
From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 1

From System Goals
to Software Architecture

Axel van Lamsweerde

University of Louvain

B-1348 Louvain-la-Neuve (Belgium)

SFM-03: Software Architecture

 Bertinoro, 22/09/03

Two essential activities in the SE process ...

u Requirements Engineering (RE) =
 elicit, specify, analyze & document ...

objectives, functionalities, qualities, constraints

⇒ structured models of system-to-be

u Architectural Design (AD) =
 organize, specify, analyze & document ...

components, interactions, configurations, constraints

⇒ structured model of software-to-be

Architecture has big impact on achieving NFRs

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 2

The problem ...

u Requirements Engineering (RE) =
 elicit, specify, analyze & document ...

objectives, functionalities, qualities, constraints

⇒ structured models of system-to-be

u Architectural Design (AD) =
 organize, specify, analyze & document ...

components, interactions, configurations, constraints

⇒ structured model of software-to-be

 Architecture has big impact on achieving NFRs

?

The problem ... (2)

u Poor understanding of...
– relationships requirements ↔ architecture

– intertwining RE ↔ AD

u No systematic way to ...
– build/modify architecture to meet functional/non-

functional requirements

– integrate architectural constraints in requirements
document

⇒ requirement-architecture mismatch

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 3

The mismatch problem: exacerbating factors ...

u Requirements volatility vs. architectural stability
 (e.g. new requirements from using the software)

u New generation software ...
– ubiquitous, mobile

– heterogeneous

– open

– mission-critical

– operating in changing, (hostile) environments

– open source (permanent, distributed evolution)

Resolving the mismatch problem:
why not just forget about requirements ??

u Survey of 350 US companies, 8000 projects

– success: 16 %
– failure: 33 %
– so so: 51 %
 (partial functionalities,

 excessive costs, big delays)

 major source of failure:
 poor requirements engineering ≅ 50% responses

(Standish Group, 1995)

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 4

Resolving the mismatch problem:
why not just forget about requirements ??

Major source of failure:
poor requirements engineering ≅ 50% responses:

– lack of user involvement 13%
– incomplete requirements 13%
– changing requirements 9%
– unrealistic expectations 10%
– unclear goals 5%

www.standishgroup.com/chaos.html

Resolving the mismatch problem:
why not just forget about requirements ??

u Survey of 3800 EUR organizations, 17 countries

main software problems are in...
– requirements specification

> 50% responses

– requirements management
 50% responses

(European Software Institute, 1996)

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 5

The problem on the research side ...

u Much work on architectural description & analysis
– myriads of ADLs:
 ACME, C2, DARWIN, RAPIDE, WRIGHT, UML2.0 (?), ...
 the architecture has to be there

– architectural patterns & styles
 how do you compose them to meet NFRs ?

u Some work on architectural refinement
e.g., [Moriconi'96]

The problem: on the research side ... (2)

u Little work on architecture derivation to meet
functional & non-functional reqs

some preliminary efforts on goal-oriented approaches
for...

– iterative evaluation/transformation against NFRs
[Bosch&Molin ’99]

– architectural refinement [van Lamsweerde'00]

– NFR-based documentation of design patterns for
selection [Gross&Yu'01]

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 6

Objectives

u Support requirements/architecture co-design/co-
evolution

u Support architecture derivation from requirements
models & software specs

u Make derivation process…
– systematic, incremental
– leading to provably/arguably correct & “good”

architecture
– highlighting architectural views (e.g. security view)

⇓
goal-based architectural design process

Outline

u Background: some bits of RE
u From system goals to software requirements

– Building goal-oriented requirements models
– Intertwining between late RE & early AD
– Goal-levl reasoning for higher assurance

u From software requirements to software specs
u From software specs to software architecture

– Derivation of abstract dataflow architecture to achieve
functional specs

– Style-based refinement to meet architectural
constraints

– Pattern-based refinement to achieve NFRs

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 7

Background: what is RE about?

goalsWHY?

WHAT?

operationalization

requirements,
assumptions

domain
knowledge

Background: what is RE about?

goalsWHY?

WHAT?

WHO?

operationalization

responsibility
assignment

requirements,
assumptions

domain
knowledge

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 8

Background: what is RE about?

u Requirements elaboration is hard ...
– requirements are not there,
 you have to elicit them & structure them

– ranges from high-level, strategic objectives
 to detailed, technical requirements

– involves software + environment

– requires evaluation of alternatives, selection
 (= architectural decisions ?)

– raises conflicting concerns

– requires anticipation of unexpected behaviors
 (for requirements completeness, system robustness)

Background: goal-oriented RE

u Goal: prescriptive statement of intent
 (cf. David ’s notion of intention/task)

u Domain prop: descriptive statement about domain

u Agent: active component, controls behaviors
 software-to-be, existing software, device, human

Goal achievement requires agent cooperation
The more fine-grained a goal is, the less agents are required

u Requirement: goal assigned to software agent

u Expectation: goal assigned to environment agent

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 9

Background: goal-oriented RE (2)

Different goal categories ...
u functional: prescribe expected services

satisfaction, information, ...
u non functional, refined in application-specific terms:

– quality of service:
accuracy
security: confidentiality, availability, integrity, ...
usability
performance, ...

– development goals:
maintainability: min coupling, max cohesion, ...
reusability, interoperability, ...

– domain-specific architectural constraints

Background: goal-oriented RE (3)

u Domain-specific architectural constraints ...
– features of environment agents & their organization

– constrain architectural design space

e.g. distribution of human agents, devices, data

 Meeting scheduling system:
 distribution of participants, meeting initiator
 Train system:

 station computer, on-board controller,
 tracking system, ...

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 10

Background: goal-oriented RE (4)

u Different types of goals ...
– SoftGoal achievement cannot be established in clear-cut sense

 → goal satisficing, qualitative reasoning
 (Mylopoulos'92, Chung'00)

– Achieve/Maintain goal achievement can be verified

 → goal satisfaction, formal reasoning
 (Dardenne'93, Darimont'96)

SafeTransportation

TrainsOnSameBlock DoorsClosedWhileMoving

BlockSpeedLimit ...

Avoid

SoftMaintain

Background: goal-oriented RE (5)

u Goal G is AND-refined into subgoals G1, ..., Gn iff
achieving G1, ..., Gn contributes to achieving G

the set {G1, ..., Gn} is called refinement of G
Gi is said to contribute positively to G

u The set {G1, ..., Gn} is a complete AND-refinement of G iff
G1, ..., Gn are sufficient for achieving G in view of known
domain properties

{G1, ..., Gn, Dom} |= G

u Goal G is OR-refined into refinements R1, ..., Gm iff
achieving the subgoals of Ri is one alternative to
achieving G (1 ≤i ≤m)

Ri is called alternative for G

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 11

Background: goal-oriented RE (6)

u A goal is realizable by agent if
 it amounts to a relation on variables that are monitorable

& controllable by the agent

monitored vars controlled vars
Agent

Goal

 Goals need to be refined until assignable to single agents

Background: goal-oriented RE (7)

u Agent responsibility:

G is assignable to Ag iff G is realizable by Ag

Train
Controller

Train
Driver

Passenger

OR-Assignment

DoorsClosed
WhileMoving

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 12

Modeling goals & responsibilities

Maintain[Safe
 Speed/AccelCom'ed]

Maintain[WC-SafeDistanceBetwTrains]

Maintain[Safe
 TrainRespToComd]

Mt[AccurateEstimate
 OfSpeed/Position]

Mt[SafeComdTo
 NextTrainFromEstim]

Speed/Accel
Control

Tracking
System

Communic
Infrastruct

OnBoard
TrainControl

Achv[ComdMsg
 SentInTime]

Mt[Safe
 ComdMsg]

Achv[SentMsg
 DeliveredInTime]

 Mt[Msg
 Implem]

Constraints
Requested

Modeling goals & responsibilities

EffectiveMeetingScheduling

ConstraintsKnown MeetingPlannedFromConstraints

Constraints
Collected

Constraints
Received

Constraints
Merged

Meeting
Notified

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 13

Modeling objects

Goal-oriented UML class diagrams

Station

Train Block
On

0..1 0..1

0..1
*

At

DoorsClosed
WhileMoving

Concerns

Background: goal-oriented RE (8)

u Goal operationalization:
 G is correctly operationalized by Op1, ..., Opn iff the specs

of Op1, ..., Opn are necessary & sufficient for ensuring G

{Spec(Op1), ..., Spec(Opn)} |= G completeness

G |= {Spec(Op1), ..., Spec(Opn)} minimality

OpenDoors Go

DoorsClosed
WhileMoving

Operationalization
(complete)

CloseDoors

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 14

Outline

u Background: some bits of RE
u From system goals to software requirements

– Building goal-oriented requirements models
– Intertwining between late RE & early AD
– Goal-based reasoning for higher assurance

u From software requirements to software specs
u From software specs to software architecture

– Derivation of abstract dataflow architecture to achieve
FRs

– Style-based refinement to meet architectural
constraints

– Pattern-based refinement to achieve NFRs

The KAOS goal-oriented RE method

1. Domain analysis:
refine/abstract

goals

SafeTransportation

NoTrainSameBlock

SafeTransportation

NoCollision

NoTrainSameBlock

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 15

The KAOS goal-oriented RE method

Train Block0:1

On

1. Domain analysis:
refine/abstract

goals

2. Domain analysis:
derive/structure

objects

SafeTransportation

NoCollision

NoTrainSameBlock

The KAOS goal-oriented RE method

Train Block0:1

On

1. Domain analysis:
refine/abstract

goals

SafeTransportation

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals
(alternatives)

SafeComdNoTrainSameBlock

SafeTransportation

SafeComd

NoCollision

NoTrainSameBlock

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 16

The KAOS goal-oriented RE method

Train Block0:1

On

1. Domain analysis:
refine/abstract

goals

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals
(alternatives)

CommandDriving

4. S2B analysis:
enriched objects
from new goals

SafeTransportation

SafeComd

NoCollision

NoTrainSameBlock

The KAOS goal-oriented RE method

Train Block0:1

On

1. Domain analysis:
refine/abstract

goals

SafeAcceler

SafeTransportation

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals
(alternatives)

CommandDriving

4. S2B analysis:
enriched objects
from new goals

5. Responsibility analysis:
 agent OR-assignment

SafeComdNoTrainSameBlock

SafeTransportation

SafeComd

NoCollision

NoTrainSameBlock

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 17

The KAOS goal-oriented RE method

Train Block0:1

On

1. Domain analysis:
refine/abstract

goals

SafeAcceler

SafeTransportation

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals
(alternatives)

CommandDriving

4. S2B analysis:
enriched objects
from new goals

5. Responsibility analysis:
 agent OR-assignment

1-5. Obstacle & conflict
analysis

SafeComdNoTrainSameBlock

SafeTransportation

SafeComd

NoCollision

NoTrainSameBlock

The KAOS goal-oriented RE method

Train Block0:1

On

1. Domain analysis:
refine/abstract

goals

SafeAcceler

SafeTransportation

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals
(alternatives)

CommandDriving

4. S2B analysis:
enriched objects
from new goals

5. Responsibility analysis:
 agent OR-assignment

1-5. Obstacle & conflict
analysis

6. Operationalization
 & behavior analysis

Send
Command

OnBoardController

:OBC

SafeComdNoTrainSameBlock

SafeTransportation

SafeComd

NoCollision

NoTrainSameBlock

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 18

The KAOS goal-oriented RE method

Train Block0:1

On SafeAcceler

SafeTransportation

CommandDriving

Send
Command

OnBoardController

:OBC

SafeComdNoTrainSameBlock

At any time:
 abstraction

(e.g. from scenarios)

SafeTransportation

SafeComd

NoCollision

NoTrainSameBlock

Specifying goals, objects & operations

Formal specification is optional ...
– to support more formal analysis & derivations

– in KAOS:

• only when & where needed

• abstract language for goals, requirements,
assumptions, domain properties:
 real-time temporal logic

• more operational language for operations:
 state-based spec
 with traceability to underlying goals

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 19

Some bits of real-time temporal logic

o P: P shall hold in the next state

o P: P shall hold in every future state

P W N: P shall hold in every future state unless N holds

◊ P: P shall hold in some future state

o≤T P: P shall hold in every future state up to T time units

◊≤T P: P shall hold within T time units

+ past operators: "black" symbols

@P: • ¬ P ∧ P

Specifying goals: formal

Goal Maintain [DoorsClosedWhileMoving]
 ...
 FormalDef ∀ tr: Train, s: Station

 At (tr, st) ∧ o ¬ At (tr, st) ⇒
 tr.Doors = "closed" W At (tr, next(st))

Goal Achieve [NoDelay]
 ...
 FormalDef ∀ tr: Train, s: Station

 At (tr, st) ⇒ ◊≤T At (tr, next(st))

 characterizes maximal set of
 intended behaviors

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 20

Specifying operations: formal

Operation OpenDoors

 Input tr: Train ; Output tr': Train

 DomPre tr.Doors = "closed" domain description

 DomPost tr.Doors = "open"

 ReqPre for DoorsClosedWhileMoving: permission
∃ s: Station At (tr, s)

 ReqTrig for NoDelay: obligation
 Stopped (tr)

 characterizes maximal set of
 intended states at snapshot

Outline

u Background: some bits of RE
u From system goals to software requirements

– Building goal-oriented requirements models
– Intertwining between late RE & early AD
– Goal-level reasoning for higher assurance

u From software requirements to software specs
u From software specs to software architecture

– Derivation of abstract dataflow architecture to achieve
functional specs

– Style-based refinement to meet architectural
constraints

– Pattern-based refinement to achieve NFRs

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 21

Intertwining between late RE & early AD

 (1) Alternative goal refinements

Participants
ConstraintsKnown

ConstraintsKnown
ByEmailRequests

ConstraintsKnown
 ByE-AgendaAccess

Intertwining between late RE & early AD

 (1) Alternative goal refinements

 (2) Alternative agent assignments

Participants
ConstraintsKnown

ConstraintsKnown
ByEmailRequests

ConstraintsKnown
 ByE-AgendaAccess

 = early “architectural” choices to meet QoS goals

Constraints
Requested

SoftwareRequestor

MeetingInitiator

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 22

Intertwining between late RE & early AD

 (3) Alternative granularities for software agents

Constraints
Requested

SoftwareRequestor

Software-to-be

Fine, function-level granularity will be selected
to meet NFR Maximize [Cohesion (C)]

Intertwining between late RE & early AD

Maintain[Safe
 Speed/AccelCom'ed]

Maintain[WC-SafeDistanceBetwTrains]

Maintain[Safe
 TrainRespToComd]

Mt[AccurateEstimate
 OfSpeed/Position]

Mt[SafeComdTo
 NextTrainFromEstim]

Speed/Accel
Control

Tracking
System

Communic
Infrastruct

OnBoard
TrainControl

Achv[ComdMsg
 SentInTime]

Mt[Safe
 ComdMsg]

Achv[SentMsg
 DeliveredInTime]

 Mt[Msg
 Implem]

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 23

Alternative goal refinement & assignment

Mt[PrecedTrainInfo
 KnownToNextTrain]

Maintain[WC-SafeDistanceBetwTrains]

Mt[SafeAccelFrom
 PrecedTrainInfo]

Mt[AccurateEstimate
 OfSpeed/Position]

Achv[PrecedTrainInfo
 CommunicToNextTrain]

Tracking
System

Communic
Infrastruct

OnBoard
TrainControl

...

different system proposal:
fully distributed system

Outline

u Background: some bits of RE
u From system goals to software requirements

– Building goal-oriented requirements models
– Intertwining between late RE & early AD
– Goal-level reasoning for higher assurance

u From software requirements to software specs
u From software specs to software architecture

– Derivation of abstract dataflow architecture to achieve
functional specs

– Style-based refinement to meet architectural
constraints

– Pattern-based refinement to achieve NFRs

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 24

Formal goal-level reasoning for higher assurance

u Early analysis on partial models, intertwined with
model construction

Wide range of opportunities:
checking/deriving goal refinements

checking/deriving operationalizations

generating obstacles

generating boundary conditions for conflict

goal mining from scenarios

generating state machines from operationalizations

reusing goal-based specs by analogy

Formal goal-level reasoning for higher assurance

u Early analysis on partial models, intertwined with
model construction

u Wide range of opportunities:
– checking/deriving goal refinements

– checking/deriving operationalizations

– generating obstacles

– generating boundary conditions for conflict

– goal mining from scenarios

– generating state machines from operationalizations

– reusing goal-based specs by analogy

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 25

Checking goal refinements

u Aim: show that refinement is correct & complete
 R, Ass, Dom |-- G
 R: conjunctive set of requirements or subgoals

Checking goal refinements

u Aim: show that refinement is correct & complete
 R, Ass, Dom |-- G
 R: conjunctive set of requirements or subgoals

u Approach 1: use TL theorem prover
heavyweight, non-constructive

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 26

Checking goal refinements

u Aim: show that refinement is correct & complete
 R, Ass, Dom |-- G
 R: conjunctive set of requirements or subgoals

u Approach 1: use TL theorem prover
heavyweight, non-constructive

u Approach 2: use formal refinement patterns
lightweight, constructive:
 - to complete partial refinements
 - to explore alternative refinements

Checking goal refinements (2)

Idea:
u Buid library of patterns (structured by tactics)

u Prove patterns once for all

u Reuse through instantiation, in matching situation

e.g. frequent patterns:

C ⇒ C W TC ∧ D ⇒ ◊ T C ⇒ ◊ D

C ⇒ ◊ T

M ⇒ ◊ TC ⇒ ◊ M

C ⇒ ◊ T

milestone-driven case-driven

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 27

Checking goal refinements (3)

Maintain [WorstCaseStoppingDistance]

Maintain
SafeAcceleration

Computed

milestone-driven

Achieve
AccelerCommand

Sent

Achieve
SentCommand

Received

Maintain
ReceivedCommand

Executed

Checking goal refinements (4)

Achieve [TrainProgress]
On (tr, b) ⇒ ◊ On (tr, next(b))

Achieve [ProgressWhenGo]
 On (tr, b) ∧ Go [next(b)]
 ⇒ ◊ On (tr, next(b))

Achieve [SignalSetToGo]
 On (tr, b) ⇒ ◊ Go [next(b)]

missing subgoal !!
detectable automatically

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 28

Checking goal refinements (4)

 Maintain [TrainWaiting]
 On (tr, b) ⇒
 On (tr, b) W On (tr, next(b))

Achieve [TrainProgress]
On (tr, b) ⇒ ◊ On (tr, next(b))

Achieve [ProgressWhenGo]
 On (tr, b) ∧ Go [next(b)]
 ⇒ ◊ On (tr, next(b))

Achieve [SignalSetToGo]
 On (tr, b) ⇒ ◊ Go [next(b)]

mathematical proof
 hidden

case-driven

Checking goal refinements (5)

u Approach 3: Early bounded model checking
– checking of goal models

– partial models

– incremental checking/debugging

– on selected object instances (propositionalization)

– ouput:
 OK
 KO + counter-example scenario

Roundtrip use of SAT solver, NuSMV, theorem prover

Time for demo...

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 29

The GRAIL tool

KAOS model editor

Requirements
documents
generation

KAOS
model
browser

The GRAIL/FAUST toolkit

Early Model Checker

Goal-Oriented Animator

Kaos Assertion Editor

AcceptanceTest Case Generator

Pattern Reuse

Obstacle Generator/Resolver

Consistency/Completeness
AnalyserKAOS

model

Runtime Monitor & Reconciler

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 30

Generating obstacles

MovingOnRunway ⇒ o ReverseThrustEnabled

MovingOnRunway
 ⇔ WheelsTurning

 WheelsTurning
 ⇒ o ReverseThrustEnabled

expectation

? ?

requirement

Generating obstacles (2)

u Deriving precondition for obstruction

 MovingOnRunway ⇒ WheelsTurning

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 31

Generating obstacles (2)

u Deriving precondition for obstruction

 MovingOnRunway ⇒ WheelsTurning

 → goal negation:

 ◊ MovingOnRunway ∧ ¬ WheelsTurning

Generating obstacles (2)

u Deriving precondition for obstruction

 MovingOnRunway ⇒ WheelsTurning

 → goal negation:

 ◊ MovingOnRunway ∧ ¬ WheelsTurning

 → regress through Dom:
 ? necessary conditions for wheels turning ?

 WheelsTurning ⇒ ¬ Aquaplaning
 i.e. Aquaplaning ⇒ ¬ WheelsTurning

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 32

Generating obstacles (2)

u Deriving precondition for obstruction

 MovingOnRunway ⇒ WheelsTurning

 → goal negation:

 ◊ MovingOnRunway ∧ ¬ WheelsTurning

 → regress through Dom:
 ? necessary conditions for wheels turning ?

 WheelsTurning ⇒ ¬ Aquaplaning
 i.e. Aquaplaning ⇒ ¬ WheelsTurning

 → RHS unifiable:

 ◊ MovingOnRunway ∧ Aquaplaning Warsaw obstacle

Generating obstacles (3)

u Using formal obstruction patterns

 in fact we just used a frequent pattern:

T ⇒ N◊ C ∧ ¬ N

C ⇒ T

domain propertyobstacle

◊ C ∧ ¬ T

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 33

Verifying/deriving operationalizations

u Build a library of formal operationalization patterns
for frequent goal specification patterns

e.g. Achieve goals: C ⇒ ◊≤d T C ⇒ ¡ T

 Maintain goals: C ⇒ o T C ⇒ TW N

+ extensions adapted from Dwyer et al

u Prove pattern correctness once for all

u Reuse through instantiation, in matching situations

Verifying/deriving operationalizations

Operation Op2
 DomPre T
 DomPost ¬ T
 ReqPre for RootGoal

 ¬ C

Operation Op1
 DomPre ¬ T
 DomPost T
 ReqTrig for RootGoal

C

C ⇒ ¡ T

patterns proved correct

once for all

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 34

Verifying/deriving operationalizations

WheelsPulseOn ⇒ ¡ RevThrustEnabled

Operation EnableRevThrust
 DomPre ¬ RevThrustEnabled
 DomPost RevThrustEnabled
 ReqTrig for RootGoal
 WheelsPulseOn

Operation DisableRevThrust
 DomPre RevThrustEnabled
 DomPost ¬ RevThrustEnabled
 ReqPre for RootGoal

 ¬ WheelsPulseOn

C: WheelsPulseOn
T: RevThrustEnabled

Verifying/deriving operationalizations

Operation Op2
 DomPre T
 DomPost ¬ T
 ReqPre for RootGoal

 ¬ C B (N ∧ ¬ C)

Operation Op1
 DomPre ¬ T
 DomPost T
 ReqTrig for RootGoal

C

C ⇒ ¡ (T W (N ∧ T))

"T shall hold between C and N"

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 35

KAOS/SMs mapping
for goal-oriented animation

Object
model

Operation model

FSMs instance

Instantiation

Compilation

FSMs class

Structuring

Goal model

Generating state machines from goal operationalizations

Generating state machines from goal operationalizations (2)

Step 1: Build FSM class declarations

for each e: Entity ∪ Agent in Object model

- create a new FSM class;

- build state attribute declaration for all
 behavioural attributes and relationships of e ;

- for each behavioural attribute attr
 identify all legal states of attr in DomPre/DomPost
 identify additional legal states of attr in Goal

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 36

Goal Maintain[DoorsClosedWhileMoving]
FormaDef ∀tr: Train, s: Station
 At (tr, s) ∧ m ¬ At (tr, s)
 ⇒ tr.Doors = ‘closed ’ W At (tr, next(s))

Entity Station
Entity Train

Has Speed: speedUnit
Relationship next

Links Station {card 0:1}
Relationship At

Links Train {card 0:1}, Station {card 0:N}
Operation OpenDoors

Input tr: Train; Output tr: Train
DomPre tr.Doors = ‘closed ’
DomPost tr.Doors = ‘open’
ReqPre for DoorsClosedWhileMoving

∃ s : Station At (tr,s)
Operation StartTrain

Input tr: Train; Output tr: Train
DomPre tr.Status = ‘stopped’
DomPost tr.Status = ‘moving’
ReqPre for DoorsClosedWhileMoving

tr.Doors = ‘closed’

closed

Train

open

movingstopped

Step1

Station

next : Station

speed : speedUnit

At ¬ At

Generating state machines from goal operationalizations (3)

Step 2: Build transitions

For each op in Operation model
- create a new transition class;

- op.DomPre → source state; (propositionalization)

- op.DomPost → destination state; (propositionalization)

- op.ReqPre → guard condition;

- op.ReqTrig → trigger condition;

- op.DomPost , op.ReqPost → action vector;

- host the transition;

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 37

Step2

Transition StartTrain
SourceState stopped
DestState moving
Guard closed
Actions null

OpenDoors

Goal Maintain[DoorsClosedWhileMoving]
 FormaDef ∀tr: Train, s: Station
 At (tr, s) ∧ m ¬ At (tr, s)

⇒ tr.Doors = ‘closed ’ W At (tr, next(s))
Entity Station
Entity Train

Has speed: SpeedUnit
Relationship next

Links Station {card 0:1}
Relationship At

Links Train {card 0:1}, Station {card 0:N}
Operation OpenDoors

Input tr: Train; Output tr: Train
DomPre tr.Doors = ‘closed ’
DomPost tr.Doors = ‘open’
ReqPre for DoorsClosedWhileMoving:

∃ s : Station At (tr, s)
Operation StartTrain

Input tr: Train; Output tr: Train
DomPre tr.status = ‘stopped’
DomPost tr.status = ‘moving’
ReqPre for DoorsClosedWhileMoving:

tr.Doors = ‘closed’

closed

Train

open

movingstopped

speed : SpeedUnit

At ¬ At

StartTrain

Generating state machines from goal operationalizations (4)

Step3: Structure the state space

- source state structuring:
if states s1, s2 have same transition to same dest state
then aggregate s1, s2 into more general state;

- guard migration:
if guard Grd on transition T refers to state s of hosting
object then move Grd as substate s of T.SourceState

 (+ i/o transitions)

- additional state space structuring by analyst

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 38

Step3
OpenDoors

closed

Train

open

movingstopped

speed : SpeedUnit

At ¬ At

StartTrain

Transition StartTrain
SourceState stopped
DestState moving
Guard closed
Actions null

Transition StartTrain
SourceState stopped
DestState moving
Guard
Actions null

CloseDoors

LeaveStat
StopTrain

ArriveStat

stopped
StartTrainclosed

Train

open

moving

speed : SpeedUnit

At ¬ At

StopTrain

ArriveStat

LeaveStat

(Tran Van & AvL, 2003)

Outline

u Background: some bits of RE
u From system goals to software requirements

– Building goal-oriented requirements models
– Intertwining between late RE & early AD
– Goal-based reasoning for higher assurance

u From software requirements to software specs
u From software specs to software architecture

– Derivation of abstract dataflow architecture to achieve
FRs

– Style-based refinement to meet architectural
constraints

– Pattern-based refinement to achieve NFRs

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 39

From requirements to software specs

u Requirements vs. software specifications:

measuredSpeed
I: input data

DoorsClosed
C: controlled variables

TrainMoving

doorsState

Environment

M: monitored variables

O: output results

SoftwareToBe

Output Devices (e.g. actuators)

Input Devices (e.g. sensors)

Req ⊆ M × C
Spec ⊆ I × O

Spec = Translation (Req) such that

{Spec, Dom} |= Req

From requirements to software specs (2)

u To map Reqs to Specs:
– translate goals assigned to software agents in vocabulary

of software-to-be: input-output variables (if needed)

– map (domain) object model elements to their images in
the software’s object model (if needed)

– introduce (non-functional) accuracyGoals requiring the
consistency between monitored/controlled variables in
the environment & their software image (input/output
vatiables, database elements)

– introduce input/output agents to be responsible for such
accuracy goals (sensor, actuator & other input/output devices)

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 40

From requirements to software specs (3)

u Example:
– Req:

MotorReversed ⇔ MovingOnRunway

– TargetSpec:
Reverse = ‘enabled’ ⇔ WheelPulses = ‘on’

– accuracyGoals:
MovingOnRunway ⇔ WheelPulses = ‘on’
 expectation on wheelSensor

MotorReversed ⇔ Reverse = ‘enabled’

 expectation on motorActuator

Outline

u Background: some bits of RE
u From system goals to software requirements

– Building goal-oriented requirements models
– Intertwining between late RE & early AD
– Goal-level reasoning for higher assurance

u From software requirements to software specs
u From software specs to software architecture

– Derivation of abstract dataflow architecture to achieve
functional sw specs

– Style-based refinement to meet architectural
constraints

– Pattern-based refinement to achieve NFRs

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 41

Output of architecture derivation process

Structure of ...
u components, ports
u connectors

– static: channels, roles, constraints
– dynamic: interaction protocol

u configurations
... to be...
- correct: functional requirements are met
- good quality: QoS & development goals are met

Assumption: requirements conflicts are resolved before

Deriving an abstract dataflow architecture

u For each “functional” or “critical” goal assigned to
software-to-be:
define one dedicated component ...

– software agent + all operations operationalizing this
goal

– interface = monitored & controlled variables in goal
 formulation

u Derive dataflow connector between components from
data dependency links

Flows (d, C1, C2) ≡ Controls (C1, d) ∧ Monitors (C2, d)

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 42

Constraints
Requested

Deriving dataflow architecture: example

EffectiveMeetingScheduling

ConstraintsKnown MeetingPlannedFromConstraints ...

Constraints
Collected

Constraints
Received

Constraints
Merged

Constraints
Requested

Deriving dataflow architecture: example

EffectiveMeetingScheduling

ConstraintsKnown MeetingPlannedFromConstraints ...

Constraints
Collected

Constraints
Received

Constraints
Merged

ConstraintsRequestor

ConstraintsMerger

Participant

MeetRequest (Plist, m) ∧ p in Plist ⇒ ◊≤ RT ConstrReq (p, m)

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 43

Constraints
Requested

Deriving dataflow architecture: example

EffectiveMeetingScheduling

ConstraintsKnown MeetingPlannedFromConstraints ...

Constraints
Collected

Constraints
Received

Constraints
Merged

ConstraintsRequestor

ConstraintsMerger

Monitors MeetRequest[Plist,m]
Controls ConstrReq[Plist,m]

Participant

Constraints
Requested

Deriving dataflow architecture: example

EffectiveMeetingScheduling

ConstraintsKnown MeetingPlannedFromConstraints ...

Constraints
Collected

Constraints
Received

Constraints
Merged

ConstraintsRequestor

ConstraintsMerger

Monitors MeetRequest[Plist,m]
Controls ConstrReq[Plist,m]

Monitors ConstrReq[Plist,m]
 PartConstr
Controls ConstraintsTable

Participant

Monitors ConstrReq[Plist,m]
Controls PartConstr

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 44

Constraints
Requested

Deriving dataflow architecture: example

EffectiveMeetingScheduling

ConstraintsKnown MeetingPlannedFromConstraints ...

Constraints
Collected

Constraints
Received

Constraints
Merged

ConstraintsRequestor

ConstraintsMerger

Monitors MeetRequest[Plist,m]
Controls ConstrReq[Plist,m]

Monitors ConstrReq[Plist,m]
 PartConstr
Controls ConstraintsTable

Participant

Monitors ConstrReq[Plist,m]
Controls PartConstr

Resulting dataflow architecture

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]

PartConstr

Participant

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 45

Resulting dataflow architecture

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]

PartConstr

ConstrReq[...]

Participant

Resulting dataflow architecture

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]

PartConstr

MeetingPlannedFromConstraints

ConstrReq[...]

Participant

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 46

Resulting dataflow architecture

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]
Planner

ConstraintsTable[...]

PartConstr

Notifier

Plan[d,loc,CT]

ConstrReq[...]

Participant

MeetingPlannedFromConstraints

Resulting dataflow architecture

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]
Planner

MeetRequest[...]

ConstraintsTable[...]

PartConstr

Notifier

Plan[d,loc,CT]

Notif[d,loc,CT]

ConstrReq[...]

MeetingInitiator Participant

MeetingPlannedFromConstraints

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 47

Outline

u Background: some bits of RE
u From system goals to software requirements

– Building goal-oriented requirements models
– Intertwining between late RE & early AD
– Goal-level reasoning for higher assurance

u From software requirements to software specs
u From software specs to software architecture

– Derivation of abstract dataflow architecture to achieve
functional specs

– Style-based refinement to meet architectural
constraints

– Pattern-based refinement to achieve NFRs

Refinement to meet architectural constraints

Domain-specific constraints ...
– from environment agents: features, inter-relationships
– global constraints on architectural design space

e.g. Meeting scheduling system:
 distribution of participants, meeting initiator

Idea:
u Document styles by rules

 (domain conditions, target_NFR) → effect
u Apply rule matching architectural constraint

u Proof obligation: rule application must preserve properties
of components & connectors (e.g., dataflows)

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 48

EventProd EventCons

 C

 EventBroker

 FrontEndEvProd FrontEndEvCons
d1 d2

! d1
? d2

! d2

! d2? d1 ! d1

d1

Avoid Knows (Ci, Cj) Distributed (EventProd,
EventCons)

EventProd EventCons

 C d2

Style-based refinement rule:
example

publishes

subscribes

From MeetingScheduler dataflow architecture ...

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]
Planner

MeetRequest[...]

ConstraintsTable[...]

PartConstr

Notifier

Plan[d,loc,CT]

Notif[d,loc,CT]

ConstrReq[...]

MeetingInitiator Participant

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 49

MeetingInitiator Participant

 EventBroker

FrontEndInitiator FrontEndparticipant

ConstraintsRequestor

ConstraintsMerger

? PartConstr[...] Planner

MeetRequest[...]

? ConstrTable[...]

PartConstr

Notifier
? Plan[...]

Notif[...]

ConstrReq[...]

! MeetRequest[...]

? MeetRequest[...]

! PartConstr
! Notif[...]

! Notif[...]

Outline

u Background: some bits of RE
u From system goals to software requirements

– Building goal-oriented requirements models
– Intertwining between late RE & early AD
– Goal-level reasoning for higher assurance

u From software requirements to software specs
u From software specs to software architecture

– Derivation of abstract dataflow architecture to achieve
functional specs

– Style-based refinement to meet architectural
constraints

– Pattern-based refinement to achieve NFRs

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 50

Architecture refinement

u Many non-functional goals impose constraints on component
interaction
– Accuracy (C1,C2): data consistency
– Confidentiality (C1,C2): limitation on info flow
– Usability (C1,C2): requirement on presentation, dialog
– etc: MinCoupling (C1,C2), InfoHidden (C1, C2),

 Interoperable (C1,C2), ...

u Some NFGs impose contraints on single component
– MaxCohesion (C): fine-grained functionality

Architecture refinement (2)

1. For each terminal NFG in goal refinement graph ...
– identify all connectors/components constrained by it

– instantiate it to those connectors/components

Planner

Notifier

Plan[d,loc,CT]
...

Security

Confidentiality

Confidential
ParticipConstr

...

...

...

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 51

Architecture refinement (3)

2. For each NFG-constrained connector/component ...
– refine it to meet instantiated NFG

C1 C2ch

NFG

C1 C2

ch’ C ch”

Refinement example: multi-level security

...

Security

Confidentiality

Avoid[Classified
DataFlowing]

...

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 52

Refinement example: multi-level security

...

Security

Confidentiality

Avoid[Classified
DataFlowing]

...

∀d: Data, C1, C2
Flows (d, C1, C2) ⇒
 d.Label ≤ C2.Clearance

Refinement example: multi-level security

∀d: Data, C1, C2
Flows (d, C1, C2) ⇒
 d.Label ≤ C2.Clearance

C1 C2DF

...

Security

Confidentiality

Avoid[Classified
DataFlowing]

...

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 53

Refinement example: multi-level security

∀d: Data, C1, C2
Flows (d, C1, C2) ⇒
 d.Label ≤ C2.Clearance

C1 C2DF C1 C2
DF’ DF”

MLS
Filter

...

Security

Confidentiality

Avoid[Classified
DataFlowing]

...

Refinement example: multi-level security

∀d: Data, C1, C2
Flows (d, C1, C2) ⇒
 d.Label ≤ C2.Clearance

C1 C2DF C1 C2
DF’ DF”

MLS
Filter

ReqPost for Avoid[CDF]:
 d.Label ≤ C2.Clearance

...

Security

Confidentiality

Avoid[Classified
DataFlowing]

...

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 54

Architecture refinement (4)

2. For each NFG-constrained connector/component ...
– refine it to meet instantiated NFG ...

 by use of architectural refinement patterns:
• catalog of refinement patterns

• each pattern is annotated by underlying design
goals & tradeoff documentation

 (cf. [Gross&Yu'01])

• pattern selection by goal matching
 (conflict resolution by goal prioritization based on

tradeoff analysis à la NFR)

A few general patterns ...

Avoid [Confidential
DataFlowing (C1, C2)]

C1 C2
DF

C1 C2
DF’ Security

Filter
DF”

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 55

A few general patterns ... (2)

Maintain [Accurate
Data (C1, C2)]

C1 C2DF
C1 C2

DF’ Consistency
Maintainer

DF”

DF

cf. Observer, MVC patterns

A few general patterns ... (3)

Maintain [Availability
 (C1, C2, C3)]

C1

C2

Monitor

C3

C1

C2

C3

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 56

A few general patterns ... (4)

Maintain [FaultTolerant
Communication (C1, C2)]

C1 C2 C1 C2

C1 C2

A few general patterns ... (5)

InfoHiding (C1,C2)

C1 C2 C1 C2

O

DF

get
put
...

put get

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 57

A few general patterns ... (6)

MinCoupling (C1,C2)

C1 C2DF C1 C2

generate
event

Registrar
notify
event

DataIntegration (C1,C2)

C1 C2DF
C1 C2

Repository

write read

register
interest

A few general patterns ... (7)

MaxCohesion

C1 C C2 C

Use

C1 C2

C
Use

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 58

Pattern application: back to meeting scheduling

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]
Planner

MeetRequest[...]

ConstraintsTable[...]

PartConstr

Notifier

Plan[d,loc, CT]

Notif[d,loc,CT]

ConstrReq[...]

MeetingInitiator Participant

Pattern application: back to meeting scheduling

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]
Planner

MeetRequest[...]

ConstraintsTable[...]

PartConstr

Notifier

Plan[d,loc, CT]

Notif[d,loc,CT]

Maintain[Confidential
ParticipantConstraints]

ConstrReq[...]

MeetingInitiator Participant

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 59

Pattern application: back to meeting scheduling

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]
Planner

MeetRequest[...]

ConstraintsTable[...]

PartConstr

Notifier

Plan[d,loc,CT]

Notif[d,loc,CT]

ConstrReq[...]

ParticInfo
Filter

d,loc,AnonymCT

MeetingInitiator Participant

Pattern application: back to meeting scheduling (2)

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]
Planner

MeetRequest[...]

ConstraintsTable[...]

PartConstr

Notifier

Plan[d,loc,CT]

Notif[d,loc,CT]

ConstrReq[...]

ParticInfo
Filter

d,loc,AnonymCT

InfoHiding
(ConstraintsTable)

MeetingInitiator Participant

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 60

Pattern application: back to meeting scheduling (2)

ConstraintsRequestor

ConstraintsMerger

ConstrReq[...]
Planner

MeetRequest[...]

get
put
...

ConstraintsTable

PartConstr

Notifier

Plan[d,loc,CT]

Notif[d,loc,CT]

ConstrReq[...]

ParticInfo
Filter

d,loc,AnonymCT

put

get

MeetingInitiator Participant

Conclusion

u Much room for incremental analysis of partial
models at goal level

u Derivation of architecture from requirements ...
– systematic
– incremental
– locality principle; compositional

u Refined connectors/components explicitly linked
to non-functional goals

⇓
view extraction through architectural net queries:

 security view, accuracy view, reusability view, ...

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 61

Conclusion

u Much room for incremental analysis of partial
models at goal level

u Derivation of architecture from requirements ...
– systematic
– incremental
– locality principle; compositional

u Refined connectors/components explicitly linked
to non-functional goals

⇓
view extraction through architectural net queries:

 security view, accuracy view, reusability view, ...

Conclusion

Early Model Checker

Goal-Oriented Animator

Kaos Assertion Editor

AcceptanceTest Case Generator

Pattern Reuse

Obstacle Generator/Resolver

Consistency/Completeness
AnalyserKAOS

model

Runtime Monitor & Reconciler

Opportunities for goal-level tool support

From System Goals
 to Software Architecture

SFM ’03, 22/09/03

@ Axel van Lamsweerde 62

Limitations & further work

u Only refinement-based:
no bottom-up propagation of middleware requirements

 ⇓
 need for complementary abstraction patterns

u No derivation of interaction protocols
 ⇓

integration of previous work on synthesis of concurrent
interaction schemes from goal-based invariants

u RE_NET: towards requirements/architecture
co-design & co-evolution...
– at development time
– at run time

For more info ...

u Papers:
 GOOGLE Axel van Lamsweerde goals KAOS

u Forthcoming book

