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Abstract: Maxillary sinus augmentation is a commonly used procedure for the placement of dental
implants. However, the use of natural and synthetic materials in this procedure has resulted in
postoperative complications ranging from 12% to 38%. To address this issue, we developed a novel
calcium deficient HA/β-TCP bone grafting nanomaterial using a two-step synthesis method with
appropriate structural and chemical parameters for sinus lifting applications. We demonstrated
that our nanomaterial exhibits high biocompatibility, enhances cell proliferation, and stimulates
collagen expression. Furthermore, the degradation of β-TCP in our nanomaterial promotes blood
clot formation, which supports cell aggregation and new bone growth. In a clinical trial involving
eight cases, we observed the formation of compact bone tissue 8 months after the operation, allowing
for the successful installation of dental implants without any early postoperative complications. Our
results suggest that our novel bone grafting nanomaterial has the potential to improve the success
rate of maxillary sinus augmentation procedures.

Keywords: bone grafting nanomaterials; bionanotechnology; maxillary sinus lifting; synthetic bone
materials; HA/β-TCP; bionanomaterials; scaffolds; clinical cases; dental implants; nanostructures

1. Introduction

Nowadays, the maxillary sinus lift procedure is commonly used to increase the amount
of hard tissue in the posterior region of the upper jaw before dental implants are placed.
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The need for this procedure arises from the phenomenon of sinus pneumatization, which
decreases the amount of vertical bone available. The traditional approach to elevating the
maxillary sinus involves making an incision in the lateral wall of the maxilla, then lifting
the sinus membrane and inserting bone graft under direct visualization [1].

There are several materials that can be used for the maxillary sinus lift procedure, each
with its own advantages and disadvantages [2]. Autogenous bone grafts taken from the
patient’s own body are considered the gold standard for bone grafting. They have a high
success rate and promote natural bone growth. However, they require a second surgical site
for harvesting, which can increase the patient’s discomfort and recovery time [3]. Donor
allografts, usually from a cadaver, have the advantage of not requiring a second surgical
site. They are available in different forms, such as demineralized bone matrix (DBM) or
freeze-dried bone allograft (FDBA). However, the success rate of allografts may be lower
than that of autogenous grafts, and there is a risk of disease transmission [4]. Xenografts
are bone materials derived from a different species, typically bovine or porcine, that are
processed to remove all organic matter. They have the advantage of not requiring a second
surgical site and are readily available. However, they may not be as effective as autogenous
grafts and carry a small risk of an immune reaction [5]. The most successful materials used
nowadays for sinus lift procedures are synthetic bone substitutes that mimic the structure
and composition of bone. They have the advantage of being readily available and not
requiring a second surgical site while also eliminating the risk of disease transmission [6].
However, their success rate may be lower than that of autogenous grafts, and their long-
term stability and integration with natural bone may be a concern.

Taking into account the advantages of synthetic bone grafts, different types of such ma-
terials are used in clinical practice. Polymers, such as poly(lactic-co-glycolic acid) (PLGA)
and polycaprolactone (PCL), are biocompatible and biodegradable and can be designed to
have different mechanical and chemical properties [7]. However, their osteoconductivity
may be limited, and they may not provide sufficient long-term stability [8]. Bioactive glass,
calcium aluminate, and calcium silicate, as bioceramics, are used due to their relatively
high biocompatibility and osteoconductivity, as well as being able to promote bone regen-
eration and angiogenesis [9]. Unfortunately, due to their low mechanical properties, their
application is limited [10]. Calcium sulfate-based material, e.g., calcium sulfate hemihy-
drate (CSH), in addition to biocompatibility and osteoconductivity, can be resorbed and
replaced by new bone over time. However, they have a relatively short resorption time and
may not provide sufficient long-term stability [11]. The most commonly used materials in
clinical practice are calcium phosphate-based materials, including hydroxyapatite (HA)
and tricalcium phosphate (TCP), which are both naturally occurring minerals found in
bone [12]. Mimicking the natural bone mineral matrix, they are highly osteoconductive
and osteoinductive, but HA has a higher crystallinity and slower resorption rate, while
TCP has a lower crystallinity and faster resorption rate [13].

In current research, we are investigating novel materials that combine both HA and
TCP in one porous graft that can improve graft degradation and osteointegration and
provide positive clinical outcomes. The formation of new bone under the influence of
transplants is a key goal of sinus lifting and can be achieved through osteogenesis, os-
teoinduction, and osteoconduction. Osteogenesis occurs in autotransplants by providing a
framework, growth factors for osteogenesis, and cells that produce bone matrix. The mecha-
nism of osteoinduction is characteristic of autogenous bone, allogeneic bone, and xenotrans-
plants and involves differentiation of osteogenic cells in response to osteoinductors—bone
morphogenetic proteins (BMP) or other growth factors. The mechanism of osteoconduc-
tion (osteoconductivity), which involves the use of three-dimensional biological scaffolds,
is based on the formation of new bone over the transplant, with the graft potentially
undergoing revascularization and incorporation into new bone tissue [14].

The clinical use of any biological materials requires compliance with key requirements
for biomaterials and evidence of their safety and effectiveness. Among the mandatory
requirements for the use of biological materials from bone tissue are several factors [15]:
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Firstly, scaffolds must be three-dimensional and have sufficient surface area for interaction
with cells and tissues in the area of use. Secondly, the material must be porous and have
connections between pores. This requirement is a prerequisite for ensuring cell adhe-
sion, migration, and proliferation of bone cells in the appropriate direction. Effective cell
adhesion to the biomaterial and structural anisotropy also affect further cell orientation
and cell–matrix interactions. Thirdly, the biomaterial must be non-toxic and biodegrad-
able. However, in doing so, the biomaterial samples must have appropriate mechanical
properties, and these characteristics must be comparable to the strength of cortical bone [6].

However, questions of the immunogenicity of biomaterials deserve special attention.
Regardless of the specificity of the bone transplant used for augmentation, their implemen-
tation is accompanied by an immunological response to foreign substances. It has been
shown that, despite careful processing, allogeneic bone retains potential antigenicity, which
induces T cell-mediated immune responses against the allograft [16]. This is due to the
presence of molecules of the major histocompatibility complex (MHC) in allogeneic bone
blocks. It is important to note that the immune system’s response to bone transplants is
complex and involves the participation of cells such as T lymphocytes, B lymphocytes,
and macrophages.

It is important to emphasize that immune cells provide not only an inflammatory
response to foreign material. There is a close relationship between the metabolism of
bone tissue and the immune system. Activated T cells can influence bone resorption and
osteogenesis through the action of interferon gamma (IF-gamma) or interleukin 17 (IL-
17) [17]. RANKL also plays an important role, which binds to the receptor activator of
nuclear factor kappa-B (RANK) on osteoclast precursors and induces osteoclastogenesis
with subsequent resorption of bone tissue [18].

Under physiological conditions, most macrophages demonstrate the M2 phenotype,
which helps maintain tissue homeostasis [19]. Both resident M2 and inflammatory M1
macrophages can affect bone formation. Osteoclasts are traditionally considered resident
macrophages in bone. In recent years, a large population of macrophages that constantly
reside in bones has been identified. These macrophages are called osteomacs, which
can provide pro-anabolic support to osteoblasts and promote bone formation [20]. In
the context of implant procedures, macrophages mediate both reparative processes and
inflammatory responses to implanted biomaterials [21]. Implants made of bionanomaterials
induce the polarization of M1 macrophages, leading to an inflammatory response to
foreign bodies and granuloma formation. The mechanisms of the influence of different
bionanomaterials on integration, remodeling, and immune response after augmentation
procedures are still the subject of active research [22]. Only a small number of studies have
provided actual information regarding the tissue response of the periodontal and specific
structural composition of the sinus augmentation zone using allogeneic bionanomaterials.
Histological evaluation of the bone healing response after the transplantation of different
types of bone bionanomaterials in the human body will facilitate the use of bone graft
nanomaterial by the surgeon and allow the establishment of the implant healing period
according to the patient’s clinical situation. In addition, an assessment of the immune,
angiogenic, and osteogenic cell responses to the novel bone grafting material will decipher
the mechanisms of the morphogenetic effects of the bone bionanomaterial.

In the current research, we demonstrated a complete circle, from development to
clinical application, of novel calcium deficient hydroxyapatite (HA and β-TCP mixture)
with a detailed focus on tissue immune reaction and bone remodeling.

2. Materials and Methods
2.1. Materials

Calcium chloride anhydrous (CaCl2), sodium phosphate monobasic anhydrous (NaH2PO4),
and sodium hydroxide (NaOH) were purchased from Pol-Aura (Warszawa, Poland), and
sodium bicarbonate (NaHCO3) was purchased from Thermo Fisher Scientific (UK). The amount
of pure substance was more than 99.5%. Sodium alginate was purchased from Shanghai
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Macklin Biochemical Technology Co., Ltd. (Shanghai, P.R. China). The reactants were used as
received without further purification. All media and chemicals for cell culture experiments and
histological evaluation were purchased from Sigma-Aldrich (Darmstadt, Germany) and were
used as received.

2.2. Bioactive Graft Synthesis

In our study, calcium deficient hydroxyapatite was produced by wet precipitation. The
synthesis was carried out under the control of stirring, addition rate, pH, and temperature
by the following reaction:

9CaCl2 + 5NaH2PO4 + 13NaOH + NaHCO3 → Ca9Na(PO4)5(CO3)(OH)2 + 18NaCl + 11H2O

Two different solutions were prepared separately:
Solution 1.
CaCl2 solution (0.09 M) was prepared by dissolving an appropriate amount of CaCl2

in distilled water. The solution was heated under stirring up to 80 ◦C. Sodium bicarbonate
(NaHCO3) was applied in an amount of 0.01 M as a reactant introducing CO3

2− groups.
Solution 2.
NaH2PO4 solution (0.05 M) was prepared. Then, the second solution was added

dropwise to the first solution to obtain calcium deficient hydroxyapatite under stirring
and heating up to 80 ◦C for 2 h. During synthesis, the pH of the reaction medium was
stabilized at >11 using sodium hydroxide solution. After 2 h, the pH was decreased to 9.
The suspension was aged for 24 h at room temperature. The top solution was removed by
decantation. The resultant precipitate was washed three times with deionized water until
the solution pH became 7, and then it was used as a slurry.

The obtained calcium deficient hydroxyapatite slurry was mixed with 3% sodium
alginate water solution in a relation of 3:1. The obtained mixture was added dropwise to
the 0.1 M CaCl2 solution to obtain granules of HA in an alginate shell. They were frozen
at −80 ◦C overnight followed by drying at 60 ◦C. The obtained samples were calcined at
900 ◦C to obtain a mixture of HA and β-TCP and remove the organic phase. The dried
samples were ground into fine powders and used for characterization studies.

2.3. Bioactive Graft Characterization

The morphology analysis of the obtained hydroxyapatite was performed with scan-
ning electron microscopy (SEO-SEM Inspect S50-B) using an energy dispersive spectrom-
eter AZtecOne with detector X-MaxN20 (Oxford Instruments plc, Abingdon, UK). The
X-ray diffraction (XRD) analysis was carried out using an X-ray diffractometer DRON-3M
(Bourevestnik, Saint-Petersburg, Russia) connected to a computer-aided system for exper-
imental control and data processing. CuKα radiation was used (wavelength 0.154 nm)
with the Bragg–Brentano focusing method. The current and voltage of the X-ray tube were
20 mA and 40 kV, respectively. The scan was performed in a continuous registration mode
with a 0.02◦ step and 1◦/min scan speed in a 2 θ range of 20–80◦. All experimental data
were processed using the DifWin-1 program package (Etalon-TC, Lubertsi, Russia). Phase
identification was performed using the JCPDS (Joint Committee on Powder Diffraction
Standards) card catalog [23].

The molecule structural components were identified using the Fourier transform in-
frared spectroscopy method with a ThermoNicolet Nexus 470 apparatus purchased from
Thermo Fisher Scientific (Waltham, MA, USA) equipped with an ATR adapter. Measure-
ments and analysis of spectra were carried out with the use of software attached to the
device. The spectra were recorded in the spectral range of 550–4000 cm−1 with a nominal
resolution of 4 cm−1 and 32 scans for each measurement. All samples were dried before
analysis [23].
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2.4. Biocompatibility Assessment

Primary osteoblasts (Passage 4) obtained from the collection of the Biomedical Re-
search Center were used to assess the biocompatibility of as-synthesized hydroxyapatite. Be-
fore the experiment, cells were cultured in Dulbecco’s modified Eagle’s medium/Nutrient
Mixture F-12 (DMEM, Gibco, MA, USA) supplemented with 10% fetal bovine serum,
100 units/mL penicillin, 100 µg/mL streptomycin, and 2.5 µg/mL amphotericin B (Gibco,
MA, USA) under conditions of 37 ◦C and 5% CO2. HA powder (100 mg) was placed on the
bottom of a 96-well plate, and osteoblasts at a density of 4 × 104 cells/cm2 were seeded
on over the material. The biocompatibility of the bone grafting material was evaluated
using a resazurin reduction assay, as described elsewhere, on days 1, 3, 5, and 7 [24]. Cell
proliferation on the tissue culture plate (TCP) was used as a positive control. For that,
resazurin was added to the cells at a 15 µg/mL final concentration and incubated for 8 h.
One hundred microliters of the medium was then transferred to another 96-well plate, and
the optical density (absorbance) was measured using a Multiskan FC plate reader (Thermo
Fisher Scientific, Waltham, MA, USA) at 570 and 595 nm. The results were quantified using
a formula from the Method for Measuring Cytotoxicity or Proliferation Using Alamar Blue
by Spectrophotometry (Bio-Rad Laboratories, Hercules, CA, USA).

Collagen, which was synthesized by osteoblast cells and accumulated on samples, was
detected through staining with Sirius Red dye. The staining was performed as follows [25]:
Cells were seeded on over the material at a cell density of 104 cells per well, and on the 7th
and 14th days of incubation, the samples were transferred to another 24-well plate and
washed 3 times with ice-cold PBS (40 ◦C). Then, 1.5 mL of Bouin’s solution was added to
each well for 1 h at room temperature. After the solution was removed, the samples were
rinsed with cold tap water and dried in a fume hood overnight. On the next day, 1.5 mL
of Sirius Red dye was added to the samples for 1 h, then removed, and each well was
washed 4 times with 0.01 M HCl. NaOH solution (1 mL of 0.1 M) was added to each well in
order to recover the bound dye. The plate was placed on a shaker for 30 min, after which
100 µL of eluted dye from each well was transferred to a 96-well plate, and the absorbance
was measured using a Multiskan FC (Thermo Fisher Scientific, Waltham, MA, USA) plate
reader at a wavelength of 570 nm.

2.5. Blood Interaction Test

A total of 4.0 g of bone grafting nanomaterial was weighed and placed in six Petri
dishes with a diameter of 6 cm. In order to control the speed of blood clotting, six additional
empty Petri dishes were prepared. Whole venous blood (60 mL) was collected from a male
volunteer who provided consent for the study. Prior to conducting the study, the Ethics
Committee on Medical Research of the Medical Institute of Sumy State University approved
the protocol. Next, 5 mL of blood was immediately added to each dish containing the bone
grafting nanomaterial. The samples were gently stirred with a glass rod to ensure even
distribution of the blood. A timer was started as soon as the blood was added, and it was
stopped once a clot had formed. For scanning electron microscopy (SEM) analysis, bone
grafting nanomaterial with coagulated blood weighing approximately 0.5 g was fixed in a
2.5% glutaraldehyde solution and then dehydrated in alcohols of increasing concentration
for 24 h. Once dry, the samples were covered with a 30–50 nm layer of silver using a
vacuum set-up VUP-5M (SELMI, Sumy, Ukraine). The SEM images of the blood clot on the
hydroxyapatite were captured using an FEI Inspect S50B (FEI, Brno, Czech Republic) with
an Everhart–Thornley secondary electron detector.

2.6. Animal Experiment

In this study, 36 laboratory rats were obtained from the Vivarium of Sumy State
University. The animals were housed at 22 ± 2 ◦C on a 12-h light/dark cycle and had free
access to food and water. Each animal was kept in a separate cage in accordance with the
Directive 2010/63/EU of the European Parliament and of the Council of 22 September
2010 on the Protection of Animals Used for Scientific Purposes. The study was approved
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by the Commission on Bioethics Compliance in Experimental and Clinical Research. The
animals were randomized into control and experimental groups, with 18 animals in each.
The control group consisted of animals that did not receive any bone substitute after the
operation, while the experimental group included animals that received a novel bioactive
bone graft nanomaterial to replace a bone defect in the middle third of the tibia. Prior to
the operation, the animals’ legs were shaved under anesthesia (ketamine, 10 mg per 1 kg).
The surgical field was treated with 70% ethanol to prevent bacterial contamination and
then surrounded with a sterile cloth. A bone defect was created in the middle third of
the tibia using a stomatological drill (d-2.2 mm) and filled with the novel bone grafting
nanomaterial in the experimental group (Figure 1). The wound was closed with simple
interrupted sutures, and an aseptic dressing was applied. The animals were euthanized on
the 7th, 14th, and 28th days of the experiment with an overdose of ketamine (70 mg/kg).
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Figure 1. Operative procedure for bone defect plastic. 1—prepared area before the operation;
2—general view of the operative area (a)—bone before defect formation; 3—general view of bone
defect formation stage (b)—bone defect; and 4—general view of the last operation stage (c)—defect
filled with bone grafting nanomaterial.

The material was fixed in a 10% neutral (buffered) formaldehyde solution for 24 h. All
tissue processing procedures (fixation, decalcification, paraffin saturation, and embedding)
were performed according to generally accepted methods. Serial sections with a thickness
of 4–5 µm were stained with Mayer’s hematoxylin and eosin.

2.7. Clinical Application

Following the successful in vitro biocompatibility assessment and in vivo evaluation
of effectiveness, the bone grafting nanomaterial was approved for clinical application
under protocol #12-75/19 (Zaporizhzhia State Medical University). The open sinus lifting
operation was carried out according to the following protocol (Figure 2): After sedation
with an analgesic (Ketanov) and application of a hemostatic agent (Dicinon), a full-thickness
mucoperiosteal flap was formed in the area of the anterior wall of the maxillary sinus,
followed by skeletonization of the anterior wall of the maxillary sinus. Using a round bur
with irrigation, the cortical layer of the bone was removed to expose the sinus membrane
(Schneider’s membrane). The membrane was then peeled from the floor of the maxillary
sinus and the side wall of the nose using sinus elevators and raised to the height of the
desired augmentation. The space formed between the bottom of the sinus and the dome
of the membrane was filled with a graft that had been pre-moistened with an antibiotic
and antiseptic solution (dioxidine, chlorhexidine bigluconate 0.05%). The graft was evenly
distributed throughout the volume and condensed with a force of up to 150 g/cm2. The
integrity of the Schneiderian membrane was monitored, as well as an assessment of the
degree of vascularization of the recipient zone by the rate of wetting of the augmentate
with blood. The window in the anterior wall of the maxillary sinus was closed with a
membrane (PLA), the mucoperiosteal flap was placed in place and sutured, and standard
anti-inflammatory therapy was prescribed. The sutures were removed on the tenth day,
and no complications were observed in the postoperative period.
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Figure 2. Sinus lift procedure (description is in the text). 1—Right maxilla, a defect in the dental arch;
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the height of the planned augmentation; 5—Loading, distribution, and condensation of the graft into
the area of the lower wall of the right maxillary sinus; 6—Control of the degree of vascularization of
the recipient site and control of the integrity of the Schneiderian membrane; 7—Introduction of the
APRF membrane under the mucosal–periosteal flap in the area of the window on the anterior wall of
the maxillary sinus; 8—The mucosal–periosteal flap is placed back in its original position and the
wound is tightly sutured.

In all cases, implantation was recommended to patients after 8 months. In the next
stage, the installation of screw implants was carried out according to the standard protocol,
with simultaneous sampling of a bone fragment from the augmentation area using a tubular
burr. The terms of implantation varied from 8 to 12 months and were determined based on
the clinical situation. This clinical study included 6 clinical cases with a detailed analysis of
tissue biopsy before implantation.

2.8. Histological Evaluation of Bone Augmentation with HA/β-TCP

Intervention and further biopsy were performed in line with the Declaration of
Helsinki. The study protocol was approved by the ethics committee (protocol #12-75/19,
Zaporizhzhia State Medical University). All patients gave their informed consent before
enrollment in the study, and all patients completed the study successfully and received the
opportunity for free follow-up visits after the intervention.

The samples obtained after biopsy were fixed immediately by immersion in 10%
buffered formalin for 24–48 h with further decalcification in EDTA (4.1% disodium ethylene-
diaminetetraacetic acid solution). After completion of decalcification, the biopsies were
processed according to the standard protocol with further embedding in paraffin (Paraplast).
Paraffin blocks were cut at 4–5 µm, and histological slides were stained using hematoxylin
and eosin, as well as toluidine blue, for routine histological examination. Examination of
histological specimens was performed using parameters adapted from those used for the
assessment of bone healing and remodeling. The shares of space filled with bone trabeculae,
graft nanomaterial, and connective tissue were measured histomorphometrically [26]. In
addition, the thickness of the bone trabeculae was measured in three areas of three serial
sections at three representative areas at high magnification (Leica Microsystems GmbH,
Wetzlar, Germany). The intensity of osteogenesis was assessed semi-qualitatively using
the following scoring system: 0 = no features of osteogenesis; 1 = bone formation around
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graft (e.g., granules) with the appearance of osteoblasts and deposition of osteoid; 2 = bone
formation around graft with primary bone features; 3 = bone trabeculae formation around
grafts with features of active remodeling (detection of lamellar bone with primary osteons
and osteocytes, vascular detection, fibrous bone remnants in the lamellar bone, and re-
mains of bone replacement nanomaterial embedded in/on the bone); 4 = mature lamellar
bone with osteons [14]. In addition, the immune reaction to NG was assessed using a
semi-quantitative score according to the following scheme: 0 = none; 1 = loose infiltrates,
disseminated or focal; 2 = dense, moderately extensive lymphocytic infiltrates; 3 = extensive,
dense lymphocytic infiltrates with edema and focal giant cells; 4 = pronounced inflamma-
tory reaction including giant cells and necrosis [27]. The assessment was performed by two
independent observers blindly

2.9. Immunohistochemical Study

To analyze the host tissues’ and cells’ reactions to NanoGraft, an immunohistochemical
(IHC) study was performed. Serial sections 4 µm in thickness were cut, deparaffinized, and
hydrated. Endogenous peroxidase activity was blocked using 3% methanol in hydrogen
peroxide. After antigen retrieval, incubation with primary antibodies was performed. After
washing, labeled polymer secondary antibodies (Envision Detection System, Dako) were
added to the slides. Peroxidase activity was detected using diaminobenzidine (DAB),
yielding a brown staining product. Slides were counterstained with Mayer’s hematoxylin.
The following biomarkers were used for IHC: CD8 (DAKO; Clone C8/144B) was used
for visualizing cytotoxic T cells as effector cells of cell-mediated immunity, and FOXP3
(Cell Marque, Clone EP340) was used for the assessment of T regulatory lymphocytes
producing anti-inflammatory and profibrogenic agents. CD68 (DAKO, Clone KP1) and
CD163 (Cell Marque, Clone MRQ-26) were used to assess macrophages of the M1 and
M2 types. For evaluating angiogenesis, we used antibodies against CD34 (DAKO, Clone
QBEnd 10). Finally, to analyze the osteogenic potential of the graft, SATB2 (Cell Marque,
Clone EP281) as a marker of osteogenic lineage differentiation was applied.

To evaluate the effect of augmentation on the overall outcome, histomorphometry
was performed with an evaluation of the proportion of the specimen filled with bone
tissues, graft nanomaterial, and connective tissue. For assessing the potential immunogenic
effect of the bionanomaterial used for augmentation, the intensity of inflammation was
examined using semi-quantitative analysis. In addition, the presence and density of innate
and adaptive immunity cells were considered adaptive. Reactions of pro- (CD68+) and
anti-inflammatory (CD163+) subtypes of macrophages were assessed. In addition, the
density of immunoreactive (CD8+) and immunosuppressive (FOXP3+) T cells was scored.
To consider angiogenesis, the number of vessels was evaluated using cells positive for
vascular biomarker CD34. The characteristics of the biomarkers are presented in Table 1.

Table 1. Characteristics of biomarkers used for immunohistochemical assessment of augmentation
biopsies.

Biomarker Description Antibody Manufacturer Clone

CD8 CD8 is an integral membrane glycoprotein found on the
surface of cytotoxic T lymphocytes. DAKO, Agilent C8/144B

FOXP3
Forkhead Box P3 (FOXP3)is a transcription regulator,

essential for the development and suppressive function of
regulatory T cells (Treg).

Cell Marque, EP340

CD68

CD68 antigen is a member of the
lysosomal/endosomal-associated membrane glycoprotein
family typical for human monocytes and macrophages. It

is also expressed in bone osteoclasts (Ashley JW, 2011).

DAKO, Agilent KP1
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Table 1. Cont.

Biomarker Description Antibody Manufacturer Clone

CD163
CD163 is a macrophage-associated scavenger receptor,

typically expressed in alternatively activated
M2 type macrophages.

Cell Marque MRQ-26

CD34 CD34 is an adhesion molecule marking endothelial cells at
the sites of active angiogenesis (Siemerink MJ, 2012). DAKO, Agilent QBEnd 10

SATB2

SATB2 is a protein binding to DNA that is involved in
transcriptional regulation of gene expression during

osteoblast differentiation. It is involved in pre-osteoblast
proliferation as well (Dowrey T, 2019).

Cell Marque EP281

To make a judgment about the osteogenic properties of the graft, we assessed bone
tissue formation by measuring the proportion of bone trabeculae in the specimen and
the density and spatial distribution of osteogenic cells highlighted by SATB2. Digital
photographs of the histological and immunohistochemical specimens were taken using a
digital camera (Leica Microsystems) placed over a light microscope (Leica Microsystems).

2.10. Statistical Analysis

Quantitative data were expressed as mean ± standard deviation. Comparisons be-
tween groups were performed using the t-test. In addition, the Kruskal–Wallis test was
used when working with categorical data. A p < 0.05 was determined to be statistically
significant. Statistical analyses were performed using GraphPad Prism 8.0 (V8.0.1).

3. Results
3.1. Electrodeposition of Molecularly Imprinted Polypyrrole

Novel HA/β-TCP is a nanomaterial represented by granules with an average size
of 1.4 ± 0.30 mm in diameter with interconnected pores. The pore size varied from
25 ± 3.8 µm to 196 ± 25.6 µm in the lateral dimension (Figure 3). The pores are made
due to the elimination of the organic phase during the cycle of freezing and heating (from
−80 ◦C to 900 ◦C). The formation of pores will allow for blood and cell penetration, which
is critical for osteoconductivity and osteointegration [28]. Taking into account the differ-
ent degradation behaviors of HA and TCP, the last one will be removed from the graft
within a short period of time (approximately 2–3 weeks) [29] and will be substituted with
newly formed bone tissue. This feature of novel HA/β-TCP will keep a balance between
nanomaterial resorption and bone tissue ingrowth.
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Figure 4 demonstrates the FT-IR spectra of HA/β-TCP bioactive nanomaterial. The ab-
sorption peaks located at 1018 cm−1 originated from asymmetrical stretching (ν3) of PO4

3−,
and at 561 and 599 cm−1 were attributed to bending modes (ν4) of PO4

3−, respectively.
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The symmetric stretching modes (ν1 and ν2) of PO4
3− were also observed at approxi-

mately 961 cm−1, while a weak sharp peak at 3568 cm−1 corresponded to the stretching
vibration of the lattice OH- ions [30]. The typical bands of HA that can be assigned to
the PO4

3− asymmetrical stretching located at the vibrational frequency of 1018 cm−1 (ν3),
599–561 cm−1 (ν4), and O-H stretching vibration at 3368 cm−1, were found in an obtained
sample of hydroxyapatite. Bands at approximately 1400–1415 cm−1 (ν3) and 870 cm−1 (ν2)
can also be observed due to the presence of CO3

2− [31].
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Figure 4. FTIR analysis of bioactive bone graft.

The results of XRD analysis (Figure 5) show that the prepared sample corresponds to
hydroxyapatite (JCPDS 9-0432). HA can be termed non-stoichiometric due to the slight
shift of main peaks to the right. After treatment of samples at 900 ◦C, the additional phase
of β-TCP is observed. It corresponds to the card (JCPDS 09-169) [4]. The diffraction patterns
obtained for the as-prepared sample confirm the presence of a poorly crystalline apatite
phase with no other extra peaks for the powder. However, calcination at 900 ◦C affected
the formation of the β-TCP phase for the sintered sample, which could be attributed to
the transformation of calcium deficient apatite to biphasic mixtures of HA and β-TCP,
as evident from Figure 4. The substituted monovalent ions, including Na+ for Ca2+,
in the apatite structure cause a charge imbalance that can be neutralized by creating
supplementary vacancies [32] or by the occurrence of simultaneous substitutions of cations
and anions, such as in the case of substitution of Ca2+ by Na+ and of PO4

3− by CO3
2,

without any vacancy creation or loss of charge balance [32,33].
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3.2. Blood Interaction Test, Biocompatibility, and Animal Experiment Results

Osteoblast cells demonstrated osteoinductive patterns of the novel HA/β-TCP bioac-
tive nanomaterial: The cell viability assay showed significantly better cell attachment on
day 1, as well as osteoblast proliferation on days 3 and 5, compared to the TCP control
(Figure 6A). Inorganic calcium phosphate is known as a natural stimulator of bone cell
proliferation and differentiation [34] and, due to β-TCP, the novel nanomaterial exhibited
advanced osteoinductive properties. In addition to cell proliferation, the novel nanomate-
rial demonstrated stimulation of collagen expression—the level of collagen in weeks 1 and
2 increased two-fold compared to the TCP control. In previous research, we demonstrated
that HA could be a specific factor for the stimulation of collagen expression, but here, the
combination of both HA and β-TCP provided a significant advantage for novel bioactive
nanomaterials as bone substitute graft.
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Figure 6. Human osteoblast cell viability assay during 7 days of cultivation with HA/β-TCP
bioactive nanomaterial (A) with the collagen production assay in weeks 1 and 2 after cell seed-
ing (B). *—statistical significance (p ≤ 0.05 between control end experimental groups). Image of
blood clot formation within one minute after the material interacted with human blood (C) with SEM
image of HA/β-TCP bioactive nanomaterial (D) after the blood interaction experiment.

Just after the biomaterial application during the sinus lift procedure, it contacts with
blood, which is an initial phase of tissue organization. The blood interaction experiment
demonstrated that the average time for blood clot formation in contact with hydroxyapatite
was 55 ± 17 seconds. While the nanomaterial was hydrophilic, it did not absorb the entire
volume of blood without some mixing. However, once formed, the clot strongly adhered to
individual fragments of the samples as well as the bottom of the dish (Figure 6C). In contrast,
whole blood in Petri dishes without bone grafting material clotted in 3.4 ± 22 minutes.
Interestingly, when whole venous blood was introduced to hydroxyapatite, there was a
rapid color change from dark red to bright red with a green tint, indicating an interaction
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between the blood and the material. In contrast, blood without any samples remained
dark red. SEM demonstrated that the HA/β-TCP bioactive nanomaterial was covered
by blood cells, mainly platelets and erythrocytes, with the formation of thin fibrin fibers
(Figure 6D). It is known that Ca ions can stimulate ADP-induced aggregation of human
platelets and facilitate fibrinogen transformation to fibrin [35]. In our experiment, we
can see the formation of a blood clot after interaction with blood, which made a “natural
organic scaffold” around the bioactive bone graft that could stimulate the formation of new
bone after material placement to the maxillary sinus.

The formation of new bone in the animal experiment passed through the formation of
the hematoma and inflammatory stages with granulation (day 7), the beginning of new
bone formation (day 14), the formation of mature bone (day 28), and remodeling (not
performed in our experiment). Both the control and experimental groups demonstrated
normal osteogenesis, but the HA/β-TCP group had some important differences (Figure 7).
The remnant of the bone grafting materials on the 7th day allowed for compact granular
tissue formation with more rapid bone ingrowth on day 14. On the second time point, we
observed more rapid calcification, probably due to the additional source of inorganic Ca
and P from the β-TCP phase. On day 28, the newly formed bone in the HA/β-TCP group
demonstrated a more compact structure and the formation of mature osteons. The remnant
of bioactive materials was still present, demonstrating low bioresorption of the HA phase
in the novel nanomaterial.
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3.3. Clinical Outcomes

After the sinus lifting procedure, there were no significant complications in any patient
during the 8–12 months of observation. With the aim of bone regeneration, control CT scans
after 6 months were performed for all patients, and bone quality control was performed. We
observed the formation of good quality bone that would allow for dental implant placement
in the period from 8 months to 1 year. Figure 8 (representative case) demonstrates the
CT scan of a patient with complete edentulism of the upper jaw and a deficiency in bone
tissue volume in the lateral sections of the upper jaw (Figure 8A). In 6 months after sinus
lifting with the novel HA/β-TCP bioactive nanomaterial, we observed the formation of
novel bone tissue inside the material (Figure 8B,C). The implantation procedure performed
9 months after sinus lifting with the novel nanomaterial (Figure 8D) showed no clinical
complications in the early postoperative period.
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Figure 8. CT scans of a patient with complete edentulism of the upper jaw and a deficiency in bone
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procedure (B,C); and after the dental implant operation (D) with bone sample harvesting (E). Yellow
arrow—bone deficiency site; red arrow—HA/β-TCP bioactive nanomaterial; green arrow—place of
bone sampling.

Before implantation, a bone biopsy was performed after the informed concern. The
assessment of tissue biopsies showed histological features of osteogenesis with signs of
active bone remodeling. Considerable areas of the biopsies were filled with branched
bone trabeculae of variable thicknesses, ranging from 20 to 190 µm. Histomorphometry
revealed that bone trabeculae possessed 44.6 ± 1.73% (95% CI 41.1–48.2%) of the biopsy
tissue volumes (Figure 9). At the same time, connective tissue and the remnants of the
bionanomaterial comprised, respectively, 46.6 ± 1.70% (95% CI 43.1–50.1%) and 9.7 ± 0.99
(95% CI 7.6–11.8%).
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Overall, osteogenesis was mostly graded as 3 (more than 40% of trabeculae) 
according to the scale (Table 2). Bone trabeculae of the 2nd and 4th scores were found in 
nearly 20–28%, and only a few areas represented initial phases of osteogenesis (Figure 10). 
Features of active remodeling were revealed in most cases. There were thick trabeculae 
demonstrating no HA/β-TCP remnants but features of replacement of the primary bone 
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Score Description The Rate of Trabeculae Having the 
Corresponding Features 

0 
Freely situated biomaterial. No features of osteogenesis around the remnants of 

the biomaterial. 
3.2% 

1 There are osteoblasts and osteoid around or within the graft  4.9% 

2 
The primary (reticulofibrose) bone with osteoblasts and osteocytes surrounds 
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Figure 9. Structural components of the sinus augmentation zones. Osteogenesis features at the place
of sinus augmentation are visible (A). Numerous bone trabeculae (BT) of variable thicknesses and
structures are found around the remnants of HA/β-TCP (NG). The spaces between bone trabeculae
are filled with connective tissue (CT). The structural assessment of the tissue from the biopsy (B) re-
vealed equal volumes of bone trabeculae (BT) and connective tissues (CT) and small remnants of
HA/β-TCP (NG). (A)—histological specimen of the biopsy material from the zones of augmentation.
Staining with hematoxylin and eosin. Magnification ×40.

Overall, osteogenesis was mostly graded as 3 (more than 40% of trabeculae) according
to the scale (Table 2). Bone trabeculae of the 2nd and 4th scores were found in nearly 20–28%,
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and only a few areas represented initial phases of osteogenesis (Figure 10). Features of
active remodeling were revealed in most cases. There were thick trabeculae demonstrating
no HA/β-TCP remnants but features of replacement of the primary bone tissue by a
secondary one. Primary bone tissue with random organization of matrix and lacunae
containing osteocytes was surrounded by the lamellae of secondary bone tissue, with
regularly organized light and dark bone lamellae.

Table 2. Characteristics of osteogenesis in biopsies of augmentation zones.

Score Description The Rate of Trabeculae Having the
Corresponding Features

0 Freely situated biomaterial. No features of osteogenesis
around the remnants of the biomaterial. 3.2%

1 There are osteoblasts and osteoid around or within the graft 4.9%

2
The primary (reticulofibrose) bone with osteoblasts and

osteocytes surrounds or interferes with the remnants of the
graft. There are features of initial remodeling.

21.3%

3
The bone trabeculae are formed by secondary (lamellar)
bone with primary osteons, osteocytes, and vessels. The
remnants of primary bone and biomaterial are present.

42.5%

4 There is mature secondary bone with conventional osteons. 27.1%
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Figure 10. Heterogeneity of bone trabeculae structure and maturity within the zones of augmentation.
Most of the bone trabeculae corresponded to a 2–3 score of osteogenesis. Remnants of HA/β-
TCP were mostly resorbed and surrounded by primary bone (A), with irregular matrix formation
and osteocyte distribution that was later replaced by secondary bone (B), with well-seen plates
and regular orientation of osteocytes in the lacunae (C), with further osteocyte formation around
channels with blood vessels (D). (A,B)—Toluidine blue staining, demonstrating newly formed bone
trabeculae formed by primary bone, with further replacement by secondary bone. Magnification
×100. (C,D)—Hematoxylin and eosin staining, representing maturation of bone trabecules made by
secondary bone with osteons. Magnification ×200.
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Remodeling features were associated with dense infiltration of the surrounding con-
nective tissue by macrophages (with numerous CD163+ cells). Interestingly, abundant
CD68+ cells (including macrophages and large osteoclasts) were distributed around the NG
remnants and between trabeculae, while CD163+ macrophages were numerous, both near
and around bone trabeculae (Figure 11). The architecture of the bone trabeculae intercalated
with channels filled by connective tissues with numerous vessels. IHC revealed numerous
CD34+ cells. In addition, various vessels were found around forming bone, demonstrating
good blood supply. The surface of the network of bone trabeculae was covered by a layer
of osteoblasts positive for SATB2. In addition, numerous recruited osteogenic cells were
visualized around the bone trabeculae or in the perivascular areas. Overall, the assessment
of various cell numbers demonstrated the prevalence of macrophages and osteogenic cells
within the zones of augmentation (Figure 11F).
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demonstrated that HA/β-TCP was immune inert. Overall, the score for the inflammatory 
reaction was low (Figure 12). Inflammatory infiltration was judged as 0 or 1. Histological 
examination did not reveal features of acute or chronic inflammation within the observed 
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accumulation of lymphocytes in the connective tissue out of the newly formed bone 
trabeculae. IHC revealed scarce CD8+ cells. At the same time, we did not find FOXP3+ 
cells in the observed specimens. 

Figure 11. Cell types inside the zones of sinus augmentation. Numerous macrophages (A) and osteo-
clast macrophages (B) were found on the surface and between the bone trabeculae. Augmentation of
sinuses by HA/β-TCP was associated with the differentiation and recruitment of osteogenic cells
(C,D) found within bone tissue and in the connective tissue between trabeculae. Bone remodeling was
also accompanied by angiogenesis (E). (A)—numerous CD163+ macrophages around and between
trabeculae, IHC, magnification ×40; (B)—CD68+ osteoclasts on the surface of the resorbed trabeculae,
IHC, magnification ×400; (C,D)—osteogenic cells (SATB2+) around and between newly formed
trabeculae, IHC, magnification ×100 and ×400, respectively. (E)—CD34+ endothelial cells reflecting
angiogenesis, IHC, magnification ×400. (F)—bar chart, demonstrating the semi-quantitative scores
of different cell counts.

An assessment of immune infiltration and adaptive immune cell response demon-
strated that HA/β-TCP was immune inert. Overall, the score for the inflammatory reaction
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was low (Figure 12). Inflammatory infiltration was judged as 0 or 1. Histological examina-
tion did not reveal features of acute or chronic inflammation within the observed samples.
There was only slight local inflammatory infiltration in one case, with a mild accumu-
lation of lymphocytes in the connective tissue out of the newly formed bone trabeculae.
IHC revealed scarce CD8+ cells. At the same time, we did not find FOXP3+ cells in the
observed specimens.
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Figure 12. Mild inflammatory infiltration of the periodontal connective tissue at the place of aug-
mentation (A) with few T cytotoxic cells (B) and a lack of Treg lymphocytes. (A)—hematoxylin
and eosin staining. Magnification ×100. (B)—bar chart representing the scores of osteogenesis and
immune reaction to HA/β-TCP at the zones of augmentation. (C,D)—immunohistochemistry using
monoclonal antibodies to CD8 and FOXP3. Magnification ×400.

4. Discussion

The data obtained in the study indicate the effective use of HA/β-TCP nanomaterial
with cells and tissues in alveolar processes. In most cases, the remnants of the biomaterial
were determined within the bone trabeculae, and only a small portion was found extra-
trabecularly, demonstrating high integration of the nanomaterial with new bone formation
in the sinus lifting zone. It should be emphasized that the biomaterial used for sinus
augmentation was immunologically inactive. According to histomorphometric analysis,
a large area of the transplant residues in the augmentation zones was in contact with the
newly formed bone tissue, reflecting the mechanisms of the osteoconductive effect of the
novel HA/β-TCP bioactive nanomaterial. As previous studies have shown, the amount of
newly formed bone, transplant residues, and connective tissue components varies widely
when using different materials for sinus lifting [36]. For example, the use of autogenous
bone stimulated osteogenesis to a greater extent compared to biphasic calcium phosphate
(BCP) [37]. According to this study, 6–8 months after sinus lifting, the percentage of newly
formed bone in the augmentation zone was 28.2% and 36.8% for BCP and autogenous
bone, respectively. The majority of the areas of interest were occupied by connective
tissue, forming 38.9% and 58.4%, respectively. In this case, fragments of BCP residues
accounted for up to 32.9%, reflecting the limited biodegradation of the material. Instead,
when using autogenous bone, fragments of its residues formed an average of 4.8% of the
total volume of biopsies from the augmentation zones, which is the basis for positioning
this material as the gold standard [38]. The results obtained in the study significantly
exceed the indicators for BCP and approach the parameters when using autologous bone
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tissue, which actually reflects the high biocompatibility and, at the same time, appropriate
biodegradation of novel HA/β-TCP, which acted as a conductor for the formation of its
own bone tissue. The results demonstrated the advantages of using novel HA/β-TCP
compared to allogeneic bone, which resulted in only 18.65 ± 12.20% new bone formation,
25.93 ± 12.36% residual allogeneic material, and 53.45 ± 10.34% connective tissue [39].
However, it should be noted that recent clinical studies on the use of combined scaffolds
based on hydroxyapatite and polylactic acid or polyethyleneimine, which combine the
characteristics of biodegradable polymers and bioceramics, have yielded results comparable
to those presented in this study [40].

Histomorphometric analysis made it possible to evaluate not only the proportion and
interaction between newly formed bone and the novel HA/β-TCP material’s residues but
also to determine the degree of maturation of newly formed bone tissue in the area of
transplant use. According to the data of the study, the majority of bone trabeculae in the
biopsies of the augmentation zones corresponded to the third stage of osteogenesis—bone
remodeling with the replacement of coarse fibrous bone tissue with lamellar bone. At the
same time, signs of high maturity with the presence of osteons were found in more than
a quarter of the trabeculae. The obtained data were compared with those in a study of
five other bone materials [14]. The formation of bone and effective direct osteogenesis are
actually a result of the activity of bone tissue cells—primarily osteoblasts and osteoclasts
involved in the processes of osteogenesis and bone remodeling.

In this study, a significant number of SATB2-expressing osteogenic cells were identified
in the augmentation zone. In addition to SATB2+ cells on the surface of bone trabeculae,
a significant number of committed osteogenic cells were found freely in the connective
tissue between trabeculae. These SATB2-positive cells may actually correspond to induced
precursor cells that have been involved in the process of osteogenic differentiation. Such
a pattern may reflect the osteoinductive potential of the HA/β-TCP nanomaterial, which
stimulated the differentiation and migration of osteogenic cells to areas of osteogenesis.

According to the results of the histological and immunohistochemical studies, use of
the novel HA/β-TCP nanomaterial was accompanied by signs of a slight inflammatory
reaction. Within the biopsy specimens, only small diffuse lymphohistiocytic infiltrates were
identified, which, according to various authors, may be a consequence of a transient weak
immune response in response to damage in the augmentation zone and a normal bone
remodeling process (Schmidt-Bleek K et al., 2012). Moreover, only a small number of CD8+
T cells were detected, which also play a role in osteogenesis and bone remodeling [41].
Similar data were obtained by Solakoglu Ö et al., who demonstrated the presence of a small
number of infiltrates and the presence of CD3, CD4+, and CD8+ lymphocytes when using
different variants of bone allografts.

It is important to emphasize that T regulatory cells responsible for the mechanisms of
immune tolerance were not detected in the tissue biopsy samples from the augmentation
zones during the study. The obtained results may indicate the primary low immuno-
genicity of the HA/β-TCP bone nanomaterial used. The role of other mechanisms of
anti-inflammatory action associated with the activity of different subtypes of macrophages
cannot be excluded either.

In addition to T lymphocytes, macrophages play an important role and have crucial
significance for bone metabolism and bone tissue remodeling [22]. Macrophages represent
a numerous population of immune cells present in different tissues and organs. Tradi-
tionally, macrophages quickly accumulate in damaged areas or areas of infection, where
they play a critical role in innate immunity [42]. In addition, macrophages regulate tissue
homeostasis and the implementation of various pathophysiological processes, including
innate and adaptive immunity, regeneration, angiogenesis, and carcinogenesis. Moreover,
macrophages not only initiate tissue inflammation but also promote tissue repair and
remodeling [43]. In bone tissue, macrophages are an integral component of the bone remod-
eling process, as they coordinate the communication between osteoclasts and osteoblasts
and stimulate anabolic processes critical for bone formation [44].



Nanomaterials 2023, 13, 1876 18 of 20

It is generally accepted that macrophages represent a spectrum of activated phenotypes
rather than discrete stable subpopulations. Indeed, numerous studies have documented
their programming flexibility, whereby macrophages switch from one functional phenotype
to another in response to variable signals from the local microenvironment [45]. Schemati-
cally, macrophages are classified into two subsets: classically activated macrophages (M1)
and alternatively activated macrophages (M2), although this is an oversimplification, and
the actual spectrum of macrophage phenotypes is more complex [43].

As shown by the results of this study, numerous macrophages were detected in
the biopsy samples from the augmentation zone, both CD68+ and CD163+. The dense
network of CD163-positive M2 macrophages was of particular interest. Xia Z et al. (2006)
previously showed that macrophages are the dominant cell type in the infiltration formed
in response to the implantation of bionanomaterials in both soft and hard tissues. These
cells and their variants, including multinucleated giant foreign body cells, are part of the
inflammatory response and reaction to foreign material that occurs in any interventions
involving biological materials. In addition, macrophages play an important role in the
biodegradation of biomaterials used for implantation through the initiation of phagocytosis
and extracellular degradation mechanisms.

5. Conclusions

In conclusion, the development and evaluation of the novel calcium deficient HA/β-
TCP bone grafting nanomaterial presented in this study has demonstrated its potential for
wide clinical application in maxillofacial surgery and general orthopedics practice. The two-
step synthesis with freezing and calcination stages results in a highly porous nanomaterial
with efficient osteoconductive properties, while the β-TCP phase provides the material with
high biocompatibility, osteoinductive properties, and blood clotting ability. The HA phase
balances mechanical properties and provides structural integrity throughout all stages
of osteogenesis. The clinical trial has shown advanced bioinductive properties, inducing
osteogenic cell recruitment, direct osteogenesis activation, and angiogenesis without a
significant immune reaction. The unique combination of structural integrity, degradation
properties, and bioactive response makes this bionanomaterial a promising candidate for a
wide range of clinical applications in bone regeneration and augmentation. Further studies
are necessary to explore its full potential and optimize its clinical application.
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