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FROM STOCHASTIC, INDIVIDUAL-BASED MODELS TO THE
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We consider a model for Darwinian evolution in an asexual population
with a large but nonconstant populations size characterized by a natural birth
rate, a logistic death rate modeling competition and a probability of muta-
tion at each birth event. In the present paper, we study the long-term behav-
ior of the system in the limit of large population (K → ∞) size, rare muta-
tions (u → 0) and small mutational effects (σ → 0), proving convergence to
the canonical equation of adaptive dynamics (CEAD). In contrast to earlier
works, for example, by Champagnat and Méléard, we take the three limits
simultaneously, that is, u = uK and σ = σK , tend to zero with K , subject to
conditions that ensure that the time-scale of birth and death events remains
separated from that of successful mutational events. This slows down the dy-
namics of the microscopic system and leads to serious technical difficulties
that require the use of completely different methods. In particular, we can-
not use the law of large numbers on the diverging time needed for fixation
to approximate the stochastic system with the corresponding deterministic
one. To solve this problem, we develop a “stochastic Euler scheme” based on
coupling arguments that allows to control the time evolution of the stochastic
system over time-scales that diverge with K .
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1. Introduction. In this paper, we study a microscopic model for evolution in
a population characterized by a birth rate with a probability of mutation at each
event and a logistic death rate, which has been studied in many works before [6–9,
13]. More precisely, it is a model for an asexual population in which each in-
dividual’s ability to survive and to reproduce is a function of a one-dimensional
phenotypic trait, such as body size, the age at maturity or the rate of food intake.
The evolution acts on the trait distribution and is the consequence of three basic
mechanisms: heredity, mutation and selection. Heredity passes the traits trough
generations, mutation drives the variation of the trait values in the population and
selection acts on individuals with different traits and is a consequence of competi-
tion between the individuals for limited resources or area.

The model is a generic stochastic individual-based model and belongs to the
models of adaptive dynamics. In general, adaptive dynamic models aim to study
the interplay between ecology (viewed as driving selection) and evolution, more
precisely, the interplay between the three basic mechanisms mentioned above. It
tries to develop general tools to study the long time evolution of a wide variety
of ecological scenarios [10, 11, 21]. These tools are based on the assumption of
separation of ecological and evolutionary time scales and on the notion of inva-
sion fitness [19, 20]. While the biological theory of adaptive dynamics is based on
partly heuristic derivations, various aspects of the theory have been derived rigor-
ously over the last years in the context of stochastic, individual-based models [6–9,
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15, 16]. All of them concern the limit when the population size, K , tends to infin-
ity. They either study the separation of ecological and evolutionary time scales
based on a limit of rare mutations, u → 0, combined with a limit of large popu-
lation [6, 9], the limit of small mutation effects, σ → 0 [7, 9, 15], the stationary
behavior of the system [16] or the links between individual-based and infinite-
population models [8]. An important concept in the theory of adaptive dynamics is
the canonical equation of adaptive dynamics (CEAD), introduced by Dieckmann
and Law [10]. This is an ODE that describes the evolution in time of the expected
trait value in a monomorphic population. The heuristics leading to the CEAD are
based on the biological assumptions of large population and rare mutations with
small effects and the assumption that no two different traits can coexist. (Note that
we write sometimes mutation steps instead of effects.) There are mathematically
rigorous papers that show that the limit of large population combined with rare
mutations leads to a jump process, the Trait Substitution Sequence, [6] and that
this jump process converges, in the limit of small mutation steps, to the CEAD [9].
Since these two limits are applied separately and on different time scales, they
give no clue about how the biological parameters (population size K , probability
of mutations u and size of mutation steps σ ) should compare to ensure that the
CEAD approximation of the individual-based model is correct.

The purpose of the present paper is to analyse the situation when the limits of
large population size, K → ∞, rare mutations, uK → 0 and small mutation steps,
σK → 0, are taken simultaneously. We consider populations with monomorphic
initial condition, meaning that at time zero the population consists only of indi-
viduals with the same trait. Then we identify a time-scale where evolution can be
described as a succession of mutant invasions. To prove convergence to the CEAD,
we show that, if a mutation occurs, then the individuals with this mutant trait can
either die out or invade the resident population on this time scale. Here, invasion
means that the mutant trait supersedes the resident trait, that is, the individuals with
the resident trait become extinct after some time. This implies that the population
stays essentially monomorphic with a trait that evolves in time. We will impose
conditions on the mutation rates that imply a separation of ecological and evolu-
tionary time scales, in the sense that an invading mutant population converges to
its ecological equilibrium before a new invading (successful) mutant appears. In
order to avoid too restrictive hypothesis on the mutation rates, we do, however,
allow noninvading (unsuccessful) mutation events during this time, in contrast to
all earlier works.

We will see that the combination of the three limits simultaneously, and en-
tails some considerable technical difficulties. The fact that the mutants have only a
K-dependent small evolutionary advantage decelerates the dynamics of the micro-
scopic process such that the time of any macroscopic change between resident and
mutant diverges with K . This makes it impossible to use a law of large numbers as
in [6] to approximate the stochastic system with the corresponding deterministic
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system during the time of invasion. Showing that the stochastic system still fol-
lows in an appropriate sense the corresponding competition Lotka–Volterra system
(with K-dependent coefficients) requires a completely new approach. Developing
this approach, which can be seen as a rigorous “stochastic Euler-scheme,” is the
main novelty of the present paper. The proof requires methods, based on couplings
with discrete time Markov chains combined with some standard potential theory
arguments for the “exit from a domain problem” in a moderate deviations regime,
as well as comparison and convergence results of branching processes. Note that
since the result of [6] is already different from classical time scales separations
results (cf. [14]), our result differs from them a fortiori. Thus, our result can be
seen as a rigorous justification of the biologically motivated, heuristic assumptions
which lead to CEAD.

The remainder of this paper is organized as follows. In Sections 2 and 3, we
introduce the model and give an overview on previous related results. In Section 4,
we state our results and give a detailed outline of the proof. Full details of the proof
are presented in Sections 6, 7 and 8. In the Appendix, we state and prove several
elementary facts that are used throughout the proof.

2. The individual-based model. In this section, we introduce the model we
analyze. We consider a population of a single asexual species that is composed of a
finite number of individuals, each of them characterized by a one-dimensional phe-
notypic trait. The microscopic model is an individual-based model with nonlinear
density-dependence, which has already been studied in ecological or evolutionary
contexts by many authors [6, 8, 9, 13].

The trait space X is assumed to be a compact interval of R. We introduce the
following biological parameters:

(i) b(x) ∈R+ is the rate of birth of an individual with trait x ∈X .
(ii) d(x) ∈ R+ is the rate of natural death of an individual with trait x ∈ X .

(iii) K ∈N is a parameter which scales the population size.
(iv) c(x, y)K−1 ∈ R+ is the competition kernel which models the competition

pressure felt by an individual with trait x ∈ X from an individual with trait y ∈ X .
(v) uKm(x) with uK ,m(x) ∈ [0,1] is the probability that a mutation occurs at

birth from an individual with trait x ∈X , where uK ∈ [0,1] is a scaling parameter.
(vi) M(x,dh) is the mutation law of the mutational jump h. If the mutant is

born from an individual with trait x, then the mutant trait is given by x +σKh ∈ X ,
where σK ∈ [0,1] is a parameter scaling the size of mutation and h is a random
variable with law M(x,dh). We restrict for simplicity the setting to mutation mea-
sures with support included in Z.

The three scaling parameters of the model are the population size, controlled
by the scaling parameter K , the mutation probability, controlled by the scaling
parameter uK , the mutation size, controlled by the scaling parameter σK . The nov-
elty of our approach is that we consider the case where all these parameters tend
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to their limit jointly, more precisely that both uK and σK are functions of K and
tend to zero as K tends to infinity (subject to certain constraints).

At any time t , we consider a finite number, Nt , of individuals, each of them
having a trait value xi(t) ∈ X . It is convenient to represent the population state at
time t by the rescaled point measure, νK , which depends on K , uK and σK

(2.1) νK
t = 1

K

Nt∑

i=1

δxi(t).

Let 〈μ,f 〉 denote the integral of a measurable function f with respect to the mea-
sure μ. Then 〈νK

t ,1〉 = NtK
−1 and for any x ∈ X , the positive number 〈νK

t ,1{x}〉
is called the density of trait x at time t . With this notation, an individual with trait
x in the population νK

t dies due to age or competition with rate

(2.2) d(x) +
∫

X

c(x, y)νK
t (dy).

Let M(X ) denote the set of finite nonnegative measures on X , equipped with the
weak topology, and define

(2.3) M
K(X ) ≡

{

1

K

n
∑

i=1

δxi
: n ≥ 0, x1, . . . , xn ∈ X

}

.

Similar as in [13], we obtain that the population process, (νK
t )t≥0, is a MK(X )-

valued Markov process with infinitesimal generator, L K , defined for any bounded
measurable function f from MK(X ) to R and for all μK ∈MK(X ) by

L
Kf

(

μK)

=
∫

X

(

f

(

μK + δx

K

)

− f
(

μK)
)

(

1 − uKm(x)
)

b(x)KμK(dx)

(2.4)

+
∫

X

∫

Z

(

f

(

μK + δx+σKh

K

)

− f
(

μK)
)

uKm(x)b(x)M(x, dh)KμK(dx)

+
∫

X

(

f

(

μK − δx

K

)

− f
(

μK)
)(

d(x) +
∫

X

c(x, y)μK(dy)

)

KμK(dx).

The first and second terms are linear (in μK ) and describe the births (without and
with mutation), but the third term is nonlinear and describes the deaths due to age
or competition. The density-dependent nonlinearity of the third term models the
competition in the population, and hence drives the selection process.

ASSUMPTION 1. We will use the following assumptions on the parameters of
the model:

(i) b, d and c are measurable functions, and there exist b, d, c < ∞ such that

b(·) ≤ b, d(·) ≤ d and c(·, ·) ≤ c.
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(ii) For all x ∈ X , b(x)−d(x) > 0, and there exists c > 0 such that c ≤ c(x, x).
(iii) The support of M(x, ·) is a subset of Z ∩ X − x and uniformly bounded

for all x ∈ X . This means that there exists A ∈ N such that

M(x,dh) =
A

∑

k=−A

pk(x)δk(dh), where
A

∑

k=−A

pk(x) = 1 for any x ∈X .

(iv) b, d,m ∈ C2(X ,R) and c ∈ C2(X 2,R).

Assumptions (i) and (iii) allow to deduce the existence and uniqueness in law
of a process on D(R+, MK(X )) with infinitesimal generator L K (cf. [13]). Note
that assumption (iii) differs from the assumptions in [13] because we restrict the
setting to mutation measures with support included in Z and that it ensures that a
mutant trait remains in X . Assumption (ii) prevents the population from exploding
or becoming extinct too fast. Since X is compact, assumption (iv) ensures that the
derivatives of the functions b, c, d and m are uniformly Lipschitz-continuous.

Before we state the main result of the paper, Theorem 4.1, in Section 4, it will be
helpful to recall some earlier results for this class of models and to fix some more
notation. These results serve as a guideline to what behavior one should expect,
even though on a technical level proofs have to be changed completely.

3. Some notation and previous results. We start with a theorem due to N.
Fournier and S. Méléard [13] which describes the behavior of the population pro-
cess, for fixed u and σ , when K → ∞.

THEOREM 3.1 (Theorem 5.3 in [13]). Fix u and σ . Let Assumption 1 hold and

assume in addition that the initial conditions νK
0 converge for K → ∞ in law and

for the weak topology on M(X ) to some deterministic finite measure ξ0 ∈ M(X )

and that supK E[〈νK
0 ,1〉3] < ∞.

Then for all T > 0, the sequence νK , generated by L K , converges for

K → ∞ in law, in D([0, T ],M(X )), to a deterministic continuous function

ξ ∈ C([0, T ],M(X )). This measure-valued function ξ is the unique solution, sat-

isfying supt∈[0,T ]〈ξt ,1〉 < ∞, of the integro-differential equation written in its

weak form: for all bounded and measurable functions, f : X →R,
∫

X

ξt (dx)f (x)

=
∫

X

ξ0(dx)f (x)

(3.1)

+
∫ t

0
ds

∫

X

ξs(dx)um(x)b(x)

∫

Z

M(x,dh)f (x + σh)

+
∫ t

0
ds

∫

X

ξs(dx)f (x)

(
(

1 − um(x)
)

b(x) − d(x) −
∫

X

ξs(dy)c(x, y)

)

.
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Without mutation, one obtains convergence to the competitive system of Lotka–
Volterra equations defined below (see [13]).

COROLLARY 3.2 (The special case u = 0 and ξ0 is n-morphic). If the same

assumptions as in the theorem above with u = 0 hold and if in addition ξ0 =
∑n

i=1 zi(0)δxi
, then ξt is given by ξt = ∑n

i=1 zi(t)δxi
, where zi is the solution of

the competitive system of Lotka–Volterra equations defined below.

DEFINITION 3.3. For any (x1, . . . , xn) ∈ X n, we denote by LV(n, (x1, . . . ,

xn)) the competitive system of Lotka–Volterra equations defined by

dzi(t)

dt
= zi

(

b(xi) − d(xi) −
n

∑

j=1

c(xi, xj )zj

)

, 1 ≤ i ≤ n.(3.2)

Next, we introduce the notation of coexisting traits and of invasion fitness
(see [9]).

DEFINITION 3.4. We say that the distinct traits x and y coexist if the system
LV(2, (x, y)) admits a unique nontrivial equilibrium, named z(x, y) ∈ (0,∞)2,
which is locally strictly stable in the sense that the eigenvalues of the Jacobian
matrix of the system LV(2, (x, y)) at z(x, y) are all strictly negative.

The invasion of a single mutant trait in a monomorphic population which is
close to its equilibrium is governed by its initial growth rate. Therefore, it is con-
venient to define the fitness of a mutant trait by its initial growth rate.

DEFINITION 3.5. If the resident population has the trait x ∈ X , then we call
the following function invasion fitness of the mutant trait y

f (y, x) = b(y) − d(y) − c(y, x)z(x).(3.3)

REMARK 1. The unique strictly stable equilibrium of LV(1, x) is z(x) =
b(x)−d(x)

c(x,x)
, and hence f (x, x) = 0 for all x ∈X .

Coexistence and invasion fitness are closely related (cf. [17]).

PROPOSITION 3.6. There is coexistence in the system LV(2, (x, y)) if and

only if f (x, y) ≡ b(x) − d(x) − c(x, y)z(y) > 0 and f (y, x) ≡ b(y) − d(y) −
c(y, x)z(x) > 0.

The following convergence result from [6] describes the limit behavior of the
populations process, for fixed σ , when K → ∞ and uK → 0. More precisely,
it says that the rescaled individual-based process converges in the sense of finite
dimensional distributions to the “trait substitution sequence” (TSS), if one assumes
in addition to Assumption 1 the following “Invasion implies fixation” condition.
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ASSUMPTION 2. Given any x ∈ X , Lebesgue almost any y ∈ X satisfies one
of the following conditions:

(i) f (y, x) < 0 or (ii) f (y, x) > 0 and f (x, y) < 0.

Note that by Proposition 3.6, this means that either a mutant cannot invade, or
it cannot coexist with the resident.

THEOREM 3.7 (Corollary 1 in [6]). Let Assumption 1 and 2 hold. Fix σ and

assume that

∀V > 0, exp(−V K) ≪ uK ≪ 1

K ln(K)
, as K → ∞.(3.4)

Fix also x ∈ X and let (NK
0 )K≥1 be a sequence of N-valued random variables

such that (NK
0 /K) converges for K → ∞ in law to z̄(x) and is bounded in L

p

for some p > 1. Consider the processes νK generated by L K with monomorphic

initial state (NK
0 /K)δ{x}.

Then the sequence of the rescaled processes νK
t/KuK

converges in the sense of

finite dimensional distributions to the measure-valued process

z(Xt )δXt ,(3.5)

where the X -valued Markov jump process X has initial state X0 = x and infinites-

imal generator

Aφ(x) =
∫

Z

(

φ(x + σh) − φ(x)
)

m(x)b(x)z(x)

(3.6)

× [f (x + σh,x)]+
b(x + σh)

M(x, dh).

Here, we write f (K) ≪ g(K) if f (K)/g(K) → 0 when K → ∞. Note that,
for any s < t , the convergence does not hold in law for the Skorokhod topology on
D([s, t],M(X )), for any topology M(X ) such that the total mass function ν �→
〈ν,1〉 is continuous, because the total mass of the limit process is a discontinuous
function. The main part of the proof of this theorem is the study of the invasion of a
mutant trait y that has just appeared in a monomorphic population with trait x. The
invasion can be divided into three steps. First, as long as the mutant population size
〈νK

t ,1{y}〉 is smaller than some ε > 0 (independent of K), the resident population
size 〈νK

t ,1{x}〉 stays close to z(x). Therefore, 〈νK
t ,1{y}〉 can be approximated by

a branching process with birth rate b(y) and death rate d(y) + c(y, x)z̄(x) until it
goes extinct or reaches ε. Second, once 〈νK

t ,1{y}〉 has reached ε, for large K , νK
t is

close to the solution of LV(2, (x, y)) with initial state (z(x), ε), which reaches the
ε-neighborhood of (0, z(y)) in finite time. This is a consequence of Corollary 3.2.
Finally, once 〈νK

t ,1{y}〉 is close to z(y) and 〈νK
t ,1{x}〉 is small, 〈νK

t ,1{x}〉 can
be approximated by a subcritical process, which becomes extinct a.s. The time of
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the first and third step are proportional to ln(K), whereas the time of the second
step is bounded. Thus, the second inequality in (3.4) guarantees that, with high
probability, the three steps of invasion are completed before a new mutation occurs.

Without Assumption 2, it is possible to construct the “polymorphic evolution
sequence” (PES) under additional assumptions on the n-morphic logistic system.
This is done in [9]. Finally, in [9], the convergence of the TSS with small mutation
steps scaled by σ to the “canonical equation of adaptive dynamics” (CEAD) is
proved. We indicate the dependence of the TSS of the previous Theorem on σ

with the notation (Xσ
t )t≥0.

THEOREM 3.8 (Remark 4.2 in [9]). If Assumption 1 is satisfied and the fam-

ily of initial states of the rescaled TSS, Xσ
0 , is bounded in L

2 and converges to

a random variable X0, as σ → 0, then, for each T > 0, the rescaled TSS Xσ
t/σ 2

converges, as σ → 0, in the Skorokhod topology on D([0, T ],X ) to the process

(xt )t≤T with initial state X0 and with deterministic sample path, which is the

unique solution of an ordinary differential equation, known as CEAD:

(3.7)
dxt

dt
=

∫

Z

h
[

hm(xt )z(xt )∂1f (xt , xt )
]

+M(xt , dh),

where ∂1f denotes the partial derivative of the function f (x, y) with respect to the

first variable x.

REMARK 2. If M(x, ·) is a symmetric measure on Z for all x ∈ X , then the
equation (3.7) has the classical form; cf. [10],

dxt

dt
= 1

2

∫

Z

h2m(xt )z(xt )∂1f (xt , xt )M(xt , dh),(3.8)

Note that this result does not imply that, applying to the individual-based model
first the limits (K,uK) → (∞,0) and afterwards the limit σ → 0 yields its conver-
gence to the CEAD. One problem of theses two successive limits is, for example,
that the first convergence holds on a finite time interval, the second requires to look
at the Trait Substitution Sequence on a time interval which diverges. Moreover, as
already mentioned these two limits give no clue about how K , u and σ should be
compared to ensure that the CEAD approximation is correct.

4. The main result. In this section, we present the main result of this paper,
namely the convergence to the canonical equation of adaptive dynamics in one
step. The time scale on which we control the population process is t/(σ 2

KuKK) and
corresponds to the combination of the two time scales of Theorems 3.7 and 3.8.
Since we combine the limits we have to modify the assumptions to obtain the
convergence. We use in this section the notation and definitions introduced in Sec-
tion 3.
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ASSUMPTION 3. For all x ∈ X , ∂1f (x, x) �= 0.

Assumption 3 implies that either ∀x ∈X : ∂1f (x, x) > 0 or ∀x ∈ X :∂1f (x, x) <

0. Therefore, coexistence of two traits is not possible. Without loss of generality,
we can assume that, ∀x ∈ X , ∂1f (x, x) > 0. In fact, a weaker assumption is suffi-
cient, see Remark 3(iii).

THEOREM 4.1. Assume that Assumptions 1 and 3 hold and that there exists a

small α > 0 such that

K− 1
2 +α ≪ σK ≪ 1 and(4.1)

exp
(

−Kα)

≪ uK ≪ σ 1+α
K

K lnK
, as K → ∞.(4.2)

Fix x0 ∈ X and let (NK
0 )K≥0 be a sequence of N-valued random variables such

that NK
0 K−1 converges in law, as K → ∞, to the positive constant z(x0) and is

bounded in L
p , for some p > 1.

For each K ≥ 0, let νK
t be the process generated by L K with monomorphic

initial state NK
0 K−1δ{x0}. Then, for all T > 0, the sequence of rescaled processes,

(νK

t/(KuKσ 2
K )

)0≤t≤T , converges in probability, as K → ∞, with respect to the Sko-

rokhod topology on D([0, T ],M(X )) to the measure-valued process z(xt )δxt ,
where (xt )0≤t≤T is given as a solution of the CEAD,

(4.3)
dxt

dt
=

∫

Z

h
[

hm(xt )z(xt )∂1f (xt , xt )
]

+M(xt , dh),

with initial condition x0.

REMARK 3. (i) If xt ∈ ∂X for t > 0, then (4.3) is dxt

dt
= 0, that is, the process

stops.
(ii) We can prove convergence in a stronger topology. Namely, let us equip

MS(X ), the vector space of signed finite Borel-measures on X , with the following
Kantorovich–Rubinstein norm:

(4.4) ‖μt‖0 ≡ sup
{∫

X

f dμt : f ∈ Lip1(X ) with sup
x∈X

∣
∣f (x)

∣
∣ ≤ 1

}

,

where Lip1(X ) is the space of Lipschitz continuous functions from X to R with
Lipschitz norm one (cf. [4] page 191). Then, for all δ > 0, we will prove that

(4.5) lim
K→∞

P

[

sup
0≤t≤T

∥
∥νK

t/(KuKσ 2
K )

− z(xt )δxt

∥
∥

0 > δ
]

= 0.

By Proposition A.1, this implies convergence in probability with respect to the
Skorokhod topology.

(iii) The main result of the paper actually holds under weaker assumptions.
More precisely, Assumption 3 can be replaced by the following.
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ASSUMPTION 3′ . The initial state νK
0 has a.s. (deterministic) support {x0}

with x0 ∈X satisfying ∂1f (x0, x0) �= 0.

The reason is that, and since x �→ ∂1f (x, x) is continuous, the Assumption 3(a)
is satisfied locally and since x �→ ∂1f (x, x) is Lipschitz-continuous, the CEAD
never reaches an evolutionary singularity (i.e., a value y ∈ X such that ∂1f (y, y) =
0) in finite time. In particular, for a fixed T > 0, the CEAD only visits traits in
some interval I of X where ∂1f (x, x) �= 0. By modifying the parameters of the
model out of I in such a way that ∂1f (x, x) �= 0 everywhere in X , we can apply
Theorem 4.1 to this modified process ν̃ and deduce that ν̃t/KuKσ 2

K
has support

included in I for t ∈ [0, T ] with high probability, and hence coincides νt/KuKσ 2
K

on this time interval.

(iv) The condition uK ≪ σ 1+α
K

K lnK
allows mutation events during an invasion phase

of a mutant trait (see below), but ensures that there is no “successful” mutational
event during this phase.

(v) The fluctuations of the resident population are of order K− 1
2 , thus K− 1

2 +α ≪
σK ensures that the sign of the initial growth rate is not influenced by the fluc-
tuations of the population size. We will see later that, if a mutant trait y ap-
pears in a monomorphic population with trait x, then its initial growth rate is
b(y)−d(y)−c(y, x)〈νK

t ,1〉 = f (y, x)+o(σK) = (y−x)∂1f (x, x)+o(σK) since
y − x = O(σK).

(vi) exp(Kα) is the time the resident population stays with high probability in
an O(εσK)-neighborhood of an attractive domain. This is a moderate deviation
result. Thus, the condition exp(−Kα) ≪ uK ensures that the resident population
is still in this neighborhood when a mutant occurs.

(vii) The time scale is (KuKσ 2
K)−1 since the expected time for a mutation event

is (KuK)−1, the probability that a mutant invades is of order σK and one needs
O(σ−1

K ) mutant invasions to see an O(1) change of the resident trait value. This is
consistent with the combination of Theorems 3.7 and 3.8.

(viii) Note that the ε that we use in the proof of the theorem and in the main
idea below will not depend on K , but it will converge to zero in the end of the
proof of Theorem 4.1. The constant M introduced below will be fixed all the time.
It depends only the parameters of the model, but not on K and ε.

(ix) The conditions on the initial states NK
0 K−1 imply that E[〈νK

t ,1〉p] < ∞,
uniformly in K and t and, therefore, since p > 1, the family of random variables
{〈νK

t ,1〉}K≥1,t≥0 is uniformly integrable (cf. [6] Lemma 1).

4.1. The main idea and the structure of the proof of Theorem 4.1. Under the
conditions of the theorem, the evolution of the population will be described as a
succession of mutant invasions.

We first control a single invasion step. Namely, we show that there is a time-
scale that is long enough for exactly one mutant population to fixate and for the
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resident trait to die out, but sufficiently short, such that no two successful mutant
populations can exist during this time. We say the mutant trait fixates in the popu-
lation. Note that this does not prevent the appearance of other mutant traits that do
not invade.

Second, we consider a much longer time scale on which the single invasion steps
aggregate and give rise to a macroscopic evolution that converges to the CEAD.

Study of a single invasion step. In order to analyze the invasion of a mutant,
we divide the time until a mutant trait has fixated in the population into two phases
(compare with Figure 1).

Phase 1 (Section 6). Here, we fix a small ε > 0 and prove the existence of a
constant, M < ∞, independent of ε, such that, as long as all mutant densities
are smaller than εσK , the resident density stays in an MεσK -neighborhood of
z(x). Note that, because mutations are rare and the population size is large, the
monomorphic initial population has time to stabilize in an MεσK -neighborhood
of this equilibrium z(x) before the first mutation occurs. [The time of stabiliza-
tion is of order ln(K)σ−1

K and the time where the first mutant occurs is of order
1/KuK ].

This allows us to approximate the density of one mutant trait y1 by a branching
process with birth rate b(y1) and death rate d(y1) − c(y1, x)z(x) such that we
can compute the probability that the density of the mutant trait y1 reaches εσK ,
which is of order σK , as well as the time it takes to reach this level or to die out.
Therefore, the process needs O(σ−1

K ) mutation events until there appears a mutant
subpopulation which reaches a size εσK . Such a mutant is called successful mutant

and its trait will be the next resident trait. (In fact, we can calculate the distribution
of the successful mutant trait only on an event with probability 1 − ε, but we

FIG. 1. Typical evolution of the population during a mutant invasion.
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show that on an event of probability 1 − o(σK), this distribution has support in
{x + σKh : 1 ≤ h ≤ A}. Therefore, the exact value of the mutant trait is unknown
with probability ε, but the difference of the possible values is only of order σK .)

We prove in this step also that there are never too many different mutants alive
at the same time. From all this, we deduce that the subpopulation of the successful
mutant reaches the density εσK , before a different successful mutant appears. Note
that we cannot use large deviation results on our time scale as used in [9] to prove
this step. Instead, we use some standard potential theory and coupling arguments
to obtain estimates of moderate deviations needed to prove that a successful mu-
tant will appear before the resident density exists an MεσK -neighborhood of its
equilibrium.

Phase 2 (Section 7). We prove that if a mutant population with trait ys reaches
the size εσK , it will increase to an MεσK -neighborhood of its equilibrium density
z(ys). Simultaneously, the density of the resident trait decreases to εσK and finally
dies out. Since the fitness advantage of the mutant trait is only of order σK , the
dynamics of the population process and the corresponding deterministic system
are very slow. Even if we would start at a macroscopic density ε, the deterministic
system needs a time of order σ−1

K to reach an ε-neighborhood of its equilibrium
density.

The law of large numbers (see Theorem 3.1 or Chapter 11 of [12]) allows to
control the distance between the stochastic process and its deterministic limit only
on finite, K-independent time intervals. In the regime considered in [6] and [9],
namely σ > 0 independent of K , this suffices to control the stochastic process dur-
ing this transition phase, since the mutant population of trait ys only needs a finite,
K-independent time, to grow from size ε to the ε-neighborhood of z̄(ys). In the
regime we consider here, this is no longer possible and a new technique is needed.
The method we develop to handle this situation can be seen as a rigorous stochas-
tic “Euler-Scheme” and will be explained in detail in Section 7. Nevertheless, the
proof contains an idea which is strongly connected with the properties of the de-
terministic dynamical system. Namely, the deterministic system of equations for
the case σK = 0 has an invariant manifold of fixed points with a vector field inde-
pendent of σK pointing toward this manifold. Turning on a small σK , we therefore
expect the stochastic system to stay close to this invariant manyfold and to move
along it with speed of order σK .

With this method, we are able to prove that, in fact, the mutant density reaches
the MεσK -neighborhood of z(ys) and the resident trait dies out. Note that it is
possible that an unsuccessful mutant is alive at this time. Therefore, we prove that
after the resident trait has died out, there is a time when the population consists
only of one trait, namely the one that had fixed, before the next successful mutant
occurs.

Note that Figure 1 is only an artist’s sketch and not a “real” simulation.
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Convergence to the CEAD (Section 8). The proof of convergence to the CEAD
uses comparison of the measure valued process νK

t with two families of control
processes, μ1,K,ε and μ2,K,ε , which will converge to the CEAD as K → ∞ and
then ε → 0. To make more precise statements, we need the following order relation
� for random variables. Roughly speaking, X � Y will mean that Y is larger than
X in law.

NOTATION. (a) Let X and Y be real-valued random variables on a probability
space (�,F,P). We write X � Y , if there is a random variable, Ỹ on �, such that
Y and Ỹ have the same distribution, and that for all ω ∈ �, X(ω) ≤ Ỹ (ω).

(b) For μ,ν ∈ M(X ), we write ν � μ, if:

(i) 〈ν,1〉 ≤ 〈μ,1〉 and
(ii) sup{x ∈X : x ∈ Supp(ν)} ≤ inf{x ∈ X : x ∈ Supp(μ)}.

Note that (i) and (ii) imply that, for all monotone increasing functions f ∈
Lip1(X , [−1,1]) and for all 0 ≤ t ≤ T ,

(4.6)
∫

X

f (x) dνt ≤
∫

X

f (x) dμt .

This notion of order between measures is not very informative, except for measures
which are close to Dirac masses, where it means that the masses and the supports
of the measures are ordered. This is in particular the case for the measures μ1,K,ε

and μ2,K,ε defined below.
Given T > 0, with the results of the two invasion phases, we will define for

all ε > 0 two measure-valued processes, in D([0,∞),M(X )), such that, for all
ε > 0,

(4.7) lim
K→∞

P

[

∀t ≤ T

KuKσ 2
K

: μ1,K,ε
t � νK

t � μ
2,K,ε
t

]

= 1,

and, for all ε > 0 and i ∈ {1,2},

(4.8) lim
K→∞

P

[

sup
0≤t≤T/(KuKσ 2

K )

∥
∥μ

i,K,ε

t/(KuKσ 2
K )

− z(xt )δxt

∥
∥

0 > δ(ε)
]

= 0,

for some function δ such that δ(ε) → 0 when ε → 0. This implies (4.5) and there-
fore the theorem.

The control processes, μ1,K,ε and μ2,K,ε , are constructed as follows. Let θK
i be

the random time of the ith invasion phase, that is, the first time after θK
i−1 such that

a mutant density is larger than εσK , and let RK
i be the trait of the ith successful

mutant. Knowing the random variables θK
i−1 and RK

i−1, we are able to approximate
θK
i and RK

i : After the (i − 1)th invasion phase (of the process νK ), we define two
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random times, θK,1
i and θ

K,2
i , and two random variables R

K,1
i and R

K,2
i in X , such

that

lim
K→∞

P

[

∀i ≤ sup
{

j ∈ N : θK
j ≤ T

KuKσ 2
K

}

: RK,1
i �RK

i � R
K,2
i and

θ
K,2
i � θK

i � θ
K,1
i

]

= 1.

Thus, we define μ1,K and μ2,K through

μ
1,K
t ≡ z1

t δR
K,1
i

, for t ∈ [θK,1
i , θ

K,1
i+1 ),(4.9)

μ
2,K
t ≡ z2

t δR
K,2
i

, for t ∈ [θK,2
i , θ

K,2
i+1 ).(4.10)

for some appropriate masses z1
t and z2

t . In fact, z1
t will be approximately z̄(R

K,1
i )

for t ∈ [θK,1
i , θ

K,1
i+1 ), and z2

t approximately z̄(R
K,2
i ) for t ∈ [θK,2

i , θ
K,2
i+1 ). We will

prove that the times θ
K,1
i and θ

K,2
i are (approximately) exponentially distributed

with parameters of order KuKσK , and that the difference of RK
i −RK

i−1 is of order
σK . The processes μ1,K,ε and μ2,K,ε will be constructed by slightly modifying the
two processes μ1,K and μK,2 in order to make them Markovian. This will imply by
standard arguments from [12] that the processes μ

1,K

t/KuKσ 2
K

and μ
2,K

t/KuKσ 2
K

converge

to z(xt )δxt when σK → 0, where xt is the solution of the canonical equation of
adaptive dynamics.

We have now prepared the setting to be able to perform the steps of the proof of
Theorem 4.1 as indicated in the outline given in Section 4.1 in Sections 6, 7 and 8.
Before this, we need a some more notation and preparatory results that we collect
in Section 5. Four technical propositions are delegated to an Appendix.

All the remaining sections are devoted to the proof of the Theorem 4.1.

5. An augmented process and some elementary properties. In the proof
of Theorem 4.1, we need to construct an augmented process (ν̃K ,LK) that keeps
track of part of the history of the population, namely LK

t is the number of mu-
tations that occurred before t . We first describe this process, then define it by a
stochastic equation from which one finds that it is a Markov process with an ex-
plicitly given generator.

Let MK
F (N0 ×X ) ≡ { 1

K

∑n
i=1 δξ(i) : n ≥ 0, ξ(1), . . . , ξ(n) ∈N0 ×X } denote the

set of finite nonnegative point measures on N0 ×X rescaled by K . We write ξ(i) =
(ξ1(i), ξ2(i)), where ξ1(i) ∈ N0 and ξ2(i) ∈ X . The augmented process, (ν̃K ,LK),
is a continuous time stochastic process with state space MK

F (N0 ×X ) ×N0. The
label k of an individual with trait (k, x) denotes that there were k − 1 mutational
events in the population before the trait (k, x) appeared for the first time in the
population. As in [13], we give a path-wise description of (ν̃K ,LK).
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NOTATION. Let μK = 1
K

∑n
i=1 δξ(i) ∈ MK

F (N0 ×X ) and

(5.1) M
k(

μK)

≡ K

∫

N0×X

1{ξ1=k}μ
K(dξ)

be the number of individuals holding a mutation of label k. Then we rewrite μK

as follows:

μK = 1

K

∞
∑

k=1

M
k(μK )
∑

j=1

δ(k,xk
j ), where

∞
∑

k=1

M
k(

μK)

= n.(5.2)

In fact, the xk
1 , . . . , xk

Mk(μK )
will be equal in our situation, because the only vari-

ation in the trait value is driven by mutational events. We need to define three
functions. First, H : MK

F (N0 ×X ) �→ (N0 ×X )N
2
0 is defined as

H
(

μK)

(5.3)

≡

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(

0, x0
1

) (

0, x0
2

)

· · ·
(

0, x0
M0(μ)

)

(0,0) (0,0) · · ·
(

1, x1
1

) (

1, x1
2

)

· · · · · ·
(

1, x1
M1(μ)

)

(1,0) · · ·
(

2, x2
1

) (

2, x2
2

)

· · ·
(

2, x2
M2(μ)

)

(2,0) (2,0) · · ·
... · · · · · · · · · · · · · · · . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Second, h : MK
F (N×X ) �→ (X )N

2
0 us given in terms of H by

(5.4) hij

(

μK)

≡ the second component of Hij

(

μK)

,

that is, if Hij (μ
K) = (i, x), then hij = x. Third, H̃ : MK

F (N × X ) �→ XN0 is de-
fined as follows: if μ = 1

K

∑n
i=1 δξ(i), then

(5.5) H̃ (μ) ≡
(

ξ2
(

σ(1)
)

, ξ2
(

σ(2)
)

, . . . , ξ2
(

σ(n)
)

,0, . . .
)

,

where ξ2(σ (1)) ≤ · · · ≤ ξ2(σ (n)).

DEFINITION 5.1. Let (�,F,P) be an abstract probability space. On this
space, we define the following independent random elements:

(i) an X -valued random variable X0 (the random initial trait),
(ii) a sequence of independent Poisson point measures, (Ndeath

k (ds, di,

dθ))k≥0, on R+ ×N×R+ with intensity measure ds
∑

n≥0 δn(di) dz,
(iii) a sequence of independent Poisson point measures, (Nbirth

k (ds, di, dθ))k≥0,
on R+ ×N×R+ with intensity measure ds

∑

n≥0 δn(di) dz,
(vi) a Poisson point measures, Nmutation(ds, di, dθ, dh), on R+ × N × R+ ×

{−A, . . . ,A} with intensity measure ds
∑

n≥0 δn(di) dz
∑A

j=−A δj (dh).
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Moreover, we define the augmented process (ν̃K ,LK) by setting LK
0 ≡ 0, ν̃K

0 ≡
1
K

NK
0 δX0 , and, for t > 0,

(

ν̃K
t ,LK

t

)

=
(

ν̃K
0 ,LK

0
)

+
∑

k≥0

(∫ t

0

∫

N0

∫

R+
1{i≤Mk(ν̃K

s− ),θ≤b(hk,i(ν̃
K
s− ))(1−uKm(hk,i(ν̃

K
s− )))}

×
(

1

K
δHk,i(ν̃

K
s− ),0

)

Nbirth
k (ds, di, dθ)

(5.6)

−
∫ t

0

∫

N0

∫

R+
1{i≤Mk(ν̃K

s− ),θ≤d(hk,i(ν̃
K
s− ))+

∫

N0×X
c(hk,i(ν̃

K
s− ),ξ2)ν̃

K
s− (dξ)}

×
(

1

K
δHk,i(ν̃

K
s− ),0

)

Ndeath
k (ds, di, dθ)

)

+
∫ t

0

∫

N0

∫

R+

∫

{−A,...,A}
1{i≤K〈ν̃K

s− ,1〉,θ≤b(H̃i(ν̃
K
s− ))uKm(H̃i(ν̃

K
s− ))M(H̃i(ν̃

K
s− ),h)}

×
(

1

K
δ
(L(s−)+1,H̃k,i(ν̃

K
s− )+σh)

,1
)

Nmutation(ds, di, dθ, dh).

Note that the process (ν̃K
t ,LK

t )t≥0 is a Markov process with generator

L̃
Kf

(

(ν̃,L)
)

=
∑

k≥0

(∫

X

(

f

(

ν̃ + δ(k,x)

K
,L

)

− f (ν̃,L)

)
(

1 − uKm(x)
)

b(x)Kν̃
(

(k, dx)
)

+
∫

X

(

f

(

ν̃ − δ(k,x)

K
,L

)

− f (ν̃,L)

)

×
(

d(x) +
∫

N0×X

c(x, ξ2)ν̃(dξ)

)

Kν̃
(

(k, dx)
)
)

+
∫

N0×X

∫

Z

(

f

(

ν̃ + δ(L+1,x+σKh)

K
,L + 1

)

− f (ν̃,L)

)

uKm(x)b(x)M(x, dh)Kν̃
(

d(k, x)
)

.

Naturally, the process generated by L K defined in Section 2 is a projection of the
process with generator L̃ K .

The first elementary property we give is that we there exists a rough upper bound
for the total mass of the population.
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LEMMA 5.2. Under the same assumptions as in Theorem 4.1, there exists a

constant, V > 0, such that

(5.7) lim
K→∞

P
[

inf
{

t ≥ 0 :
〈

ν̃K
t ,1

〉

≥ 4b/c
}

< exp(V K)
]

= 0.

PROOF. Apply Theorem 2(a) and then Theorem 3(c) of [6]. �

6. The first phase of an invasion. Our first task is to control the trait value
(other than the resident trait) where the population first attains a density εσK , as
well as the time when this happens. Since we need to do this for O(σ−1

K ) steps,
we need to control this with probability at least 1 − o(σK). Before stating the main
result of this section as Theorem 6.2 below, we need to introduce some notation.
We want to analyze such a step from a monomorphic initial condition that satisfies
the following assumption that is stronger than what is assumed in Theorem 4.1.

ASSUMPTION 4. Fix ε > 0. Let (RK)K≥0 be a sequence random variables
with values in X . Then there exists a constant M̃ > 0 (independent of ε and K)
such that for all K large enough

(6.1) LK
0 = 0 and ν̃K

0 = NK
RK K−1δ(0,RK ),

where NK
RK ∈ N is a sequence of random variable with |z(RK) − NK

RK K−1| <

M̃εσK a.s. We call RK the resident trait.

The following proposition asserts that if we start with an initial condition as in
Theorem 4.1, after a short time the state of the population satisfies the stronger
conditions of Assumption 4.

PROPOSITION 6.1. Fix ε > 0. Suppose that the assumptions of Theorem 4.1
hold. Then there exists a constant M̃ > 0 (independent from ε and K), such that

lim
K→∞

P
[

inf
{

t ≥ 0 :
∣
∣
〈

ν̃K
t ,1

〉

− z̄(x)
∣
∣ < M̃εσK

}

< ln(K)σ−1
K ∧ inf

{

t ≥ 0 : L(t) ≥ 1
}]

= 1.

Since we can assume for the moment that Assumption 4 hold, we do not state
the proof here. In fact, it can be proven in similar way as Lemma 7.4(a). We begin
with several notation, which we use in the lemmata below.

NOTATION. Fix ε > 0. Suppose that Assumptions 1, 3 and 4 hold. Let τK
k be

the kth mutant time and let YK
k ∈ X be the trait of the kth mutant, that is,

(6.2) τK
k ≡ inf

{

t ≥ 0 : LK
t = k

}

and YK
k ≡ hk,1

(

ν̃K
τK
k

)

.
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We denote by θK
invasion the first time such that a mutant density is larger than εσK ,

that is,

(6.3) θK
invasion ≡ inf

{

t ≥ 0 : ∃k ∈
{

1, . . . ,LK
t

}

such that Mk(

ν̃K
t

)

> εσKK
}

,

and let RK
1 be the trait value of the mutant which is larger than εσKK at time

θK
invasion, that is,

(6.4) RK
1 ≡ hk1,1

(

ν̃K
θK

invasion

)

with k1 = inf
{

k ≥ 1 :Mk(

ν̃K
θK

invasion

)

> εσKK
}

.

Note that k1 is the label of the first surviving mutant, that is, k1 − 1 mutations
happened before the first surviving mutant appeared. Furthermore, let θK

diversity be
the first time such that ⌈3/α⌉ different traits are present in the population, that is,

(6.5) θK
diversity ≡ inf

{

t ≥ 0 :
LK (t)
∑

k=0

1{Mk(ν̃K
t )≥1} = ⌈3/α⌉

}

,

and similarly let θK
mut. of mut. the first time such that a “2nd generation mutant”

occurs, that is, a mutant which was born from a mutant that in turn was born from
the resident trait RK . Note that

(6.6) θK
mut. of mut. ≤ inf

{

t ≥ 0 : ∃k ∈
{

1, . . . ,LK
t

}

such that
∣
∣RK − YK

k

∣
∣ > AσK

}

.

Then we define

(6.7) θ̂K ≡ θK
invasion ∧ θK

diversity ∧ θK
mut. of mut. ∧ exp

(

Kα)

.

The following theorem collects the main results of this section.

THEOREM 6.2. Fix ε > 0. Under the Assumptions 1, 3 and 4, there exists a

constant M > 0 (independent of ε and K) such that for all K large enough:

(i) ν̃K
0 = NK

RK K−1δ(0,RK ), where |z(RK) − NK
RK K−1| < (M/3)εσK a.s.

(ii) We can construct on (�,F,P) two random variables, R
K,1
1 and R

K,2
1 , such

that

P
[

R
K,1
1 ≤ RK

1 ≤ R
K,2
1 and R

K,2
1 − R

K,1
1 ≤ AσK

]

= 1 − o(σK), and(6.8)

P
[

R
K,1
1 = RK

1 = R
K,2
1

]

= 1 − O(ε).(6.9)

The distributions of R
K,1
1 and R

K,2
1 are given in Corollary 6.10.

(iii) We can construct on (�,F,P) two exponential random variables, EK,1

and EK,2, with parameters of order σKuKK , such that

(6.10) P
[

EK,2 ≤ θK
invasion ≤ EK,1 + ln(K)σ

−1−α/2
K

]

= 1 − o(σK).

The distributions of EK,1 and EK,2 are given in Lemma 6.7.
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Moreover, until the first time of invasion, θK
invasion, the resident density stays in

an εMσK -neighborhood of z̄(RK), the number of different living mutant traits is

bounded by ⌈α/3⌉, and there is no mutant of a mutant, with probability 1−o(σK).
that is,

P
[

θK
invasion < inf

{

t ≥ 0 :
∣
∣M

0(

ν̃K
t

)

−
⌈

Kz
(

RK)⌉∣
∣ > εMσKK

}

∧ θK
diversity ∧ θK

mut. of mut.
]

= 1 − o(σK).

REMARK 4. The constant M > 0 depends only on α and on the functions
b(·), d(·), c(·, ·), and m(·), but not on K , RK and ε.

6.1. Exit time from an attractive domain.

LEMMA 6.3. Fix ε > 0. Suppose that the assumptions of Theorem 6.2 hold.
Then there exists a constant M > 0 (independent of ε and K) such that

(6.11) lim
K→∞

σ−1
K P

[

inf
{

t ≥ 0 :
∣
∣M

0(

ν̃K
t

)

−
⌈

Kz
(

RK)⌉∣
∣ > εMσKK

}

< θ̂K ]

= 0.

The statement is stronger than the corresponding one in [6], Theorem 3(c), since
the diameter of the domain converges to zero, when K tends to infinity and since
it gives control of the speed of convergence to 0 of the probabilities. Therefore, it
does not follow from the classical results about the time of exit from an attractive
domain (cf. [14]). Our proof is based on a coupling with a discrete Markov chain
and some standard potential theoretical argument.

PROOF. Define

(6.12) Xt ≡
∣
∣M

0
t −

⌈

Kz
(

RK)⌉∣
∣

and, for all M ≥ 0,

(6.13) τ0 ≡ inf{t > 0 : Xt = 0} and τMεσKK ≡ inf{t > 0 : Xt ≥ MεσKK}.
Note that τ0 and τMεσKK are stopping times with respect to the natural filtration of
Xt , which is equal to σ(M0

s ; s ≤ t), and that the process (M0
t )t≥0 is not Marko-

vian. We can associate with the continuous time process Xt a discrete time (non-
Markovian) process Yn, which records the sequence of values that Xt takes. (This
can be formally defined by introducing the sequences Tk of the stopping times
which record the instances when Xt �= Xt− and setting Yn = XTn .) Now, we can
compute

(6.14) P
[

τMεσKK < τ0 ∧ θK
invasion ∧ θK

diversity ∧ θK
mut. of mut.

]

with respect to the stopping times defined for the discrete time process Yn and
exploit the natural renewal structure on Yn. Therefore, we prove the following
claim.
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CLAIM. For 1 ≤ i ≪ K , and K large enough,

P
[

Yn+1 = i + 1|Yn = i, Tn+1 < θK
invasion ∧ θK

diversity ∧ θK
mut. of mut.

]

(6.15)

≤ 1

2
− (c/4b)K−1i + (c/b)εσK ≡ pK

+ (i),

where c, b, c and b are the lower, respectively, upper bounds for birth and compe-

tition rates.

Recall from Remark 1 that the equilibrium z(RK) is equal to b(RK )−d(RK )

c(RK ,RK )
and

observe that there are at most ⌈3/α⌉εσKK mutant individuals alive at any time
t < θK

invasion ∧θK
diversity ∧θK

mut. of mut.. Therefore, for 1 ≤ i ≪ K and K large enough,

P
[

Yn+1 = i + 1|Yn = i, Tn+1 < θK
invasion ∧ θK

diversity ∧ θK
mut. of mut.

]

≤ (1 − m(RK)uK)b(RK)

(1 − m(RK)uK)b(RK) + d(RK) + c(RK ,RK)K−1(⌈Kz(RK)⌉ + i)

∨ d(RK) + c(RK ,RK)K−1(⌈Kz(RK)⌉ − i) + c̄⌈3/α⌉εσKK

(1 − m(RK)uK)b(RK) + d(RK) + c(RK ,RK)K−1(⌈Kz(RK)⌉ − i)
(6.16)

≤ b(RK) − m(RK)uKb(RK)

2b(RK) − m(RK)uKb(RK) + c(RK ,RK)K−1i

∨ b(RK) − c(RK ,RK)K−1(i − 1) + c̄⌈3/α⌉εσKK

2b(RK) − m(RK)uKb(RK) − c(RK ,RK)K−1i

≤ 1

2
− (c/4b)K−1i + (c/b)⌈3/α⌉εσK .

This proves the claim. Next, we introduce a coupling, that is, we define a discrete
time process Zn with the following properties:

(i) Z0 = Y0,
(ii) P[Zn+1 = i + 1, Yn+1 = i + 1|Yn = Zn = i, Tn+1 < θK

invasion ∧ θK
diversity ∧

θK
mut. of mut.] = P[Yn+1 = i + 1|Yn = i, Tn+1 < θK

invasion ∧ θK
diversity ∧ θK

mut. of mut.],
(iii) P[Zn+1 = i + 1, Yn+1 = i − 1|Yn = Zn = i, Tn+1 < θK

invasion ∧ θK
diversity ∧

θK
mut. of mut.] = pK

+ (i) − P[Yn+1 = i + 1|Yn = i, Tn+1 < θK
invasion ∧ θK

diversity ∧
θK

mut. of mut.],
(iv) P[Zn+1 = i + 1|Yn < Zn = i, Tn+1 < θK

invasion ∧ θK
diversity ∧ θK

mut. of mut.] =
pK

+ (i),
(v) P[Zn+1 = i − 1|Yn < Zn = i, Tn+1 < θK

invasion ∧ θK
diversity ∧ θK

mut. of mut.] =
1 − pK

+ (i).
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Note that by construction Zn ≥ Yn a.s. for all n such that Tn < θK
invasion ∧ θK

diversity ∧
θK

mut. of mut. and the marginal distribution of Zn is a Markov chain with transition
probabilities

(6.17) P[Zn+1 = j |Zn = i] =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1, for i = 0 and j = 1,

pK
+ (i), for i ≥ 1 and j = i + 1,

1 − pK
+ (i), for i ≥ 1 and j = i − 1,

0, else.

Now we define a continuous time process, Z̃, associated to Zn. To do this, let
(T̃j )j∈N be the sequence of jump times of Z̃, that is, Z̃t ≡ Zn if t ∈ [T̃n, T̃n+1),
defined for all j ∈N as follows:

(6.18) T̃j − T̃j−1 =
{

Tj − Tj−1, if Tj < θK
invasion ∧ θK

diversity ∧ θK
mut. of mut.,

Wj , else,

where Wj are independent exponential distributed random variables with mean
(Ctotal rateK)−1 where Ctotal rate = 4bc(b+d +c(4bc)). By Lemma 5.2, Ctotal rateK

is an upper bound for the total event rate of 〈ν̃K
t ,1〉 and, therefore, also for M0

t .
Define τZ

MεσKK ≡ inf{n ≥ 0 : Zn ≥ MεσKK} and τZ
0 ≡ inf{n ≥ 0 : Zn = 0}.

Then, since Z̃t ≥ Xt a.s. for all t < θK
invasion ∧ θK

diversity ∧ θK
mut. of mut.,

(6.19) P
[

τMεσKK < τ0 ∧ θK
invasion ∧ θK

diversity ∧ θK
mut. of mut.

]

≤ P
[

τZ
MεσKK < τZ

0
]

.

Applying Proposition A.2 yields that, for all M ≥ 32⌈3/α⌉(cb)/(bc) such that
Z0 ≤ 1

3MεσKK and large K large enough,

(6.20) P
[

τZ
MεσKK < τZ

0
]

≤ exp
(

−K2α)

.

Next, we prove that the process Xt returns many times to zero before it reaches for
the first time the value MεσKK . More precisely, we first prove a lower bound on
the number of returns to zero of the discrete time process Zn. Then we calculate the
time for a return to zero. From now on, we assume that M ≥ 32⌈3/α⌉(cb)/(bc).
We define the following stopping times with respect to the natural filtration of Z

which records the number of jumps the process Z needs for m zero-returns:

(6.21) τZ
m returns ≡ inf

{

n ≥ 1 :
n

∑

i=1

1Zi=0 = m

}

.

Let Qm ≡ P[τZ
m returns < τZ

MεσKK < τZ
(m + 1) returns] be the probability that the

Markov chain Zn returns exactly m times to zero before it reaches the value
MεσKK . We have

(6.22) Q0 = P
[

τZ
MεσKK < τZ

0
]

≤ exp
(

−K2α)

,
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and, due to the Markov property, for m ≥ 1,

(6.23) Qm = P
[

τZ
0 < τZ

MεσKK

](

1 − P1
[

τZ
MεσKK < τZ

0
])m−1

P1
[

τZ
MεσKK < τZ

0
]

,

where the last term in the product is smaller than exp(−K2α). Thus,

(6.24) Qm ≤ exp
(

−K2α)

for all m ≥ 0.

Let B be the random variable which records the number of zero returns of Zn

before Zn reaches MεσKK . With other words, B = n if and only if τZ
n returns <

τZ
MεσKK < τZ

n + 1 returns, and we obtain that

P[B ≤ n] =
n

∑

i=0

Qi ≤ (n + 1) exp
(

−K2α)

.(6.25)

Set I1 ≡ T̃τZ
1 return

and Ij ≡ T̃τZ
j returns

− T̃τZ
(j − 1) returns

for j ≥ 2. For any j , Ij is the

random time between the (j − 1)th and the j th zero return of the associated con-
tinuous time process Z̃t and

(6.26)
B

∑

i=1

Ii ≤ inf{t ≥ 0 : Z̃t ≥ MεσKK} ≤
B+1
∑

i=1

Ii .

We get an upper bound for the probability which we want to compute

P
[

inf
{

t ≥ 0 :
∣
∣M

0(

ν̃K
t

)

−
⌈

Kz
(

RK)⌉∣
∣ > εMσKK

}

< θ̂K ]

(6.27)

≤
∞

∑

l=n

P
[

inf{t ≥ 0 : Z̃t ≥ MεσKK} < exp
(

Kα)

,B = l
]

+ P[B ≤ n].

According to (6.26), if B = l and if in addition more than l/2 of the l random
times Ij in the sum are larger than 2l−1 exp(Kα), then inf{t ≥ 0 : Z̃t ≥ MxεσKK}
is larger than exp(Kα). Therefore, for all l ≥ n,

P
[

inf{t ≥ 0 : Z̃t ≥ MεσKK} < exp
(

Kα)

,B = l
]

(6.28)

≤ P

[
l

∑

i=1

1{Ij<2l−1 exp(Kα)} >
l

2
,B = l

]

.

As mentioned before, Ctotal rateK is an upper bound for the total event rate of
〈ν̃K

t ,1〉. Thus, we can bound the jump times by a sequence of independent, ex-
ponential random variables (Vj )j∈N with mean (Ctotal rateK)−1. Namely,

(6.29) T̃j − T̃j−1 ≡ Tj −Tj−1 � Vj if Tj ≤ θK
invasion ∧ θK

diversity ∧ θK
mut. of mut..

Otherwise, the random times T̃j − T̃j−1 are by definition independent and expo-
nentially distributed with mean (Ctotal rateK)−1. The process Z̃ has to make at least
two jumps to return to zero. Hence,

Ii � W̃i, for all i ∈N,(6.30)
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where (W̃i)i∈N is a sequence of independent, exponential random variables with
mean (Ctotal rateK)−1. Thus,

(6.31) P

[
l

∑

i=1

1{Ij<2l−1 exp(Kα)} >
l

2
,B = l

]

≤ P

[
l

∑

i=1

1{W̃i<2l−1 exp(Kα)} >
l

2

]

.

Since P[W̃i < 2l−1 exp(Kα)] = 1 − exp(−Ctotal rateKl−1 exp(Kα)) and (W̃i)i≥1
are independent, we obtain that

∑l
i=1 1{W̃i<2l−1 exp(Kα)} is binomially distributed

with n = l and p = 1− exp(−Ctotal rateK l−1 exp(Kα)). Therefore, the right-hand
side of (6.31) is equal to

(6.32)
l

∑

i= l
2

(

l

i

)
(

1 − exp
(

−Ctotal rateKl−1eKα ))i(exp
(

−Ctotal rateKl−1eKα ))l−i
.

For the following two computations, we use the elementary facts that
(l
i

)

< 2l and
l < 2l , for all l ∈ N and i ≤ l. We obtain that, for large K enough, the left-hand
side of (6.27) is bounded from above by

∞
∑

l=n

l
∑

i= l
2

(

l

i

)
(

1 − exp
(

−Ctotal rateKl−1eKα ))i(exp
(

−Ctotal rateKl−1eKα ))l−i

+ P[B ≤ n](6.33)

≤
∞

∑

l=n

l

2
2l(1 − exp

(

−Ctotal rateKl−1eKα )) l
2 + P[B ≤ n].

By (6.25), we see that P[B ≤ n] = o(σK) if the variable n fulfills the following
condition:

(6.34) n ≪ exp
(

K2α)

σK .

Therefore, we choose n = ⌈exp(2Kα)⌉ and get, for large K enough,

P
[

inf
{

t ≥ 0 :
∣
∣M

0(

ν̃K
t

)

−
⌈

Kz
(

RK)⌉∣
∣ > εMσKK

}

< θ̂K ]

≤
∞

∑

l=⌈exp(2Kα)⌉
4l(1 − exp

(

−Ctotal rateKl−1eKα )) l
2 + o(σK)

≤
∞

∑

l=⌈exp(2Kα)⌉

(

4
(

1 − exp
(

−Ctotal rateKe−Kα )) 1
2
)l + o(σK)

(6.35)
≤ 2

(

42(

1 − exp
(

−Ctotal rateKe−Kα ))) 1
2 ⌈exp(2Kα)⌉ + o(σK)

≤ 2
(

42Ctotal rateKe−Kα ) 1
2 ⌈exp(2Kα)⌉ + o(σK)

≤ o
(

Ke−Kα )

+ o(σK),

where we used that exp(−x) ≥ 1 − x for x ≥ 0 and K exp(K−α) ≪ σK . �
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6.2. Controlling the number LK
t of mutations by Poisson processes.

LEMMA 6.4. Fix ε > 0. Suppose that the assumptions of Theorem 6.2 hold

and let M be the constant of Lemma 6.3. Then

(6.36) lim
K→∞

σ−1
K

(

1 − P
[

∀0 ≤ t ≤ θ̂K : A1,K(t) � LK
t �A2,K(t)

])

= 0,

where A1,K and A2,K are Poisson counting processes with parameter aK
1 uKK

and aK
2 uKK with

aK
1 ≡

(

z
(

RK)

− εMσK

)

b
(

RK)

m
(

RK)

,(6.37)

aK
2 ≡

(

z
(

RK)

+ ε
(

M + ⌈3/α⌉
)

σK

)(

b
(

RK)

m
(

RK)

+ C
b,m,M
L AσK

)

,(6.38)

and C
b,m,M
L is a constant depending only on the functions b(·),m(·) and M(·, h)

for h ∈ {−A, . . . ,A}.

PROOF. We obtain from the last lemma that

P

[

∀0 ≤ t ≤ θ̂K : z
(

RK)

− εMσK ≤ 〈ν̃t ,1〉 ≤ z
(

RK)

+ ε

(

M +
⌈

3

α

⌉)

σK

]

= 1 − o(σK).

Therefore, define

A1,K(t) =
∫ t

0

∫

N0

∫

R+

∫

{−A,...,A}
1{i≤K(z(RK )−εMσK ),θ≤b(RK )uKm(RK )M(RK ,h)}

(6.39)
× Nmutation(ds, di, dθ, dh)

and similarly

A2,K(t) =
∫ t

0

∫

N0

∫

R+

∫

{−A,...,A}
1{i≤K(z(RK )+ε(M+⌈ 3

α
⌉)σK )}

× 1{θ≤uK (b(RK )m(RK )M(RK ,h)+C
b,m,M
L AσK )}(6.40)

× Nmutation(ds, di, dθ, dh).

Since θ̂K ≤ θK
mut. of mut., any mutant trait differs at most AσK from the resident

trait, RK . Thus, we have that uK(b(RK)m(RK)M(RK , h) + C
b,m,M
L AσK) is a

rough upper bound for the mutation rate per individual for an appropriate choice
of C

b,m,M
L . Note that Ai,K are Poisson counting process with parameter aK

i uKK .
By construction, we obtain (6.36). �
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6.3. Controlling the number M
k(ν̃t ) of offspring of the kth mutant by birth–

death processes.

LEMMA 6.5. Fix ε > 0. Suppose that the assumptions of Theorem 6.2 hold

and let M be the constant in Lemma 6.3. Then

lim
K→∞

σ−1
K

(

1 − P
[

∀1 ≤ k ≤ LK

θ̂K ,∀t ≤ θ̂K : ZK,1
k (t) �M

k(ν̃t )� Z
K,2
k (t)

])

(6.41)
= 0,

where Z
K,1
k (t), respectively, ZK,2

k (t) are N0-valued processes, which are zero until

time τK
k , the first time s.t. Mk(ν̃t ) �= 0, and afterwards linear, continuous time

birth–death processes with initial state 1 at time τK
k , birth rates per individual

(6.42) b
K,1
k = b

K,2
k = b

(

YK
k

)(

1 − uKm
(

YK
k

))

,

and death rate per individual

(6.43) d
K,1
k = d

(

YK
k

)

+ c
(

YK
k ,RK)(

z
(

RK)

+ MεσK

)

+ c⌈3/α⌉εσK ,

respectively,

(6.44) d
K,2
k = d

(

YK
k

)

+ c
(

YK
k ,RK)(

z
(

RK)

− MεσK

)

.

Furthermore, define Z̃
K,1
k (t) ≡ Z

K,1
k (τk + t) and Z̃

K,2
k (t) ≡ Z

K,2
k (τk + t), then the

processes {(Z̃K,1
k , Z̃

K,2
k )}k≥1 are independent and identically distributed.

PROOF. For any t ≤ θ̂K , any individual of M
k(ν̃t ) gives birth to a new in-

dividual with the same trait with rate b(YK
k )(1 − uKm(YK

k )) and dies with rate
d(YK

k ) +
∫

N×X
c(YK

k , ξ2)ν̃
K
t (dξ), which belongs to the following interval:

[

d
(

YK
k

)

+ c
(

YK
k ,RK)(

z̄
(

RK)

− MεσK

)

,
(6.45)

d
(

YK
k

)

+ c
(

YK
k ,RK)(

z̄
(

RK)

+ MεσK

)

+ c̄⌈3/α⌉εσK

]

.

Thus, let us define, for k ≤ L
θ̂K ,

Z̃
K,1
k (t)

≡
∫ τk+t

τk

∫

N0

∫

R+
1{i≤Z̃

K,1
k (s−),θ≤b(Yk)(1−uKm(Yk))}N

birth
k (ds, di, dθ)

(6.46)

−
∫ τk+t

τk

∫

N0

∫

R+
1{i≤Z̃

K,1
k (s−),θ≤d(YK

k )+c(YK
k ,RK )(z(RK )+MεσK )+c̄⌈3/α⌉εσK }

× Ndeath
k (ds, di, dθ)
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and similarly

Z̃
K,2
k (t) ≡

∫ τk+t

τk

∫

N0

∫

R+
1{i≤Z̃

K,1
k (s−),θ≤b(Yk)(1−uKm(Yk))}N

birth
k (ds, di, dθ)

−
∫ τk+t

τk

∫

N0

∫

R+
1{i≤Z̃

K,1
k (s−),θ≤d(YK

k )+c(YK
k ,RK )(z(RK )−MεσK )}(6.47)

× Ndeath
k (ds, di, dθ),

and a similar construction for k > L
θ̂K , where the random variables YK

k are re-
placed by i.i.d. ones with distribution fK ∗M(RK , ·), independent of all the previ-
ously introduced random variables, where fK is the homothety of ratio σK . Note
that, the Poisson point measures Nbirth

k and Ndeath
k are independent of YK

k and τk ,

and that the processes Z̃
K,1
k and Z̃

K,2
k only depend on Nbirth

k , Ndeath
k , YK

k and τk .

By construction, conditionally on YK
k = y and τk = s, the process Z̃

K,1
k is dis-

tributed as a linear birth–death processes with birth rate b(y)(1 − uKm(y)) and
death rate d(y)+c(y,RK)(z̄(RK)+MεσK)+ c̄⌈3/α⌉εσK , and similarly for Z̃

K,2
k .

In particular, the law of (Z̃
K,1
k , Z̃

K,2
k ) does not depend on τk . Therefore, defining

Gk ≡ σ(ν̃t , t ≤ τk, Y
K
k ,Nbirth

ℓ ,Ndeath
ℓ ,1 ≤ ℓ ≤ k − 1), for all bounded measurable

functions F1, . . . ,Fk on D(R+,Z2
+),

E
[

F1
(

Z̃
K,1
1 , Z̃

K,2
1

)

· · ·Fk

(

Z̃
K,1
k , Z̃

K,2
k

)]

= E
[

F1
(

Z̃
K,1
1 , Z̃

K,2
1

)

· · ·Fk−1
(

Z̃
K,1
k−1, Z̃

K,2
k−1

)

E
[

Fk

(

Z̃
K,1
k , Z̃

K,2
k

)

|Gk

]]

(6.48)
= E

[

F1
(

Z̃
K,1
1 , Z̃

K,2
1

)

· · ·Fk−1
(

Z̃
K,1
k−1, Z̃

K,2
k−1

)

E
[

Fk

(

Z̃
K,1
k , Z̃

K,2
k

)

|YK
k

]]

= E
[

F1
(

Z̃
K,1
1 , Z̃

K,2
1

)

· · ·Fk−1
(

Z̃
K,1
k−1, Z̃

K,2
k−1

)]

E
[

Fk

(

Z̃
K,1
k , Z̃

K,2
k

)]

,

where the last equality follows from the fact that the random variable YK
k is in-

dependent of (Z̃
K,1
ℓ , Z̃

K,2
ℓ ) for 1 ≤ ℓ ≤ k − 1. Actually, (YK

k )1≤k≤L
θ̂K

are i.i.d.

random variables, with law fK ∗M(RK , ·). This implies by induction that the pro-
cesses {(Z̃K,1

k , Z̃
K,2
k )}k≥1 are i.i.d. �

6.4. Controlling survival of the kth mutant population.

NOTATION. Let us define BK
k ≡ 1inf{t≥τk :Mk(ν̃t )≥εσKK}<inf{t≥τK :Mk(ν̃t )=0}.

This random variable indicates whether or not the kth mutant population,
which appeared at time τk , invades, that is, reaches εσKK individuals before dy-
ing out. The following lemma introduces a sequence of i.i.d. random variables
(B

1,K
k ,B

2,K
k ) which are 2-tuples of Bernoulli random variables constructed from

the processes Z
K,1
k (t) and Z

K,2
k (t) defined in Lemma 6.5, such that (BK

k )k≥0 is
stochastically dominated by the sequences (B

i,K
k )k≥0.
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LEMMA 6.6. Fix ε > 0. Suppose that the assumptions of Theorem 6.2 hold

and let M be the constant of Lemma 6.3. Then

(6.49) lim
K→∞

σ−1
K

(

1 − P
[

∀1 ≤ k ≤ LK

θ̂K : B1,K
k � BK

k � B
2,K
k

])

= 0,

where ((B
1,K
k ,B

2,K
k ))k≥1 is a sequence of i.i.d. 2-tuples of Bernoulli random vari-

ables such that B
1,K
k ≤ B

2,K
k a.s. Its distribution is characterized by

σKqK
1 (h) ≡ P

[

B
1,K
k = 1|YK

k = RK + hσK

]

(6.50)

=

⎧

⎪
⎨

⎪
⎩

σK

(

h
∂1f (RK ,RK)

b(RK)
− εC1

Bernoulli

)

, if 1 ≤ h ≤ A,

0, otherwise

and

σKqK
2 (h) ≡ P

[

B
2,K
k = 1|YK

k = RK + hσK

]

(6.51)

=

⎧

⎪
⎨

⎪
⎩

σK

(

h
∂1f (RK ,RK)

b(RK)
+ εC2

Bernoulli

)

, if 1 ≤ h ≤ A,

0, otherwise,

where C1
Bernoulli and C2

Bernoulli depend only on α, M , and CL (the Lipschitz constant

of our parameters). Then, for i = 1,2 and k ≥ 1, B
i,K
k is a Bernoulli random

variable of parameter σKpK
i , where

(6.52) pK
i ≡

A
∑

h=1

qK
i (h)M

(

RK , h
)

.

REMARK 5. (i) For all k ≥ 1, P[B1,K
k = 0|B2,K

k = 1] = 1 − pK
1

pK
2

and is thereby

of order ε.
(ii) We use in here the assumption that ∂1f (x, x) > 0 for all x ∈ X .

PROOF. Let Z
K,1
k (t), respectively, Z

K,2
k (t) as defined in Lemma 6.5 and de-

fine

(6.53) B̃
i,K
k ≡ 1inf{t≥τk :ZK,i

k (t)≥εσKK}<inf{t≥τk :ZK,i
k (t)=0} for i = 1,2.

Then, due to the last lemma

(6.54) P
[

∀1 ≤ k ≤ LK

θ̂K : B̃1,K
k � BK

k � B̃
2,K
k

]

= 1 − o(σK).
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For all 1 ≤ k ≤ LK

θ̂K
, we obtain with Proposition A.3, that

∣
∣
∣
∣
P

[

inf
{

t ≥ τk : ZK,i
k (t) ≥ εσKK

}

< inf
{

t ≥ τk : ZK,i
k (t) = 0

}

|YK
k

]

− [bi,K
k − d

i,K
k ]+

b
i,K
k

∣
∣
∣
∣

(6.55)

= o
(

exp
(

−Kα))

,

where, using that f (x, x) = 0 for all x, we have

b
1,K
k − d

1,K
k

= f
(

YK
k ,RK)

−
(

c
(

YK
k ,RK)

M + c̄⌈3/α⌉
)

εσK − uKb
(

YK
k

)

m
(

YK
k

)

(6.56)
= ∂1f

(

RK ,RK)(

Y
K,1
k − RK)

−
(

c
(

YK
k ,RK)

M + c̄⌈3/α⌉
)

εσK

+ O
(

σ 2
K

)

,

and similarly

(6.57) b
2,K
k − d

2,K
k = ∂1f

(

RK ,RK)(

YK
k − RK)

+ c
(

YK
k ,RK)

MεσK + O
(

σ 2
K

)

.

Recall that the sequence (YK
k )k≥1 used to construct the processes Z

K,1
k and Z

K,2
k

is a sequence of i.i.d. random variables with distribution M(RK , ·). Since b
i,K
k −

d
i,K
k < 0 if YK

k − RK < 0, we obtain

P
[

B̃
1,K
k = 1

]

= E
[

P
[

B̃
1,K
k |YK

k

]

= 1
]

(6.58)

≥
A

∑

h=1

(
∂1f (RK ,RK)σKh − (c(YK

k ,RK)M + c̄⌈3/α⌉)εσK + O(σ 2
K)

b(RK)

)

× M
(

RK , h
)

.

Therefore, there exists a constant C1
Bernoulli > 0 (which depends only on α, M and

CL) such that the sum in the right-hand side of (6.58) is, term by term, bounded
from below by

σK

A
∑

h=1

(

h
∂1f (RK ,RK)

b(RK)
− εC1

Bernoulli

)

M
(

RK , h
)

(6.59)

and similarly there exists a constant C2
Bernoulli > 0 such that

(6.60) P
[

B̃
2,K
k = 1

]

≤ σK

A
∑

h=1

(

h
∂1f (RK ,RK)

b(RK)
+ εC2

Bernoulli

)

M
(

RK , h
)

.
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Next, we introduces two couplings, that is, we define a sequences of i.i.d. 2-tuples
of Bernoulli random variables ((B

1,K
k ,B

2,K
k ))k≥1 with the following properties:

(i) P[B1,K
k = 0, B̃

1,K
k = 0|YK

k = RK +hσK ] = P[B̃1,K
k = 0|YK

k = RK +hσK ]
and P[B1,K

k = 1, B̃
1,K
k = 1|YK

k = RK + hσK ] = qK
1 (h)σK ,

(ii) P[B2,K
k = 1, B̃

2,K
k = 1|YK

k = RK +hσK ] = P[B̃2,K
k = 1|YK

k = RK +hσK ]
and P[B2,K

k = 1, B̃
2,K
k = 0|YK

k = RK + hσK ] = 1 − qK
2 (h)σK .

By construction, B
1,K
k ≤ B̃

1,K
k , a.s., and B̃

2,K
k ≤ B

2,K
k a.s. for all k ≥ 1 and these

random variables satisfy (6.50) and (6.51). �

6.5. Controlling the time of the arrival of the first successful mutant.

NOTATION. (a) For i ∈ {1,2}, define

(6.61) T
K,i
k ≡ inf

{

t ≥ 0 : ZK,i
k (τk + t) = 0 or Z

K,i
k (τk + t) > εσKK

}

.

Obverse that (T
K,i
k )k≥1 are i.i.d. random variables that are independent of AK,i .

(b) Define IK = k1 ≡ inf{k ≥ 1 : BK
k = 1} and IK,i ≡ inf{k ≥ 1 : B

K,i
k = 1}.

Then IK,i are independent of AK,i , and we have

(6.62) P
[{

IK,2 � IK � IK,1}

∩
{

τIK ≤ θ̂K}]

= P
[

τIK ≤ θ̂K]

− o(σK).

(c) Define RK
1 ≡ YK

inf{k≥1:BK
k =1}.

In fact, we prove at the end of this section that P[τIK ≤ θ̂K ] = 1 − o(σK), that
is, RK

1 is with high probability the random variable which gives the value of the
next resident trait and τIK , the first time where a successful mutant appears, is
approximately exponential distributed as stated in lemma below. Note that this
time is a random time, but not a stopping time.

LEMMA 6.7. Fix ε > 0. Suppose that the assumptions of Theorem 6.2 hold

and let M be the constant of Lemma 6.3. Then

(6.63) lim
K→∞

σ−1
K

(

P
[

τIK ≤ θ̂K]

− P
[{

EK,2 � τIK �EK,1}

∩
{

τIK ≤ θ̂K}])

= 0,

where EK,1 and EK,2 are exponential random variables with mean

aK
1 pK

1 σKuKK , respectively, aK
2 pK

2 σKuKK .

With other words, we have P[EK,2 � τIK �EK,1|τIK ≤ θ̂K ] = 1−o(σK), pro-
vided that lim infK→∞P[τIK ≤ θ̂K ] > 0.
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PROOF. Let A
K,i
t be defined as in Lemma 6.4 and observe that τIK = inf{t ≥

0 : LK
t = IK}. Then we obtain by construction,

P
[{

inf
{

t ≥ 0 : AK,2
t = IK,2}

� τIK � inf
{

t ≥ 0 : AK,1
t = IK,1}}

∩
{

τIK ≤ θ̂K}]

(6.64) = P
[

τIK ≤ θ̂K ]

− o(σK).

By definition, IK,1 and IK,2 are geometrically distributed with parameter pK
1 σK ,

resp. pK
2 σK . AK,1 and AK,2 are Poisson counting processes with parameter

aK
1 uKK , resp. aK

2 uKK . Therefore, the times between each pair of successive
events is exponential distributed with parameter aK

1 uKK resp. aK
2 uKK . Since

the random variables IK,i are independent of AK,i and the sum of a geometri-
cally distributed number of independent exponentially distributed random vari-
ables is again exponentially distributed, we get that inf{t ≥ 0 : A

K,1
t = IK,1} and

inf{t ≥ 0 : AK,2
t = IK,2} are exponentially distributed with parameter aK

1 uKKpK
1 ,

respectively, aK
2 uKKpK

2 . �

6.6. No surprises happen before the successful mutant invades. In the next
lemma, we prove that a mutant invades with high probability before the resident
population exits the neighborhood of this equilibrium, before too many different
mutant traits are present and before a mutant of a mutant appears.

LEMMA 6.8. Fix ε > 0. Suppose that the assumptions of Theorem 6.2 hold

and let M be the constant of Lemma 6.3. Then

(6.65) lim
K→∞

σ−1
K P

[

θK
invasion ≥ θK

diversity ∧ exp
(

Kα)

∧ θK
mut. of mut.

]

= 0.

PROOF. We start with proving the following:

(6.66) P
[

θK
diversity <

(

KuKσ 1+α
K

)−1 ∧ θK
invasion ∧ θK

mut. of mut.
]

= o(σK).

Define

Ẑ
K,2
k (s) ≡

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0, for s < inf
{

t ≥ 0 : AK,2
t = k

}

,

Z
K,2
k

(

τk + s − inf
{

t ≥ 0 : AK,2
t = k

})

,

for s ≥ inf
{

t ≥ 0 : AK,2
t = k

}

.

By construction of AK,2 and ẐK,2, the left-hand side of (6.66) does not exceed

P

[

inf

{

t ≥ 0 :
A

K,2
t∑

k=1

1{1≤Ẑ
K,2
k (t)≤εσKK} ≥

⌈
3

α

⌉

− 1

}

<
(

KuKσ 1+α
K

)−1

]

(6.67)
+ o(σK).
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Next, we compute an upper bound for the mutation events that happen before
(KuKσ 1+α

K )−1. Since AK,2 is a Poisson counting process with parameter aK
2 uKK ,

Chebychev’s inequality implies that

(6.68) P
[

A
K,2
(KuKσ 1+α

K )−1 ≥ 2aK
2 σ−1−α

K

]

≤
Var(AK,2

(KuKσ 1+α
K )−1)

(2aK
2 σ−1−α

K )2
= 1

aK
2 σ−1−α

K

.

Next, we need an upper bound for the lifetimes of the mutant’s traits, T
K,2
k . First,

observe that the probability that Z
K,2
k goes extinct after it has reached the value

⌈εσKK⌉ converges to zero very fast. More precisely, Propositions A.3 and A.4(a)
imply that

P
[

inf
{

t ≥ 0 : ZK,2
k = ⌈εσKK⌉

}

< inf
{

t ≥ τk : ZK,2
k = 0

}

< ∞
]

= P
[

inf
{

t ≥ τk : ZK,2
k = 0

}

< ∞
]

(6.69)
− P

[

inf
{

t ≥ 0 : ZK,2
k = ⌈εσKK⌉

}

> inf
{

t ≥ τk : ZK,2
k = 0

}]

= o
(

exp
(

−Kα))

.

Note that, for each k, Z
K,2
k , conditioned on extinction, is a subcritical linear birth–

death process (cf. [18]). Let Ž
K,2
k denote the conditioned process. If Z

K,2
k is sub-

critical, then conditioning has no effect, otherwise the birth–death rates are ex-
changed. Denote by b̌

K,2
k the birth rate and ď

K,2
k the death rate of Ž

K,2
k . Then there

exist uniform constants, Č1 > 0 and Č2 > 0, such that Č1σK ≤ ď
K,2
k − b̌

K,2
k ≤

Č2σK , for all k < IK,2. Thus, [2] page 109 entails, for all k < IK,2,

(6.70) P
[

T
K,2
k ≤ t

]

≥ ď
K,2
k − e(ď

K,2
k −b̌

K,2
k )t ď

K,2
k

b̌
K,2
k − e(ď

K,2
k −b̌

K,2
k )t ď

K,2
k

− o
(

exp
(

−K−α))

.

The error term o(exp(−K−α)) appears since Z
K,2
k , for k < IK,2, is conditioned on

extinction before reaching the value ⌈εσKK⌉ and not only on extinction. Choose
t = (ď

K,2
k − b̌

K,2
k )−1 ln(K), Then

P
[

T
K,2
k ≤

(

ď
K,2
k − b̌

K,2
k

)−1 ln(K)
]

= ď
K,2
k (1 − K)

b̌
K,2
k (1 − K) − K(ď

K,2
k − b̌

K,2
k )

− o
(

exp
(

−K−α))

(6.71)

= 1 + ď
K,2
k − b̌

K,2
k

b̌
K,2
k (1 − K) − K(ď

K,2
k − b̌

K,2
k )

− o
(

exp
(

−K−α))

= 1 − O
(

σKK−1)
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and hence

P
[

∀1 ≤ k < IK,2 : T K,2
k ≤ (Č1σK)−1 ln(K)

]

= 1 − o(σK).(6.72)

Therefore, we can bound the first summand of (6.67) by 2aK
2 σ−1−α

K times the
probability that more than ⌈3/α⌉ − 1 mutation events of AK,2 take place in an
interval of length (Č1σK)−1 ln(K). More precisely, (6.67) is smaller than

(6.73) 2aK
2 σ−1−α

K P
[

A
K,2
(Č1σK )−1 ln(K)

≥ ⌈3/α⌉ − 1
]

+ o(σK).

Thus, for α small enough, the proof of (6.66) is concluded by the observation that

P
[

A
K,2
(Č1σK )−1 ln(K)

≥ ⌈3/α⌉ − 1
]

= e−aK
2 uKK(Č1σK )−1 ln(K)

∞
∑

i=⌈3/α⌉−1

(aK
2 uKK(Č1σK)−1 ln(K))i

i!
(6.74)

≤
(

aK
2 uKK(Č1σK)−1 ln(K)

)⌈3/α⌉−1

= o
(

σ 3−α
K

)

,

where the last equality holds since uKKσ−1
K ln(K) ≪ (σK)α .

Next, we want to prove that

(6.75) P
[

θK
mut. of mut. <

(

KuKσ 1+α
K

)−1 ∧ θK
invasion ∧ θK

diversity
]

= o(σK).

Set, for all λ ≥ 0,

(6.76) G(λ) = E

[

exp
(

−λ

∫ ∞

0
Zt dt

)∣
∣
∣Z0 = 1

]

,

where (Zt , t ≥ 0) is a linear birth–death process with individual birth rate b and
individual death rate d . Applying the strong Markov property and the branch-
ing property at the first jump time of Z and using the facts that G(λ)2 =
E[exp(−λ

∫ ∞
0 Zt dt)|Z0 = 2] and E[exp(−λτfirst jump)|Z0 = 1] = b+d

b+d+λ
, we ob-

tain

(6.77) bG(λ)2 − (b + d + λ)G(λ) + d = 0.

Thus, since

lim
λ↓0

G(λ) = lim
λ↓0

E

[

exp
(

−λ

∫ ∞

0
Zt dt

)

1{τextinction<∞}
∣
∣
∣Z0 = 1

]

+ lim
λ↓0

E

[

exp
(

−λ

∫ ∞

0
Zt dt

)

1{τextinction=∞}
∣
∣
∣Z0 = 1

]

(6.78)

= P[τextinction < ∞] + 0,
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which is 0 in the subcritical case and 1 − d/b in the super-critical case, it follows
that

(6.79) G(λ) = b + d + λ −
√

(b + d + λ)2 − 4bd

2b
.

Let Z̃
K,2
k (t) ≡ Z

K,2
k (τk + t), that is, a linear birth–death process with birth rate

b
K,2
k and death rate d

K,2
k . Observe that

∫ ∞
0 Z̃

K,2
k (t) dt gives an upper bound for

the sum of the lifetimes of all individuals with label k. Since the mutation rate of
any individual in the population is smaller than b̄uK , the probability that a mutant
appears, which was born from an unsuccessful mutant with label k, is bounded
from above by

1 −E

[

exp
(

−uK b̄

∫ ∞

0
Z̃

K,2
k (t) dt

)∣
∣
∣τextinction < inf

{

t ≥ 0 : Z̃K,2
k (t) > εσKK

}
]

(6.80)

≤ 1 −E

[

exp
(

−uK b̄

∫ ∞

0
Z̃

K,2
k (t) dt

)∣
∣
∣τextinction < ∞

]

+ o
(

exp
(

−Kα))

.

Since Z̃
K,2
k (t), conditioned on extinction, is a subcritical linear birth–death pro-

cess, the right-hand side of (6.80) is equal to 1 − G
E[Z̃K,2

k |τextinction<∞](uK b̄) +
o(exp(−Kα)) and

G
E[Z̃K,2

k |τextinction<∞](uK b̄)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

b
K,2
k + d

K,2
k + uK b̄ −

√

(b
K,2
k + d

K,2
k + uK b̄)2 − 4b

K,2
k d

K,2
k

2b
K,2
k

,

if d
K,2
k > b

K,2
k ,

d
K,2
k + b

K,2
k + uK b̄ −

√

(d
K,2
k + b

K,2
k + uK b̄)2 − 4d

K,2
k b

K,2
k

2d
K,2
k

,

if b
K,2
k > d

K,2
k

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

2b
K,2
k + uK b̄ − O(uKσ−1

K )

2b
K,2
k

, if d
K,2
k > b

K,2
k ,

2d
K,2
k + uK b̄ − O(uKσ−1

K )

2d
K,2
k

, if b
K,2
k > d

K,2
k

= 1 − O
(

uKσ−1
K

)

= 1 − o
(

σ 2+α
k K−2α)

.

Note that we used for the second equality that |bK,2
k −d

K,2
k | = ξσK for some ξ > 0.

By (6.68), the total number of unsuccessful mutations until (KuKσ 1+α
K )−1 ∧

θK
invasion ∧ θK

diversity is with probability 1 − o(σK) smaller or equal 2aK
2 σ−1−α

K .
Therefore, we finally obtain that the probability to have one mutant of an unsuc-
cessful mutant during that time is o(σK). On the other hand, let P K

t be a Poisson
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counting process with parameter b̄uKεσKK and (Z̃
K,1
t , t ≥ 0) a linear birth–death

process with initial state 1 and birth rate bK,1(YK
IK

) and death rate dK,1(YK
IK

),
then the probability to have one mutant of the successful mutant until the time
(KuKσ 1+α

K )−1 ∧ θK
invasion ∧ θK

diversity is bounded from above by

P
[

P K

τ Z̃K,1
εσKK

�= 0|τ Z̃K,1

εσKK < τ Z̃K,1

0
]

+ o(σK)

= E
[

1{PK

τZ̃K,1
εσKK

�=0}(1{τ Z̃K,1
εσKK≤tK } + 1{τ Z̃K,1

εσKK>tK })|τ
Z̃K,1

εσKK < τ Z̃K,1

0
]

+ o(σK)(6.81)

≤
(

1 − exp(−b̄uKεσKKtK)
)

+ P
[

τ Z̃K,1

εσKK > tK |τ Z̃K,1

εσKK < τ Z̃K,1

0
]

+ o(σK),

for each tK , because the mutation rate per individual is bounded by b̄uK and there
are at most εσKK successful mutant individuals alive until θK

invasion. If we choose

tK = ln(K)σ
−1−α/2
K , then by Proposition A.4, all terms in the last line of (6.81)

are o(σK). This implies (6.75).
Note that we have θK

invasion = τIK + inf{t ≥ 0 : MIK
(ν̃τ

IK +t ) > εσKK}. Let

EK,1 be an exponential distributed random variable with mean aK
1 pK

1 σKuKK .
Then

P
[

τIK + inf
{

t ≥ 0 :MIK

(ν̃τ
IK +t ) > εσKK

}

≥ θK
diversity ∧ eKα ∧ θK

mut. of mut.
]

(6.82)
≥ P

[

EK,1 + T
K,1
IK ≥

(

KuKσ 1+α
K

)−1]

− o(σK).

Let Z̃K,1 as defined before, then again by Proposition A.4,

P
[

T
K,1
IK > ln(K)σ

−1−α/2
K

]

= P
[

τ Z̃K,1

εσKK > ln(K)σ
−1−α/2
K |τ Z̃K,1

εσKK < τ Z̃K,1

0
]

(6.83)
= o(σK).

Since ln(K)σ
−1−α/2
K ≪ (KuKσ 1+α

K )−1, the Markov inequality for the function
f (x) = xn, where n is smallest even number which is larger than 2/α, yields

P
[

EK,1 + TIK >
(

KuKσ 1+α
K

)−1]

≤ P
[

EK,1 >
(

2KuKσ 1+α
K

)−1]

+ o(σK)(6.84)

≤ (2KuKσ 1+α
K )nn!

(aK
1 pK

1 uKKσK)n
= O

(

σ 2
K

)

.
�

The following lemma shows that there are no two successful mutants during the
first phase of an invasion.

LEMMA 6.9. Fix ε > 0. Suppose that the assumptions of Theorem 6.2 hold

and let M be the constant of Lemma 6.3. Then

lim
K→∞

σ−1
K P

[

there is a successful mutation in time interval
[

τIK , θK
invasion

]]

= 0.
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PROOF. Let P K
suc. mut.(t) the process which recodes the number of successful

mutants born after τIK until τIK + t . Then

(6.85) P
[

for all t ≥ 0 such that τIK + t < θ̂K : P K
succ. mut.(t) � P K

t

]

= 1 − o(σK),

where P K
t is Poisson process with parameter aK

2 pK
2 σKuKK . Define Z

K,2
IK (t) as

in Lemma 6.5. Then P[∀t ≤ θ̂K : MIK
(ν̃t ) � Z

K,2
IK (t)] ≥ 1 − o(σK). Note that

P K
t and ZK,2 are independent by construction. Therefore, as in the last lemma, or

each tK ,

P
[

there is a successful mutation in
[

τIK , θK
invasion

]]

≤ P
[

P K

τZK,2
εσKK

�= 0|τZK,2

εσKK < τZK,2

0
]

+ o(σK)

(6.86)
≤

(

1 − exp
(

−aK
2 pK

2 σKuKKtK
))

+ P
[

τZK,2

εσKK > tK |τZK,2

εσKK < τZK,2

0
]

+ o(σK).

With tK = ln(K)σ
−1−α/2
K , by Proposition A.4, all terms in the last line of (6.86)

are o(σK). �

6.7. Finishing up: Control of the distribution of the next resident trait.

COROLLARY 6.10. Fix ε > 0. Suppose that the assumptions of Theorem 6.2
hold and let M be the constant of Lemma 6.3. Then there exist two X -valued

random variables R
K,1
1 and R

K,2
1 with distribution

P
[

R
K,1
1 = RK + σKh

]

(6.87)

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

M(RK ,1)qK
1 (1)

pK
2

+ 1 − pK
1

pK
2

, if h = 1,

M(RK , h)qK
1 (h)

pK
2

, if h ∈ {2, . . . ,A},

and

P
[

R
K,2
1 = RK + σKh

]

(6.88)

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

M(RK , h)qK
1 (h)

pK
2

, if h ∈ {1, . . . ,A − 1},

M(RK ,A)qK
1 (A)

pK
2

+ 1 − pK
1

pK
2

, if h = A,

such that

lim
K→∞

σ−1
K

(

1 − P
[

R
K,1
1 � RK

1 �R
K,2
1 |θK

invasion < θK
diversity ∧ θK

mut. of mut. ∧ eKα ])

(6.89) = 0.
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PROOF. Define

R
K,1
1 ≡

{

YK
IK , if IK,1 = IK,2,

RK + σK , otherwise,

and

R
K,2
1 ≡

{

YK
IK , if IK,1 = IK,2,

RK + AσK , otherwise.

By construction of B
K,i
k and Y

K,i
k , we have that (6.89) holds. Next, we compute

P
[

YK
IK,2 = RK + σKh, IK,1 = IK,2]

= P
[

YK
1 = RK + σKh,B

K,1
1 = 1|BK,2

1 = 1
]

(6.90)

= P[YK
1 = RK + σKh,B

K,1
1 = 1]

P[BK,2
1 = 1]

= M(RK , h)qK
1 (h)

pK
2

and P[IK,1 �= IK,2] = 1 − ∑A
h=1

M(RK ,h)qK
1 (h)

pK
2

= 1 − pK
1 /pK

2 . Since P[RK,1
1 =

RK + σKh] = P[YK
IK,2 = RK + σKh, IK,1 = IK,2] + 1{h=1}P[IK,1 �= IK,2] and

similarly for R
K,2
1 , we deduce (6.87) and (6.89). �

7. The second phase of an invasion. Theorem 7.1 below describes precisely
how the invading mutant replaces the resident population. This section is the cen-
tral piece of the entire paper.

NOTATION. Let us denote

θK
fixation = inf

{

t ≥ θK
invasion :

∣
∣Supp

(

ν̃K
t

)∣
∣ = 1 and

∣
∣〈ν̃t ,1〉 − z̄

(

RK
1

)∣
∣ < (M/3)εσK

}

that is, the first time after θK
invasion such that the population is monomorphic and in

the (M/3)εσK -neighborhood of the corresponding equilibrium.

THEOREM 7.1. Fix ε > 0. Under the Assumptions 1, 3 and 4, there exists a

constant, M > 0, such that, for all K large enough:

(i) ν̃K
0 = NK

RK K−1δ(0,RK ), where |z(RK) − NK
RK K−1| < (M/3)εσK a.s.

(ii) At the first time of invasion, θK
invasion, the resident density is in an εMσK -

neighborhood of z̄(RK), the number of different living mutant traits is bounded

by ⌈α/3⌉ and there is no mutant of a mutant, with probability 1 − o(σK). (cf.
Theorem 6.2).
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(iii) The time between θK
invasion and θK

fixation is smaller than 5 ln(K)σ
−1−α/2
K ,

with probability 1 − o(σK).
(iv) The trait of the population at time θK

fixation is the trait of the mutant whose

density was larger than εσK at time θK
invasion, that is, Supp(ν̃K

θK
fixation

) = (IK ,RK
1 ),

with probability 1 − o(σK). The distribution of RK
1 can be approximated as in

Corollary 6.10.

Moreover, until time θK
fixation, the total mass of the population stays in the O(σK)-

neighborhood of z̄(RK), the number of different living mutant traits is bounded by

⌈α/3⌉, and there is no second successful mutant, with probability 1 − o(σK).

To prove this theorem, we divide this phase into five steps, as illustrated in
Figure 2.

Step 1. From θK
invasion to θK

mut. size ε , the first time when a mutant’s density
reaches the value ε. During this period, we approximate the mutant density by
a continuous time branching process, which is super-critical (of order σK ). Thus,
we obtain that θK

mut. size ε − θK
invasion is of order (ln(K)σ−1

K ).
Step 2. From θK

mut. size ε to θK
mut. size Cε

cross
, the first time when the mutant density

reaches a value Cε
cross [defined in equation (7.1) below]. This step can be seen as the

“stochastic Euler scheme.” The idea is that the total mass of the population stays
close to a function which depends only on the density of the successful mutant.
This allows to approximate the number of mutants by a discrete time Markov chain
until the mutant density has increased by ε. Furthermore, we control the number of
jumps needed to increase by ε and use upper and lower bounds for one jump time

FIG. 2. Evolution of the population after the destiny of the successful mutant has reached the

value εK .
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of the associated continuous time process to control the time of this step. Then we
recompute the parameters and start again. Iterating, we obtain that θK

mut. size Cε
cross

−
θK

mut. size ε is also of order ln(K)σ−1
K .

Step 3. From θK
mut. size Cε

cross
until θK

res. size ε , the first time when the density of

the resident trait RK decreases to the value ε. The proof is very similar to the
proof of Step 2, the only difference is that we approximate the number of resident
individuals by a discrete Markov chain, which decreases slowly.

Step 4. From θK
res. size ε until θK

res. size 0, the first time when the resident trait RK

goes extinct. We approximate the dynamics of the resident trait by a continuous
time branching process which is subcritical (of order σK ) and, therefore, goes ex-
tinct, a.s., after a time of order ln(K)σ−1

K .
Step 5. From θK

res. size 0 until θK
fixation, even if it is unlikely that this time period

is larger than 0, we have to obtain an upper bound for this time.

NOTATION. Fix ε > 0. Suppose that the assumptions of Theorem 7.1 hold.
Set

Cε
cross ≡

⌈(

inf
x∈X

b(x) − d(x)

c(x, x)

)

ε−1
⌉

ε

2
, and(7.1)

θK
2 succ. mut. ≡ inf

{

t ≥ 0 :
∞

∑

k=0

1Mk(ν̃t )≥εσKK ≥ 3

}

.(7.2)

Moreover, for any ξ ≥ 0,

θK
mut. size ξ ≡ inf

{

t ≥ 0 : ∃k ≥ 1 :Mk(ν̃t ) = ⌈ξK⌉
}

,(7.3)

θK
res. size ξ ≡ inf

{

t ≥ 0 :M0(ν̃t ) = ⌈ξK⌉
}

,(7.4)

and let SK be a sequence in K such that 1 ≪ SK ≪ εσ−1
K .

REMARK 6. Using similar arguments as in the proofs of Lemmas 6.3, 6.8
and 6.9, we obtain

(7.5) lim
K→∞

σ−1
K P

[

θK
invasion +5σ

−1−α/2
K ln(K) > θK

diversity ∧θK
2 succ. mut. ∧eKα ]

= 0.

More precisely, until the time θK
diversity ∧ θK

2 succ. mut. ∧ exp(Kα) the total mass of

the population stays with high probability in the O(σK) neighborhood of z̄(RK).
This can be proved similarly as Lemmas 6.3 or 7.2. Since we have only an ap-
proximation of order σK (not εσK ), we have less precise bounds for the rates of
the mutants and for their success probability. Nevertheless, we can bound the mu-
tant subpopulations from above by linear branching processes which are slightly
super-critical of order σK .



1132 M. BAAR, A. BOVIER AND N. CHAMPAGNAT

7.1. Step 1: A mutant’s density reaches the value ε. The following lemma
shows that the total mass stays from the beginning (including the first phase) until
θK

mut. size ε in the MεσK neighborhood of z(x).

LEMMA 7.2. Fix ε > 0. Suppose that the assumptions of Theorem 7.1 hold.
Then there exists a constant M > 0 (independent of ε and K) such that

lim
K→∞

σ−1
K P

[

inf
{

t ≥ 0 :
∣
∣〈ν̃t ,1〉 − z

(

RK)∣
∣ > MεσK

}

(7.6)
< θK

mut. size ε ∧ θK
2 succ. mut. ∧ θK

diversity ∧ exp
(

Kα)]

= 0.

PROOF. The proof of this lemma is very similar to the one of Lemma 6.3,
therefore, we omit some details. Define

(7.7) Xt ≡
∣
∣〈ν̃t ,1〉K −

⌈

Kz
(

RK)⌉∣
∣.

We associate with the continuous time process Xt a discrete time (non-Markov)
process Yn which records the sequence of values that Xt takes on.

CLAIM. For 1 ≤ i ≤ εK and K large enough,

P
[

Yn+1 = i + 1|Yn = i, Tn+1 < θK
mut. size ε ∧ θK

2 succ. mut. ∧ θK
diversity

]

(7.8)

≤ 1

2
− (c/4b)K−1i +

(

2C
b,d,c
L A/b

)

εσK ≡ pK
+ (i),

where C
b,d,c
L is the sum of the Lipschitz constants for the birth, death and compe-

tition rate.

This can be proven exactly as in Lemma 6.3, using the facts that b(RK) =
d(RK) + c(RK ,RK)z̄(RK) and that all mutant traits are at a distance of at most
2AσK from RK , and hence, |b(x) − b(RK)| < Cb

LσK2A, |d(x) − d(RK)| <

Cd
LσK2A and |c(x, y) − c(RK ,RK)| < Cc

LσK2A for all traits x and y alive in
the population. By continuing as in Lemma 6.3, we obtain (7.6). �

Next, we prove that θK
invasion − θK

mut. size ε is smaller than ln(K)σ
−1−α/2
K . We use

the following notation.

NOTATION.

θ̃K ≡ inf{t ≥ 0 : |〈ν̃t ,1〉 − z(RK)| > MεσK} ∧ θK
2 succ. mut. ∧ θK

diversity.

LEMMA 7.3. Fix ε > 0. Suppose that the assumptions of Theorem 7.1 hold.
Let M be the constant from Lemma 7.2. Then

(7.9) lim
K→∞

σ−1
K P

[

θK
mut. size ε >

(

θK
invasion + ln(K)σ

−1−α/2
K

)

∧ θ̃K]

= 0.
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PROOF. To prove this lemma, we use a coupling with a linear continuous time
birth–death process. From the results on Phase 1 and Lemma 7.3, we know that
θK

invasion is, with probability 1 − o(σK), smaller than θ̃K . Recall IK ≡ k1, the label
of the first successful mutation [see (6.4)]. For any t ∈ (θK

invasion, θ̃
K ], any indi-

vidual of Mk1(ν̃t ) gives birth to a new individual with the same trait, RK
1 , with

rate
(

1 − uKm
(

RK
1

))

b
(

RK
1

)

∈
[

b
(

RK
1

)

− uKb, b
(

RK
1

)]

,(7.10)

and dies with rate

d
(

RK
1

)

+
∫

X×N0

c
(

RK
1 , ξ

)

dν̃t (ξ),(7.11)

which is smaller than dZ ≡ d(RK
1 ) + c(RK

1 ,RK)(z(RK) + MεσK) + c(ε +
⌈3/α⌉σK)AσK . Similarly as in Lemma 6.5 we construct, by using a standard cou-
pling argument, a processes Zt such that

Zt ≤M
k1(ν̃θK

invasion+t )(7.12)

for all t such that θK
invasion + t ≤ θ̃K ∧ inf{t ≥ 0 : Mk1(ν̃t ) ≥ εK}. The processes

Zt is a branching process starting at ⌈εσKK⌉, with birth rate per individual bZ =
b(RK

1 )− b̄uK and with death rate per individual dZ . For all ε < infx∈X
∂1f (x,x)

2(M+A+1)
,

we have

bZ − dZ ≥ f
(

RK
1 ,RK)

− cσK

(

Mε + A
(

ε + ⌈3/α⌉σK

))

(7.13)

≥ σK inf
x∈X

∂1f (x, x)

2
.

Thus, Zt is super-critical of order σK . Let τZ
i be the first hitting time of level i by

Zt , then by Proposition A.4

(7.14) P
[

τZ
⌈εK⌉ > τZ

0
]

≤ exp
(

−Kα)

.

Furthermore, we have the following exponential tail bound (see [1] page 41):

P
[

τZ
⌈εK⌉ ≥ ln(K)σ

−1−α/2
K |τZ

⌈εK⌉ < τZ
0

]

(7.15)

≤ exp
(

−
⌊

ln(K)σ
−1−α/2
K

e maxn≤⌈εK⌉En[τZ
⌈εK⌉|τZ

⌈εK⌉ < τZ
0 ]

⌋)

,

and maxn≤⌈εK⌉En[τZ
⌈εK⌉|τZ

⌈εK⌉ < τZ
0 ] ≤ O(ln(K)σK) (compare with Proposi-

tion A.3). Therefore,

(7.16) P
[

τZ
⌈εK⌉ < ln(K)σ

−1−α/2
K

]

≥
(

1 − e−σ
−α/3
K

)(

1 − e−Kα )

= 1 − o(σK),

which implies the claim. �
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7.2. Step 2: The mutant density reaches a value Cε
cross (stochastic Euler

scheme). Recall that the trait of the successful mutant is RK + σKh where
h ∈ {1, . . . ,A}. Due to the regularity assumptions (iv) in Assumption 1, we have
the following estimates:

b
(

RK + σKh
)

= b
(

RK)

+ b′(RK)

σKh + O
(

(σKh)2)

,

d
(

RK + σKh
)

= d
(

RK)

+ d ′(RK)

σKh + O
(

(σKh)2)

,

r
(

RK + σKh
)

= r
(

RK)

+ r ′(RK)

σKh + O
(

(σKh)2)

,

c
(

RK + σKh,RK)

= c
(

RK ,RK)

+ ∂1c
(

RK ,RK)

σKh + O
(

(σKh)2)

,(7.17)

c
(

RK ,RK + σKh
)

= c
(

RK ,RK)

+ ∂2c
(

RK ,RK)

σKh + O
(

(σKh)2)

,

c
(

RK + σKh,RK + σKh
)

= c
(

RK ,RK)

+
(

∂1c
(

RK ,RK)

+ ∂2c
(

RK ,RK))

σKh

+ O
(

(σKh)2)

.

The deterministic system. Although we cannot use a law of large numbers, to
understand the behavior of the stochastic system it is useful to look at the properties
of the corresponding deterministic Lotka–Volterra system. The limiting system
when K → ∞, with σK = 0, takes the simple form

dm0
t

dt
= m0

t

(

r
(

RK)

− c
(

RK ,RK)(

m0
t + m

k1
t

))

,(7.18)

dm
k1
t

dt
= m

k1
t

(

r
(

RK)

− c
(

RK ,RK)(

m0
t + m

k1
t

))

.(7.19)

The corresponding vector field is depicted in Figure 3. This system has an invariant
manifold made of fixed points given by the roots of the equation

(7.20) m0 + mk1 = r
(

RK)

/c
(

RK ,RK)

= z̄
(

RK)

,

with m0,mk1 ≥ 0. This manifold connects the fixed points of the monomorphic
equations, (z̄(RK),0) and (0, z̄(RK)). Note that z̄(RK) has the interpretation of
the total mass of the population in equilibrium. A simple computation shows that
the Hessian matrix on the invariant manifold is given by

(7.21) H
(

m0,mk1
)

= −c
(

RK ,RK)

(

m0 m0

mk1 mk1

)

.

The corresponding eigenvectors are (1,−1) with eigenvalue 0, and (m0, z̄(RK) −
m0) with eigenvalue −c(RK ,RK)z̄(RK).
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FIG. 3. Right: Vector field of the unperturbed system (σK = 0), Left: Vector field of the perturbed

system (σK = 0.01). Parameters are given in Table 1.

It follows that the perturbed system

dm0
t

dt
= m0

t

(

r
(

RK)

− c
(

RK ,RK)

m0
t − c

(

RK ,RK + σKh
)

m
k1
t

)

,(7.22)

dm
k1
t

dt
= m

k1
t

(

r
(

RK + σKh
)

− c
(

RK + σKh,RK)

m0
t

(7.23)
− c

(

RK + σKh,RK + σKh
)

m
k1
t

)

,

has an invariant manifold connecting its fixed points (z̄(RK),0) and (0, z̄(RK +
σKh)), where z̄(RK + σKh) = r(RK + σKh)/c(RK + σKh,RK + σKh) in a σK -
neighborhood of the unperturbed invariant manifold (see Figure 3). Thus, the per-
turbed deterministic system will move quickly toward a small neighborhood of
this invariant manifold and then move slowly with speed O(σK) along it. Since
the invariant manifold is close to the curve m0 + mk1 = z̄(RK), it is reasonable to
choose as variables Mt = m0

t + m
k1
t . The motion of the system will then be close

to the curve φ̃(m
k1
t ) defined by the condition that the derivative of Mt vanishes for

Mt = φ̃(m
k1
t ).

TABLE 1
Parameters of the Figures 3

b(RK ) = 2 d(RK ) = 1 c(RK ,RK ) = 1 c(RK ,RK
+ σKh) = 1 − 2σK

b(RK + σKh) d(RK + σKh) c(RK + σKh,RK ) c(RK + σKh,RK + σKh)

= 2 + σK = 1 − σK = 1 − 2σK = 1 − σK
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Since
dMt

dt
= Mt

(

r
(

RK)

− c
(

RK ,RK)

Mt

)

−
[(

∂1c
(

RK ,RK)

+ ∂2c
(

RK ,RK))

Mt − r ′(RK)]

σKhm
k1
t(7.24)

+ O
(

σ 2
K

)

.

Setting the right-hand side to zero yields the leading orders in σK

φ̃
(

m
k1
t

)

= z
(

RK)

+ σKhm
k1
t

(
r ′(RK)

r(RK)
− ∂1c(R

K ,RK) + ∂2c(R
K ,RK)

c(RK ,RK)

)

(7.25)
+ O

(

σ 2
K

)

.

We expect that the stochastic system also evolves along this curve, that is, we
will show that mk1 increases while the total mass stays close to the curve defined
in (7.25).

Define the function

(7.26) φ(y) ≡ z
(

RK)

+ σKhy

(
r ′(RK)

r(RK)
− ∂1c(R

K ,RK) + ∂2c(R
K ,RK)

c(RK ,RK)

)

,

and the stopping time

(7.27) θK
near φ(i ε

2 ) ≡ inf
{

t ≥ θK
mut. size i(ε/2) :

∣
∣〈ν̃t ,1〉 − φ

(

i(ε/2)
)∣
∣ < (M/3)εσK

}

.

The dependence of φ with respect to the mutant density allows us to decompose
the increase of the mutant density into successive steps during which the total mass
does not move more than MεσK .

LEMMA 7.4. Fix ε > 0. Suppose that the assumptions of Theorem 7.1 hold.
Then there exists a constant M > 0 (independent of ε, K and i) such that and for

all 2 ≤ i ≤ 2ε−1Cε
cross:

(a) Soon after θK
mut. size i(ε/2), the total population size is close to φ(i ε

2):

lim
K→∞

σ−1
K P

[

θK
near φ(i ε

2 ) >
(

θK
mut. size i(ε/2) + SK

)

∧ θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK
mut. size i(ε/2) : ∃k ≥ 1 :Mk(ν̃t ) =

⌈(

i ± 1

2

)

(ε/2)K

⌉}]

= 0.

(b) A change of order ε for the mutant density takes more than o(σ−1
K ) time:

lim
K→∞

σ−1
K P

[

inf
{

t ≥ θK
mut. size i(ε/2) : ∃k ≥ 1 :Mk(ν̃t ) =

⌈(

i ± 1

2

)

(ε/2)K

⌉}

<
(

θK
mut. size i(ε/2) + SK

)

∧ θK
near φ(i ε

2 ) ∧ θK
2 succ. mut. ∧ θK

diversity

]

= 0.
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(c) At the time when the mutant density has changed of order ε the total popu-

lation size is still close to φ(i ε
2):

lim
K→∞

σ−1
K P

[

inf
{

t ≥ θK
near φ(i ε

2 ) :
∣
∣
∣
∣
〈ν̃t ,1〉 − φ

(

i
ε

2

)∣
∣
∣
∣
> MεσK

}

< θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK
mut. size i(ε/2) : ∃k ≥ 1 :Mk(ν̃t ) =

⌈

(i ± 1)(ε/2)K
⌉}

]

= 0.

(d) A change of order ε for the mutant density takes no more than (iσK)−1−α/2

time:

lim
K→∞

σ−1
K P

[

θK
mut. size (i+1)(ε/2) >

(

θK
near φ(i ε

2 ) + (iσK)−1−α/2)

∧ θK
2 succ. mut.

∧ θK
diversity ∧ inf

{

t ≥ θK
near φ(i ε

2 ) :
∣
∣〈ν̃t ,1〉 − φ

(

i(ε/2)
)∣
∣ > MεσK

}]

= 0.

REMARK 7. For each ε > 0, Lemma 7.4 implies that the mutant density
reaches the value Cε

cross with high probability, since ε is independent of K . More-
over, for all ε > 0,

P

[

θK
mut. size Cε

cross
>

(

θK
mut. size ε + ln(K)

σ
1+α/2
K

)

∧ θK
2 succ. mut. ∧ θK

diversity

]

(7.28)
= o(σK)

and

P
[∣
∣〈ν̃θK

mut. size Cε
cross

,1〉 − φ
(

Cε
cross

)∣
∣ > MεσK

]

= o(σK).(7.29)

PROOF. We will prove the lemma by induction over i. Base clause: Com-
pare with Lemmas 7.2 and 7.3 that there exists a constant M > 0 such that
|〈ν̃θK

mut. size ε
,1〉 − φ(0)| is smaller than MεσK and that θK

mut. size ε < θK
2 succ. mut. ∧

θK
diversity both with probability 1 − o(σK).

Induction step form i − 1 to i: Assume that the lemma holds true for i − 1, then
be prove separately that (a)–(d) are true for i, as long as i < 2ε−1Cε

cross. �

PROOF OF (a) FOR i BY ASSUMING THAT THE LEMMA HOLDS FOR i − 1. In
the proof, we use the following notation:

θ̃K
i ≡ θK

2 succ. mut. ∧ θK
diversity

∧ inf
{

t ≥ θK
mut. size i(ε/2) : ∃k ≥ 1 :Mk(ν̃t ) =

⌈(

i ± 1

2

)
ε

2
K

⌉}

.
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Note that θ̃K
i differs from θ̃K defined in Lemma 7.3. We will prove (a) provided it

happens before θ̃K
i and we use the estimates of step (b) for i to prove that it indeed

happens before θ̃K
i with high probability.

If the lemma is true for i − 1, we know that [with (d)],

(7.30) P

[∣
∣
∣
∣
〈ν̃θK

mut. size i(ε/2)
,1〉 − φ

(

(i − 1)
ε

2

)∣
∣
∣
∣
< MεσK

]

= 1 − o(σK).

Since φ(x) − φ(y) = O(h(x − y)σK), we have with probability 1 − o(σK) either

inf
{

t ≥ θK
mut. size i(ε/2) :

∣
∣
∣
∣
〈ν̃t ,1〉 − φ

(

i
ε

2

)∣
∣
∣
∣
< (M/3)εσK

}

(7.31)
= θK

mut. size i(ε/2),

which implies (a) for i, or at least
∣
∣
∣
∣
〈ν̃θK

mut. size i(ε/2)
,1〉 − φ

(

i
ε

2

)∣
∣
∣
∣

(7.32)

<

(

M +
∣
∣
∣
∣
h

(
r ′(RK)

r(RK)
− (∂1c(R

K ,RK) + ∂2c(R
K ,RK))

c(RK ,RK)

)∣
∣
∣
∣

)

εσK .

Similarly, as in many previous lemmata, we want to couple K〈ν̃t ,1〉 with a discrete
time Markov chain. Therefore, let

(7.33) Xi
t =

∣
∣
∣
∣
K〈ν̃t ,1〉 −

⌈

φ

(

i
ε

2

)

K

⌉∣
∣
∣
∣
,

and T i
0 = θK

mut. size i(ε/2) and (T i
k )k≥1 be the sequences of the jump times of 〈ν̃t ,1〉

after θK
mut. size i(ε/2). Then let Y i

k be the associated discrete time process which

records the values that Xi
t takes after time θK

mut. size i(ε/2).

CLAIM. There exists a constant, C
b,d,c
derivative > 0, such that for all

⌈Cb,d,c
derivativeεσKK⌉ ≤ j < ⌈εK⌉ and K large enough,

P
[

Y i
n+1 = j + 1|Y i

n = j, Tn+1 < θ̃K
i

]

≤ 1

2
− εσK =: pK

+ .(7.34)

Moreover, we can choose

C
b,d,c
derivative

(7.35)

= sup
x∈X

1

c(x, x)

(

4b(x) + A

∣
∣
∣
∣

r ′(x)c(x, x)

r(x)
− ∂1c(x, x) − ∂2c(x, x)

∣
∣
∣
∣

)

.

If 〈ν̃t ,1〉K > ⌈φ(i(ε/2))K⌉ at time t = T i
n , then 〈ν̃T i

n
,1〉K = ⌈φ(i(ε/2))K⌉ +

Y i
n and, conditionally on FT i

n
, the left-hand side of (7.34) is equal to the probability
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that the next event is a birth. Namely,
∑

k≥0 b(hk,1(ν̃T i
n
))Mk(ν̃T i

n
)

∑

k≥0(b(hk,1(ν̃T i
n
)) + d(hk,1(ν̃T i

n
)) +

∫

N×X
c(hk,1(ν̃T i

n
), ξ) dν̃T i

n
(ξ))Mk(ν̃T i

n
)

≤
(

b
(

RK)∑

k≥0

M
k(ν̃T i

n
) + σKhb′(RK)

M
k1(ν̃T i

n
)

+ Cb
L2AσK

⌈
3

α

⌉

σKεK + O
(

σ 2
KK

)
)

×
(

∑

k≥0

(

b
(

RK)

+ d
(

RK)

+
∑

k≥0

c(RK ,RK)

K
M

k(ν̃T i
n
)

)

M
k(ν̃T i

n
)(7.36)

+ σKhMk1(ν̃T i
n
)

(

b′(RK)

+ d ′(RK)

+ ∂1c(R
K ,RK) + ∂2c(R

K ,RK)

K

(

M
0(ν̃T i

n
) +M

k1(ν̃T i
n
)
)
)

−
(

C
b,d,c
L

)

2AσK⌈3/α⌉σKεK − O
(

σ 2
KK

)
)−1

.

For the inequality, we have used the fact that, conditioned on Tn < θ̃K
i , there

at most σKε⌈3/α⌉ many unsuccessful mutant individuals which differ at most
2AσK from the resident trait RK . Since

∑

k≥0M
k(ν̃T i

n
) = 〈ν̃T i

n
,1〉K which equals

⌈φ(i(ε/2))K⌉+ j conditioned on j = Y i
n, the right-hand side of the last inequality

is smaller or equals
(

b
(

RK)

+ σKhb′(RK) M
k1(ν̃T i

n
)

⌈φ(i(ε/2))K⌉ + j
+ O

(

σ 2
K

)
)

×
(

b
(

RK)

+ d
(

RK)

+ c
(

RK ,RK)⌈φ(i(ε/2))K⌉ + j

K

+ σK

hMk1(ν̃T i
n
)

⌈φ(i(ε/2))K⌉ + j

(

b′(RK)

+ d ′(RK)

+ ∂1c(R
K ,RK) + ∂2c(R

K ,RK)

K

(

M
0(ν̃T i

n
) +M

k1(ν̃T i
n
)
)
)

− O
(

σ 2
K

)
)−1

and by definition of φ the denominator equals

2b
(

RK)

σK + 2σKhb′(RK) M
k1(ν̃T i

n
)

⌈φ(i(ε/2))K⌉ + j
+ c

(

RK ,RK) j

K
− O

(

σ 2
K

)

+ σKh

[

i
ε

2

(
r ′(RK)

z(RK)
+ ∂1c

(

RK ,RK)

+ ∂2c
(

RK ,RK)
)
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+
M

k1(ν̃T i
n
)

⌈φ(i(ε/2))K⌉ + j

(

d ′(RK)

− b′(RK)

+ ∂1c(R
K ,RK) + ∂2c(R

K ,RK)

K

(

M
0(ν̃T i

n
) +M

k1(ν̃T i
n
)
)
)]

.

Thus, we obtain that the right-hand side of (7.36) is bounded from above by

1

2
− c(RK ,RK)

3b(RK)
jK−1

− σKh

4b(RK)

[

i
ε

2

(
r ′(RK)

z(RK)
− ∂1c

(

RK ,RK)

− ∂2c
(

RK ,RK)
)

+
M

k1(ν̃T i
n
)

⌈φ(i(ε/2))K⌉ + j

(

−r ′(RK)

+ ∂1c(R
K ,RK) + ∂2c(R

K ,RK)

K

(

M
0(ν̃T i

n
) +M

k1(ν̃T i
n
)
)
)]

+ O
(

σ 2
K

)

.

In the case where 〈ν̃t ,1〉K < ⌈φ(i(ε/2))K⌉ at time t = T i
n , we obtain the same

inequality but with an opposite sign in front of the third term. Since
∣
∣
∣
∣

iε

2

r ′(RK)

z(RK)
−

M
k1(ν̃T i

n
)

K

r ′(RK)K

⌈φ((ε/2))K⌉ ± j

−
(

∂1c
(

RK ,RK)

+ ∂2c
(

RK ,RK))
(

iε

2
−

M
k1(ν̃T i

n
)

K

)∣
∣
∣
∣

< (ε/2)

∣
∣
∣
∣

r ′(RK)

z(RK)
− ∂1c

(

RK ,RK)

− ∂2c
(

RK ,RK)
∣
∣
∣
∣
,

we deduce the claim. Since we choose M such that M ≥ 3C
b,d,c
derivative, we can

construct a Markov chain Zi
n such that Zi

n ≥ Y i
n, a.s., for all n such that T i

n <

θ̃K
i ∧ inf{t ≥ θK

mut. size i(ε/2) : |〈ν̃t ,1〉 − φ(i(ε/2))| < 1
3MεσK} and the marginal

distribution of Zn is a Markov chain with Zi
0 = Y i

0 and transition probabilities

(7.37) P
[

Zi
n+1 = j2|Zi

n = j1
]

=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

pK
+ , for j1 ≥ 1 and j2 = j1 + 1,

1 − pK
+ , for j1 ≥ 1 and j2 = j1 + 1,

0, else.

Let Cexit = supx∈X 2A| r ′(x)
r(x)

− (∂1c(x,x)+∂2c(x,x))
c(x,x)

|. Then, by applying Proposi-
tion A.5(b), we obtain, for all a ≤ (M + Cexit)εσKK and K large enough,

Pa

[

inf
{

n ≥ 0 : Zi
n ≥ 2(M + Cexit)εσKK

}

< inf
{

n ≥ 0 : Zi
n ≤

(
M

3

)

εσKK

}]

(7.38)
≤ exp

(

−Kα)

.
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Next, define B i ≡ inf{n ≥ 0 : Zi
n ≤ 1

3MεσKK}. This is the random variable, which
counts the number of jumps Zi makes until it is smaller than εσKK . Note that
(T i

n+1 − T i
n), the times between two jumps of Xi

t , are exponential distributed with
a parameter (b(RK) + d(RK) + c(RK ,RK)z(RK))z(RK)K + O(σKK), if T i

n+1

is smaller than θ̃K
i . Thus,

(7.39)
(

T i
l+1 − T i

l

)

�Ei
l ,

where (Ei
l )l≥0 is a sequence of i.i.d. exponential random variables with parameter

infx∈X b(x)z̄(x)K . Therefore,

P
[

θK
near φ(i ε

2 ) > θK
mut. size i(ε/2) + SK ∧ θ̃K

i

]

(7.40)

≤ P

[
Bi
∑

l=0

Ei
l > SK

]

+ P
[

θ̃K
i < θK

mut. size i(ε/2) + SK ∧ θK
near φ(i ε

2 )

]

.

Our next goal is to find a number, ni , such that P[B i > ni] is o(σK). Since the
transition probabilities of Zi do not depend on the present state, we have that
Zi

n − Zi
0 has the same law as

∑n
k=1 V i

k , where (V i
k )k∈N is a sequence of i.i.d.

random variables with

P
[

V i
k = 1

]

= pK
+ and P

[

V i
k = −1

]

= 1 − pK
+(7.41)

and E[V i
k ] = −2εσK and |V i

k | = 1. Furthermore, we get

P
[

B i ≤ ni

]

≥ P

[

inf
{

j ≥ 0 : Zj − Z0 ≤ −
⌈(

3

2
M + Cexit

)

εσKK

⌉}

≤ ni

]

(7.42)

≥ P

[
ni∑

k=1

V i
k ≤ −

⌈(
3

2
M + Cexit

)

εσKK

⌉
]

and by applying the following.

HOEFFDING’S INEQUALITY (Appendix 2 in [22]). Let Y1, . . . , Yn be inde-
pendent random variables such that, for all j ∈ N, aj ≤ Yj −E[Yj ] ≤ bj for some
real constants aj , bj . Then, for x > 0,

P

[
n

∑

j=1

Yj −E[Yj ] ≥ x

]

≤ exp

(

−2x2

(
n

∑

j=1

(aj − bj )
2

)−1)

(7.43)

we obtain

(7.44) P

[
ni∑

k=1

V i
k ≥ −2εσKni + (ni)

1
2 +α/2

]

≤ 2 exp
(

−(ni)
α)

.
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With ni ≡ ⌈K(3
2M + Cexit)⌉, we get −2εσKni + (ni)

1
2 +α/2 ≤ −⌈(3

2M +
Cexit)εσKK⌉, since K− 1

2 +α ≪ σK . Applying the exponential Chebychev inequal-
ity (with λ = Kα)

P

[⌈K( 3
2 M+Cexit)⌉

∑

l=0

Ei
l > SK

]

≤ exp(−λSK)E

[

exp

(

λ

⌈K( 3
2 M+Cexit)⌉

∑

l=0

Ei
l

)]

≤ exp(−λSK)

(
infx∈X b(x)z̄(x)K

infx∈X b(x)z̄(x)K − λ

)⌈K( 3
2 M+Cexit)⌉+1

(7.45)

≤ exp
(

−λSK +
(⌈

K

(
3

2
M + Cexit

)⌉

+ 1
)

× ln
(

1 + λ

infx∈X b(x)z̄(x)K − λ

))

≤ exp
(

−λSK + λ

3
2M + Cexit + 1

infx∈X b(x)z̄(x)
+ O

(

λ2K−1)
)

≤ exp
(

−Kα)

.

Hence, the left-hand side of (7.40) is bounded from above by

exp
(

−Kα)

+ 2 exp
(

−
(

K

(
3

2
M + Cexit

))α)

(7.46)
+ P

[

θ̃K
i <

(

θK
mut. size i(ε/2) + SK

)

∧ θK
near φ(i ε

2 )

]

.

This proves the lemma, if we can show that

(7.47) P
[

θ̃K
i <

(

θK
mut. size i(ε/2) + SK

)

∧ θK
near φ(i ε

2 )

]

= o(σK).

According to Remark 6 and Lemma 7.3, we have that

(7.48) P
[

θK
2 succ. mut. ∧ θK

diversity < θK
mut. size i(ε/2) + SK

]

= o(σK).

Therefore, the following proof of (b) for i implies (a) for i. �

PROOF OF (b) FOR i BY ASSUMING THAT THE LEMMA HOLDS FOR i − 1.
Note that the random elements Bi, T i,V i,W i,Xi, Y i and Zi are not the ones of
the last proof. They will be defined during this proof. In fact, the structure of the
proof is similar to the one of (a), except that we prove a lower bound for the time of
a change of oder ε for the mutant density instead of upper bound for the time of a
change of oder εσK of the total mass. We couple M

k1
t , for t ≥ θK

mut. size i(ε/2), with

a discrete time Markov chain (depending on i). Therefore, let T i
0 = θK

mut. size i(ε/2)
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and (T i
k )k≥1 be the sequences of jump times of Mk1

t after θK
mut. size i(ε/2). Further-

more, let (Y i
n)n≥0 be the discrete time process which records the values that Mk1

t

takes, that is, Y i
0 = M

k1(ν̃T i
0
) = ⌈Ki(ε/2)⌉ and Y i

n = M
k1(ν̃T i

n
). Observe that if

θ̃K
i > θK

near φ(i ε
2 )

∧ inf
{

t ≥ θK
mut. size i(ε/2) :

∣
∣
∣
∣
〈ν̃t ,1〉 − φ

(

i
ε

2

)∣
∣
∣
∣
≥ 2(M + Cexit)εσKK

}

,

we know from the inequality (7.38) that the probability that θK
near φ(i ε

2 )
is larger

than inf{t ≥ θK
mut. size i(ε/2) : |〈ν̃t ,1〉 − φ(i(ε/2))| ≥ 2(M + Cexit)εσKK} is smaller

than exp(−Kα). Define

θ̂K
i ≡ inf

{

t ≥ θK
mut. size i(ε/2) :

∣
∣
∣
∣
〈ν̃t ,1〉 − φ

(

i
ε

2

)∣
∣
∣
∣
≥ 2(M + Cexit)εσKK

}

(7.49)
∧ θK

near φ(i ε
2 ) ∧ θK

2 succ. mut. ∧ θK
diversity

and

(7.50) C̃fitness ≡ inf
x∈X

∂1f (x, x)/b.

Note that θ̂K
i �= θ̂K . Then, for all −⌈ ε

4K⌉ ≤ j ≤ ⌈ ε
4K⌉, for K large enough and for

ε small enough, we have that

P

[

Y i
n+1 =

⌈

i
ε

2
K

⌉

+ j + 1
∣
∣
∣Y i

n =
⌈

i
ε

2
K

⌉

+ j, T i
n+1 < θ̂K

i

]

(7.51)

∈
[

1

2
+ 1

2
C̃fitnessσK ,

1

2
+ 2AC̃fitnessσK

]

,

since the left-hand side of (7.51) is equal to the expectation of the probability that
the next event is a birth without mutation conditioned on FT i

n
. Namely,

b(RK + σKh)(1 − uKm(RK − σKh))

(b(RK + σKh) + d(RK + σKh) +
∫

N×X
c(RK + σKh, ξ) dν̃Tn(ξ))

= b
(

RK + σKh
)
[

b
(

RK + σKh
)

+ d
(

RK + σKh
)

+ c
(

RK + σKh,RK)
(

φ

(

i
ε

2

)

−
⌈i ε

2K⌉ + j

K

)

+ c
(

RK + σKh,RK + hσK

)
(⌈i ε

2K⌉ + j

K

)

+ ξ1

(

εσKCc
L

(⌈
3

α

⌉

+ 2(M + Cexit)

))]−1
+ O(uK)(7.52)
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= b
(

RK + σKh
)
[

2b
(

RK + σKh
)

− f
(

RK + σKh,RK)

+ c
(

RK + σKh,RK)
(

φ

(

i
ε

2

)

− r(RK)

c(RK ,RK)

)

+ σKh∂2c
(

RK ,RK)
(⌈i ε

2K⌉ + j

K

)

+ ξ1

(

εσKCc
L

(⌈
3

α

⌉

+ 2(M + Cexit)

))]−1
+ O(uK)

for some ξ1 ∈ (−1,1). By definition of φ of (7.52) is equal to

b
(

RK + σKh
)
[

2b
(

RK + σKh
)

− ∂1f
(

RK ,RK)

σKh + c
(

RK + σKh,RK)

σKh

×
(

i
ε

2

)(
r ′(RK)

r(RK)
− ∂1c(R

K ,RK)

c(RK ,RK)

)

+ ξ1

(

εσKCc
L

(⌈
3

α

⌉

+ 2(M + Cexit)

))]−1

+ O

(
σKj

K
+ σ 2

K + uK

)

= b
(

RK + σKh
)
[

2b
(

RK + σKh
)

− σKh

(

1 − i
ε

2

c(RK ,RK)

r(RK)

)

∂1f
(

RK ,RK)

+ ξ1

(

εσKCc
L

(⌈
3

α

⌉

+ 2(M + Cexit)

))]−1
+ O

(
σKj

K
+ σ 2

K + uK

)

= 1

2
+ σKh

(

1 − i
ε

2

c(RK ,RK)

r(RK)

)
∂1f (RK ,RK)

b(RK)

+ εσKξ1
Cc

L(⌈ 3
α
⌉ + 2(M + Cexit))

b(RK)

+ O

(
σKj

K
+ σ 2

K + uK

)

.

Then, because i < 2ε−1Cε
cross implies that 1 − i ε

2
c(RK ,RK )

r(RK )
> 0, we obtain (7.51).

Thus, we can construct a Markov chain Zi
n such that Zi

n ≥ Y i
n, a.s., for all n such

that T i
n < θ̂K and such that the marginal distribution of Zi

n is a Markov chain with
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transition probabilities

(7.53) P
[

Zi
n+1 = j2|Zi

n = j1
]

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1

2
+ 2AC̃fitnessσK , for j2 = j1 + 1,

1

2
− 2AC̃fitnessσK , for j2 = j1 − 1,

0, else.

We define a continuous time process, Z̃i , associate to Zi
n. To do this, we define

first (T̃ i
j )j∈N, the sequence of jump times, by T̃ i

0 = 0 and

(7.54) T̃ i
j − T̃ i

j−1 =
{

T i
j − T i

j−1, if T i
j < θ̃K ,

W i
j , else,

where W i
j are exponential random variables with mean (⌈K(i + 1

2)(ε/2)⌉(b +
d + c(4b/c)))−1. We set Z̃i

t = Zi
n if t ∈ [T̃ i

n , T̃ i
n+1). Obverse that we obtain by

construction Z̃i
t ≥M

k1(ν̃θK
mut. size i(ε/2)+t ), for all t such that θK

mut. size i(ε/2) + t ≤ θ̂K
i .

Next, we want to show that

(7.55) P

[

inf
{

t ≥ 0 : Z̃i
t ≥

⌈

K

(

i + 1

2

)

(ε/2)

⌉}

> SK

]

= 1 − o(σK).

Therefore, let BZ
i = inf{n ≥ 0 : Zi

n = ⌈K(i + 1
2)(ε/2)⌉}. We can construct (Xi

j )j≥1

a sequence of independent, exponential random variables with parameter xK
i ≡

⌈K(i + 1
2)(ε/2)⌉(b + d + c(4b/c)) such that

(7.56)
(

T̃ i
j+1 − T̃ i

j

)

� Xi
j for all 1 ≤ j ≤ BZ

i .

Our next goal is to find a barrier, ni , such that BZ
i is smaller than ni only with very

small probability. Since the transition probabilities of Zi do not depend on the
present state, Zi

BZ
i

− Z0 is stochastically equivalent to
∑j

k=1 V i
k , where (V i

k )k∈N
are i.i.d. random variables taking values ±1 with probabilities

(7.57) P
[

V i
k = 1

]

= 1

2
+ 2AC̃fitnessσK and P

[

V i
k = −1

]

= 1

2
− 2AC̃fitnessσK .

Note that E[V i
k ] = 4AC̃fitnessσK and |V i

k | = 1. Furthermore, we get

(7.58) P
[

BZ
i ≤ ni

]

= P

[

∃
⌈

(ε/4)K
⌉

≤ j ≤ ni :
j

∑

k=1

V i
k ≥

⌈

(ε/4)K
⌉

]

.

Hoeffding’s inequality implies that, for j ≥ ⌈(ε/4)K⌉,

(7.59) P

[ j
∑

k=1

V i
k ≥ 4AC̃fitnessσKj + j

1
2 +α/2

]

≤ 2 exp
(

−jα)

.
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We take ni ≡ εK(8AC̃fitnessσK)−1 and get for all ⌈(ε/4)K⌉ ≤ j ≤ ni ,

(7.60) 4AC̃fitnessσKj + j
1
2 +α/2 ≤

⌈

(ε/4)K
⌉

,

since K− 1
2 +α ≪ σK . Then, the probability that BZ

i ≤ εK(8AC̃fitnessσK)−1 is
bounded from above by 2 exp(−Kα). Therefore, the left- hand side of equation
(7.55) is larger than

P

[
εK(8AC̃fitnessσK )−1

∑

j=1

Xi
j > SK

]

− 2 exp
(

−Kα)

,(7.61)

By applying the exponential Chebychev inequality, we get, similarly as in (a),

P

[
εK(8AC̃fitnessσK )−1

∑

j=1

Xi
j ≤ SK

]

= P

[

−
εK(8AC̃fitnessσK )−1

∑

j=1

Xi
j ≥ −SK

]

≤ exp
(

KαSK

)

E
[

exp
(

−KαXi
j

)]εK(8AC̃fitnessσK )−1

≤ exp
(

KαSK

)

exp
(

εK(8AC̃fitnessσK)−1 ln
(

xK
i

xK
i + Kα

))

(7.62)

≤ exp
(

KαSK − εK(8AC̃fitnessσK)−1CK−1+α)

,

for some small C > 0,

≤ exp
(

−Kα)

.

This proves that P[inf{t ≥ 0 : Z̃i
t ≥ ⌈K(i + 1

2)(ε/2)⌉} > SK ] ≥ 1 − 3 exp(−Kα)

and, therefore, (b) and (a) for i, provided that the lemma holds for i − 1. �

PROOF OF (c) FOR i BY ASSUMING THAT THE LEMMA HOLDS FOR i − 1.
Note that the random elements T i,Xi , and Y i are not the ones of the last proof.
As in (a), we couple K〈ν̃t ,1〉 with a discrete time Markov chain. Therefore, let

(7.63) Xi
t =

∣
∣K〈ν̃t ,1〉 −

⌈

φ
(

i(ε/2)
)

K
⌉∣
∣

and T i
0 = θK

mut. size i(ε/2) and (T i
k )k≥1 be the sequences of the jump times of 〈ν̃t ,1〉

after θK
mut. size i(ε/2). Then let Y i

k be the associated discrete time process which

records the values that Xi
t takes after time θK

mut. size i(ε/2).
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CLAIM. There exists a constant C̃
b,d,c
derivative such that for all j < ⌈εK⌉ and K

large enough,

P
[

Y i
n+1 = j + 1|Y i

n = j, Tn+1 < θ̃K
i

]

(7.64)

≤ 1

2
− c

3b
jK−1 + εσK C̃

b,d,c
derivative ≡ pK

+ (j).

Moreover, we can choose C̃
b,d,c
derivative ≡ supx∈X

A
4b(x)

| r ′(x)
z(x)

− ∂1c(x, x) − ∂2c(x, x)|.

From (a), we know that the left-hand side of (7.64) is smaller or equals

1

2
− c(RK ,RK)

3b(RK)
jK−1

(7.65)

+ εσKh

8b(RK)

∣
∣
∣
∣

r ′(RK)

z(RK)
− ∂1c

(

RK ,RK)

− ∂2c
(

RK ,RK)
∣
∣
∣
∣
+ O

(

σ 2
K

)

.

This proves the claim. Note that pK
+ (j) depends on j . Since we can choose M ≥

8C̃
b,d,c
derivative

3b
c

, continuing as in Lemma 6.3 implies that (c) is true for i, provided
that the lemma holds for i − 1. �

PROOF OF (d) FOR i BY ASSUMING THAT THE LEMMA HOLDS FOR i − 1.
Again we couple M

k1
t , for t ≥ θK

near φ(i ε
2 )

, with a discrete time Markov chain. Let

T i
0 = θK

near φ(i ε
2 )

and (T i
k )k≥1 be the sequences of the jump times of M

k1
t after

θK
near φ(i ε

2 )
. Then let (Y i

n)n≥0 be the discrete time process which records the val-

ues that Mk1
t , that is,

(7.66) Y i
0 =M

k1(ν̃T i
0
) ∈

[

K

(
iε

2
− ε

4

)

− 1,K

(
iε

2
+ ε

4

)

+ 1
]

,

and Y i
n = M

k1(ν̃T i
n
). Define

θ̂K
i ≡ inf

{

t ≥ θK
near φ(i ε

2 ) :
∣
∣
∣
∣
〈ν̃t ,1〉 − φ

(

i
ε

2

)∣
∣
∣
∣
> MεσK

}

(7.67)
∧ θK

2 succ. mut. ∧ θK
diversity.

Note that this θ̂K
i differs only a bit from the one defined in (b). From the proof

of (b), we know that the density of the mutant trait has the tendency to increase.
More precisely, since i ≤ Cε

cross(2/ε), we have, for all −⌈ ε
4K⌉ ≤ j ≤ ⌈ ε

2K⌉, for K
large enough and ε small enough,

P

[

Y i
n+1 =

⌈

i
ε

2
K

⌉

+ j + 1|Y i
n =

⌈

i
ε

2
K

⌉

+ j, T i
n+1 < θ̂K

i

]

(7.68)

≥ 1

2
+ σK

infx∈X ∂1f (x, x)

2b
.
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By continuing in a similar way as in (b) with bounding the random variables in
the in the other direction [as in (a)], implies that (d) is true for i, provided that the
lemma holds for i − 1. �

7.3. Step 3: The density of the resident trait RK decreases to ε. Similarly, as
in Step 2, we define a function which allows us to approximate the total mass of
the population for a given density of the resident trait.

NOTATION. Let us define

ψ(x) ≡ z
(

RK)

+ σKh
(

z̄
(

RK)

− x
)

(7.69)

×
(

r ′(RK)

r(RK)
+ ∂1c(R

K ,RK) + ∂2c(R
K ,RK)

c(RK ,RK)

)

.

Note that φ(y) = ψ(φ(y) − y) + O(σ 2
K). Therefore, and since |〈ν̃θK

mut. size Cε
cross

,

1〉 − φ(Cε
cross)| < MεσK with probability 1 − o(σK), we get that at time

θK
mut. size Cε

cross
the density of the resident population belongs to an interval centered

at φ(Cε
cross)−Cε

cross with diameter 2(M +⌈3/α⌉)εσK with probability 1 − o(σK),
and hence

ψ
(

M
0(ν̃θK

mut. size Cε
cross

)K−1)

= ψ
(

φ
(

Cε
cross

)

− Cε
cross

)

+ O
(

εσ 2
K

)

(7.70)
= φ

(

Cε
cross

)

+ O
(

σ 2
K

)

with probability 1 − o(σK). Thus, the total mass of the population also belongs to
an interval centered at ψ(φ(Cε

cross) − Cε
cross) with diameter 2(MεσK + O(σ 2

K)) <

2(M + 1)εσK .

NOTATION. Let us define

C̃K
cross ≡

⌈(

φ
(

Cε
cross

)

− Cε
cross − ε

)

2/ε
⌉

(ε/2)

and

θnear ψ(C̃ε
cross− ε

2 )

≡ inf
{

t ≥ θK
mut. size Cε

cross
:

∣
∣
∣
∣
〈ν̃t ,1〉 − ψ

(

C̃ε
cross − ε

2

)∣
∣
∣
∣
< (M/3)εσK

}

.

Note that the term −ε in the definition of C̃K
cross ensures that resident population is

larger than C̃K
cross at time θK

mut. size Cε
cross

.

First, we need a lemma to connect Step 2 and Step 3.

LEMMA 7.5. Fix ε > 0. Suppose that the assumptions of Theorem 7.1 hold.
Then there exists a constant M > 0 (independent of ε and K) such that:
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(a) Soon after θK
mut. size Cε

cross
, the total population size is close to ψ(C̃ε

cross − ε
2):

lim
K→∞

σ−1
K P

[

θnear ψ(C̃ε
cross− ε

2 )
> θK

mut. size Cε
cross

+ SK ∧ θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK
mut. size Cε

cross
:M0(ν̃t ) =

⌈(

C̃ε
cross ± 3ε/4

)

K
⌉}]

= 0.

(b) A change of order ε for the resident density takes more than o(σ−1
K ) time:

lim
K→∞

σ−1
K P

[

inf
{

t ≥ θK
mut. size Cε

cross
:M0(ν̃t ) =

⌈(

C̃ε
cross ± 3ε/4

)

K
⌉}

< θK
mut. size Cε

cross
+ SK ∧ θnear ψ(C̃ε

cross− ε
2 )

∧ θK
2 succ. mut. ∧ θK

diversity
]

= 0.

(c) At the time when the resident density has changed of order ε, the total pop-

ulation size is still close to ψ(C̃ε
cross − ε

2):

lim
K→∞

σ−1
K P

[

inf
{

t ≥ θK

near ψ(C̃ε
cross− ε

2 )
:

∣
∣
∣
∣
〈ν̃t ,1〉 − ψ

(

C̃ε
cross − ε

2

)∣
∣
∣
∣
> MεσK

}

< θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK
mut. size Cε

cross
: M0(ν̃t ) =

⌈(

C̃ε
cross ± ε

)

K
⌉}

]

= 0.

(d) A change of order ε for the resident density takes no more than (iσK)−1−α/2

time:

lim
K→∞

σ−1
K P

[

θK

res. size C̃ε
cross−ε

> θK
mut. size Cε

cross
+ (iσK)−1−α/2

∧ θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK

near ψ(C̃ε
cross− ε

2 )
:

∣
∣
∣
∣
〈ν̃t ,1〉 − ψ

(

C̃ε
cross − ε

2

)∣
∣
∣
∣
> MεσK

}]

= 0.

PROOF. Apply the methods of (a) to (d) from Lemma 7.4. �

Next, we have the following similar lemmata as in Step 2. For them, let us define

(7.71) θK
near ψ(i ε

2 ) ≡ inf
{

t ≥ θK
res. size i(ε/2) :

∣
∣〈ν̃t ,1〉 − ψ

(

i(ε/2)
)∣
∣ < (M/3)εσK

}

.

LEMMA 7.6. Suppose that the assumptions of Theorem 7.1 hold. Then there

exists a constant M > 0 (independent of ε, K , and i) such that, for all ε > 0 and

for all (C̃ε
cross − ε)(2/ε) ≥ i ≥ 2:

(a) Soon after θK
res. size i(ε/2), the total population size is close to ψ(i ε

2):

lim
K→∞

σ−1
K P

[

θK
near ψ(i ε

2 ) > θK
res. size i(ε/2) + SK ∧ θK

2 succ. mut. ∧ θK
diversity

∧ inf
{

t ≥ θK
res. size i(ε/2) : M0(ν̃t ) =

⌈(

i ± 1

2

)

(ε/2)K

⌉}]

= 0.
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(b) A change of order ε for the resident density takes more than o(σ−1
K ) time:

lim
K→∞

σ−1
K P

[

inf
{

t ≥ θK
res. size i(ε/2) :M0(ν̃t ) =

⌈(

i ± 1

2

)

(ε/2)K

⌉}

< θK
res. size i(ε/2) + SK ∧ θK

near ψ(i ε
2 ) ∧ θK

2 succ. mut. ∧ θK
diversity

]

= 0.

(c) At the time when the resident density has changed of order ε, the total pop-

ulation size is still close to ψ(i ε
2):

lim
K→∞

σ−1
K P

[

inf
{

t ≥ θK
near ψ(i ε

2 ) :
∣
∣〈ν̃t ,1〉 − ψ

(

i(ε/2)
)∣
∣ > MεσK

}

< θK
2 succ. mut.

∧ θK
diversity ∧ inf

{

t ≥ θK
res. size i(ε/2) :M0(ν̃t ) =

⌈

(i ± 1)(ε/2)K
⌉}]

= 0.

(d) A change of order ε for the resident density takes no more than (iσK)−1−α/2

time:

lim
K→∞

σ−1
K P

[

θK
res. size (i−1)(ε/2) >

(

θK
near ψ(i ε

2 ) + (iσK)−1−α/2)

∧ θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK
near ψ(i ε

2 ) :
∣
∣〈ν̃t ,1〉 − ψ

(

i(ε/2)
)∣
∣ > MεσK

}]

= 0.

PROOF. Apply the methods of (a) to (d) from Lemma 7.4. �

REMARK 8. Lemmas 7.5 and 7.6 imply that the density of the resident trait
decreases to the value ε. Moreover,

(7.72) P

[

θK
res. size ε > θK

mut. size Cε
cross

+ ln(K)

σ
1+α/2
K

∧ θK
2 succ. mut. ∧ θK

diversity

]

= o(σK)

and

(7.73) P
[∣
∣〈ν̃θK

res. size ε
,1〉 − ψ(ε)

∣
∣ > MεσK

]

= o(σK).

7.4. Step 4: The resident trait RK goes extinct. After the time θK
res. size ε , we

have to wait less than ln(K)σ
1+α/2
K time to know that the resident trait is extinct

with high probability.

NOTATION. Define

θK
near ψ(0) ≡ inf

{

t ≥ θK
res. size ε :

∣
∣〈ν̃t ,1〉 − ψ(0)

∣
∣ < (M/3)εσK

}

.

LEMMA 7.7. Suppose that the assumptions of Theorem 7.1 hold. Then there

exists a constant M > 0 (independent of ε and K) such that, for all ε > 0:
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(a) Soon after θK
res. size ε , the total population size is close to ψ(0):

lim
K→∞

σ−1
K P

[

θK
near ψ(0) > θK

res. size ε + SK ∧ θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK
res. size ε) :M0(ν̃t ) =

⌈(

1 ± 1

4

)

εK

⌉}]

= 0.

(b) A change of order ε for the resident density takes more than o(σ−1
K ) time:

lim
K→∞

σ−1
K P

[

inf
{

t ≥ θK
res. size ε :M0(ν̃t ) =

⌈(

1 ± 1

4

)

εK

⌉}

< θK
res. size ε + SK ∧ θnear ψ(0) ∧ θK

2 succ. mut. ∧ θK
diversity

]

= 0.

PROOF. See proof of Lemma 7.4 �

LEMMA 7.8. Suppose that the assumptions of Theorem 7.1 hold. Then there

exists a constant M > 0 (independent of ε and K) such that, for all ε > 0

lim
K→∞

σ−1
K P

[

θK
res. size 0 >

(

θK
near ψ(0) + ln(K)σ

−1−α/2
K

)

∧ θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK
near ψ(0) :

∣
∣〈ν̃t ,1〉 − ψ(0)

∣
∣ > MεσK

}]

= 0.

PROOF. To prove this lemma, we use a coupling with a continuous time
branching process as in the proof of Lemma 7.3. For any θK

near ψ(0) ≤ t ≤
θK

2 succ. mut. ∧θK
diversity ∧ inf{t ≥ θK

near φ(0) : |〈ν̃t ,1〉−ψ(0)| > MεσK}, any individual

of M0(ν̃t ) gives birth to a new individual with trait RK with rate
(

1 − uKm
(

RK))

b
(

RK)

∈
[

b
(

RK)

− uKb, b
(

RK)]

,(7.74)

and dies with rate

d
(

RK)

+ c
(

RK ,RK)

M
0(ν̃t ) +

∫

X×N

c
(

RK , ξ
)

d̃νt (ξ),(7.75)

which is larger than dZ ≡ d(RK) + c(RK ,RK + σKh)z(RK + σKh) −
CM

total deathεσK where CM
total death ≡ M + c⌈3/α⌉ − 2h∂2c(R

K ,RK). Therefore, we
construct, by using a standard coupling argument, a process Zt such that

Zt ≥M
0(ν̃t )(7.76)

for all θK
near ψ(0) ≤ t ≤ θK

2 succ. mut. ∧ θK
diversity ∧ inf{t ≥ θK

near φ(0) : |〈ν̃t ,1〉 − ψ(0)| >
MεσK}. The process Zt is a linear birth–death process starting at ⌈5

4εK⌉, with
birth rate per individual bZ = b(RK) and with death rate per individual dZ . Since

bZ − dZ = f
(

RK ,RK + σKh
)

+ CM
total deathεσK

= −σKh∂1f
(

RK + σKh,RK + σKh
)

+ CM
total deathεσK + O

(

(σKh)2)

(7.77)

≡ −σKξK
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is negative and of order σK , the process Zt is subcritical.
Note that ξK ≥ infx∈X

∂1f (x,x)
2 > 0. Let τZ

i be the first hitting time of level i

by Zt , then we have

(7.78) P
[

τZ
⌈2εK⌉ < τZ

0
]

≤ exp
(

−Kα)

compare with the proof of Proposition A.5. Since Zt ≥ M
0(ν̃t ), we obtain also

that, with high probability, M0(ν̃t ) stays smaller than ⌈2εK⌉ before it dies out.
For any t ≥ 0 and n ∈ N, the distribution of the extinction time of Zt for bZ �= dZ

is given by

Pn

(

τZ
0 ≤ t

)

=
(

dZ − dZ exp((dZ − bZ)t)

bZ − dZ exp((dZ − bZ)t)

)n

(7.79)

(cf. [2] page 109 and [6]). Therefore, we can compute in our case where dZ −bZ =
σKξK with ξK uniformly positive

P
[

τZ
0 ≤ ln(K)σ

−1−α/2
K

]

=
(

dZ − dZ exp ((dZ − bZ) ln(K)σ
−1−α/2
K )

bZ − dZ exp((dZ − bZ) ln(K)σ
−1−α/2
K )

) 5
4 εK

=
(

dZ − dZKξKσ
−α/2
K

dZ − σKξK − dZKξKσ
−α/2
K

) 5
4 εK

=
(

1 − ξKσK

dZ(KξKσ
−α/2
K − 1) + σKξK

) 5
4 εK

(7.80)

≥
(

1 − σK

(
5

4
εK

)−1
K−1

) 5
4 εK

≥ 1 − O
(

σKK−1)

≥ 1 − o(σK),

which proves the lemma. �

7.5. Step 5: The population becomes monomorphic and stays close to its equi-

librium. After the extinction time of the resident trait, we have to wait at most
ln(K)σ

−1−α/2
K time until the population is monomorphic with trait RK + σKh.

LEMMA 7.9. Suppose that the assumptions of Theorem 7.1 hold. Then there

exists a constant M > 0 (independent of ε and K) such that, for all ε > 0:

lim
K→∞

σ−1
K P

[

θK
fixation >

(

θK
res. size 0 + ln(K)σ

−1−α/2
K

)

∧ θK
2 succ. mut. ∧ θK

diversity

∧ inf
{

t ≥ θK
near φ(0) :

∣
∣〈ν̃t ,1〉 − ψ(0)

∣
∣ > MεσK

}]

= 0.
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PROOF. By the last lemmata, we have θK
fixation = inf{t ≥ θK

res. size 0 :
|Supp(ν̃K

t )| = 1, |〈ν̃t ,1〉 − ψ(0)| < (M/3)εσK} with probability 1 − o(σK). Set
D ≡ {k ∈ N : 1 ≤ M

k(ν̃θK
res. size 0

) < εσKK}. Then |D| ≤ ⌈3/α⌉, and none of these

traits are successful since we have seen that θK
res. size 0 is smaller than θK

2 succ. mut.
and θK

diversity with probability of order 1 − o(σK). By applying Proposition A.3
and using the Markov inequality, we obtain that the life time of each of these
subpopulations is with probability 1 − o(σK) smaller than ln(K)σ

−1−α/4
K . There-

fore, if no new mutant is born between θK
res. size 0 and θK

res. size 0 + ln(K)σ
−1−α/4
K ,

we obtain the claim. On the other hand, as in Lemma 6.4, the number of mu-
tants born in the time interval [θK

res. size 0, θ
K
res. size 0 + ln(K)σ

−1−α/2
K ] is stochasti-

cally dominated by a Poisson point process, AK(t), with parameter auKK , where
a ≡ supx∈X z(x)b(x)m(x) + 1. Hence, the probability to have no new mutant in
this interval is

P
[

AK(

ln(K)σ
−1−α/2
K

)

= 0
]

= exp
(

− ln(K)σ
−1−α/2
K auKK

)

(7.81)
≥ exp

(

−σ
α/2
K

)

≥ 1 − o(1).

Because the probability that a mutant is successful is of order σK , the proba-
bility that a successful mutant is born between times θK

res. size 0 and θK
res. size 0 +

ln(K)σ
−1−α/2
K is o(σK). Since

P
[

AK(

ln(K)σ
−1−α/2
K

)

≤ ⌈3/α⌉
]

= exp
(

− ln(K)σ
−1−α/2
K auKK

)
⌈3/α⌉
∑

i=0

ln(K)σ
−1−α/2
K auKK

i

(7.82)
≥ 1 −

(

ln(K)σ
−1−α/2
K auKK

)⌈3/α⌉+1

≥ 1 − σ
3/2
K = 1 − o(σK),

there are maximal ⌈3/α⌉ unsuccessful mutations in this interval. With the same
argument as before the life time of each of these subpopulations is with probability
1 − o(σK) smaller than ln(K)σ

−1−α/4
K . Therefore, with probability 1 − o(σK) the

maximal possible time interval where at least one mutant individual is alive is
smaller or equal ln(K)σ

−1−α/4
K + ⌈3/α⌉ ln(K)σ

−1−α/4
K ≪ ln(K)σ

−1−α/2
K . Recall

from Lemma 7.7 that if |〈ν̃t ,1〉 − ψ(0)| > (M/3)εσK at the first time when the
population is again monomorphic, then the time the process needs to enter the
(M/3)εσK -neighborhood of ψ(0) is smaller than SK , which can be chosen smaller
than σ 1+α

K /(KuK). This proves the lemma. �

This ends Step 5 and the second invasion phase. Note that the estimates of the
two phases do not depend on the exact trait value of the resident trait, especially
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the a priori different constants M . In fact, we can use in all lemmata the same con-
stant M , namely the largest. Therefore, we can apply our results for the successful
mutant trait RK

1 = RK + σKh, which is the next resident trait by using the strong
Markov property for (ν̃,L) at the stopping time θK

fixation.

8. Convergence to the CEAD. Our goal is to find T0 > 0 and to construct,
for all ε > 0, two measure valued processes, (μ

1,K,ε
t , t ≥ 0) and (μ

2,K,ε
t , t ≥ 0), in

D([0,∞),M(X )) such that

(8.1) lim
K→∞

P

[

∀t ≤ T0

KuKσ 2
K

: μ1,K,ε
t � νK

t � μ
2,K,ε
t

]

= 1,

and for j ∈ {1,2}

lim
K→∞

P

[

sup
0≤t≤T0

∥
∥μ

i,K,ε

t/(KuKσ 2
K )

− z(xt )δxt

∥
∥

0 > δ(ε)
]

= 0,(8.2)

for some function δ independent of x,K such that δ(ε) → 0 when ε → 0. This
easily implies (4.5) for all T ≤ T0.

The result for all T > 0 then follows from the strong Markov property. Indeed,
the construction below implies that there exists a stopping time:

(8.3) τ ∈
[

T0/2KuKσ 2
K , T0/KuKσ 2

K

]

(a fixation time) such that, with probability converging to 1, νK
τ has a unique (ran-

dom) point Y as support and a total mass belonging to [z̄(Y ) − MσK , z̄(Y ) +
MσK ]. Hence, (8.1) and (8.2) also hold for the process (νK

τ+t , t ≥ 0), and (4.5) is
thus true for all T ≤ 3T0/2. We obtain (4.5) for any fixed T > 0 by induction.

8.1. Construction of two processes μK,1 and μK,2 such that μ
1,K
t � νK

t �

μ
2,K
t . Fix T > 0. Let θK

i denote the random time of ith invasion (i.e., θK
i =

θK
i,invasion), θK

i,fixation the time of ith fixation and RK
i the trait of the ith suc-

cessful mutant. Let us fix the following initial conditions R
K,1
0 = RK

0 − AσK ,

R
K,2
0 = RK

0 + AσK and θ
K,1
0 = θ

K,2
0 = 0. Assume that we have constructed θ

K,1
i

and θ
K,2
i , and R

K,1
i and R

K,2
i . By Theorem 6.2 and the Markov property, we can

construct two random variables R
K,1
i+1 and R

K,2
i+1 such that

(8.4) R
K,1
i+1 − R

K,1
i ≤ RK

i+1 − RK
i ≤ R

K,2
i+1 − R

K,2
i

with probability 1−o(σK). Moreover, R
K,1
i+1 −R

K,1
i = RK

i+1 −RK
i = R

K,2
i+1 −R

K,2
i

with probability 1 − O(ε) and R
K,2
i+1 − R

K,1
i+1 ≤ AσK . The distributions of R

K,1
i+1 −
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R
K,1
i and R

K,2
i+1 − R

K,2
i are (cf. Corollary 6.10)

rε
1

(

RK
i , h

)

≡ P
[

R
K,1
i+1 = RK

i + σkh
]

(8.5)

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

M(RK
i ,1)qε

1(RK
i ,1)

pε
2(R

K
i )

+ 1 − pε
1(R

K
i )

pε
2(R

K
i )

, if h = 1,

M(RK
i , h)qε

1(RK
i , h)

pε
2(R

K
i )

, if h ∈ {2, . . . ,A}

and

rε
2

(

RK
i , h

)

≡ P
[

R
K,2
i+1 = RK

i + σkh
]

(8.6)

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

M(RK
i , h)qε

1(RK
i , h)

pε
2(R

K
i )

, if h ∈ {1, . . . ,A − 1},

M(RK
i ,A)qε

1(RK
i ,A)

pε
2(R

K
i )

+ 1 − pε
1(R

K
i )

pε
2(R

K
i )

, if h = A,

where

qε
1(x,h) = h

∂1f (x, x)

b(x)
− C1

Bernoulliε,

(8.7)

qε
2(x,h) = h

∂1f (x, x)

b(x)
+ C2

Bernoulliε

and pε
j (x) = ∑A

h=1 qε
j (x,h)M(x,h) for j = 1,2. (Note that we changed a bit

the notation of Corollary 6.10 to make explicit the dependence on ε and RK
i .)

Since we assumed that the fitness gradient ∂1f (x, x) is positive and uniformly
lower bounded on X , the transition probabilities rε

j (x,h), j = 1,2 are uniformly
Lipschitz-continuous functions of x with some Lipschitz constant Cr

Lip.
By Theorem 6.2 and Lemmata 6.7 and 6.4, we can construct two exponential

random variables, E
K,1
i+1 and E

K,2
i+1 ,with parameters a

K,ε
1 (RK

i )pε
1(R

K
i )σKuKK and

a
K,ε
2 (RK

i )pε
2(R

K
i )σKuKK given by

a
K,ε
1 (x) =

(

z̄(x) − εσKM
)

b(x)m(x),(8.8)

a
K,ε
2 (x) =

(

z̄(x) + εσK

(

M + ⌈3/α⌉
))(

b(x)m(x) + C
b,m,M
L AσK

)

,(8.9)

such that

(8.10) P
[

E
K,2
i+1 ≤ θK

i+1 − θK
i,fixation ≤ E

K,1
i+1 + ln(K)σ

−1−α/2
K

]

= 1 − o(σK).

Note that this inequality involves θK
i,fixation instead of θK

i since we apply the Markov
property at the fixation time of Lemma 7.9 before we can apply Theorem 6.2.
However, Lemma 7.9 entails that we also have

(8.11) P
[

E
K,2
i+1 ≤ θK

i+1 − θK
i ≤ E

K,1
i+1 + 6 ln(K)σ

−1−α/2
K

]

= 1 − o(σK).
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We then define

(8.12) θ
K,1
i+1 − θ

K,1
i ≡ E

K,1
i+1 + 6 ln(K)σ

−1−α/2
K and θ

K,2
i+1 − θ

K,2
i ≡ E

K,2
i+1 .

In addition, by their construction in Section 6, it is clear that the random vectors
{(EK,1

i+1 ,E
K,2
i+1 , R

K,1
i+1 − R

K,1
i ,R

K,2
i+1 − R

K,2
i )}i≥0 are independent conditionally on

(RK
j )j≥0.

LEMMA 8.1. With the previous notation, the stochastic processes μK,1 and

μK,2 in D([0,∞),M(X )) defined for all t ≥ 0 by

μ
1,K
t =

(

z̄
(

RK
j

)

− (Mε + C)σK

)

δ
R

K,1
i

,

(8.13)
for t ∈ [θK,1

i , θ
K,1
i+1 ) ∩ [θK

j , θK
j+1),

μ
2,K
t =

(

z̄
(

RK
j

)

+
(

Mε +
⌈

3

α

⌉

ε + C

)

σK

)

δ
R

K,2
i

,

(8.14)
for t ∈ [θK,2

i , θ
K,2
i+1 ) ∩ [θK

j , θK
j+1),

for some constant C independent of K,x, ε, satisfy for all T > 0

(8.15) lim
K→∞

P

[

∀t ≤ T

KuKσ 2
K

: μ1,K
t � νK

t � μ
2,K
t

]

= 1.

Note that the support of μj,K , j = 1,2, is defined from the sequences (R
K,j
i )i≥0

and (θ
K,j
i )i≥1 but the mass of μj,K is defined from the sequences (RK

i )i≥0 and
(θK

i )i≥1.

PROOF. Let us fix T > 0 and Ŵ > 0. Since each of the steps previously de-
scribed holds with probability 1 − o(σK), we deduce that the above construction
can be done on a good event of probability 1 − o(1), for all integers i ≤ Ŵ/σK .
Since in addition, on X , a

K,ε
2 (x)pε

2(x) is uniformly bounded from below by a
positive constant a, the random variables E

K,2
i can be coupled with i.i.d. exponen-

tial ones of parameter aKuKσK , and hence P[θK,2
⌊Ŵ/σK⌋ < T/(KuKσ 2

K)] is smaller
than the probability that a Poisson process with parameter aKuKσK is larger that
⌊Ŵ/σK⌋ at time T/(KuKσ 2

K). By the law of large numbers for Poisson processes,
we deduce that, if Ŵ > T a (which we assume true in the sequel),

(8.16) lim
K→∞

P

[

θ
K,2
⌊Ŵ/σK⌋ <

T

KuKσ 2
K

]

= 0.

Let us recall that, on the previous good event of probability 1−o(1), the number,
the trait and the size of the living mutant populations and the size of the resident
population are controlled at any time in the ith first phase (Lemmata 6.3 and 6.9).
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In addition, during the ith second phase, the number, trait, and size of living mutant
populations are controlled (see all the lemmas of Section 7), the total mass of
the population stays within the MεσK -neighborhood of φ(y) or ψ(y) for some
y ∈ [0, z̄(RK

i )] (Lemmata 7.4 and 7.6). Since |φ(y)− z̄(RK
i )| ≤ CσK and |ψ(y)−

z̄(RK
i )| ≤ CσK for some constant C, as seen in (7.26) and (7.69), and since the

sequences (R
j,K
i )i≥0 for j = 1,2 and (RK

i )i≥0 are all increasing on the good event,

we deduce the required comparison between the supports of μ
1,K
t , νK

t , and μ
2,K
t

for t ≤ T

KuKσ 2
K

, on the good event. Since we used z̄(RK
j ) to define the masses of

μ
1,K
t and μ

2,K
t , the required comparison between the masses is also clear. �

Note that, since the function z̄ may not be nondecreasing, replacing z̄(RK
j ) by

z̄(R
K,1
j ) in the definition of μ

1,K
t may not imply the required comparison between

the masses of μ
1,K
t , νK

t and μ
2,K
t .

The next goal is now to prove the convergence of both processes μ
K,j

t/KuKσ 2
K

for j = 1,2 to z̄(xt )δxt in probability in L∞(M(X ),‖ · ‖0). For this, we will use
standard convergence results of Markov jump processes. However, the two pro-
cesses μK,j , j = 1,2 are not Markov because the ith jump rates and transition
probabilities defined above depend on RK

i which is close, but different from R
K,j
i .

Therefore, we introduce a small parameter, η > 0, and we construct two Markov
processes μK,j,ε,η, j = 1,2 in D([0,∞),M(X )) such that

lim
K→+∞

P

[

μ
K,1,ε,η
(t−1/(KuKσK ))∨0 � μ

1,K
t � νK

t � μ
2,K
t � μ

K,2,ε,η
t ,

(8.17)

∀t ≤ T

KuKσ 2
K

∧ SK
η

]

= 1,

where SK
η is the first time where the distance between the support of μ

K,1,ε,η
t , and

μ
K,2,ε,η
t is larger than η. The last equation will be proved below in Section 8.2.

The time-shift of −1/(KuKσK) in μK,1,ε,η is due to the terms 6 ln(K)σ
−1−α/2
K

in (8.12). We will next study the convergence of these two Markov processes when
K → ∞ and prove in Section 8.3 that, for a convenient choice of η, there exists
some T0 > 0 independent of K,x, ε, η such that

(8.18) lim
K→+∞

P

[

SK
η <

T0

KuKσ 2
K

]

= 0.

8.2. Proof of (8.17). For all x ∈ X , we define (r̄
ε,η
1 (x,h),1 ≤ h ≤ A), and

(r̄
ε,η
2 (x,h),1 ≤ h ≤ A) by, for all 1 ≤ ℓ ≤ A,

(8.19)
ℓ

∑

h=1

r̄
ε,η
1 (x,h) ≡

[
ℓ

∑

h=1

(

rε
1 (x,h) + Cr

Lipη
)

]

∧ 1 ≥ sup
y∈[x,x+η]

ℓ
∑

h=1

rε
1(y,h)
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and

(8.20)
ℓ

∑

h=1

r̄
ε,η
2 (x,h) ≡

[
ℓ

∑

h=1

(

rε
2 (x,h) − Cr

Lipη
)

]

∨ 0 ≤ inf
y∈[x,x+η]

ℓ
∑

h=1

rε
1(y,h).

Note that r̄
ε,η
1 (x, ·) and r̄

ε,η
2 (x, ·) are probability distributions on {1, . . . ,A} for

all x ∈ X and that, by standard coupling arguments, for all x < y such that y −
x ≤ η, the distribution r̄

ε,η
1 (x, ·) is stochastically dominated by the distribution

rε
1(y, ·) and the distribution rε

2(x, ·) is stochastically dominated by the distribution
r̄
ε,η
2 (y, ·). We define similarly

(8.21) ā
K,ε,η
1 (x) ≡ a

K,ε
1 (x)pε

1(x) − Ca
Lipη ≤ inf

y∈[x,x+η]∩X
a

K,ε
1 (y)pε

1(y),

and

(8.22) ā
K,ε,η
2 (x) ≡ a

K,ε
2 (x)pε

2(x) + Ca
Lipη ≥ sup

y∈[x−η,x]∩X
a

K,ε
2 (y)p2(y),

where Ca
Lip is a uniform Lipschitz constant for the functions a

K,ε
j pε

j , j = 1,2.

Note that a
K,ε,η
1 (x) > 0 for all x ∈X if η is small enough.

It is then clear that there exist two Markov chains (R̄
K,j,η
i )i≥0, j = 1,2, with

initial condition R̄
K,j,η
0 = R

K,j
0 and with transition probabilities r̄

K,ε,η
j (x,h) from

x to x + h, such that, for all i ≥ 0 satisfying R̄
K,2,η
i − R̄

K,1,η
i ≤ η,

R̄
K,1,η
i+1 − R̄

K,1,η
i ≤ R

K,1
i+1 − R

K,1
i and

(8.23)
R

K,2
i+1 − R

K,2
i ≤ R̄

K,2,η
i+1 − R̄

K,2,η
i ≤ R

K,1
i+1 − R

K,1
i .

Similarly, there are random variables Ē
K,j,η
i+1 , j = 1,2, independent and expo-

nentially distributed with parameters ā
K,ε,η
j (R̄

K,j,η
i ) conditionally on (R̄

K,j,η
i )i≥0,

such that Ē
K,2,η
i+1 ≤ E

K,2
i+1 and E

K,1
i+1 ≤ Ē

K,1,η
i+1 . We then define θ̄

K,j,η
i+1 − θ̄

K,j,η
i =

E
K,j,θ
i+1 with θ̄

K,j,η
0 = 0.

Since the function z̄ is C z̄
Lip-Lipschitz, it is clear that (8.17) is satisfied for the

processes:

μ̄
K,1,ε,η
t =

(

z̄
(

X̄
K,1,η
t

)

− (Mε + C̄)σK − C z̄
Lipη

)

δ
X̄

K,1,η
t

and(8.24)

μ
K,2,ε,η
t =

(

z̄
(

X
K,2,η
t

)

+
(

Mε + ⌈3/α⌉ε + C̄
)

σK + C z̄
Lipη

)

δ
X

K,2,η
t

,(8.25)

where

X̄
K,1,η
t = R̄

K,1,η
i ,

for t ∈ [θ̄K,1,η
i + 6i ln(K)σ

−1−α/2
K , θ̄

K,1,η
i+1 + 6(i + 1) ln(K)σ

−1−α/2
K ),
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and

(8.26) X
K,2,η
t = R̄

K,2,η
i , for t ∈ [θ̄K,2,η

i , θ̄
K,2,η
i+1 ).

By construction, the processes XK,2,η and μK,2,η are Markov jump processes, but
the process X̄K,1,η is not because of the terms 6 ln(K)σ

−1−α/2
K involved in its

definition. However, the process μ
K,1,ε,η
t = (z̄(X

K,1,η
t ) − εσKM − C z̄

Lipη)δ
X

K,1,η
t

is Markov, where

(8.27) X
K,1,η
t = R̄

K,1,η
i , for t ∈ [θ̄K,1,η

i , θ̄
K,1,η
i+1 ).

The proof of (8.16) above also applies to the processes μK,1,ε,η, and μ̄K,1,ε,η.
Since in addition the support of μ

K,1,ε,η
t is nondecreasing, it follows that

(8.28) μ
K,1,ε,η

(t−6Ŵ ln(K)σ
−2−α/2
K )∨0

� μ̄
K,1,ε,η
t for all t ≤ T/

(

KuKσ 2
K

)

with probability 1 + o(1). Our assumption (4.2) entails (8.17).

8.3. Convergence of XK,j,η when K → +∞ and proof of (8.18). The two
Markov processes X

K,1,η
t/(KuKσK ), and X

K,2,η
t/(KuKσK ) fit exactly to the framework and

assumptions of Theorem 2.1 of Chapter 11 of [12]: their state spaces are (up to a
translation) a subset of σKZ, and their transition rates from z to z + hσK have the
form σ−1

K [βh(z)+O(σK)] for some Lipschitz functions βh. For such a process X,
provided X0 converges a.s. to x0, the process (Xt/σK

, t ≥ 0) converges when σK →
0 almost surely in L∞([0, T ]) for all T > 0 to the unique deterministic solution of
the ODE dx(t)/dt = ∑

h hβh(x) with x(0) = x0. In our situation, we obtain, for
j = 1,2, that

(8.29) lim
K→+∞

sup
t∈[0,T ]

∣
∣X

K,j,η

t/(KuKσ 2
K )

− xj (t)
∣
∣ = 0 a.s.,

where x1 and x2 are the unique solutions such that x1(0) = x2(0) = x of the ODEs

dx1(t)

dt
=

(

z̄
(

x1(t)
)

b
(

x1(t)
)

m
(

x1(t)
)

pε
1
(

x1(t)
)

− Ca
Lipη

)

(8.30)

×
A

∑

h=1

hr̄
ε,η
1

(

x1(t), h
)

and

dx2(t)

dt
=

(

z̄
(

x2(t)
)

b
(

x2(t)
)

m
(

x2(t)
)

pε
2
(

x2(t)
)

+ Ca
Lipη

)

(8.31)

×
A

∑

h=1

hr̄
ε,η
2

(

x2(t), h
)

.
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LEMMA 8.2. For all T > 0, and for j = 1,2,

(8.32) sup
t∈[0,T ]

∣
∣xj (t) − xt

∣
∣ ≤ CT eCT (η + ε),

for a constant C independent of x, T , ε and η, where xt is the solution of the

CEAD (4.3) with initial condition x0 = x.

PROOF. We only write the proof for j = 1, the case j = 2 being similar. Since
the functions r̄

ε,η
j , j = 1,2, z̄, b, m and p1 are bounded by constants independent

of K,ε,η, we have for all t ∈ [0, T ] and for a constant C > 0 that may change
from line to line,

∣
∣xt − x1(t)

∣
∣ ≤ CCa

LipηT +
∫ t

0

∣
∣
∣
∣
∣

(

z̄bmpε
1
)(

x1(s)
)

A
∑

h=1

hr̄
ε,η
1

(

x1(s), h
)

−
(

z̄bmpε
1
)

(xs)

A
∑

h=1

h2M(xs, h)∂1f (xs, xs)

b(xs)p
ε
1(xs)

∣
∣
∣
∣
∣
ds

(8.33)

≤ C
(

Ca
Lip + ACr

Lip
)

T η + C

∫ t

0

∣
∣xs − x1(s)

∣
∣ds

+ C

∫ t

0

A
∑

h=1

∣
∣
∣
∣
rε

1(xs, h) − hM(xs, h)∂1f (xs, xs)

b(xs)p
ε
1(xs)

∣
∣
∣
∣
ds,

where the last inequality follows from the uniform Lipschitz-continuity of all func-
tions involved in the computation. Now, |pε

2(x) − pε
1(x)| ≤ Cε and pε

j (x) ≥ c > 0
for j = 1,2, for some constants C,c > 0 independent of ε and x. Hence, there
exists a constant C such that

∣
∣xt − x1(t)

∣
∣ ≤CT (η + ε) + C

∫ t

0

∣
∣xs − x1(s)

∣
∣ds

+ C

∫ t

0

A
∑

h=1

∣
∣
∣
∣
qε

1(xs, h) − h
∂1f (xs, xs)

b(xs)

∣
∣
∣
∣
M(xs, h) ds.(8.34)

In view of (8.7), we obtain |xt − x1(t)| ≤ CT (η + ε) + C
∫ t

0 |xs − x1(s)|ds. Gron-
wall’s lemma ends the proof of Lemma 8.2. �

In view of Lemma 8.2, there exists T0 > 0 independent of x, ε, η such that, for
all η ≥ ε, supt∈[0,T0] |xj (t) − xt | ≤ η/4. Let us fix η = ε. Combining (8.29) with
the last inequality entails (8.18).
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8.4. End of the proof.

PROOF OF THEOREM 4.1. Defining μ̄K,1,ε = μK,1,ε,ε and μK,2,ε = μK,2,ε,ε ,
and combining (8.17) and (8.18), we see that we have defined a constant, T0 > 0,
such that

lim
K→+∞

P

[

μ̄
K,1,ε
(t−1/(KuKσK ))∨0 � μ

1,K
t � νK

t � μ
2,K
t � μ

K,2,ε
t ,

(8.35)

∀t ≤ T0
KuKσ 2

K

]

= 1.

This is (8.1) with μ
K,1,ε
t = μ̄

K,1,ε
(t−1/(KuKσK ))∨0. It only remains to check (8.2).

Using that η = ε, we get
∥
∥μ

K,1,ε

t/KuKσ 2
K

− z̄
(

x(t)
)

δx(t)

∥
∥

0

≤ C
(

ε + σK +
∣
∣z̄(xt ) − z̄

(

X
K,1,η

(t−σK )∨0/KuKσ 2
K

)∣
∣ +

∣
∣xt − x1

(

(t − σK) ∨ 0
)∣
∣

+
∣
∣X

K,1,η

(t−σK )∨0/KuKσ 2
K

− x1
(

(t − σK) ∨ 0
)∣
∣
)

(8.36)

≤ C′
(

ε + σK

+ sup
t∈[0,T ]

(

|x(t−σK )∨0 − xt | +
∣
∣xt − x1(t)

∣
∣ +

∣
∣X

K,1,η

t/KuKσ 2
K

− x1(t)
∣
∣
)
)

,

for some finite constants C,C′ > 0. The analogous estimate holds for μ
2,K,η

t/KuKσ 2
K

.

Setting, for example, δ(ε) = √
ε, (8.2) follows from (8.29), Lemma 8.2 and the

uniform continuity of xt . This completes the proof of Theorem 4.1. �

APPENDIX

In this section, we state and prove several elementary results, which we used in
the proof of our main theorem. Recall that ‖ · ‖0 is the Kantorovich–Rubinstein
norm on the vector space of finite, signed measures on X , that is,

(A.1) ‖μt‖0 ≡ sup
{∫

X

f dμt : f ∈ Lip1(X ) with sup
x∈X

∣
∣f (x)

∣
∣ ≤ 1

}

,

where Lip1(X ) is the space of Lipschitz continuous functions from X to R. Let
MF (X ) be the set of nonnegative finite Borel-measures on X .

PROPOSITION A.1. Let {νK ,K ≥ 0} and μ be random elements in D([0, T ],
MF (X )). If, for all δ > 0,

(A.2) lim
K→∞

P

[

sup
0≤t≤T

∥
∥νK

t − μt

∥
∥

0 > δ
]

= 0,
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then νK converges in probability, as K → ∞, with respect to the Skorokhod topol-

ogy on D([0, T ],M(X )) to μ.

PROOF. Let us equip MF (X ) with the topology of weak convergence. Ob-
verse that this topology is metrizable with the Kantorovich–Rubinstein norm; see
[4] Volume II, page 193. Let � be the class of strictly increasing, continuous map-
ping of [0, T ] onto itself. If λ ∈ �, then λ(0) = 0 and λ(T ) = T . The Skorokhod
topology on D([0, T ], (MF (X ),‖ · ‖0)) is generated by the distance

(A.3) d(μ, ν) = inf
λ∈�

{

max
{

sup
t∈[0,T ]

∣
∣λ(t) − t

∣
∣, sup

t∈[0,T ]
‖μt − νλt‖0

}}

,

on D([0, T ], (MF (X ),‖ · ‖0)); see, for example, [3], Chapter 3. Since the identity
lies in �, it is clear that d(μ, ν) ≤ supt∈[0,T ] ‖μt − νt‖0. Therefore, if a sequence
of random elements with state space D([0, T ],MF (X )) equipped with the metric
induced by the norm supt∈[0,T ] ‖μt‖0 convergences in probability to μ, it also con-
vergences in probability to μ if D([0, T ],MF (X )) is equipped with the metric d .

�

PROPOSITION A.2. Fix ε > 0 and let σK a sequence in K with K− 1
2 +α ≪

σK ≪ 1. Let Zn be a Markov chain with state space N0 and with the following

transition probabilities:

P[Zn+1 = j |Zn = i]
(A.4)

= p(i, j) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

1, for i = 0 and j = 1,
1

2
− C1iK

−1 + C2εσK , for i ≥ 1 and j = i + 1,

1

2
+ C1iK

−1 − C2εσK , for i ≥ 1 and j = i − 1,

for some constants C1 > 0 and C2 ≥ 0. Let τi be the first hitting time of level i by

Z and let Pa denote the law of Z conditioned on Z0 = a. Then, for all M ≥ 8C2
C1

and for all a ≤ 1
3MεσKK

(A.5) lim
K→∞

eK2α

Pa[τ⌈MεσKK⌉ < τ0] = 0.

REMARK 9. The proposition can be seen as a moderate deviation result for
this particular Markov chain. More precisely, we can prove that there exist two
constants M > 0 and C3 > 0 which depend only on C1 and C2 such that for a <
1
3MεσKK

(A.6) Pa[τ⌈MεσKK⌉ < τ0] ≤ exp
(

−C3K
−1

((
1

3
MεσKK

)2
− a2

))

,

for all K large enough.
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PROOF. We calculate this probability with some standard potential theory ar-
guments. Let h⌈MεσKK⌉,0(a) be the solution of the Dirichlet problem with λ = 0,
that is,

L h⌈MεσKK⌉,0(x) = 0, for 0 < x < ⌈MεσKK⌉,
h⌈MεσKK⌉,0(x) = 1, for x ≥ ⌈MεσKK⌉,(A.7)

h⌈MεσKK⌉,0(x) = 0, for x = 0.

Therefore, we obtain for 0 < a < ⌈MεσKK⌉ (cf. [5] page 188)

(A.8) Pa[τ⌈MεσKK⌉ < τ0] = h⌈MεσKK⌉,0(a) =
∑a

i=1
1

π(i)
1

p(i,i−1)
∑⌈MεσKK⌉

i=1
1

π(i)
1

p(i,i−1)

,

where π = (π(0),π(1),π(2), . . .) is an invariant measure of the one-dimensional
Markov chain Zn. In our case, any invariant measure π has to satisfy, for all i ≥ 1,

π(0) = p(1,0)π(1) and
(A.9)

π(i) = p(i − 1, i)π(i − 1) + p(i + 1, i)π(i + 1).

Therefore, π with π(0) = 1, π(1) = 1
p(1,0)

and π(i) = ∏i−1
j=1

p(j,j+1)
p(j,j−1)

1
p(i,i−1)

is the
unique invariant measure for the Markov chain Zn. Thus, we get from (A.8) that

h⌈MεσKK⌉,0(a) =
∑a

i=1
∏i−1

j=1
p(j,j−1)
p(j,j+1)

∑⌈MεσKK⌉
i=1

∏i−1
j=1

p(j,j−1)
p(j,j+1)

(A.10)

=
∑a

i=1 exp(
∑i−1

j=1 ln(
1+2C1K

−1j−2C2εσK

1−2C1K
−1j+2C2εσK

))

∑⌈MεσKK⌉
i=1 exp(

∑i−1
j=1 ln(

1+2C1K
−1j−2C2εσK

1−2C1K
−1j+2C2εσK

)
︸ ︷︷ ︸

=:f (j)

)
.

For all j ≤ MεσKK , we can approximate f (j) as follows:

f (j) = ln
(

1 + 4C1K
−1j − 4C2εσK

1 − 2C1K−1j + 2C2εσK

)

= 4C1K
−1j − 4C2εσK

1 − 2C1K−1j + 2C2εσK

− O

((
4C1K

−1j − 4C2εσK

1 − 2C1K−1j + 2C2εσK

)2)

(A.11)

= 4C1
j

K
− 4C2εσK + O

((
j

K

)2
+ εσK

j

K
+ ε2σ 2

K

)

= 4C1
j

K
− 4C2εσK + O

(

(MεσK)2)

.
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Therefore,

h⌈MεσKK⌉,0(a)

≤
∑a

i=1 exp(
∑i−1

j=1 4C1
j
K

+ O((MεσK)2)
∑⌈MεσKK⌉

i=1 exp(
∑i−1

j=1 4C1
j
K

− 4C2εσK − O((MεσK)2)
(A.12)

≤ a exp(2C1a
2K−1 + O(a(MεσK)2)

∑⌈MεσKK⌉
i=1 exp(2C1K−1(i2 − i) − 4C2εσK i − O((i − 1)(MεσK)2))

≤ a exp(2C1a
2K−1 + O(a(MεσK)2)

∑⌈MεσKK⌉
i= 1

2 ⌈MεσKK⌉ exp(2C1K−1i2 − (2C1K−1 + 4C2εσK)i − O(i(MεσK)2))
.

Choosing M ≥ 8C2
C1

, if a < MεσKK
3 , then

h⌈MεσKK⌉,0(a)

≤ a exp(2C1a
2K−1 + O(a(MεσK)2)

1
2⌈MεσKK⌉ exp((1

2C1M − 2C2)Mε2σ 2
KK − O((εσM)3K + εσKM))

(A.13)

≤ 2a
(

⌈MεσKK⌉
)−1 exp

(

C1K
−1

(

2a2 − 1

4

(

⌈MεσKK⌉
)2

))

≤ exp
(

−C3K
−1

((
1

3
⌈MεσKK⌉

)2
− a2

))

.

Since K− 1
2 +α ≪ σK when K tends to infinity, (A.5) follows. �

PROPOSITION A.3. Let (Zt )t≥0 be a branching process with birth rate per

individual b and death rate per individual d . Let τi be the first hitting time of

level i by Z and let Pj denote the law of Z conditioned on Z0 = j , and Ej the

corresponding expectation. Then

Pj [τk < τ0] = (d/b)j − 1

(d/b)k − 1
for all 1 ≤ j ≤ k − 1,(A.14)

∣
∣
∣
∣
P1[τk < τ0] − [b − d]+

b

∣
∣
∣
∣
≤ k−1 and(A.15)

E1[τk ∧ τ0] ≤ 1 + ln(k)

b
,(A.16)

where [b − d]+ ≡ max{b − d,0}. Moreover, if Zt is slightly super-critical, that is,
b = d + ε, then

max
n≤k

En[τk ∧ τ0]
Pn[τk < τ0]

≤ 1 + ln(k)

ε
.(A.17)
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PROOF. Let pj ≡ Pj [τk < τ0]. Then p0 = 0, pk = 1, and pj = b
b+d

pj+1 +
d

b+d
pj−1 for all 1 ≤ j ≤ k − 1 by the Markov property. From this recursion, we

obtain the characteristic polynomial:

P(x) = bx2 − (b + d)x + d.(A.18)

With its roots 1 and d/b, we obtain the following general solution for the recursion:

pn = κ0 · 1n + κ1

(
d

b

)n

,(A.19)

where κ0 and κ1 are constants. From the initial condition p0 = 0 and pk = 1, we
obtain κ0 = −((d

b
)k − 1)−1 and κ1 = ((d

b
)k − 1)−1. Therefore,

pn =
(d
b
)n − 1

(d
b
)k − 1

and p1 =
d
b

− 1

(d
b
)k − 1

= 1

1 + d
b

+ · · · + (d
b
)k−1

.(A.20)

If d ≥ b, this computation implies that p1 ≡ P1[τk < τ0] ≤ 1/k and [b − d]+ = 0.
If d < b,

P1[τk < τ0] − b − d

b

=
d
b

− 1

(d
b
)k − 1

−
(

1 − d

b

)
(d
b
)k − 1

(d
b
)k − 1

=
(d
b

− 1)(d
b
)k

(d
b
)k − 1

=
d
b

− 1

1 − ( b
d
)k

(A.21)

=
d
b
(1 − b

d
)

1 − ( b
d
)k

= 1
b
d
(1 + b

d
+ · · · + ( b

d
)k−1)

= 1
b
d

+ · · · + ( b
d
)k

≤ 1

k
.

Similarly, if en ≡ En[τk ∧ τ0], then en is the solution of the following nonhomo-
geneous Dirichlet problem:

L en = −1, for n ∈ {1, . . . , k − 1},
(A.22)

en = 0, for n ∈ N0 \ {1, . . . , k − 1},
where (L f )(x) = x(b[f (x + 1) − f (x)] + d[f (x − 1) − f (x)]) is the generator
of the branching process Z. Therefore, we have to solve the following nonhomo-
geneous recurrence:

(A.23) en+2 − b + d

b
en+1 + d

b
en = −1

b(n + 1)
and e0 = ek = 0.

We solve this by variation of parameters. Thus, we first solve the associated linear
homogeneous recurrence relation:

(A.24) hn+2 − b + d

b
hn+1 + d

b
hn = 0.
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As we have seen before hn = κ21 + κ3(
d
b
)j for any κ2, κ3 ∈R solves the equation.

Obverse that these functions are the harmonic functions of L . Second, we have
to find a particular solution. Let (x1j , x2j ) the solution of the system of linear
equations

x1j +
(

d

b

)j+1
x2j = 0,(A.25)

x1j +
(

d

d

)j+2
x2j = − 1

b(j + 1)
,(A.26)

then

ep
n =

n−1
∑

j=0

x1j 1n +
n−1
∑

j=0

x2j

(
d

b

)n

= −1

b − d

n
∑

j=1

1

j
+ 1

b − d

n
∑

j=1

1

j

(
b

d

)j (
d

b

)n

(A.27)

= 1

b − d

n
∑

j=1

1

j

((
d

b

)n−j

− 1
)

is a particular solution. Now, we obtain we obtain the following general solution
for the recurrence:

(A.28) en = hn + ep
n = κ2 + κ3

(
d

b

)n

+ 1

b − d

n
∑

j=1

1

j

((
d

b

)n−j

− 1
)

.

We have the boundary condition e0 = ek = 0, therefore, κ2 and κ3 are given by the
solution of the following system of linear equations:

κ2 + κ3

(
d

b

)0
+ 1

b − d

0
∑

j=1

1

j

((
d

b

)0−j

− 1
)

= 0,(A.29)

κ2 + κ3

(
d

b

)k

+ 1

b − d

k
∑

j=1

1

j

((
d

b

)k−j

− 1
)

= 0,(A.30)

and we obtain that

en = 1

b − d

k
∑

j=1

1

j

(d
b
)k−j − 1

(d
b
)k − 1

− 1

b − d

k
∑

j=1

1

j

(d
b
)k−j − 1

(d
b
)k − 1

(
d

b

)n

+ 1

b − d

n
∑

j=1

1

j

((
d

b

)n−j

− 1
)

(A.31)

= 1

b − d

k
∑

j=1

1

j

((d
b
)k−j − 1)(1 − (d

b
)n)

(d
b
)k − 1

+ 1

b − d

n
∑

j=1

1

j

((
d

b

)n−j

− 1
)

.
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With this formula, we can easily prove the second inequality of the proposition,

(A.32) e1 = 1

b − d

k
∑

n=1

1

n

(d
b
)k−n − 1

(d
b
)k − 1

(

1 − d

b

)

+ 0 ≤ 1

b

k
∑

n=1

1

n
≤ 1 + ln(k)

b
.

Finally, we obtain for slightly super-critical Zt , that is, with b = d + ε,

En[τk ∧ τ0]
Pn[τk < τ0]

= en

pn

= 1

b − d

k
∑

j=1

1

j

((
d

b

)k−j

− 1
)

(−1)

︸ ︷︷ ︸

≤1

+ 1

b − d

n
∑

j=1

1

j

((d
b
)n−j − 1)(1 − (d

b
)k)

1 − (d
b
)n

︸ ︷︷ ︸

≤0

(A.33)

≤ 1

ε

k
∑

j=1

1

j
≤ 1 + ln(k)

ε
,

which proves (A.17). �

PROPOSITION A.4. Let (ZK
t )t≥0 be a sequence branching process with birth

rate per individual b ≥ 0 and death rate per individual d ≥ 0 and |b−d| = O(σK),
where K−1/2+α ≪ σK ≪ 1. Let τi be the first hitting time of level i by Z and let

Pj denote the law of Z conditioned on Z0 = j .

(a) The invasion probability can be approximated up to an error of order

exp(−Kα):

(A.34) lim
K→∞

exp
(

Kα)
∣
∣
∣
∣
P1[τ⌈εσKK⌉ < τ0] − [b − d]+

b

∣
∣
∣
∣
= 0.

(b) If b > d (super-critical case), we have exponential tails, that is,

lim
K→∞

exp
(

σ
−α/3
K

)

P1
[

τ⌈εσKK⌉ > ln(K)σ
−1−α/2
K |τ⌈εσKK⌉ < τ0

]

= 0(A.35)

and

lim
K→∞

exp
(

Kα)

P⌈εσKK⌉[τ⌈εK⌉ > τ0] = 0.(A.36)

PROOF. (a) Compare with (A.14) that

P1[τ⌈εσKK⌉ < τ0] = (d/b) − 1

(d/b)⌈εσKK⌉ − 1
.(A.37)

If b > d (subcritical case), there exist two constants Csub > 0 and C̄sub > 0 such
that 1+CsubσK ≤ d/b ≤ 1+ C̄subσK . Therefore, the left-hand side of (A.37) does
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not exceed

C̄subσK

(1 + CsubσK)⌈εσKK⌉ − 1
≤ C̄subσK

exp(CsubσK⌈εσKK⌉ − O(σ 3
KεK)) − 1

(A.38)
= o

(

e−Kα )

.

The last equality holds, since K2α ≪ σ 2
KK . If b > d (super-critical case), we ob-

tain similarly

(A.39)
∣
∣
∣
∣
P1[τk < τ0] − b − d

b

∣
∣
∣
∣
=

∣
∣
∣
∣

d
b

− 1

1 − ( b
d
)k

∣
∣
∣
∣
= o

(

exp
(

−Kα))

.

(b) Compare with [1] page 41, that

P1
[

τ⌈εσKK⌉ > ln(K)σ
−1−α/2
K |τ⌈εσKK⌉ < τ0

]

≤ exp
(

−
⌊

ln(K)σ
−1−α/2
K

e maxn≤⌈εσKK⌉En[τ⌈εσKK⌉|τ⌈εσKK⌉ < τ0]

⌋)

(A.40)

≤ exp
(

−σ
−α/3
K

)

,

where the last inequality holds, because we can apply Proposition A.3:

max
n≤⌈εσKK⌉

En[τ⌈εσKK⌉|τ⌈εσKK⌉ < τ0]

= max
n≤⌈εσKK⌉

En[τ⌈εσKK⌉ ∧ τ01τ0>τ⌈εσKK⌉]
Pn[τ0 > τ⌈εσKK⌉]

(A.41)

≤ O
(

ln(K)σ−1
K

)

.

On the other hand, we have

(A.42) P⌈εσKK⌉[τ⌈εK⌉ > τ0] = 1 − (d/b)⌈εσKK⌉ − 1

(d/b)⌈εK⌉ − 1
≤ exp

(

−K2α)

since d/b = 1 − O(σK) and K2α ≪ σKεK . �

PROPOSITION A.5. Let (ZK
n )n≥0 a sequence of discrete time Markov chain

with state space Z and with transition probabilities:

(A.43) P
[

ZK
n+1 = j |ZK

n = i
]

= p(i, j) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

1

2
+ CσK , if j = i + 1,

1

2
− CσK , if j = i − 1,

0, else,

for some constant C �= 0. Let τi be the first hitting time of level i by ZK and let

Pj denote the law of ZK conditioned on ZK
0 = j and let σK a zero sequence such

that K− 1
2 +α ≪ σK ≪ 1.
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(a) If ZK is slightly super-critical, that is, C > 0, then, for all i ≥ 1

(A.44) lim
K→∞

exp
(

Kα)

Pi⌈(ε/2)σKK⌉[τ(i−1)⌈(ε/2)σKK⌉ < τ(i+1)⌈(ε/2)σKK⌉] = 0.

(b) If ZK is slightly subcritical, that is, C < 0, then, for all constants

C1,C2,C3 > 0

(A.45) lim
K→∞

exp
(

Kα)

P(C1+C2)⌈εσKK⌉[τ(C1+C2+C3)⌈εσKK⌉ < τC1⌈εσKK⌉] = 0.

PROOF. Since the transition probabilities of ZK do not depend on the state
of ZK , we have that

Pi⌈(ε/2)σKK⌉[τ(i−1)⌈(ε/2)σKK⌉ > τ(i+1)⌈(ε/2)σKK⌉]
(A.46)

= P⌈(ε/2)σKK⌉[τ0 > τ2⌈(ε/2)σKK⌉].
By (A.14), the left-hand side of (A.46) is equal

(A.47)
1 − (1 − 2CσK + O(σ 2

K))⌈(ε/2)σKK⌉

1 − (1 − 2CσK + O(σ 2
K))2⌈(ε/2)σKK⌉ ≥ 1 − exp

(

−K2α
)

,

since σ 2
KK ≫ K2α . With the same arguments, we obtain also (A.45). �
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