
From Structure-based to Semantics-based: towards
Effective XML Keyword Search

Thuy Ngoc Le #, Huayu Wu ∗, Tok Wang Ling #, Luochen Li #, and Jiaheng Lu †

#National University of Singapore {ltngoc,lingtw,luochen}@comp.nus.edu.sg
∗ Institute for Infocomm Research, Singapore huwu@i2r.a-star.edu.sg

† Renmin Univesity of China jiahenglu@ruc.edu.cn

Abstract. Existing XML keyword search approaches can be categorized into
tree-based search and graph-based search. Both of them are structure-based search
because they mainly rely on the exploration of the structural features of docu-
ment. Those structure-based approaches cannot fully exploit hidden semantics
in XML document. This causes serious problems in processing some class of
keyword queries. In this paper, we thoroughly point out mismatches between an-
swers returned by structure-based search and the expectations of common users.
Through detailed analysis of these mismatches, we show the importance of se-
mantics in XML keyword search and propose a semantics-based approach to pro-
cess XML keyword queries. Particularly, we propose to use Object Relationship
(OR) graph, which fully captures semantics of object, relationship and attribute,
to represent XML document and we develop algorithms based on the OR graph
to return more comprehensive answers. Experimental results show that our pro-
posed semantics-based approach can resolve the problems of the structure-based
search, and significantly improve both the effectiveness and efficiency.

Keywords: XML, keyword search, object, semantics

1 Introduction
Current approaches for XML keyword search are structure-based because they mainly
rely on the exploration of the structure of XML data. They can be classified into the
tree-based and the graph-based search. The tree-based search is used when an XML
document is modeled as a tree, i.e. without ID References (IDREFs) such as [22, 17, 12,
23, 20], while the graph-based search is used for XML documents with IDREFs such as
[7, 9, 3, 13, 10]. Due to the high dependence on hierarchical structure and unawareness
of real semantics in XML data, these approaches suffer from several serious limitations
as illustrated in the following example.

Consider an XML keyword query Q = {Bill, John} issued to the XML data in
Fig. 1, in which the query keywords match first name of two students. Let us discuss
answers for this query returned by the LCA-based (Lowest Common Ancestor) ap-
proach, a representative of the tree-based search. The LCA-based approach returns the
document root as an answer for Q, which is intuitively meaningless for users. Suppose
we could tell that two objects are the same if they belong to the same object class and
have the same object identifier (ID) value. Then Course (11) and Course (35)
refer to the same object <Course:CS5201> because they belong to the same object

2 Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, Jiaheng Lu

Lecturer
(18)

Title
(14)

Department
(16)

Student
(1)

Major
(9)

Course
(11)

Student
(27)

Database
(15)

Computing
(10)

Grade
(20)

A
(21)

University
(0)

Student_No
(28)

0801433
(29)

Kennedy
(19)

Computing
(17)

Name
(4)

First
(5)

Last
(7)

Bill
(6)

Kennedy
(8)

Name
(25)

DBMS
(26)

…

Course
(35)

……Textbook
(22)

Student_No
(2)

0012745
(3)

Code
(12)

CS5201
(13)

ISBN
(23)

105601
(24)

Code
(36)

CS5201
(37)

Grade
(40)

A
(41)

Name
(30)

First
(31)

Last
(33)

John
(32)

Clinton
(34)

Title
(38)

Database
(39)

Course
(42)

…… Code
(43)

CS301
(44)

Title
(45)

Logic
(46)

Course

Textbook

Student

Grade

Student_No

Code

ISBN

SCHEMA

Fig. 1: university.xml

class Course and have the same object ID value CS5201. <Course:CS5201> is
the common course taken by both students Bill and John and should be an answer.
LCA-based approaches miss this answer because of unawareness of object, object ID
and duplication of the same object. Thus, the common courses taken by both students
are not recognized. In fact, other approaches of the tree-based and graph-based search
suffer from similar problems, which will be demonstrated in Sec. 3 and 4.

The question we consider in this paper is that besides values, what benefits we can
derive from paying attention to the role of tags in XML document, particularly for
the problem of keyword queries. For this purpose, we introduce ORA-semantics and
exploit it for XML keyword search. ORA-semantics stands for semantics of Object,
Relationship and Attribute derived from XML tags. Once an XML document is defined
with ORA-semantics, we can develop an effective semantics-based approach for XML
keyword search which can solve limitations of the structure-based search.

In brief, the contributions of our work are as follows.
– We illustrate the limitations of both types of the structure-based search (the tree-

based and the graph-based) in XML keyword search in details (Sec. 3 and 4).
– We introduce ORA-semantics and show that ORA-semantics plays an important

role to effectively process XML keyword queries. Thus we propose semantics-
based approach for XML keyword search, in which we use OR graph, which can
capture full ORA-semantics, to represent XML document (Sec. 5 and 6).

– We perform comprehensive experiments to compare our semantic-based approach
with the structure-based approaches (including XKSearch [22] and BLINK [7]).
Experimental result shows the significant superiority of our methods because it can
solve limitations of the structure-based search efficiently (Sec. 6).

2 Terminology
This section presents concepts of object, relationship and attribute used in this paper
and uses the XML data in Fig. 1 for illustrating examples.
Concept 1 (Object) In an XML data tree, an object is represented by a group of nodes,
starting at a tag w.r.t. object class, followed by a set of attributes and their associated
values. Each object belongs to an object class and has a unique object ID value, which
can be single or composite.
Concept 2 (Object node vs. non-object node) Among nodes describe an object, the
one w.r.t. an object class is called object node and all remaining nodes are called non-
object nodes. Each non-object node is associated with a corresponding object node.

From Structure-based to Semantics-based: towards Effective XML Keyword Search 3

For example, Student (1) is an object node whereas Name (4) is a non-object
node belonging to object node Student (1).
Concept 3 (The same object) Two objects are the same if they belong to the same ob-
ject class and have the same object ID value.

For example, Course (11) and Course (35) refer to the same object Course:
CS5201 because they belong to the same object class Course and they have the same
object ID value CS5201. Object nodes which refer to the same object are usually iden-
tical. If we find two nodes that are not identical, they are still considered as referring to
the same object as long as they are of the same object class and have the object ID.
Concept 4 (Relationship) Objects may be connected through some relationship which
can be explicit or implicit. An explicit relationship explicitly appears in an XML data as
a node, whereas an implicit relationship is reflected by the connection among objects.

For example, in Fig. 1, there is no explicit relationship but several implicit relation-
ships such as relationships between Student (1) and Course (11).
Concept 5 (Attribute) An attribute can be an object attribute or a relationship at-
tribute. In XML data, it can be a child of an object node, a child of an explicit relation-
ship node or a child of the lowest object of an implicit relationship node.

For example, Lecturer is an attribute of object class Course whereas Grade is
a relationship attribute of an implicit relationship between a Student and a Course.

3 Revisiting the tree-based XML keyword search
Since almost all tree-based approaches are based on LCA semantics such as SLCA [22],
VLCA [12], ELCA [23], we use the LCA-based approach as a representative of the
tree-based search onward. In this section, we systematically point out limitations of the
LCA semantics by comparing answers returned by the LCA semantics and answers
that are probably expected by users. We use the XML data in Fig. 1 for illustration.
It is worthy to note that Course (11) and Course (35) refer to the same object
<Course:CS5201> despite of appearing as different nodes.

3.1 Meaningless answer
Example 3.1. Q3.1 = {Bill}.
LCA answer. The LCA-based approach returns node Bill (6). However, this is not
useful since it does not provide any supplementary information about Bill. This hap-
pens when a returned node is a non-object node, e.g., an attribute or a value.
Reason. The LCA-based approach cannot differentiate object and non-object nodes.
Returning object node is meaningful whereas returning non-object node is not.
Expected answer. The expected answer should be forced up to Student (1), the
object w.r.t. to Bill (6) since it contains supplementary information related to Bill.

3.2 Missing Answer
Example 3.2. Q3.2 = {Bill, John}.
LCA answer. The LCA-based approach returns the document root which is definitely
not meaningful.
Reason. Due to unawareness of semantics of object, the LCA-based approach can never
recognize that, Course (11) and Course (35) refer to the same object Course
CS5201. This is the common course taken by the two students Bill and John.
Expected answer. The expected answer should be the common course taken by these
two students, i.e., <Course:CS5201> appearing as Course (11) and Course (35).

4 Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, Jiaheng Lu

3.3 Duplicated answer
Example 3.3. Q3.3 = {CS5201, Database}.
LCA answer. Two answers Course (11) and Course (35) of this query are du-
plicated because the two nodes refer to the same object <Course:CS5201>.
Reason. Similar to Example 3.1, this problem is caused by the unawareness of dupli-
cation of object having multiple occurrences.
Expected answer. Either of Course (11) or Course (35) should be returned, but
not both since they are different occurrences of the same object <Course:CS5201>.

3.4 Problems related to relationships
Example 3.4. Q3.4 = {Database, A}.
LCA answer. The LCA-based approach returns Course (11) and Course (35)
as answers. These answers are incomplete because ‘A’ grade is not an attribute of a
course, but it is grade of a student taking the course instead. On the other hand, Grade
is a relationship attribute between Student and Course, not an object attribute.
Reason. The LCA-based approach cannot distinguish between an object attribute and a
relationship attribute under an object node.
Expected answer. The proper answer should be all students taking course Database
and getting an ‘A’ grade. To do that, the answer should be moved up to contain other
objects (e.g., students) participating in the relationship that‘A’ grade belongs to.
3.5 Schema dependence
There may be several designs for the same data source. The XML data in Fig. 1 can be
represented by another design as in Fig. 2 with different hierarchical structure among
object classes, e.g., Course becomes the parent of Student.
Example 3.5. Q3.5 = {Bill, Database}.
LCA answer. With the design in Fig. 1, the LCA-based approach returns Student (1).
With the design in Fig. 2, Course (1) is returned. As shown, answers for different
designs are different though these designs refer to exactly the same information and we
are dealing with the same query.

Answers of other queries related to more than one object also depend on XML hier-
archical structure. Let us recall Q3.2 = {Bill, John}, Q3.4 = {Database, A} and
discuss the answers from the design in Fig. 2 for these queries. For Q3.2, Course (1)
is an answer. For Q3.4, Course (1) is also returned. Compared with the answers the
root for Q3.2 and Course (11) and Course (35) (without students as their chil-
dren) for Q3.4 from the design in Fig. 1, the ones from the design in Fig. 2 are different.
Reason. Answers from the LCA semantics rely on the hierarchical structure of XML
data. Different hierarchical structures may provide different answers for the same query.
Expected answer. Users issue a keyword query without knowledge about the underly-
ing structure of the data. Thus, their expectation about the answers is independent to the

Student_No

Lecturer
(8)

Title
(4)

Department
(6)

Course
(1)

Major
(23)

Student
(15)

Database
(5)

Computing
(24)

Grade
(25)

A
(26)

University
(0)

Student
(27)

Student_No
(28)

0801433
(29)

Kennedy
(9)

Computing
(7)

Name
(18)

First
(19)

Last
(21)

Bill
(20)

Kennedy
(22)

Name
(13)

DBMS
(14)

……..

Course
(37)

……

Textbook
(10)

Student_No
(16)

012745
(17)

Code
(2)

CS5201
(3)

ISBN
(11)

105601
(12)

Grade
(35)

A
(36)

Name
(30)

First
(31)

Last
(33)

John
(32)

Clinton
(34)

Title
(40)

Logic
(41)

Code
(38)

CS301
(39)

…… Student
(42)

… Student_No
(43)

0801433
(44)

Course

TextbookStudent

Grade

Code

ISBN

SCHEMA

Fig. 2: Another design for the XML data in Fig. 1

From Structure-based to Semantics-based: towards Effective XML Keyword Search 5

Project
(13)

Part
(43)

JName
(16)

Prj2013
(17)

Prj_No
(14)

Prj2
(15)

Part_No
(44)

P201
(45)

S143
(27)

PName
(46)

PARTA
(47)

Supplier
(25)

Employee
(18)

EID
(19)

Supplier
(33)

SName
(36)

Part
(38)

P201
(40)

Root
(0)

Reference edge
Tree edge

Amaron
(37)

Supp_No
(34)

S143
(35)

Supp_No
(26)

Part_No
(39)

Name
(21)

Bill
(22)

HT08
(20)

Project
(1)

JName
(4)

Prj2012
(5)

Prj_No
(2)

Prj1
(3)

Employee
(6)

EID
(7)

Name
(9)

Bill
(10)

HT08
(8)

Status
(23)

Part
time
(24)

Status
(11)

Full
time
(12)

Price
(41)

$100
(42)

P201
(30)

Part_No
(29)

Quantity
(31)

150
(32)

Part
(28)

S143
(27)

Supplier
(25)

Supp_No
(26)

P201
(30)

Part_No
(29)

Quantity
(31)

Part
(28)

30
(32)

Fig. 3: An XML document with IDREFs

schema design. Therefore, the expected answers should also be semantically the same
with all designs of the same data source.
Summary. The main reasons of the above problems are the high dependence of answers
returned by the LCA-based search on the hierarchical structure of XML data (e.g., Q3.5,
Q3.2, Q3.4), and the unawareness of semantics of object, relationship and attribute.
Particularly, unawareness of objects causes missing answers (e.g., Q3.2), and duplicated
answer (e.g., Q3.3) because the LCA-based approach cannot discover the same object.
Unawareness of object and attribute cause meaningless answer (e.g., Q3.1) because it
cannot differentiate XML elements. Unawareness of relationship and attribute cause the
problems related to relationship (e.g., Q3.4) because of it is unable to differentiate an
object attribute and a relationship attribute.

4 Revisiting the graph-based XML keyword search
The graph-based search can be applied for both XML tree (without IDREF) and XML
graph (with IDREFs). In the absence of IDREF, the graph-based search suffers from
the same problems as the LCA-based search does. With IDREFs, object and object ID
are observed and utilized. An object can be referenced by an IDREF, which has the
same value with its object ID to avoid duplication. This helps the graph-based search
handle some but not all problems of the LCA-based search. Particularity, the problems
related to relationship and meaningless answers cannot be solved no mater IDREF
is used or not. The other problems including missing answer, duplicated answer and
schema dependence can be solved if the ID Reference mechanism applies to all objects.
Otherwise (existing some objects without IDREF), they cannot be solved totally.

For generality, in this section, we use the XML data in Fig. 3 which contains both
objects with and without IDREF to illustrate problems of the graph-based search. We
apply the widely accepted semantics minimum Steiner tree [5, 6] for illustrating the
problems. In the XML data in Fig. 3, Object <Employee:HT08> is duplicated with
two occurrences Employee (6) and Employee (26). Ternary relationship type
among Supplier, Project and Part means suppliers supply parts to projects.
Quantity is an attribute of this ternary relationship and represents the quantity of a
part supplied to a project by a supplier. Besides, binary relationship between Supplier
and Part has an attribute Price to represent the price of a part supplied by a supplier.
4.1 Problems cannot be solved with IDREF
IDREF mechanism is aware of semantics of object and object ID. However, the seman-
tics of relationship and attribute is still not recognized and utilized which causes the
problems of meaningless answer, and problems related to relationship.

6 Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, Jiaheng Lu

Meaningless answer. Not differentiating object and non-object nodes cause meaning-
less answer when the returned node is a non-object node. For example, for Q4.1 =
{Amazon}, the answer is only Amazon (45) without any other information.
Problems related to relationships. Without semantics of relationship, the graph-based
search cannot distinguish object attribute and relationship attribute, and cannot recog-
nize n-ary (n ≥ 3) relationship. These cause problems related to relationship.

For example, for Q4.2 = {PARTA, 100}, the subtree rooted at Part (46) is
an answer. However, this is not complete since price 100 is the price of a part named
PARTA supplied by Supplier (41). It is not the price of Part (46). Thus, the
answer should be moved up to Supplier (41) to include Supplier (41) as well.

For another example related to ternary relationship, Q4.3 = {PARTA, 150}, the
answer is the subtree rooted at Part (36). This is not complete either since 150 is the
quantity of a part named PARTA supplied by Supplier (41) to Project (21).
Quantity is not an attribute of object Part (46). Thus, the answer should be
moved up to Project (21) to include Project (21) and Supplier (41).

4.2 Problems can be solved with IDREF
IDREF mechanism is based on semantics of object and object ID, thus using IDREF
can avoid problems caused by lack of semantics of object, including the problems of
missing answer, duplicated answer and schema dependence. However, if ID Reference
mechanism is not totally applied for all objects, i.e., there exists some objects with-
out IDREF as object <Employee:HT08> in Fig. 3, then the above problems are not
totally solved.

For example, Q4.4 = {Bill, HT08} has two duplicated answers, Employee (6)
and Employee (26). For Q4.5 = {Prj2012, Prj2013}, only the subtree con-
taining Supplier (41) can be returned whereas the subtree containing <Employee:
HT08> is missed. If object class Employee is designed as the parent of object class
Project, the missing answer of Q4.5 are found. It shows that the graph-based search
also depends on the design of XML schema in this case.
Summary. The graph-based search can avoid missing answer, duplicated answer and
schema dependence only if the ID reference completely covers all objects. Otherwise,
the above limitations cannot avoid. The other problems including meaningless answer
and problems related to relationship are still unsolved no matter IDREFs are used or
not because IDREF mechanism only considers semantics of object and object ID but
ignores semantics of relationship and attribute.

5 Impact of ORA-semantics in XML keyword search
We pointed out limitations of the structure-based search (the LCA-based and the graph-
based approaches) because of unawareness of identification of object, relationship and
attribute. We refer such identification as ORA-semantics. This section introduces ORA-
semantics, shows the impact of ORA-semantics in XML keyword search and discusses
the way to discover ORA-semantics from XML schema and data.
5.1 ORA-semantics
The term semantics has different interpretations. In this paper, we define the concept
of ORA-semantics to include the identification related to object, relationship and at-
tribute. At data level, an object represents a real world entity. Several objects may be

From Structure-based to Semantics-based: towards Effective XML Keyword Search 7

connected through some relationship. Objects and relationships may have a set of at-
tribute values to describe their properties. Object, relationship and attribute value is an
instance of object class, relationship type and attribute respectively at the schema level.
Besides such major semantics, there are connecting nodes such as composite attributes
or aggregation nodes. In brief, ORA-semantics is defined as follows.
Concept 6 (ORA-semantics (Object-Relationship-Attribute-semantics)) In an XML
schema tree, the ORA-semantics is the identification of object class, OID, object at-
tribute, aggregation node, composite attribute and explicit/implicit relationship type
with relationship attributes.

For example, at schema level, ORA-semantics of the schema in Fig. 1 includes:
– Student, Course and Textbook are object class
– Student No, Code and ISBN are object ID of the above object classes.
– Grade is the attribute of the relationship between Student and Course.
– For simplicity, we do not include object attribute in the schema in Fig. 1. The hidden

object attributes include Student No, Name, etc of object class Student.
At data level, ORA-semantics in the XML data in Fig. 1 includes that Course (11)

is object; CS5201 is its object ID value; Database, Computing are its attribute
values; especially A is an attribute value of the relationship it involves in, etc.

5.2 Impact of ORA-semantics in XML keyword search
Object semantics. Object identification helps detect multiple occurrences of the same
object (duplicated object) appearing at different places in XML document. This enables
us to filter duplicated answers and discover missing answers.
Relationship semantics. Relationship identification helps discover the degree of a rela-
tionship to return a more complete answer for queries involving in ternary relationship.
Attribute semantics. Differentiating object attribute and relationship attribute avoids
returning incorrect answer for queries involving in relationship attribute. Moreover,
differentiating object and non-object node also avoids meaningless answers.
ORA-semantics. Exploiting ORA-semantics in processing keyword query provides an-
swers independent from the schema designs. In brief, ORA-semantics can resolve all
problems of the structure-based search discussed in Sec. 3 and Sec. 4.

5.3 Discovering ORA-semantics
ORA-semantics includes the identification of internal nodes and leaf nodes in XML
schema. Particularly, an internal node can be classified into object class, explicit rela-
tionship type, composite attribute and aggregation node. A leaf node can be a relation-
ship attribute or an object attribute, which further can be object ID or a normal object
attribute. We have designed algorithms to automatically discover ORA-semantics with
high accuracy for overall process (higher than 94%). More details can be found in [14].
Other effective algorithms can be studied; however, this task is orthogonal to this paper.

6 Our semantics-based XML keyword search
Discussion in Sec. 4.1 shows that even if all objects follow IDREF mechanism and thus
there is no duplication, the existing graph-based search still suffers from problems of
meaningless answer, and especially problems related to relationship. In brief, IDREF
cannot solve all problems of the existing structure-based search. To solve these prob-
lems, a more semantics-enriched model is needed, in which not only objects, but rela-
tionships and their attributes must be fully captured as well. We illustrate this model

8 Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, Jiaheng Lu

by proposing Object Relationship (OR) graph to represent an XML document. Both
objects and relationships are represented as nodes in an OR graph while attributes and
values are associated with the corresponding objects and relationships. As such, an OR
graph can capture all objects, relationships and attributes of an XML data.

In this section, we first introduce the OR graph, its advantages, and the process
of OR graph generation. We then present search semantics, i.e., formally define the
expected answers, and query processing based on the OR graph. To show the advantages
of the OR graph, we compare our OR graph based search with the structure-based
search. To improve efficiency, we propose indexes and optimized search algorithms.

6.1 Object relationship (OR) graph

Definition 1 (OR graph) An OR graph G = (V
O

, V
R

, E) is an unweighed, undirected
bipartite graph with two types of nodes, where V

O
is the set of object nodes, VR is the

set of relationship nodes, V
O
∩ V

R
= ∅, and E is the set of edges. An edge is between

an object node in V
O

and a relationship node in V
R

. For every relationship r ∈ V
R

,
there is an edge between each of its participating objects and r.

The information stored for each object node is a quadruple 〈nodeID, object class,
OID, associated keywords〉. The information stored for each relationship node is a sim-
ilar quadruple 〈nodeID, relationship type, {participating oi}, associated keywords〉.
Each object/relationship has a randomly generated nodeID as label in the OR graph.
Associated keywords of an object/relationship include its attributes and values as well.

Consider the XML data in Fig. 3. The OR Graph conforming to this XML data is
shown in Fig.4, where square and diamond stand for object node and relationship node
respectively. Each object/relationship node in an OR graph has an identifier, e.g., o1,
o2, o3, o4 and o5 are objects and r1, r2, r3, r4 and r5 are relationships. Additionally,
to serve for a clearer explanation, for each object node in Fig.4, we associate its object
class and object ID (e.g., Project Prj1 for o1). Moreover, we also show matching
nodes of query keywords discussed in Sec. 4 (e.g., Amazon matches o4).

6.2 Features and advantages of the OR graph

FA1. Object-relationship level. Our OR graph represents XML document at object-
relationship level by associating attributes and values with their corresponding objects
and relationships. This can significantly reduces the search space since the number of
nodes of an OR graph is much less than that of the corresponding XML data due to not
counting attributes, values and duplicated objects. Moreover, it can avoid meaningless
answers because an answer must correspond to a whole object or relationship rather
than an arbitrary XML element.
FA2. Duplicate-free. An object may appear as multiple occurrences in an XML doc-
ument. In an OR graph, each object node represents an object, not an occurrence of

Project
(21)

Part
(51)

JName
(24)

Prj2013
(25)

Prj_No
(22)

Prj2
(23)

Part_No
(52)

P201
(53)

S143
(35)

PName
(54)

PARTA
(55)

Supplier
(33)

Employeer
(26)

EID
(27)

Supplier
(41)

SName
(44)

Part
(46)

P201
(48)

Root
(0)

Reference edge
Tree edge

Amaron
(45)

Supp_No
(42)

S143
(43)

Supp_No
(34)

Part_No
(47)

Name
(29)

Bill
(30)

HT08
(28)

Project
(1)

JName
(4)

Prj2012
(5)

Prj_No
(2)

Prj1
(3)

Employeer
(6)

EID
(7)

Name
(9)

Bill
(10)

HT08
(8)

Status
(31)

Part
time
(32)

Status
(11)

Full
time
(12)

Price
(49)

$100
(50)

P201
(38)

Part_No
(37)

Quantity
(39)

150
(40)

Part
(36)

S143
(15)

Supplier
(13)

Supp_No
(14)

P201
(18)

Part_No
(17)

Quantity
(19)

Part
(16)

30
(20)

o2 o5

o4

r4

r5

Project
Prj2

Supplier
S143

Part
P201

o1 r3

Project
Prj1

Object

Relationship

Edge

o3

r1
Employer

HT08

r2

Legend

{Prj2012}

{Bill}

{Amazon}

{Prj2013}

{Part time}

{PARTA}

{Price
$100}

{Quantity
150}

o5

o4

o2 r4

(Minimum
Steiner tree) (mSubgraph)

Explanation:

VO
1 = {o5}

VR
1 = {r4}

VO
2 =

VR
2 =

VO
3 = {o2,o4}

Part
P201

Supplier
S143

{Quantity
150}

{PARTA}Project
Prj2

o5

r4

Part
P201

{Quantity
150}

{PARTA}

Fig. 4: The OR graph w.r.t. the XML data in Fig. 3

Project
(21)

Part
(51)

JName
(24)

Prj2013
(25)

Prj_No
(22)

Prj2
(23)

Part_No
(52)

P201
(53)

S143
(35)

PName
(54)

PARTA
(55)

Supplier
(33)

Employeer
(26)

EID
(27)

Supplier
(41)

SName
(44)

Part
(46)

P201
(48)

Root
(0)

Reference edge
Tree edge

Amaron
(45)

Supp_No
(42)

S143
(43)

Supp_No
(34)

Part_No
(47)

Name
(29)

Bill
(30)

HT08
(28)

Project
(1)

JName
(4)

Prj2012
(5)

Prj_No
(2)

Prj1
(3)

Employeer
(6)

EID
(7)

Name
(9)

Bill
(10)

HT08
(8)

Status
(31)

Part
time
(32)

Status
(11)

Full
time
(12)

Price
(49)

$100
(50)

P201
(38)

Part_No
(37)

Quantity
(39)

150
(40)

Part
(36)

S143
(15)

Supplier
(13)

Supp_No
(14)

P201
(18)

Part_No
(17)

Quantity
(19)

Part
(16)

30
(20)

o2 o5

o4

r4

r5

Project
Prj2

Supplier
S143

Part
P201

o1 r3

Project
Prj1

Object

Relationship

Edge

o3

r1
Employer

HT08

r2

Legend

{Prj2012}

{Bill}

{Amazon}

{Prj2013}

{Part time}

{PARTA}

{Price
$100}

{Quantity
150}

o5

o4

o2 r4

(Minimum
Steiner tree) (mSubgraph)

Explanation:

VO
1 = {o5}

VR
1 = {r4}

VO
2 =

VR
2 =

VO
3 = {o2,o4}

Part
P201

Supplier
S143

{Quantity
150}

{PARTA}Project
Prj2

o5

r4

Part
P201

{Quantity
150}

{PARTA}

Fig. 5: mSubgraph for Q4.3

From Structure-based to Semantics-based: towards Effective XML Keyword Search 9

object. Thus, an object is not duplicated because it corresponds to only one object node.
Duplicate-free is a very important feature of OR graph, by which the process can find
missing answers and avoid duplicated answers from the LCA-based approach.
FA3. Explicit appearance of relationships. Differentiating object nodes and relation-
ship nodes enables us to distinguish between object attribute and relationship attribute.
This avoids returning incorrect answers for queries involving relationship attribute.
Moreover, relationship nodes can provide the degree (e.g., binary or ternary) of a re-
lationship. As a result, we can add all participating object nodes of relationship nodes
in a returned answer to make it more meaningful.
FA4. Schema-independence. The OR graphs conforming to any XML representations
of the same data source are the same no matter which schema design is used. In other
words, the OR graph is independent of the XML structure. This enables us to return
the same answers for all designs of the same data source. For example, no matter
<Paper:ER32> in the data in Fig. 3 is designed with or without IDREF, the OR
graphs conforming is in Fig. 4.

6.3 Generating OR graph from an XML document

Algorithm 1: OR graph generation

Input: D: XML document
Output: OR graphG(VO, VR, E)

1 VO ←∅
2 VR←∅
3 E←∅
4 for each object o visited by document order

do
5 if o is not duplicated with objects in

VO then
6 VO .Add(o)

7 Rel(o)← relationships among o and
its parents

8 for each relationship r inRel(o) do
9 if r is not duplicated with

relationships in VR then
10 VR.Add(r)
11 e← edge between o and r
12 E.Add(e)

To generate OR graph G(VO, VR, E) from an
XML document D (with or without IDREFs),
we identify VO, VR, E from nodes in D. Only
distinct objects in D are added to VO. The pro-
cess of OR graph generation is presented in Al-
gorithm 1. We traverse XML document by doc-
ument order. For each visited object node o, we
add o to VO if o is not duplicated with any ex-
isting object in VO and find the the set of rela-
tionships Rel(o) among o and its parents. For
each relationship r in Rel(o), we add r to VR
if r is new. We finally add the edge between o
and r to E. In brief, the sequence is adding an
object, then a relationship it participates in, and
finally the edge between them [11].

6.4 Search semantics
This paper adopts the minimum Steiner tree semantics [5, 6] because it is the widely ac-
cepted semantics for the graph-based search. A Steiner tree is a subtree of the data graph
that contains all keywords. The weight of a Steiner tree is defined as the total weight of
its edges. A minimum Steiner tree is a Steiner tree having the smallest weight among all
the Steiner trees w.r.t. the same set of matching nodes. However, a subtree returned by
this semantics may not contain completely meaningful information to answer a query,
especially when XML data has complicated structure. Therefore, we determine what
other nodes should be added in order to return a more meaningful answer to users. Con-
sequently, we extend a minimum Steiner tree s to become a more meaningful subgraph
(called mSubgraph) by adding all participating objects of all relationships in s. The
rationale is that a relationship itself has no or incomplete meaning without all of its
participating objects. An answer mSubgraph, is defined as follows.

10 Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, Jiaheng Lu

Definition 2 (mSubgraph) Given a keyword query Q to the OR graph G = (V
O

,V
R

,E).
An answer mSubgraph of Q is a subgraph of G and is denoted asmS(mV

O
, mV

R
, mE),

where mV
O
= V 1

O
∪ V 2

O
∪ V 3

O
and mV

R
= V 1

R
∪ V 2

R
such that

– V 1
O

and V 1
R

are the sets of matching objects and relationships.
– V 2

O
and V 2

R
are the sets of intermediate objects and relationships connecting ob-

jects in V 1
O

and relationships in V 1
R

.
– V 3

O
is the set of added objects which participate in mV

R
but are not in V 1

O
∪ V 2

O
.

– mE is the set of edges between each object in mV
O

to its relationships in mV
R

.
Let us recall Q4.3 = {PARTA, 150} to illustrate the benefits of mSubgraph.

Answers for this query (both in form of a minimum Steiner tree and in form of an
mSubgraph) are shown in Fig. 5. As can be seen, mSubgraphs are more meaning-
ful than minimum Steiner trees with intuitive meaning of 150 parts name PARTA are
supplied by <Supplier:S143> to <Project:Prj1> while the minimum Steiner
tree does not provide information about the supplier and the project.

6.5 Comparison on the LCA, graph and semantics based approaches
We compare the limitations of the LCA-based, the graph-based and our OR graph based
search and show the reasons behind in Table 1.

Table 1: Comparison on the LCA-based, graph-based and OR graph based approaches

Problem LCA-
based

Graph-
based

Reason of the problems of the
structure-based search

Semantics
needed

OR graph
based

Reason that the semantic based
search can avoid problems

Meaningless
answer

Yes Yes Returning non-object element be-
cause of not differentiating object
and non-object node

-Object
-Attribute

No All attributes and values are asso-
ciated with objects/relationships
(Object-relationship level, FA1)

Missing
answer

Yes Partial - Unable to discover the same ob-
ject appearing at different places
in XML document

Object No The same objects can be discov-
ered
(Duplicate-free, FA2 of OR graph)

Duplicated
answer

Yes Partial - Partial because it can be solved
with IDREF

Problems
related to
relationships

Yes Yes - Unable to distinguish relation-
ship attribute and object attribute
- Not aware ternary relationships
and above

-Attribute
-Relationship

No Relationships and relationship at-
tributes are discovered
(Explicit appearance of relation-
ships, FA3 of OR graph)

Schema
dependence

Yes Partial - Relying on hierarchy (LCA)
- Partial because it can be solved
with IDREF

Object No Different designs of the same data
have the same ORA-semantics
(Schema-independence, FA4)

6.6 Query processing
This work aims to show the impact of ORA-semantics on effectiveness of XML key-
word search. The ORA-semantics is exploited in generating the OR graph. After the
generation process, searching over OR graph to find minimum Steiner trees can be im-
plemented by existing efficient algorithms. Answers then will be extended to mSubgraphs.
Space limitation precludes detailed discussion about their algorithms. However, readers
may find them in [5, 6]. We also design our own algorithm and propose index and an
optimized techniques to improve the efficiency in Sec. 6.7. We work at object level by
assigning nodes describing an object instance the same label. Thereby, we dramatically
reduce the search space and greatly improve the efficiency.
6.7 Index and optimization
Indexes. To make distinction between query keywords with document keywords, we
call the latter as term. To support our optimized algorithm, we propose three indexes:
semantic-inverted lists, term-node lists and node-node lists. Due to space constraint, we
very briefly describe these indexes. Details are given in our technical report [11].

From Structure-based to Semantics-based: towards Effective XML Keyword Search 11

Semantic-inverted list is to store the set of matching objects and the set of matching
relationships of a term. Term-node lists is to store the shortest distance from some node
to mNode(t) where mNode(t) is the set of nodes matching term t. Node-node list is
to store a set of shortest distances from some node to each node in mNode(t).
The optimized algorithm. The search has two phases. To find a good Steiner tree,
we first find a good intermediate node v in sense that it can connect to all keywords
with short distances. From v, we then generate the Steiner tree by look up the closest
matching node for each keyword. The three indexes enable us to propose very efficient
algorithms for the two-phase search. Details of explanations are given in [11].

Algorithm 2: Optimized Algo.
Input: QueryQ = {k1, k2, . . . , kn}

Term-node lists LTN

Output: top-k answers inAns(Q)
1 Variables: Tprune: pruning threshold
2 Tprune← 0
3 for i ∈ [1, n] do
4 ci← new Cursor(LTN (ki),0)

5 while
∃j ∈ [1, n] : cj .Next() 6= NULL do

6 i← pick from [1,n] by BF order;
7 < v >← ci.Next()
8 if v 6= NULL then
9 KeywordNavigation(v);

10 if ci.Dist() > Tprune and
Tprune ≥ 0 then

11 Output top-k answers in
Ans(Q). Exit

12

Algorithm 3: KeywordNavigation(v)
Input: a connecting node v

Node-node lists LNN

1 Variables: cNode(Q): connecting nodes visited, initially ∅
2 if cNode(Q).contain(v) then
3 return

4 cNode(Q).add(v)
5 while TRUE do
6 for j ∈ [1..n] do
7 < uj >← pick from LNN (v) in BestFS order;

8 g← 〈{u1, u2, . . . , un, }, VI , E〉
9 if g /∈ Ans(Q) then

10 if size(g)> Tprune and Tprune ≥ 0 then
11 return;

12 Ans(Q).add(g)// size in ascending order

13 if |Ans(Q)| ≥ k then
14 Tprune← the kth biggest of

{size(α)|α ∈ Ans(Q)}

7 EXPERIMENTS
We compare the quality of answers returned by our OR graph based search with XK-
Search [22] and BLINK [7] (two state-of-the-art algorithms to represent the LCA-based
and graph-based search respectively). Using these two algorithms already show the im-
provement of our semantic-based search over the structure-based search because other
structure-based approaches suffer from the same problems with them. The experiments
were performed on a Intel(R) Core(TM)2 Duo CPU 2.33GHz with 3.25GB of RAM
with three real data sets: eBay1 (0.36MB), NBA2(45.2MB), Baseball3 (60MB).

7.1 Rating answers
We compare the quality of the answers returned by our approaches and the structure-
based approaches by rating their answers. We randomly generated 25 queries from all
document keywords. After filtering out some meaningless queries, we chose 10 queries
as shown in Table. 6. We asked 21 students major in computer science to rate the top-
10 answers on scale [0-5] (0 for totally mismatch and 5 for perfectly match the user
expectation). The scores of answers are shown in Fig. 7.
Discussion. As shown, our approach gets the highest scores for all queries, which means
that our approach returns more meaningful answers to users. Moreover, the scores of

1 www.cs.washington.edu/research/xmldatasets/data/auctions/ebay.xml
2 http://www.databasebasketball.com/
3 http://www.seanlahman.com/baseball-archive/statistics/

12 Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, Jiaheng Lu

Query Query Keywords Dataset
Q1 wizbang4 eBay
Q2 Bill NBA
Q3 id num, 511364992 eBay
Q4 ct-inc, CyberTech eBay
Q5 Michael, Coach NBA
Q6 Player, Bill, Sam NBA
Q7 pizarju01, teams Baseball
Q8 BOS, TOR, vioxji01 Baseball
Q9 Celtics, player NBA
Q10 Michael, Celtics, team NBA

Fig. 6: 10 keyword queries for users to rate

 0

 1

 2

 3

 4

 5

Q1 O2 Q3 Q4 Q5 O6 Q7 Q8 Q9 Q10

R
at

in
g

Semantic-based
Graph-based

LCA-based

Fig. 7: Scores of answers

our approach are very high (above 4) and stable, which infers that users are satisfied
with our answers. In contrast, the structure-based search gets lower scores since its
answers mismatch the expectations of users. Especially for queries Q1, Q2 and Q6, the
scores are around 1 because they returns hundreds of duplicated attribute nodes without
any detailed information. Generally, the graph-based search has higher score than the
LCA-based search because it can find missing answers and avoid duplicated answers
when IDREFs are considered.

7.2 Statistics on problems of answers
We collected 86 keyword queries for the above three data sets: 12 queries for eBay, 44
queries for NBA and 30 queries for Baseball from 21 students working in computer
science. Based on the discussion in Sec. 3 and Sec. 4, the answers which cannot match
the users’ search intention are classified into five categories: including (A) Meaningless
answer; (B) Missing answer; (C) Duplicate answer; (D) Relationship problem; and
(E) Schema dependence. Fig. 8 shows the percentage of answers containing a certain
problem over total answers. Note that an answer may contain more than one problem.

0%

10%

20%

30%

40%

50%

A B C D E

(a) Baseball

0%

10%

20%

30%

40%

A B C D E

(b) NBA

0%

10%

20%

30%

A B C D E

(c) eBay
0%

10%

20%

30%

A B C D E

LCA-based

Graph-based

Semantics-based

Fig. 8: Statistics on problems of answers: (A) Meaningless answer; (B) Missing answer; (C) Du-
plicate answer; (D) Relationship problem; (E) Schema dependence

Discussion. Generally, answers of our approach have fewer problems than those of the
structure-based search. The most frequent problem is the meaningless answer. It usually
occurs when a query contains only one keyword and the structure-based search returns
only one non-object node matching that keyword. Sometimes our approach returns a
meaningless answer when it discovers a composite attribute as an object. Missing and
duplicated answers are also frequent problems because the structure-based search can-
not discover the same object appearing in multiple nodes.

7.3 Efficiency
We evaluate the efficiency of the
three compared works by varying the
number of query keywords and node
frequency of keyword using NBA
dataset. The response time is shown
in Fig. 9.

 0

 1000

 2000

 3000

 4000

 5000

<0.2K 0.2K-1K 1K-2K 2K-5K >5KR
es

po
ns

e
tim

e
(m

se
c)

Node frequency

LCA-based
Graph-based

Semantics-based

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5R
es

po
ns

e
tim

e
(m

se
c)

Number of query keywords

LCA-based
Graph-based

semantics-based

Fig. 9: Response time

From Structure-based to Semantics-based: towards Effective XML Keyword Search 13

Discussion. The response time of our approach depends on the frequency of matching
objects and relationships rather than the node frequency since it works at object and
relationship level. Thus, our approach runs stably while the others’ response time in-
creases very fast with the node frequency. Moreover, working at object and relationship
level largely reduces the search space and thus enables our approach to run much faster
than the others. More explanations and experiments on efficiency are given in [11].
8 RELATED WORK
Tree-based XML keyword search. Most existing tree-based XML keyword search
methods are LCA-based and depend on hierachical structure of the data. XKSearch
[22] defines Smallest LCAs (SLCAs) to be the LCAs that do not contain other LCAs.
Meaningful LCA (MLCA) [15] incorporates SLCA into XQuery. VLCA and ELCA
[12, 23] introduce the concept of valuable/ exclusive LCA to improve the effectiveness
of SLCA. MESSIAH [20] handles cases where there are missing values in optional at-
tributes. Although researchers have put efforts on improving LCA-based effectiveness,
their works are still based on the hierarchical structure without ORA-semantics. Thus,
they face problems as studied in Sec. 3.
Graph-based XML keyword search. Minimum Steiner tree and distinct root seman-
tics [3, 7, 9] are popular but may return answers whose content nodes are not closely
related. Recently, subgraph semantics [13, 19] and content based semantics [10, 16] is
proposed to handle the above problem, but they still do not consider ORA-semantics.
Thus, they face problems as discussed in Sec. 4.
Semantics-based XML keyword search. XSEarch [4] focuses on adding semantics
into query but the added semantics is for distinguishing a tag name and a value key-
word only. XSeek [17] and MaxMatch [18] infer semantics from keyword query. They
can only infer semantics of object since it is impossible to infer any semantics of ob-
ject ID, relationship and relationship attribute from a keyword query. XKeyword [8]
exploits semantics from the XML schema. XReal [1], Bao et. al. [2] and Wu et. al. [21]
proposed an object-level for XML keyword search. However, all of these works only
consider objects, but they do not have the concepts of object ID, relationship and at-
tribute. Therefore, they can avoid at most the problem of meaningless answer but still
suffer from all other problems discussed in Sec. 3 and 4.
9 Conclusion and future work
We have systematically illustrated limitations of the existing LCA-based search, includ-
ing the problems of meaningless answer, missing answer, duplicate answer, problems
related to relationship, and schema dependence which are caused by unawareness of
semantics of object, relationship and attribute. We have also demonstrated that even
with IDREFs, the graph-based search can avoid at most the problems of missing an-
swer, duplicate answer and schema dependence because IDREF mechanism is aware
of only semantics of object and object ID but not semantics of relationship and attribute.
Thus, the graph-based search still suffers from the problems of meaningless answer and
problems related to relationship. We introduced ORA-semantics which is semantics of
object, relationship and attribute and showed its importance in XML keyword search.
To take ORA-semantics into account for XML keyword search, we propose Object
Relationship (OR) graph to represent XML data, in which objects and relationships
correspond to nodes, while attributes and values are associated with the correspond-
ing object/relationship nodes. As such, OR graph can capture all ORA-semantics of an

14 Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, Jiaheng Lu

XML data. To process a query, we search over the OR graph. Our index and optimiza-
tion provide an efficient search algorithm. Experimental results showed that our OR
graph based approach outperforms the structure-based search in term of both effective-
ness and efficiency. Thus, semantics-based approach could be a promising direction for
XML keyword search in solving problems of the current structure-based search.
References

1. Z. Bao, T. W. Ling, B. Chen, and J. Lu. Efficient XML keyword search with relevance
oriented ranking. In ICDE, 2009.

2. Z. Bao, J. Lu, T. W. Ling, L. Xu, and H. Wu. An effective object-level XML keyword search.
In DASFAA, 2010.

3. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching
and browsing in databases using BANKS. In ICDE, 2002.

4. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A semantic search engine for XML.
In VLDB, 2003.

5. B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k min-cost connected
trees in database. In ICDE, 2007.

6. K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in complex data
graphs. In SIGMOD, 2008.

7. H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on graphs. In
SIGMOD, 2007.

8. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on XML
graphs. In ICDE, 2003.

9. V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, and R. D. Hrishikesh Karambelkar.
Bidirectional expansion for keyword search on graph databases. In VLDB, 2005.

10. M. Kargar and A. An. Keyword search in graphs: finding r-cliques. PVLDB, 2011.
11. T. N. Le, H. Wu, T. W. Ling, L. Li, and J. Lu. From structure-based to semantics-based:

Effective XML keyword search. TRB4/13, 2013, School of Computing, NUS.
12. G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for valuable lcas over xml

documents. In CIKM, pages 31–40, 2007.
13. G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: Efficient and adaptive keyword

search on unstructured, semi-structured and structured data. In SIGMOD, 2008.
14. L. Li, T. N. Le, H. Wu, T. W. Ling, and S. Bressan. Discovering semantics from data-centric

XML. DEXA, 2013.
15. Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, 2004.
16. X. Liu, C. Wan, and L. Chen. Returning clustered results for keyword search on xml docu-

ments. TKDE, 2011.
17. Z. Liu and Y. Chen. Identifying meaningful return information for XML keyword search. In

SIGMOD, 2007.
18. Z. Liu and Y. Chen. Reasoning and identifying relevant matches for XML keyword search.

In PVLDB, 2008.
19. L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying communities in relational databases. In

ICDE, 2009.
20. B. Q. Truong, S. S. Bhowmick, C. E. Dyreson, and A. Sun. MESSIAH: missing element-

conscious slca nodes search in xml data. In SIGMOD, 2013.
21. H. Wu and Z. Bao. Object-oriented XML keyword search. In ER, 2011.
22. Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML

databases. In SIGMOD, 2005.
23. R. Zhou, C. Liu, and J. Li. Fast ELCA computation for keyword queries on XML data. In

EDBT, 2010.

