighted graphlets can be seen in Figure 4D. The entire

connectivity time series for three different ROI pairings are shown in Figures 4E–4G. Binary

t-graphlets were created by setting edges exceeding two standard deviations to 1, or otherwise

0, for each time series.

Our thresholding approach to create binary connectivity matrices is suboptimal and could

be improved upon in future work (see Discussion). The need to formulate more robust thresh-

olding practices has been an ongoing area of research in static network theory in the neuro-

sciences (Drakesmith et al., 2015). Similar work needs to be carried out for temporal networks,

because a limitation of the current approach is a heightened risk of false positive connections.

Tools for Temporal Network Theory

We have implemented all temporal network measures described in the present work in a

Python package of temporal network tools called Teneto (www.github.com/wiheto/teneto)

for Python 3.x, although the package itself is still under development. The package currently

contains code for all the measures mentioned above and plotting functions for slice plots (e.g.,

Figure 4F) and for stacking graphlets (e.g., Figure 4D). Data formats for both the graphlet/

snapshot and event/contact sequence data representations are available.
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Figure 4. Outline of the weighted correlation method to estimate dynamic connectivity. (A) Col-
lection of weight vectors for a single subject in the eyes-open condition. (B) Collection of weight
vectors for a single subject in the eyes-closed condition. (C) Amagnified portion of the image shown
in panel A that highlights that neighboring time points have the highest weights. (D) Stack of
graphlets showing the weighted connectivity for a selection of the resting-state session. (E–G)
Example connectivity time series for the entire session for a single edge. The edges are (E) two
nodes from the default mode network, (F) two nodes in the visual network, and (G) one node in the
visual network and one node in the default mode network. (H) Example of the slice graph represen-
tation of temporal brain connectivity for all nodes in the visual subnetwork with binary connections.
All panels in this figure show data taken from the same subject and, with the exception of panel B,
show the EO condition. All time units in the figure are given in volumes (TR) (i.e., each time step
is 2 s).

Statistics

All between-group comparisons in the next section use the between-group permutationmethod

outlined previously. Null distributions were created with 100,000 permutations of shuffling

which group each subject’s EO/EC results belonged to, and all comparisons were two tailed.

For between-subjects comparisons, Spearman rank correlations were used. To determine

which nodes had a higher-than-chance level of centrality, 1,000 permutations were performed

in which the nodal order for each subject was shuffled. This resulted in 264 null distributions

in which the centrality was averaged over subjects. The distribution with the largest 950th

value was selected to signify p = 0.05.
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RESULTS

Applying Temporal Degree Centrality and Temporal Closeness Centrality

With temporal centrality measures we can formulate research questions along the following

lines: (i) which nodes have the most connections through time (temporal degree centrality), or

(ii) which nodes have short temporal paths to all other nodes (temporal closeness centrality).

For the shortest-paths calculations, we allowed all possible steps at a single time point to be

used in this example.

First we illustrate the spatial distribution of both centrality measures in the brain. Temporal

degree centrality, averaged over all subjects, is displayed on the brain for all 264 ROIs for both

the EO (Figure 5A) and EC (Figure 5B) conditions, respectively. Nodes with a higher-than-

expected temporal centrality degree (p < 0.05) are shown for both conditions in Figures 5C

and 5D, respectively. Tables of all nodes/brain regions that passed the significance threshold

are presented in Supplementary Tables 1 and 2 (Thompson et al., 2017). Of the 25 nodes in

the EO condition that were above the threshold, the majority were located in either the visual

network (12 nodes) or the default mode network (eight nodes). In the EC condition, 26 nodes

passed the statistical threshold. Somewhat surprisingly, many of these nodes still came from

the visual network, but relatively fewer than in the EO condition (nine nodes). Speculatively,

the relatively high centrality of nodes in the visual network might be related to the notion that

many subjects may have performed mental imagery or other activity known to activate areas

of visual cortex during the EC condition (Ganis, Thompson, & Kosslyn, 2004).

Figure 5. Spatial patterns of temporal degree centrality displayed on the surface of the brain for
(A) the eyes-open (EO) condition and (B) the eyes-closed (EC) condition. (C) Spatial distribution of
temporal degree centrality across all nodes for the EO condition. Yellow color indicates p < 0.05.
The assigned network of each node is marked by colored dots above the plot. (D) As in panel C, but
for the EC condition. Anatomically detailed information about the nodes that had the largest degrees
of temporal centrality in panels C and D can be found in Supplementary Tables 1 and 2 Thompson
et al., 2017. Nodes located outside the rendered brain images are part of the cerebellum.
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For closeness centrality, we observed that in both the EO condition (Figure 6A) and the

EC condition (Figure 6B), nodes with higher-than-expected temporal closeness centrality (p <

0.05) were located in the frontoparietal, dorsal attention, and default mode networks (Figures 6C

and 6D) (see also Thompson et al., 2017, Supplementary Tables 3 and 4). Notably, for the EO

condition only three nodes in the visual network had a closeness centrality above the threshold,

whereas the EC condition had none. On the other hand, nodes in the saliency and subcortical

networks scored higher in the EC than in the EO condition.

In sum, both centrality measures returned reasonable spatial distributions of high-scoring

nodes across the brain for both conditions, implying that they quantified relevant and inter-

esting information about the dynamics of the BOLD signal. Obviously, this demonstration

is exploratory, and thus we are unable to infer the underlying cognitive processes from the

given centrality measures alone. This task is also made more difficult by the cognitively un-

restrained behavioral conditions in a resting state. For example, the high closeness centrality

of the saliency network in the EC condition might depend on a number of factors, ranging

from focus on the task at hand to the presence of emotional processes. However, the results

allow us to consider how the different centrality measures can provide novel insights into the

network dynamics. That the visual network has the highest centrality in the EO condition for

both measures is reasonable. The observation that the default mode and attentional networks

also score high on both centrality measures also seems reasonable. If, on the other hand, the

Figure 6. Spatial patterns of temporal closeness centrality displayed on the brain surface for the
eyes-open (EO) condition (A) and the eyes-closed (EC) condition (B). (C) Distribution of temporal
closeness degrees over all nodes for the EO condition. Yellow color indicates p < 0.05. The assigned
network of each node is marked by colored dots above the plot. (D) As in panel C, but for the EC
condition. Anatomically detailed information about the largest nodes in panels C and D with the
greatest temporal closeness centrality can be found in Supplementary Tables 3 and 4 Thompson
et al., 2017. Nodes outside the rendered brain images are part of the cerebellum.
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somato-motor network had scored high in both EC and EO, or if the centrality of nodes in

the visual network had been higher during EC than EO, such results would call into question

whether our temporal centrality measures were actually quantifying anything meaningful.

The centrality estimates for nodes were compared across imaging sessions to evaluate

whether the temporal patterns were similar across subjects. Despite differences in the highest-

scoring nodes for each condition, temporal degree centrality correlated significantly between

the EO and EC conditions (Figure 7A, ρ = 0.35, p < 0.0001). A similar trend was observed for

temporal closeness centrality (Figure 7B, ρ = 0.62, p < 0.0001). This entails that nodes ap-

pear to have similar centrality properties in the EO and EC resting-state conditions. Although

both centrality measures showed between-session correlations, there was no consistent re-

lationship between the two measures. No significant relation was observed in the EO ses-

sion (Figure 7C, ρ = 0.09, p = 0.15), and a negative correlation emerged for the EC session

Figure 7. Applying temporal degree centrality and temporal closeness centrality for the eyes-open
(EO) and eyes-closed (EC) conditions. Each dot represents the centrality of a node. (A) Temporal
degree centrality for the EO versus the EC condition. (B) Temporal closeness centrality for the EO
versus the EC condition. (C) Temporal degree centrality versus temporal closeness centrality in
the EO condition. (D) Temporal degree versus temporal closeness centrality in the EC condition.
*** signifies p < 0.001.
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(Figure 7D; ρ = 0.45, p < 0.0001). This result is not surprising, since the measures are quite

different by definition, but it is still useful to demonstrate that these different centrality measures

quantify different aspects of the temporal dynamics of the brain.

Applying Burstiness

By applying the burstiness measure (B) to an fMRI dataset, we can ask questions related to the

temporal distribution of brain connectivity. To illustrate that there is indeed a bursty pattern

of brain connectivity, we first plotted the distribution of all intercontact times taken from all

subjects and edges for the EO session and observed a heavy-tailed distribution (Figure 8A).

We then considered the question of the most robust way to calculate B, given that our

example fMRI dataset had a rather low temporal resolution and only spanned a limited time

period. It was possible that not enough edges might be present in each subject to allow a stable

estimate of B for a single subject. To test this concern, we evaluated whether there was a differ-

ence in B for a single subject versus the concatenated intercontact times of multiple subjects.

This was done for a single edge that connected right posterior cingulate cortex and right medial

prefrontal cortex in the EO session. As is shown in Figure 8B, there is a considerable variance

in the individual subject estimates of burstiness. If we cumulatively add subjects, however,

the estimate of burstiness stabilizes after approximately 12 subjects. This illustrates the impor-

Figure 8. Quantifying bursty connectivity. (A) Distribution of all intercontact probabilities, com-
bining all edges and subjects in the eyes-open (EO) condition. (B) The bursty coefficient (B) for one
edge in the EO condition. Each dot represents B calculated per subject, while the solid line shows
the bursty coefficient when cumulatively adding subjects. Values of−1 indicate that all intercontact
times are identical (i.e., one burst, tonic connectivity, or oscillations in connectivity). (C) Distribu-
tions of B for the different conditions (blue: EO; red: eyes-closed, EC). (D) Distributions of B as a
function of EO within-network connectivity (red) and between-network connectivity (blue). (E) As
in panel D, but for the EC condition. (F) Bursty coefficients for each edge across the two sessions,
displayed as a heat map. *** signifies p < 0.001.
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tance of having enough data to calculate reliable B estimates. Henceforth, all B estimates are

calculated by pooling intercontact times over subjects.

We then wished to contrast EO versus EC in terms of burstiness. Both conditions showed

bursty distributions across all edges (see Figure 8C), and slightly more so for the EC than for the

EO condition. Both within- and between-network connectivity showed bursty distributions of

connectivity patterns in both conditions (Figures 8D and 8E).

Given that both EO and EC showed bursty correlations, we tested whether the values of

B correlated between conditions (Figure 8F). We found a weak, but significant, correlation

between conditions (ρ = 0.066, p < 0.0001). This weak between-condition correlation (ac-

counting for less than one percent of the variance, and probably driven by the number of data

points) suggests that much of the variance of burstiness may have been task-specific. However,

more research on this topic will be needed.

Applying Fluctuability

Using the fluctuability measure, researchers may ask questions regarding how many unique

edges exist in a temporal network model of the dynamic functional brain connectome, indicat-

ing whether more resources (i.e., diversity of connections) are required during a given task.

The fluctuability measure was applied to contrast the EO and EC conditions both between

(Figure 9A) and within (Figure 9B) subjects. We observed no significant between-subjects cor-

relation in F (ρ = 0.18 , p = 0.23) but did find a difference between the average values of

F between conditions (p = 0.0020), with the EO condition having a higher degree of fluctua-

bility. Thus, the EO condition had a more varying configuration of connections through time

than did the EC condition.

Applying Volatility

With volatility, we can ask whether the connectivity changes faster or slower through time.

Some tasks might require the subject to switch between different cognitive faculties or brain

states, while other tasks may require the brain to be more stable and to switch states less.

As with fluctuability, we computed volatility both between subjects (Figure 9C) and between

conditions (Figure 9D). We observed a significant correlation for between-subject volatility

over the two conditions (ρ = 0.46, p = 0.0012; Figure 9C). Additionally, no significant differ-

ence in volatility was observed between EO and EC (p = 0.051; Figure 9D).

Applying Reachability Latency

The measure of reachability latency addresses the following question regarding the overall

connectivity pattern along the temporal axis: how long does it take to travel to every single node

in the temporal network? For example, the reachability latency may be useful for evaluating the

dynamics when either functional or structural connectomes differ substantially. We computed

the reachability latency by setting r = 1 (i.e., all nodes must be reached).

The results are shown in Figure 10, where a significant difference in the average reachability

latencies between conditions is visible (Figure 10A; EO: 21.07, EC: 22.96, p = 0.0005). Given

that there was an overall increase in reachability latencies during EC as compared to EO, we

decided to unpack this finding post hoc and check whether the discovered global difference

in reachability could be localized to brain networks that should differ between the EC and EO

conditions. So, rather than calculating the reachability latency for the entire brain, we averaged
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Figure 9. Applying fluctuability and volatility measures for the eyes-closed (EC) and eyes-open
(EO) conditions. (A) Between-subjects correlation for fluctuability. (B) Violin plot showing fluctua-
bility between the EO and EC conditions. Each light gray dot designates a subject, and a line binds
together data obtained from the same subjects during the EO and EC conditions. For clarity, each
line connecting subjects terminates at the centers of the violin plots. The mean value of fluctuability
for each condition is shown with a white dot. (C) As in panel A, but for volatility. (D) As in panel B,
but for volatility. ** signifies p < 0.01.

the measures of reachability latency (to reach all nodes) for ten preassigned brain networks. In

this post hoc analysis, we see that the brain networks with the highest differences in reachability

latency were the visual, dorsal attention, and frontoparietal brain networks (Figure 9B). Thus,

the results show a longer reachability latency for the visual and attention networks when there

is no visual input, a result that appears biologically plausible.

In addition to these between-condition differences in reachability, we observed that there

was also a significant between-subjects relationship (ρ = 0.36, p = 0.015; Figure 9C). Taken

together with the previous finding, our results show that measures of reachability latency reflect

both between-task and between-subjects differences.

Applying Temporal Efficiency

Finally, we computed the global temporal efficiencies for both the EO and EC conditions.

Where reachability latency employs the shortest temporal path to calculate how long it takes
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Figure 10. Applying reachability latency. (A) Violin plots of reachability latency for the eyes-open
(EO) and eyes-closed (EC) conditions. Light gray dots correspond to single subjects, and lines con-
nect each subject’s values between conditions. For clarity, each line connecting subjects terminates
at the centers of the violin plots. White dots mark the mean reachability latencies. (B) Post hoc
decomposition of the reachability latency difference (EC−EO) across subnetworks. (C) Between-
subjects correlation of reachability between EO and EC. * signifies p < 0.05; *** signifies p < 0.001

to reach a certain percentage of nodes, temporal efficiency relates to the average inverse of all

shortest temporal paths.

We found that temporal efficiency was significantly greater during EO than during EC (p =

0.0011; Figure 11A). This finding means that, on average, the temporal paths are shorter in the

EO than in to the EC condition. We observed strong negative correlations between temporal

efficiency and reachability latency during both conditions (EO: ρ = −0.88, p < 0.0001; EC:

ρ = −0.88, p < 0.0001; see Figures 11B and 11C).

DISCUSSION

Our overarching aim in this work was to provide an overview of the key concepts of temporal

networks, for which we have introduced and defined temporal network measures that can be

used in studies of dynamic functional brain connectivity. Additionally, we have shown the

Figure 11. Applying global temporal efficiency and its relation with reachability latency. (A) Violin
plots of global temporal efficiency for the eyes-open (EO) and eyes-closed (EC) conditions. Light gray
dots correspond to single subjects, and lines connect single subjects, values between conditions.
For clarity, each line connecting subjects terminates at the centers of the violin plots. White dots
indicate the mean global temporal efficiencies. (B) Scatterplot showing each subject’s reachability
latency versus temporal efficiency for the EO condition. (C) As in panel B, but for the EC condition.
** signifies p < 0.01; *** signifies p < 0.001.
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applicability of temporal metrics in network neuroscience by applying them fMRI resting-state

datasets, and then shown that resting-state networks differ in their dynamical properties.

Summary of Applying Temporal Network Measures to fMRI Data

Both temporal degree centrality and closeness centrality were correlated across conditions,

whereas no correlation between the two centrality measures was observed. This entails that

the two centrality measures quantify different dynamic properties of the brain.

At a global network level, we examined the temporal uniqueness of edges (fluctuability) as

well as the rate of change of connectivity (volatility). We could identify a significant condition-

dependent difference in fluctuability, but no difference was observed in volatility between con-

ditions. Conversely, a significant between-subjects correlation was found for temporal network

volatility, but the between-subjects correlation in fluctuability was not significant. The ob-

served differences in volatility—that is, the differences in brain connectivity at different points

in time—were driven to a relatively larger extent by intersubject differences in connectivity

dynamics than by differences related to the tasks (EO/EC) per se.

Our results regarding reachability latencies during the EO and EC conditions indicate task-

driven changes in latencies, especially since the connectivity of the visual and attention brain

networks is known to reconfigure between EO and EC conditions (Zhang et al., 2015). Thus,

the observed difference in reachability latencies might be a reflection of a putative network

reconfiguration. Furthermore, reachability also showed a between-subjects correlation across

conditions.

The distribution of intercontact time points of connectivity between brain nodes was bursty,

in agreement with our previous findings (Thompson & Fransson, 2016a). Notably, our previ-

ous findings were obtained at a high temporal resolution (TR = 0.72 s), and it is therefore

reassuring that we were able to detect similar properties of burstiness in brain connectivity at

a lower temporal resolution (TR = 2 s). Of note, the between-network versus within-network

connectivity difference here varied from that obtained in a previous study that had shown

between-network connectivity to be significantly more bursty than within-network connectiv-

ity (Thompson & Fransson, 2016a). This difference is probably due to the different kinds of

thresholding being applied. Here a variance-based thresholding was applied, instead of the

magnitude-based form used in the previous study. We have discussed previously that these

different strategies will prioritize different edges (Thompson & Fransson, 2015b, 2016b).

In sum, we have shown that measures founded in temporal network theory can be applied

to fMRI data and are sensitive to the dynamical properties of fMRI BOLD connectivity. While

attempting to interpret temporal network measures in a psychological and biological context

has an intuitive appeal, such interpretations remain speculative at this point. Our intention here

was to explore the dynamic connectivity across subjects and across a simple task difference

to demonstrate that temporal network measures are appropriate measures given the signal.

We showned that certain properties may be subject-specific, while others are task-specific.

Furthermore, temporal network measures lead to rankings of network properties that are in

agreement in a resting state during eyes-open and eyes-closed conditions. However, to infer

psychological properties from a specific measure, hypothesis-driven work will be necessary

in which the a priori hypothesis can be explicitly tested. We believe that the present work

demonstrates that such future studies are possible using temporal network theory.

Network Neuroscience 91

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/NETN_a_00011 by guest on 10 August 2022



Temporal network theory applied to brain connectivity

A final note regarding the interpretation of measures that are dependent on the shortest

paths. In cases in which the temporal resolution is sluggish, as in fMRI, and the spatial res-

olution is coarse in relation to the size of neurons, it would be incorrect to assume that the

shortest path reflects the shortest period of time for a neuron in node i to reach and communi-

cate with another neuron residing in node j. What can the shortest paths reveal, then? When

the temporal paths decrease during performance of a given task between nodes located in two

different brain networks, it tells us that those two networks are interacting. Thus, shortest paths

computed on the basis of fMRI data should be viewed in the context of how nodes in different

brain networks are interacting with each other.

Other Approaches to Remporal Network Theory

The list of measures for temporal networks described here is far from exhaustive. Although we

have focused primarily on temporal properties that can be defined at a nodal and/or global

level, detecting changes in network modularity over time is an active part of network theory

research (Mucha, Richardson, Macon, Porter, & Onnela, 2010; Rosvall & Bergstrom, 2010).

This approach has recently been applied to the brain connectome (Mantzaris et al., 2013;

Bassett et al., 2013) and in the context of learning (Bassett et al., 2011; Basset, Yang, Wymbs,

& Grafton, 2015). In a similar vein, the presence of hyperedges allows us to explore and iden-

tify groups of edges that have similar temporal evolutions (Davison et al., 2015; Davison et al.,

2016). Similarly, investigating how different tasks evoke different network configurations

(Ekman, Derrfuss, Tittgemeyer, & Fiebach, 2012; Cole et al., 2013; Matter, Cole, & Sharon,

2015) is also an active research area. Another recent exciting development is to consider

a control-theory-based approach to network neuroscience (Gu et al., 2015), which can be

applied to networks embedded in time (Gu et al., 2016).

Yet another avenue of temporal network research is to apply static network measures to

each t-graphlet and then derive time series of fluctuating static measures (Bola & Sabel, 2015;

Chiang et al., 2016). It is also possible is to quantify the properties of dynamic fluctuations

in brain connectivity through time and then to correlate them with the underlying static net-

work. Using such a strategy, between-subjects differences for both the dynamic and the static

networks can be revealed (e.g., Betzel, Fukushima, He, Zuo, & Sporns, 2016).

Finally, considerably more measures within the temporal network literature can be put to

use within the field of network neuroscience. For example, the list of centrality measures

provided here is not complete. A temporal extension of betweenness centrality, which is often

used for static networks, can be adopted in the temporal domain (Tang, Musolesi, Mascolo,

Latora, & Nicosai, 2010). In the same vein, spectral centrality can also be computed in the

temporal domain (see Nicosia et al., 2013, for further details).

When Is Temporal Network Theory Useful?

As we stated in the introduction, graphs are an abstract representation corresponding to some

state in theworld. The properties quantified in these representations try to reflect corresponding

properties of the world. Not every representation of brain function will require time, which

would make temporal network measures unsuitable. Under what conditions will temporal

network theory be of use? Networks of neurons are known to reconfigure during different

behavioral states and tasks. This reconfiguration occurs at all levels of brain connectivity:

from microcircuits controlling the digestive system in lobsters (Meyrand, Simmers, & Moulins,

1994) to the differential involvement of large-scale brain networks in cognitive tasks in hu-

mans (Ekman et al., 2012; Cole et al., 2013; Mattar, Cole, & Sharon, 2014). Temporal network
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theory allows us to track and study these reconfigurations, which has the potential to offer more

detailed information about fluctuations in brain network configuration than can be achieved

by aggregating over tasks or behavioral states.

The potential fields of application for the methods described in this work are vast. Obvi-

ous examples range from real-time neuroimaging to tracking ongoing cognitive processes. To

be able to isolate and identify the dynamics of networks may indeed be necessary when the

same networks are involved in multiple cognitive processes. Furthermore, the increased tem-

poral sensitivity provided by temporal networks offers greater systematic discriminative power

between healthy and patient cohorts. To give an example, alterations in static default mode net-

work connectivity have been implicated in depression (Sheline et al., 2009; Hamilton et al.,

2012), schizophrenia (Garrity et al., 2007; Pomarol-Clotet et al., 2008), traumatic brain in-

jury (Bonnelle et al., 2011; Sharp et al., 2011; Thompson, Thelin, Lilja, Bellander, & Fransson,

2016), obsessive–compulsive disorder (Stern, Fitzgerald, Welsh, Abelson, & Taylor, 2012),

autism (Cherkassky, Kana, Keller, & Just, 2006; Weng et al., 2010), fibromyalgia (Nadapow

et al, 2010; Flodin et al., 2014), posttraumatic stress (Sripada et al., 2012), and Alzheimer’s

disease (Greicius, Srivastava, Reiss, & Menon, 2004). This is not an exhaustive list, but it list

suggests that it is very difficult to make inferences regarding static differences in connectivity in

the default network that are specific to a particular patient cohort. We hope that, by adding a

temporal dimension and thus reducing the aggregations and simplifications of a static network

analysis, unique connectivity markers may become viable for different patient cohorts.

A couple of additional Factors should be considered when applying temporal network the-

ory. Interpreting what a measure means can only be done in relation to the temporal resolution

of the data. For example, volatility will obviously entail a different interpretation when it is ap-

plied to a dataset obtained with a temporal resolution of years versus a dataset acquired with a

temporal resolution of milliseconds. Furthermore, measures using shortest temporal paths can

be altogether inappropriate in certain situations (e.g., longtitudinal studies).

Finally, consideration is also needed about which temporal network measure(s) should be

applied to a research question. Although temporal network theory puts a wide array of mea-

sures at the user’s disposal, we advise against applying the entire battery of measures to a given

dataset. Given a hypothesis about some state of the world (S), this should first be translated

into a hypothesis about which network measure will quantify the network representation of S.

A more exploratory analysis showing significant (and multiple-comparison-corrected) correla-

tions in five out of ten measures, when these measures were not first formulated in relation to

S, may become hard, if not impossible, to translate into something meaningful.

Limitations and Extensions for Temporal Network Measures

Our scope was limited to temporal measures that operate on binary time series of brain con-

nectivity (i.e., binary t-graphlets). Most of the measures discussed here can be extended and

defined for series of weighted connectivity matrices. However, certain temporal measures are

not straightforward to convert to the weighted case. Pertinent examples are burstiness and

reachability for which no simple strategy has been identified to apply them in a weighted-

connectivity context.

Regardless of the method used to derive the brain connectivity time series, it is impor-

tant that adequate preprocessing steps be performed on the data to avoid potential bias in

the analysis. Our method of deriving t-graphlets with weighted Pearson correlation coeffi-

cients to compute time series of brain connectivity is not exempted from this concern. In a
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connectivity analysis based on sequences of binary t-graphlets, the absence or presence of

an edge might potentially be influenced by the user’s selection of thresholding. Hence, the

strategy regarding how to optimally threshold the t-graphles into binary graphlets is of vital

importance. We believe that it is important to keep in mind that comparisons of the vari-

ances as well as the means of connectivity time series might be biased by the underlying

mean–variance relationship (Thompson & Fransson, 2015b, 2016b). This further emphasizes

the need for adequate thresholding strategies for connectivity time series. Moreover, subject

head motion, known to be a large problem for fMRI connectivity studies (Dijk et al., 2012;

Power et al., 2012, Power, Schlaggar, & Petersen, 2015), can also lead to spurious dynamic

properties (Laumann et al., 2016).

By providing a survey of the theory of temporal networks and showing their applicability

and usefulness in network neuroscience, we hope that we have stirred the reader’s interest

in using models based on temporal networks when studying the dynamics of functional brain

connectivity. To this end, we have implemented all temporal network measures described in

the present article in a software package that is freely available (Teneto, which is written in

Python and can be downloaded at http://github.com/wiheto/teneto). We plan to extend the

Teneto package to include additional temporal network measures, plotting routines, wrappers

for other programming languages, and dynamic connectivity estimation.
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