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This paper combines methods for the structural analysis of bipartite graphs with observer-based residual generation. The
analysis of bipartite structure graphs leads to over-determined subsets of equations within a system model, which make
it possible to compute residuals for fault detection. In observer-based diagnosis, by contrast, an observability analysis
finds observable subsystems, for which residuals can be generated by state observers. This paper reveals a fundamental
relationship between these two graph-theoretic approaches to diagnosability analysis and shows that for linear systems the
structurally over-determined set of model equations equals the output connected part of the system. Moreover, a condition
is proved which allows us to verify structural observability of a system by means of the corresponding bipartite graph. An
important consequence of this result is a comprehensive approach to fault detection systems, which starts with finding the
over-determined part of a given system by means of a bipartite structure graph and continues with designing an observer-
based residual generator for the fault-detectable subsystem found in the first step.
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1. Introduction

Fault detection is the task which refers to testing whether
the input and output signals measured for a system Σ
are in consistency with the model of the faultless system
(Fig. 1). It is well known that the information about the
behavior of the system Σ has to include redundancies in
order to make fault diagnosis possible. Analysis methods
have been elaborated to find such redundancies in the
structure graph of the system Σ, which is a bipartite
graph showing how the internal and external signals
are combined by the model equations (Blanke et al.,
2016). The analysis result is a set C+ of over-determined
equations that define the structurally diagnosable part of
the system. From this set C+ analytical redundancy
relations (ARRs)

r(t) = g(u(t), u̇(t), . . . ,y(t), ẏ(t), . . . ) (1)

∗Corresponding author

can be obtained to generate residuals, where, in general,
the function g combines the measured input and output
signals and their derivatives.

A system of equations has to be solved in order
to implement a residual generator (1), which poses a
serious problem in general. Ways how to deal with
this problem have been proposed by Svärd and Nyberg
(2010) as well as Lunze (2017). Even if an ARR is
obtained, a direct practical application of (1) is generally
impossible due to the derivatives that usually cannot be
measured. Therefore, observer-based diagnostic methods
have become a popular means for fault diagnosis (Ding,
2013). These methods reconstruct the internal state x(t)
of the system Σ in an asymptotic way and avoid the
determination of the derivatives of the input and output
signals. However, they can be applied only if the system
is observable and, thus, makes it possible to reconstruct
the internal variables for the measured pair (u(t),y(t)) of
input and output signals.
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Fig. 1. Diagnosis of system Σ.

Structural analysis and observer-based fault
diagnosis are two research topics which have been
tackled completely separately in the past, with few
exceptions like, e.g., the work of Bregon et al. (2014).
For applications, however, it is necessary to find a way
for applying observer-based techniques to those systems
that have been shown to be structurally diagnosable.
The aim of this paper is to uncover the relation between
the mentioned research topics to make it possible
to find observer-based fault detection and isolation
algorithms for systems that have been proved to be
structurally diagnosable. The paper shows that the
structurally over-determined part C+ of the model defines
a structurally observable system if it is possible to find a
suitable matching in the bipartite structure graph of the
system (Theorem 4).

An important consequence of this new result is the
possibility to first analyze a system Σ by graphical means
to find diagnosable subsystems and, second, to apply
observer-based diagnostic methods to the observable
subsystems found. Hence, a comprehensive manner of
fault detection can be presented in Section 5. Moreover,
this paper provides a theoretical basis for a comprehensive
fault isolation method, which likewise combines structural
analysis and observer-based diagnosis.

1.1. Literature. This paper builds upon the two
lines of research mentioned above. The main ideas of
structural analysis using bipartite graphs are explained
in the monograph of Blanke et al. (2016). Structural
analysis methods have become popular in the FDI

community to analyze the diagnosability of continuous
(Krysander, 2006; Krysander and Frisk, 2008) and hybrid
systems (Pröll et al., 2015). Algorithms for determining
over-determined sets of equations have been proposed by
Armengol et al. (2009) and Frisk et al. (2012), with the
latter also dealing with the causal interpretation of the
model equations.

On the other hand, summaries of observer-based
diagnostic methods can be found in the work of Ding
(2013) and Isermann (2006). Geometric conditions
for observer-based fault detection and isolation have
been given by Massoumnia et al. (1989) or De Persis
and Isidori (2001) for linear or nonlinear systems,
respectively.

In the present paper, by contrast, graph-theoretic
conditions for observability are investigated. The property
of structural observability, which will be used to prove the
main result, has been defined by Lin (1974) (for the dual
controllability property) and the results along this line are
summarised, for example, by Lunze (2013) and Reinschke
(1988). Other criteria for state and input observability of
linear state-space and differential-algebraic systems using
directed graphs have been stated by Boukhobza et al.
(2006; 2007). Structural observability has also been used
for diagnosis in, e.g., the work of Commault and Dion
(2007).

1.2. Structure of the paper. Section 2 states the
problem of fault detection and Section 3 reviews known
results on the structural analysis of the diagnosability
and observability of linear systems. The notion of
structural observability of a system is extended to
structurally observable subsystems in Section 4. The
main result shows the relation between diagnosability and
observability as a basis for creating a thorough diagnostic
method in Section 5. Section 6 illustrates the results by an
example.

2. Diagnostic problem and its solution

This paper considers linear time-invariant control systems

Σ :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t)
(2)

with known input u(·) ∈ R
m, immeasurable state x(·) ∈

R
n, and known output y(·) ∈ R

p. The matrices A,B,C
have appropriate dimensions. The above model is also
called a state-space model with outputs, or simply a state-
space model. In such a model, the dynamics of each
state variable xi(t) is declared by a first-order ordinary
differential equation. Such a model is meant whenever
one speaks of a system or a subsystem in the following.

The task is to detect faults f(·) ∈ R
l that appear

as an additional term in the state or output equations,
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Fig. 2. Comprehensive way to create a fault diagnosis system.

respectively, and lead to the following model of the faulty
system Σf :

Σf :

⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t) +Bu(t) +Esf(t),

x(0) = x0,

y(t) = Cx(t) +Eof(t).

(3)

Non-zero elements in the matrices Es ∈ R
n×l and

Eo ∈ R
p×l indicate which equations are affected by

which fault. For fault detection, the diagnostic system
should distinguish between the faultless case (f(t) ≡ 0)
and the faulty case (f (t) �≡ 0). This paper focusses on
fault detection, which only needs the information about
which model equation is affected by faults. All results
can be extended to fault isolation if it is known how the
system dynamics is affected by which fault.

This paper investigates the following way of solution
for fault detection (Fig. 2):

1. Set-up a bipartite graph showing the structural
properties of the system Σ.

2. Analyze the structure graph to find the structurally
over-determined subsystem Σ+.

3. Build a state observer for the subsystem Σ+.
4. Use the state observer as residual generator to detect

faults in the system Σ.

The main problem of these steps occur when transferring
from Step 2 to Step 3, because it is not at all clear whether
the model of the subsystem Σ+ can be used to design a
residual generator. The main result of this paper shows
under what condition observer-based diagnosis is possible
for Σ+.

For the derivation of the results, the system Σ can
be considered to be autonomous (u(t) = 0), because
known inputs do not influence structural properties of a
linear system on the one hand and observability on the

other hand. The autonomous system is abbreviated as
Σ = (A,C).

3. Theoretical background

In this section, methods from structural diagnosability
analysis as well as from structural control theory are
explained. All necessary notions from the two branches
of research, which will be important later, are introduced.

Notation. For a finite set M , the number of elements
of M is denoted by |M |. Let n ∈ N. Then, n :=
{1, 2, . . . , n} is the set of natural numbers from 1 to n.

Given a matrix A ∈ R
n×m and index sets I ⊆

{1, . . . , n}, J ⊆ {1, . . . ,m}, the submatrix A(I, J) is
received from A by deleting all rows i /∈ I and all
columns j /∈ J .

3.1. Structural analysis of fault detectability.
This section applies the structural analysis methods
summarised in Chapter 5 of the work of Blanke et al.
(2016) to the linear system Σ = (A,C). The result is
a method to find the structurally over-determined set of
model equations, which will be denoted by C+. If such a
set exists, faults are known to be structurally detectable.

3.1.1. Bipartite structure graph. For the structural
analysis, the model Σ = (A,C) is interpreted as a set of
equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σe1 : ẋ1(t) = a11x1(t) + · · ·+ a1nxn(t),
...

en : ẋn(t) = an1x1(t) + · · ·+ annxn(t),

m1 : y1(t) = c11x1(t) + · · ·+ c1nxn(t),
...

mp : yp(t) = cp1x1(t) + · · ·+ cpnxn(t),

(4)

where ei, (i = 1, . . . , n) or mi, (i = 1, . . . , p) are
the names of the state and output equations, respectively.
If the system (2) with inputs is considered, then the
right-hand sides of the equations ei have to be extended by
the input signal terms bi1u1+ · · ·+bimum (i = 1, . . . , n).

In structural analysis, variables are related to each
other only via constraints. Thus, the relationship between
xi(t) and its derivative ẋi(t) has to be made explicit via
the so-called differential constraints

di : ẋi(t) =
d
dt
xi(t), i = 1, 2, . . . , n. (5)

In terms of structural analysis, the model equations ei, di,
and mi are said to be constraints that restrict the behavior
of the system Σ. In this paper, the terms model equa-
tion and constraint and the terms variables and signals
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are used exchangeably. The set

C = {d1, d2, . . . , dn, e1, e2, . . . , en,m1,m2, . . . ,mp}

represents the set of all constraints describing the
system Σ. It is also called the model of Σ. The subset of
differential constraints is denoted by Cd := {d1, . . . , dn}.
The signals that appear in the constraints of the set C are
the elements of the set

Z = {ẋ1, ẋ2, . . . , ẋn, x1, x2, . . . , xn, y1, y2, . . . , yp},

which is decomposed as Z = X ∪ K with the set X =
X∗ ∪ Ẋ of unknown internal signals

X∗ := {x1, . . . , xn}, Ẋ := {ẋ1, . . . , ẋn},

and the set of known signals K = {y1, . . . , yp}. If the
model (2) or (3) is taken for the structural analysis, then,
the constraint sets Z and K have to be extended by the
known input variables u1, . . . , um or the faults f1, . . . , fl,
respectively.

Step 1 mentioned in Section 2 will be investigated in
the following. The property of being an over-determined
system of equations is independent of any faults. Thus, to
find over-determined equation sets, the model (4) of the
fault-free system is used. Faults will become relevant in
Step 2 which will be discussed later.

For a subset C ⊂ C, the symbol var(C) defines
the set of variables which appear in the equations of
C, including known, unknown and fault variables. If a
variable set Y is specified, then varY(C) := var(C) ∩ Y .

In the bipartite structure graph G = (C,X , E) of the
system Σ, the names di, ei, and mi of the constraints are
used as names of the vertices of the set C, whereas the
names of the signals are used for the elements of the vertex
set X . The set of edges E ⊆ C × X is defined as follows:

(ci, zj) ∈ E if zj ∈ var({ci}). (6)

The left part of Fig. 3 shows an example, where the
variable vertices zj ∈ Z are shown as circles while the
constraint vertices ci ∈ C are drawn as bars.

The incidence matrix (biadjacency matrix) G of the
graph G represents the graph as a set E of edges in an
algebraic manner. The rows of this matrix are associated
with the constraints and the columns with the variables. A
“1” in the intersection of row ci and column zj indicates
the existence of the edge (ci, zj) ∈ E . All other elements
are zero. The incidence matrix ofΣ has the structure given
in Fig. 4. The dashed lines in the incidence matrix G
separate the different classes of constraints or variables,
respectively.

3.1.2. Analysis of the bipartite structure graph.
According to Dulmage and Mendelsohn (1958) as well
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Fig. 3. Structure graphs of Σ.

as Pothen and Fan (1990), the incidence matrix of a
bipartite graph can be brought into the block triangular
form shown in Fig. 5 by re-ordering the rows and columns.
This result is known as the Dulmage–Mendelsohn (DM)
decomposition. In Fig. 5, the gray shaded areas include
elements “0” and “1”, whereas in the white areas there
are only zeros. The decomposition includes three unique
disjoint subgraphs

G− = (C−,X−, E−),

G0 = (C0,X 0, E0),

G+ = (C+,X+, E+),

with X = X+ ∪X 0 ∪X−, C = C+ ∪C0 ∪C−. All vertex
sets are pairwise disjoint and the following relations hold:

|C−| < |X−|, |C0| = |X 0|, |C+| > |X+|. (7)

The naming of the equation sets is hence intuitive:

• C+ is the structurally over-determined subset of
equations,

• C0 is the structurally just-determined subset of
equations,

• C− is the structurally under-determined subset of
equations.

The structurally over-determined subset C+ contains more
equations than unknowns and, therefore, includes the re-
dundancy which is crucial for fault diagnosis. The set E+

is the set of edges that appear between the nodes of C+

and the nodes of X+ and is described by the dark gray
rectangle in Fig. 5. The submatrices on the block diagonal
in Fig. 5 are the incidence matrices of the respective
subgraphs G−,G0, and G+. As will be seen in Section 4,
the subset C+ of equations defines a state-space model
Σ+. This will be called the over-determined subsystem
or the over-determined part of the system Σ.

The straight line in Fig. 5 shows “1”-elements that
belong to a maximum matching of the graph and will be
circled in the matrices as 1 (see Fig. 4). A matching
M ⊂ E is a set of edges such that no two edges have
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a common vertex (Blanke et al., 2016). A matching is
maximum if it is not possible to find another matching with
a greater number of edges. A matching is X -complete
with respect to a vertex set X if all vertices of the set are
covered by edges of the matching.

With respect to the incidence matrix of a bipartite
graph, a matching is closely related to the structural rank
of the matrix (Reinschke, 1988).

Definition 1. (Structural rank of a matrix) Given a matrix
G, a set of independent entries of G is defined as a set
of nonzero entries no two of which lie on the same line
(row or column). The structural rank (“s-rank”) of G is
defined as the maximum number of independent entries
of G.

A matching of a graph G is closely related to the
structural rank of G (see, e.g., the work of Murota (1987)
for this).

Lemma 1. The cardinality of a maximum matching M
of a bipartite graph is equal to the structural rank of the
corresponding incidence matrix, i.e.,

|M | = s-rankG. (8)

A way to find a maximum matching of a given
bipartite graph is explained, e.g., by Blanke et al. (2016)
or Pothen and Fan (1990). In the latter reference it is also
explained how a maximum matching is used to compute
the DM decomposition of the graph. It shall be mentioned
that different maximum matchings yield the same DM
decomposition.

For state-space models (2), it is always possible to
choose a maximum matching of the following form:

M = {(di, xi), (ei, ẋi) | i = 1, . . . , n}. (9)

The above matching shall be called the generic matching
of the graph G of the system (2).

C+

C0

C−
X− X 0 X+

G̃ =

Fig. 5. Dulmage–Mendelsohn decomposition of the graph.

Given a matching M in a graph, a path is called
M -alternating if the edges in the path belong alternately
to the matching and not to the matching. In terms
of a maximum matching of G, several vertex sets of a
bipartite graph can be defined as follows (see Pothen and
Fan, 1990):

X+ := {x ∈ X | x is reachable by an M -alternating

path from some unmatched vertex c ∈ C},
C+ := {c ∈ C | c is reachable by an M -alternating

path from some unmatched vertex c ∈ C},

X− := {x ∈ X | x is reachable by an M -alternating

path from some unmatched vertex x ∈ X},
C− := {c ∈ C | c is reachable by an M -alternating

path from some unmatched vertex x ∈ X},
and C0 := C \ (C− ∪ C+), X 0 := X \ (X− ∪ X+).

Note that the generic matching (9) leaves no variable
vertex x ∈ X unmatched, i.e., it is an X -complete
matching. Thus, the bipartite graph of any state-space
model (2) only consists of the vertex sets C0, C+,X 0,X+,
and does not contain C−,X−. This is in accordance with
the fact that any initial value problem (2) has a unique
solution, and thus, cannot be under-determined.

3.1.3. Fault detectability. Fault detection is based
on a test whether or not the measured signals are in
consistency with the model C of the system Σ. This
test is possible only if the system under consideration has
more constraints than unknown variables. The structural
analysis answers the question whether there exists an
over-determined subset of equations. Accordingly, in the
DM decomposition the over-determined set of equations
C+ represents the diagnosable part of the system.
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To evaluate the detectability of faults, a relation
between the set of faults and the set of equations has to be
used. It is generally assumed that any fault f only changes
a single constraint c ∈ C. This assumption is used in the
following definition (see, e.g., Blanke et al., 2016).

Definition 2. (Structural fault-detectability) A fault f is
said to be structurally fault-detectable in a model C if the
following holds:

∃ c ∈ C+ with f ∈ var({c}). (10)

The set of all structurally detectable faults is given by

Fd := varF (C+) ⊆ F . (11)

Note that structural detectability does not necessarily
carry over to numerical detectability. That is, there may
exist residual generators that provide vanishing residuals
in the case of a fault. By nature, a structural property
is necessary for the respective numerical property, but,
in general, it is not sufficient. However, in this paper,
it is assumed that a structurally detectable fault yields
a residual deviating from zero and is, hence, detectable
numerically by a diagnostic algorithm.

3.2. Structural analysis of observability. In
this section, the notion of structural observability is
introduced. It is closely related to the well-known ob-
servability of dynamical systems. The advantage of the
structural counterpart is that this property can be checked
by means of a structure graph.

3.2.1. Directed structure graph. This section uses the
notion of the system structure in the sense of the theory
of structurally controllable and structurally observable
systems. A class S(A,C) of systems includes all systems
Σ = (Ã, C̃) with matrices Ã and C̃ that have the
same structure as A or C, respectively, according to the
following definition.

Definition 3. (Structure of a matrix) Let n,m ∈ N and
M =

(
μij

) ∈ R
n×m. Define the index set JM :=

{(i, j) ∈ {1, . . . , n} × {1, . . . ,m} | μij = 0} and
[M ] =

(
μ̂ij

) ∈ {0, 1}n×m by μ̂ij = 0, if (i, j) ∈ JM ,
otherwise, μ̂ij = 1. [M ] is called the structure of M .
Moreover, define

S(M ) := {A =
(
aij

) ∈ R
n×m | aij = 0

if (i, j) ∈ JM}. (12)
For two arbitrary matrices M and N , we have

S(M ,N) := S(M )× S(N ).

Structural observability of a system Σ = (A,C) is

analyzed by a directed graph
−→G = (

−→Z ,
−→E ) with the vertex

set −→Z = {x1, x2, . . . , xn, y1, y2, . . . , yp}

and the edge set
−→E that includes a directed edge

−−−−→
(xj , xi)

from vertex xj towards vertex xi if and only if in the
constraint ei defined in (4) the coefficient aij does not

vanish ([aij ] = 1). Furthermore,
−→E includes an edge−−−−→

(xi, yk) if and only if in the constraint mk the coefficient
cki does not vanish ([cki] = 1). The right part of Fig. 3
shows an example of a directed graph.

A state vertex xi is said to be output connected if
there exists a directed path towards an output vertex yj .

Let
−→X = {x1, . . . , xn}. The set of all output connected

state variables is denoted with
−→X o. The graph

−→G is out-
put connected if all state vertices are output connected,
i.e.,

−→X =
−→X o. If

−→G corresponds to a linear system
Σ = (A,C) and the former equality holds then Σ is said
to be output connected. For observability of a system, the
output-connectedness of the corresponding directed graph
is necessary, as will be seen in the following paragraph.

3.2.2. Structural observability. The notion of
structural observability is defined as follows (Lunze,
2013; Reinschke, 1988).

Definition 4. (Structural observability) A system Σ =
(A,C) is called structurally observable if there is at
least one system (Ã, C̃) ∈ S(A,C) that is completely
observable.

An important characteristic of structurally
observable systems is the fact that “almost all” systems
Σ ∈ S(A,C) are completely observable. Hence, for
almost all systems Σ ∈ S(A,C) a state observer can be
used for fault detection.

The above definition refers to the well-known notion
of complete observability. A system Σ is completely
observable if and only if the observability matrix

O(A,C) =

⎛
⎜⎜⎜⎝

C
CA

...
CAn−1

⎞
⎟⎟⎟⎠ (13)

has full rank, i.e.,

rankO(A,C) = n. (14)

If rankO(A,C) = s < n, then there exists a
transformation matrix T ∈ R

n×n such that the matrices

Ã := T−1AT , C̃ := CT (15)

have block structure

Ã =

(
A1 O
A2 A3

)
, C̃ =

(
C1 O

)
(16)
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with A1 ∈ R
s×s,C1 ∈ R

p×s and the pair (A1,C1) is
completely observable. The new state vector is

x̃(t) =

(
x̃1(t)
x̃2(t)

)
= T−1x(t)

with x̃1(t) ∈ R
s and x̃2(t) ∈ R

(n−s). The vector x̃1(t)
represents the state vector of the completely observable
subsystem.

Structural observability can be tested by the
following necessary and sufficient condition (Lunze,
2013; Reinschke, 1988):

Theorem 1. A linear system Σ = (A,C) is structurally
observable if and only if the following conditions are sat-
isfied:

• Σ is output connected. (17)

• s-rank

(
A
C

)
= n. (18)

4. Relation between structural
fault-detectability and structural
observability

This section provides the main result of the paper. At
first, it is shown that both the output connected and the
over-determined set of equations within a linear system
define a state-space model. Moreover, the two subsystems
coincide. Then, the results are used to formulate a
criterion for checking structural observability in terms of
the bipartite graph.

4.1. Output connected subsystem. In the literature
(Lin, 1974; Reinschke, 1988; Shields and Pearson, 1976),
the structural approach to observability (or controllability,
respectively) was developed to provide a necessary
condition for proving complete observability. No
investigations have been made so far on what can be said
about a system, which is not structurally observable. This
gap will be closed in the following.

Consider the set of equations (4) representing Σ. If−→X o ⊂ −→X is a proper subset of the state variable set, then
define

Co := {m1, . . . ,mp} ∪ {ei | xi ∈ −→X o}. (19)

Co contains all output and all state equations which
correspond to output connected variables.

Lemma 2. The set of equations Co defines a state-space
model Σo, which is called the output connected subsystem
or the output connected part of Σ.

Proof. In a state-space model, each state variable xi(t)
has to be declared by a first order differential equation.
Thus, for each xi which appears in an equation of Co, the

respective equation ei has to be part of Co. Assume in
the present situation that for an index i, xi belonged to
var(Co), but ei /∈ Co. Then, by definition of Co, xi /∈−→X o, and it appeared in some other equation ej ∈ Co with

j �= i. From this followed that
−−−−→
(xi, xj) were an edge in

the directed graph related to Co. But this would mean that
xi ∈ −→X o, which contradicts the assumption. �

Let q = |−→X o|. The subsystem Σo is a pair (Ao,Co)
of matrices with Ao ∈ R

q×q , Co ∈ R
p×q . Define I :=

{i ∈ n | xi ∈ −→X o}. Then

Ao = A(I, I), Co = C(p, I). (20)

Theorem 2. Given a linear system Σ = (A,C), let Σo =
(Ao,Co) be the output connected subsystem of Σ given
by (20). The subsystem Σo is structurally observable if
and only if

s-rank

(
Ao

Co

)
= q. (21)

Proof. If (21) holds, the two conditions of Theorem 1 are
satisfied for Σo and structural observability of Σo follows
immediately. The converse is obvious by Theorem 1. �

4.2. Over-determined subsystem. In the following
it will be shown that the over-determined subset of
equations C+ within a state-space model defines a
subsystem and that this subsystem equals the output
connected subsystem. First, the relation between the
vertex sets

−→X o and X+ is studied.

Theorem 3. Let X+
∗ := X+∩X∗. For a linear system (2)

we have

X+
∗ =

−→X o.

The above theorem reveals the connection between
the two graph-theoretic ways for analysing dynamic
systems, namely bipartite graphs on the one hand and
directed graphs on the other hand. It says that the state
vertices which belong to the structurally over-determined
subset of equations are exactly the output connected state
vertices of the system.

Proof. In the following, the generic matching

M = {(di, xi), (ei, ẋi) | i = 1, . . . , n}

is used for argumentation (cf. Section 3.1.2).

(i) “X+
∗ ⊂ −→X o”: Let x ∈ X+

∗ . By definition of the set X+

there exists an output equation ml and an M -alternating
path in G that connects ml with x. In other words, there
exists a sequence of state vertices xi1 , . . . , xik , xik+1

with



240 S. Pröll et al.

xik+1
= x such that the M -alternating path is of the form

ml − xi1 � di1 − ẋi1 � ei1 − xi2

� di2 − ẋi2 � ei2 − xi3

� · · · − xik � dik − ẋik

� eik − xik+1
,

(22)

where the symbol � denotes the matched edges. Hence,
for all j = 1, . . . , k, the inclusion xij+1 ∈ var({eij})
holds. Equivalently, the entry aij ij+1 in the matrix A
is nonzero for all j = 1, . . . , k, and thus, there exists

a directed edge
−−−−−−−→
(xij+1 , xij ) in the graph

−→G . Moreover,
since xi1 ∈ var({ml}), the entry cli1 in the matrix C is

nonzero, and so, there exists a directed edge
−−−−−→
(xi1 , yl) in−→G . Therefore, there exists a directed path

xik+1
→ xik → xik−1

→ · · · → xi2 → xi1 → yl (23)

in the directed graph
−→G which connects x and yl. Thus,

x ∈ −→X o.

(ii) “
−→X o ⊂ X+

∗ ”: Suppose x ∈ −→
X o and there exists a

directed path in the directed graph
−→G which connects x

with an output vertex yl, as indicated in (23). Then, by the
same arguments as before, there exists an M -alternating
path (22) in Gred that connects ml and x. Thus, x ∈ X+

∗ ,
which proves the assertion. �

Corollary 1. We have that

C+ = {m1, . . . ,mp} ∪ {ei, di | xi ∈ X+
∗ }. (24)

Let n+ = |X+
∗ |. The equations of C+ define a state-space

model
Σ+ = (A+,C+) (25)

with A+ ∈ R
n+×n+

,C+ ∈ R
p×n+

, which will be called
the over-determined subsystem of Σ.

Proof. Given the generic matching M as in the proof
above, it is clear that a state vertex xi belongs to X+ if
and only if the corresponding equation vertex ei belongs
to C+. This holds since an M -alternating path ending in
xi can always be enlarged by the sequence xi � di −
ẋi � ei, such that the vertex ei is also covered by the
alternating path and, therefore, belongs to C+. Moreover,
all output equations m1, . . . ,mp belong to C+ since the
generic matching M leaves these equations unmatched.

�
The subsystem matrices A+ and C+ can be derived

similarly to those of the output connected subsystem. Let
I := {i ∈ n | xi ∈ X+∗ }. Then for A+ and C+ the
following equalities hold:

A+ = A(I, I), C+ = C(p, I). (26)

For the subsystem Σo given by (20) and the
equalities (26), the following corollary is immediate.

Corollary 2. For a linear system (2)

Σ+ = Σo, (27)

i.e., the over-determined subsystem given by (26) equals
the output-connected subsystem given by (20).

4.3. Structural observability of Σ+. In the following
we shall investigate under what condition the over-de-
termined subsystem Σ+ is structurally observable. A
criterion for structural observability is provided in terms
of the bipartite graph of the system Σ.

Before the subsequent corollary clarifies the relation
between observability and diagnosability of a system,
remind that the structurally over-determined part of a
system is called diagnosable.

Corollary 3. Given a linear system Σ = (A,B,C), the
following implications hold:

Σ is completely observable

⇒ Σ is structurally observable

⇒ Σ is structurally over-determined.

Proof. The first implication holds due to Definition 4.
The second implication holds due to Theorems 1 and 3.
If the system is structurally observable, then it is in
particular output connected, and, therefore, structurally
over-determined. �

Lemma 3. Let Σ = (A,C) be given and Σ+ =
(A+,C+) be the over-determined subsystem of Σ. Σ+

is structurally observable if and only if

s-rank

(
A+

C+

)
= n+. (28)

Proof. The claim follows immediately from Theorems 2
and 2. �

Condition (28) can also be expressed in terms of
bipartite graphs by using the notion of a causal matching:

Definition 5. (Causal matching) Given the bipartite
structure graph G of the system (2), a matching of G is
said to be causal if it does not contain any of the edges
(di, xi), i = 1, . . . , n.

The above definition refers to the causal
interpretation of differential constraints in a bipartite
graph and has been studied by, e.g., Blanke et al. (2016),
Bregon et al. (2014) or Frisk et al. (2012). Note that a
causal matching in the present context is equivalent to
derivative causality in the mentioned references. Now,
observe the following relationship.

Lemma 4. For a given linear system Σ = (A,C) let
G = (C,X , E) be the corresponding bipartite graph. Then
the following two conditions are equivalent:
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(i) There exists an X -complete causal matching of G.

(ii) s-rank

(
A
C

)
= n.

Proof. The above result becomes clear if Fig. 4 is taken
into account. A formal proof is provided subsequently.

Suppose that G possesses an X -complete causal
matching M ⊆ E . In particular, such a matching is
maximum. In (8) it was seen that s-rankG is equal to the
cardinality of a maximum matching: s-rankG = |M |.
Since M is causal and X -complete, the vertices in X∗ :=
{x1, . . . , xn} have to be matched by constraints of the set
C∗ := {e1, . . . , en}∪{m1, . . . ,mp}. This is equivalent to

s-rank

(
A
C

)
= n.

For the converse, assume that (ii) is fulfilled. Then,
the vertices in X∗ can be matched by vertices in C∗.
Such a matching can be augmented by the edges (di, ẋi),
i = 1, . . . , n. The resulting matching is X -complete and
causal which completes the proof. �

A combination of the preceding results yields the
following main result of this paper.

Theorem 4. Let Σ = (A,C) be given and G =
(C,X , E) be the corresponding bipartite graph. The over-
determined subsystem Σ+ = (A+,C+) is structurally
observable if and only if G+ = (C+,X+, E+) possesses
an X+-complete causal matching.

Moreover, if G possesses an X -complete causal
matching, then G+ possesses an X+-complete causal
matching.

Proof. The first part follows from Lemma 4, Corollary 2
and Theorem 1. For the second part, let M be an
X -complete causal matching of G. Such a matching
is maximum and, hence, a DM decomposition can be
computed from M which yields C = C0 ∪ C+ and
X = X 0 ∪ X+. Since M is causal, each of the vertices
xi ∈ X∗ has to be matched by a constraint of the set
C \ Cd = {e1, . . . , en}∪{m1, . . . ,mp}. By the properties
of a DM decomposition, the variables in X+ are matched
by the equations in C+. In all, the variables in X+

∗ are
matched by equations in C+\Cd. This proves the assertion.

�

This result has the important consequence that fault
detection systems can be obtained by first analyzing
the bipartite structure graph of a system to find the
over-determined part C+ of the model C and, second,
by using the model C+ to create a state observer that
generates non-vanishing residuals if a fault associated
with the constraints in the set C+ occurs (cf. Section 5).

The present section will be concluded with a study of
the case where the system Σ is given in its observability
decomposition.

Lemma 5. For a linear system Σ̃ in its observability de-
composition (16),

−→X o = {x̃1, . . . , x̃s}, (29)

that is, the output connected variables of Σ̃ are exactly the
components of x̃1.

Proof. Since the subsystem Σobs is completely
observable, it is in particular structurally observable.
Hence, the state variables of this subsystem are output
connected. Therefore, {x̃1, . . . , x̃s} ⊆ −→X o. On the other
hand, due to the structure of the matrices Ã and C̃ , no
state variable of x̃2 can be output connected. Thus, we
get (29). �

Corollary 3 says that the property of a linear system
of being structurally over-determined is weaker than the
property of being structurally observable or completely
observable, respectively. The next result asserts that the
three properties are equivalent if the system is given in its
observability decomposition.

Theorem 5. Consider a linear system Σ = (A,C) that is
given in its observability decomposition (16) with

A =

(
A1 O
A2 A3

)
, C =

(
C1 O

)
, (30)

and Σobs = (A1,C1) being a completely observable sub-
system. Moreover, let Σ+ be an over-determined subsys-
tem. Then

Σobs = Σ+.

Proof. By Lemma 5, the output connected state variables
are precisely those of the subsystem Σobs. That is, Σobs =
Σo. The claim follows from Corollary 2. �

5. Comprehensive method to design an
observer-based fault detector

The results of the preceding section show how
fault-detectability is related to observability of a linear
system and, thus, indicate how an observer-based fault
detection system can be built. The set C+ of model
equations forms the state-space model

Σ+ :

⎧⎪⎨
⎪⎩

ẋ+(t) = A+x+(t) +B+u(t),

x+(0) = x+
0 ,

y(t) = C+x+(t).

(31)

with A+, C+ as in (26) and B+ = B(I,m). Theorem 4
says that if there exists an X+-complete causal matching
of the bipartite graph G+ of the above system, then Σ+ is
structurally observable. That is, for almost all parameters
occurring in the matrices A+ and C+ the pair (A+,C+)
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is completely observable according to the condition (14)
and a state observer can be used for fault detection. The
Luenberger observer that belongs to the system Σ+ has
the form

O :

⎧⎪⎨
⎪⎩

˙̂x(t) = (A+ −LC+)x̂(t) +B+u(t) +Ly(t),

x̂(0) = x̂0,

r(t) = y(t)−C+x̂(t).
(32)

It delivers the residual r(t), which has to be evaluated
for fault detection (Fig. 1). The feedback matrix L has
to be selected so as to make the system given in (32)
asymptotically stable, i.e., to shift all eigenvalues of
A+ − LC+ to the complex left half-plane. Such a
feedback matrix exists if the pair (A+,C+) is completely
observable (Lunze, 2013).

If now a fault occurs which changes the dynamic
behavior of the subsystem Σ+, then the estimation error
r(t) of the observer will not converge to zero. Hence, the
state observer is sensitive to faults f ∈ Fd (cf. (11)). For
residual evaluation, a norm ‖ · ‖ on R

p and a threshold
ε > 0 have to be determined. Once this is done, the
residual vector is evaluated as follows:

• If ‖r(t)‖ ≤ ε, then the system Σ is supposed to work
normally.

• If ‖r(t)‖ > ε for some t > 0, then the system is
faulty.

The threshold ε is necessary since the residual will in
practice always deviate from zero due to disturbances or
model uncertainties.

In summary, the way to design observer-based fault
detection systems, which has been outlined in Section 2,
can now be presented in more detail as Algorithm 1.

Algorithm 1. Design of a residual generator.
Given: Model (2)

Step 1. Set-up the bipartite structure graph G = (C,X , E)
and the corresponding incidence matrix G (see Fig. 4).

Step 2. Apply the DM decomposition to G to find the
structurally over-determined model C+.

Step 3. Test whether there exists an X+-complete causal
matching of G+.

Step 4. If the test is positive, set up the subsystem Σ+ (see
(25)) and build a state observer (32).

Result: Residual generator.

Together with a residual evaluation system, this residual
generator represents a fault detection system for Σ that
detects fault in the detectable fault set Fd.

The main result of this paper shows how
structural diagnosability analysis can be combined
with observer-based diagnosis. Steps 1–3 of Algorithm 1

G =

ẋ1 ẋ2 ẋ3 ẋ4 x1 x2 x3 x4

d1 1 1
d2 1 1
d3 1 1
d4 1 1
e1 1 1 1 1
e2 1 1 1
e3 1 1
e4 1 1
m1 1
m2 1

Fig. 6. Incidence matrix of Σ.

use the bipartite structure graph to find the diagnosable
part. Under the condition stated in Theorem 4 an
observer-based diagnostic unit can be designed for this
part. The analysis of the bipartite graph simultaneously
shows the structural observability, which has been
expressed in the literature by an alternative structural
representation in terms of a directed graph. Hence,
no separate analysis with respect to observability is
necessary.

6. Example

Consider the system (2) with

A =

⎛
⎜⎜⎝
a11 a12 a13 0
0 a22 0 a24
0 0 a33 0
0 0 0 a44

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0 0
0 0
b31 0
0 b42

⎞
⎟⎟⎠ ,

C =

(
0 c12 0 0
0 0 0 c24

)
,

where all parameters are assumed to be nonzero. Further,
the following faults may occur:
• f1(t): fault of the actuator belonging to the input u1,
• f2(t): fault of the actuator belonging to the input u2,
• f3(t): fault of the sensor belonging to the output y1,
• f4(t): fault of the sensor belonging to the output y2.

These faults lead to the matrices

Es =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , Eo =

(
0 0 1 0
0 0 0 1

)
.

For the system Σ, we have rankO(A,C) ≤ 2 < 4.
Thus, it is not completely observable. Nevertheless,
the application of Algorithm 1 will show that there is
a diagnosable part for which observer-based diagnostic
methods can be applied.
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Step 1: The structure graphs G and
−→G are shown in

Fig. 3 and the corresponding incidence matrix G in Fig. 6.
The known input and output variables are included in the
graphs and indicated by grey circles.

Step 2: The DM decomposition of the graph G results in
the following incidence matrix Ĝ:

Ĝ =

ẋ1 x1 ẋ3 x3 ẋ2 ẋ4 x2 x4

d1 1 1 0 0 0 0 0 0
e1 1 1 0 1 0 0 1 0
d3 0 0 1 1 0 0 0 0
e3 0 0 1 1 0 0 0 0

d2 1 0 1 0

d4 0 1 0 1

e2 1 0 1 1

e4 0 1 0 1
m1 0 0 1 0
m2 0 0 0 1

.

The over-determined set of equations is hence given by
C+ = {e2, e4, d2, d4,m1,m2}.

Step 3: The incidence matrix G+ of the over-determined
subgraph G+ is the submatrix down right in the matrix
Ĝ above. M = {(di, ẋi), (ei, xi) | i = 2, 4} is an
X+-complete causal matching of the bipartite graph G+.
This matching is indicated by the circled entries in the
above matrix. Thus, the over-determined subsystem Σ+

is structurally observable by Theorem 4.

Step 4: The related subsystem Σ+ is defined by

Σ+ :

⎧⎪⎪⎨
⎪⎪⎩

ẋ2(t) = a22x2(t) + a24x4(t)
ẋ4(t) = a44x4(t) + b42u2(t)
y1(t) = c12x2(t)
y2(t) = c24x4(t).

The subsystem matrices A+, B+, and C+ are

A+ =

(
a22 a24
0 a44

)
, B+ =

(
0 0
0 b42

)
,

C+ =

(
c12 0
0 c24

)
.

Σ+ is also completely observable according to (14) since
c12 and c24 are assumed to be nonzero. Thus, an
observer can be built for Σ+. Such an observer is able
to detect faults that affect the over-determined subsystem.
Recalling Definition 2, these are subsumed in the set
Fd = {f2, f3, f4}. By contrast, f1 which affects equation
e3 is not detectable since e3 does not belong to the
over-determined part and is not used by the observer.

Consider a numerical realization of the system Σ
with the following parameters:

a11 = −0.1, a12 = 0.6, a13 = −0.3,

a22 = −2.2, a24 = 1.5, a33 = −0.5,

a44 = −0.2, b31 = 1.4, b42 = 0.5,

c12 = 1, c24 = 1.

A Luenberger observer, as given in (32), can be
established for the given system with, e.g.,

L =

(
0.1 1.5
0 0.1

)
,

where the above matrix has been found by a pole
placement procedure (see Lunze, 2013). The initial state
x̂0 of the observer has been set to (0, 0)T.

0
1
2
3
4
5
6
7
8

tr
aj

ec
to

ri
es

x2(t)

x4(t)

x̂1(t)

x̂2(t)

0 10 20 30 40 50 60
t in seconds

0

1

2

3

re
si

du
al

r(t)

Fig. 7. State trajectories and residual evolution.

The upper part of Fig. 7 shows the trajectories of
x2(t) and x4(t) as dashed lines which are the state
of the over-determined subsystem Σ+. The solid lines
correspond to the state x̂(t) =

(
x̂1(t), x̂2(t)

)T
of the

observer. The observer state x̂(t) converges to x+(t) =(
x2(t), x4(t)

)
in the fault-free case. Likewise, the

residual converges to zero if no fault occurs. This is
depicted in the lower part of Fig. 7. It shows the evolution
of the norm ‖r(t)‖ of the residual. The latter is given by

r(t) = y(t)−Cx̂(t).

The 2-norm ‖r(t)‖ =
√
r1(t)2 + r2(t)2 was chosen and

the threshold for residual evaluation has been set to ε =
0.7.
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At t = 30 s a fault has been injected. This is
indicated by the vertical dashed lines in both plots. The
observer-based residual reacts to this fault and exceeds the
threshold at t ≈ 32 s. Thus, the fault is being detected
successfully.

7. Conclusion

The paper has shown how structural analysis of
fault-detectability can be combined with designing fault
detection systems by means of observers that operate
under practical circumstances like disturbances. The
main result is the relation between the structurally
over-determined part of a linear system that can be
obtained by the bipartite structure graph and the structural
observability of the system that can be investigated by a
directed structure graph (Theorem 4).

An extension from fault detection to fault
isolation needs the use the notion of proper structurally
over-determined (PSO) sets (Krysander et al., 2008). For
these sets, conditions have to be derived that assure that
a PSO set defines a structurally observable subsystem.
For a number of observable PSO subsystems, a bank
of observers could be built that allowed structural fault
isolation via a fault signature matrix.
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