From System Goals SFM ’ 03, 22/09/03
to Software Architecture

From System Goals
to Software Architecture

Axel van Lamsweerde

University of Louvain

B-1348 Louvain-la-Neuve (Belgium)

SFM-03: Software Architecture
Bertinoro, 22/09/03

Two essential activities in the SE process ...

& Requirements Engineering (RE) =
elicit, specify, analyze & document ...

objectives, functionalities, qualities, constraints
P structured models of system-to-be
+ Architectural Design (AD) =

organize, specify, analyze & document ...

components, interactions, configurations, constraints

b structured model of software-to-be

Architecture has big impact on achieving NFRs

@ Axe van Lamsweerde 1

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

The problem ...

& Requirements Engineering (RE) =
elicit, specify, analyze & document ...

objectives, functionalities, qualities, constraints

P structured models of system-to-be

+ Architectural Design (AD) = ,?
organize, specify, analyze & document

components, interactions, configurations, copétraints

b structured model of software-to-be

Architecture has big impact on achieving NFRs

The problem ... 2

+ Poor understanding of...

- relationships requirements « architecture

- intertwining RE « AD

+ No systematic way to ...

- build/modify architecture to meet functional/non-
functional requirements

- integrate architectural constraints in requirements
document

P requirement-architecture mismatch

@ Axel van Lamsweerde 2

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

The mismatch problem: exacerbating factors ...

& Requirements volatility vs. architectural stability
(e.g. new requirements from using the software)
¢ New generation software ...
- ubiquitous, mobile
- heterogeneous
- open
- mission-critical
- operating in changing, (hostile) environments

- open source (permanent, distributed evolution)

Resolving the mismatch problem:
why not just forget about requirements ??

¢ Survey of 350 US companies, 8000 projects

— success: 16 %
— Failure: 33%
— SO SO: 51 %

(partial functionalities,
excessive costs, big delays)

major source of failure:
poor requirements engineering @50% responses

(Standish Group, 1995)

@ Axe van Lamsweerde 3

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Resolving the mismatch problem:
why not just forget about requirements ??

Major source of failure:
poor requirements engineering @50% responses:

lack of user involvement 13%

incomplete requirements 13%

- changing requirements 9%
- unrealistic expectations 10%
- unclear goals 5%

www.standishgroup.com/chaos.html

Resolving the mismatch problem:
why not just forget about requirements ??

¢ Survey of 3800 EUR organizations, 17 countries

main software problems are in...
- requirements specification
> 50% responses

- requirements management
50% responses

(European Software Institute, 1996)

@ Axe van Lamsweerde 4

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

The problem on the research side ...

¢ Much work on architectural description & analysis

- myriads of ADLs:
ACME, C2, DARWIN, RAPIDE, WRIGHT, UML2.0 (?), ...

the architecture has to be there
- architectural patterns & styles

how do you compose them to meet NFRs ?

¢ Some work on architectural refinement
e.g., [Moriconi*96]

The problem: on the research side ... (2)

¢ Little work on architecture derivation to meet
functional & non-functional regs

some preliminary efforts on goal-oriented approaches
for...

- iterative evaluation/transformation against NFRs
[Bosch&Molin '99]

- architectural refinement [van Lamsweerde’00]

- NFR-based documentation of design patterns for
selection [Gross&Yu'01]

@ Axe van Lamsweerde 5

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

MWE Objectives

===

& Support requirements/architecture co-design/co-
evolution

¢ Support architecture derivation from requirements
models & software specs

¢ Make derivation process...
- systematic, incremental

- leading to provably/arguably correct & “good”
architecture

- highlighting architectuEaI views (e.g. security view)

goal-based architectural design process

Outline

¢ Background: some bits of RE

¢ From system goals to software requirements
- Building goal-oriented requirements models
- Intertwining between late RE & early AD
- Goal-levl reasoning for higher assurance

& From software requirements to software specs

& From software specs to software architecture
- Derivation of abstract dataflow architecture to achieve
functional specs
- Style-based refinement to meet architectural
constraints
- Pattern-based refinement to achieve NFRs

@ Axe van Lamsweerde 6

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Background: what is RE about?

wr
ain
Iede \

WHAT?

operationalization

requirements;
assumptions

Background: what is RE about?

e

/% aciln \
\'.\ edge . L
operationalization

v
requirements;
assumptions

WHAT?

responsibility

£ v N assignment
wio» (I ,

@ Axe van Lamsweerde 7

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Background: what is RE about?

¢ Requirements elaboration is hard ...

requirements are not there,
you have to elicit them & structure them

- ranges from high-level, strategic objectives
to detailed, technical requirements

- involves software + environment

- requires evaluation of alternatives, selection
(=architectural decisions ?)

- raises conflicting concerns

- requires anticipation of unexpected behaviors
(for requirements completeness, system robustness)

Background: goal-oriented RE

& Goal: prescriptive statement of intent

(cf. David 's notion of intention/task)

& Domain prop: descriptive statement about domain

& Agent: active component, controls behaviors
software-to-be, existing software, device, human

Goal achievement requires agent cooperation
The more fine-grained a goal is, the less agents are required

¢ Requirement: goal assigned to software agent

& Expectation: goal assigned to environment agent

@ Axe van Lamsweerde 8

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Background: goal-oriented RE (2

Different goal categories ...
¢ functional: prescribe expected services
satisfaction, information, ...
+ non functional, refined in application-specific terms:
- quality of service:
accuracy
security: confidentiality, availability, integrity, ...
usability
performance, ...
- development goals:
maintainability: min coupling, max cohesion, ...
reusability, interoperability, ...
- domain-specific architectural constraints

Background: goal-oriented RE (3)

¢ Domain-specific architectural constraints ...

- Teatures of environment agents & their organization
- constrain architectural design space
e.g. distribution of human agents, devices, data

Meeting scheduling system:
distribution of participants, meeting initiator
Train system:

station computer, on-board controller,
tracking system, ...

@ Axe van Lamsweerde 9

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Background: goal-oriented RE ()

¢ Different types of goals ...
- SoftGoal achievement cannot be established in clear-cut sense
® goal satisficing, qualitative reasoning
(Mylopoulos®92, Chung*00)
- Achieve/Maintain goal achievement can be verified
® goal satisfaction, formal reasoning

(Dardenne®93, Darimont*96)

Maintain ~<_ afeTransportation) ----Soft

/BIockSpeedLimit// /v:L

/DoorsCIosedWhiIeMoving/

Background: goal-oriented RE (5)

+ Goal G is AND-refined into subgoals G, .., G, iff
achieving G,, .., G, contributes to achieving G

the set {G,, ..., G} is called refinement of G
G; is said to contribute positively to G

¢ The set {G,, .., G.} is a complete AND-refinement of G iff
Gy, .., G, are sufficient for achieving G in view of known
domain properties
{G, ..., G,, Dom} |= G

Goal G is or-refined into refinements R;, ..., G, iff
achieving the subgoals of R; is one alternative to
achieving G (1£i £m)

R; is called alternative for G

@ Axel van Lamsweerde 10

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Background: goal-oriented RE (s)

& A goal is realizable by agent if
it amounts to arelation on variables that are monitorable
& controllable by the agent

monitored vars controlled vars
Ly W

N J
Y

Goal

Goals need to be refined until assignable to single agents

Background: goal-oriented RE ()

¢ Agent responsibility:
G is assignable to Ag iff G is realizable by Ag

OR- ASS|gnmen

DoorsCIosed w

@ Axe van Lamsweerde 11

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Modeling goals & responsibilities

/ Maintain[WC-SafeDistanceBetwTrains] /
/ Maintain[Safe]/ / Maintain[Safe
Speed/AccelCom'ed)/ /TrainRespToComd]

/Mt[AccurateEstimate// Mt[SafeComdTo
OfSpeed/Position] // NextTrainFromEstim]

TrainControl
B
= /Achv[ComdMsg// Mt[Safe]//Achv[SentMsg /\/It[Msg
D |

SentInTime] /ComdMsg]/DeliveredinTime]// Implem
Speed/Accel Communic
Control Infrastruct

Modeling goals & responsibilities

/EffectiveMeetinchheduIing/

onstraintsKknow /MeetingPIannedFromConstraints/

{ Constraint?/ Constraint
{ Constraint7 / Constraint7

@ Axel van Lamsweerde 12

From System Goals
to Software Architecture

Modeling objects

Goal-oriented UML class diagrams

/ DoorsClosed
WhileMoving

P01 0.1l
Concerns Train Block
* On
At 0.1
Station

Background: goal-oriented RE (s)

¢ Goal operationalization:

G is correctly operationalized by Op;, ..., Op, iff the specs
of Op,, .., Op, are necessary & sufficient for ensuring G

{Spec(Op,), ..., Spec(Op)} |= G completeness

G |= {Spec(Opy), .., Spec(Opy} minimality
Operationalization

DoorsClosed
complete)

QZLQS&D.O.QLQC_GQ_)

@ Axe van Lamsweerde

SFM 03, 22/09/03

13

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Outline

¢ Background: some bits of RE

¢ From system goals to software requirements
- Building goal-oriented requirements models
- Intertwining between late RE & early AD
- Goal-based reasoning for higher assurance

¢ From software requirements to software specs

o From software specs to software architecture
- Derivation of abstract dataflow architecture to achieve
FRs
- Style-based refinement to meet architectural
constraints
- Pattern-based refinement to achieve NFRs

The KAOS goal-oriented RE method

1. Domain analysis: :
refine/abstract
goals [/ N

v

Lotramsamestock/

@ Axe van Lamsweerde 14

From System Goals
to Software Architecture

SFM 03, 22/09/03

The KAOS goal-oriented RE method

1. Domain analysis: /SafeTransportation /

refine/abstract /ﬂ,\
goals / / /NoCollision/
/."
/NoTrainSameBlock/

2. Domain analysis:

derive/structure
objects

Fran -2fpiac

The KAOS goal-oriented RE method

1. Domain analysis: :
refine/abstract

3. S2B analysis:
enriched goals

areCom

goals [/ W (alternatives)
Yy Vv

2. Domain analysis:
derive/structure /

nhijTQ A

F g

@ Axe van Lamsweerde

15

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

The KAOS goal-oriented RE method

1. Domain analysis: /SafeTransportation / 3. S2B analysis:
refine/abstract enriched goals
goals / & \ocoliision 4 (alternatives)

_ A7 T

2. Domain analysis:
derive/structure
objects

On 4. S2B analysis:
Block ' '
0:1 enriched objects

Driving from new goals

The KAOS goal-oriented RE method

1. Domain analysis: ; 3. S2B analysis:
refine/abstract enriched goals
goals L/ . (alternatives)
A4 4
. . mew%ﬁ@(:mﬂ
2. Domain analysis:
derive/structure / \
ohjects A

—O”—@ 4. S2B analysis: Wi
: enriched objects
Driving from new goals

5. Responsibility analysis:
agent OR-assignment

@ Axel van Lamsweerde 16

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

The KAOS goal-oriented RE method

1. Domain analysis: /SafeTransportation / 3. S2B analysis:
refine/abstract enriched goals
goals / & \ocoliision 4 (alternatives)

" Ve
2. Domain analysis: 1-5. Obstacle & conflict
derive/structure analysis
objects
On 4. S2B analysis: SafeAcceler, :-""’"—ﬁ
0:1 enriched objects -,

from new goals

Drivi o .
AT 5. Responsibility analysis:

agent OR-assignment

The KAOS goal-oriented RE method
1. Domain analysis: ; 3. S2B analysis:
refine/abstract enriched goals
goals L/ . (alternatives)

2. Domain analysis: 1-5. Obstacle & conflict
derive/structure analysis
ohjects A
¥ A _.__——
—9“—@ 4. S2B analysis: Mi;
D;@ enriched objects -
Drivi from new goals i
nving i/ 5. Responsibility analysis:

| 4

o) agent OR-assignment

i
i
E &] 6. Operationalization
|
i

/E] & behavior analysis
O

»

@ Axe van Lamsweerde 17

From System Goals

SFM 03, 22/09/03

to Software Architecture

The KAOS goal-oriented RE method

/ SafeTransportation /

-
/_____/ /Nocollision

[NoTainsamehlocd SaieComd)
/A\

SafeAcceler, ::"*‘_.—?
-
[

)
%E @ % E At any tII’T.]e:
R S abstraction
i i (e.g. from scenarios)
|
i i

Specifying goals, objects & operations

Formal specification is optional ...
- to support more formal analysis & derivations
- in KAOS:
» only when & where needed

 abstract language for goals, requirements,
assumptions, domain properties:

real-time temporal logic
e more operational language for operations:
state-based spec
with traceability to underlying goals

@ Axe van Lamsweerde

18

From System Goals
to Software Architecture

SFM 03, 22/09/03

Some bits of real-time temporal logic

oP: P shall hold in the next state

OP: P shall hold in every future state

PW N: P shall hold in every future state unless N holds
aP: P shall hold in some future state

OeP: P shall hold in every future state up to T time units
ae; P: P shall hold within T time units

+ past operators: "black™ symbols

@P: - "PUP

Specifying goals: formal

Goal Maintain [DoorsClosedWhileMoving]

FormalDef " tr: Train, s: Station
At (tr, st) Uo = At (tr, st) P
tr.Doors = "closed" W At (tr, next(st))

Goal Achieve [NoDelay]
FormalDef " tr: Train, s: Station

At(tr, st) b &g At (tr, next(st))

intended behaviors

characterizes maximal set of m

@ Axe van Lamsweerde

19

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Specifying operations: formal

Operation OpenDoors
Input tr: Train ; Outputtr': Train
DomPre tr.Doors = "closed" domain description
DomPost tr.Doors = "open"

ReqPre for DoorsClosedWhileMoving: permission
$ s: Station At (tr, s)
ReqTrig for NoDelay: obligation

Stopped (tr)

characterizes maximal set of
intended states at snapshot

Outline

¢ Background: some bits of RE

¢ From system goals to software requirements
- Building goal-oriented requirements models
- Intertwining between late RE & early AD
- Goal-level reasoning for higher assurance

& From software requirements to software specs

& From software specs to software architecture
- Derivation of abstract dataflow architecture to achieve
functional specs
- Style-based refinement to meet architectural
constraints
- Pattern-based refinement to achieve NFRs

@ Axel van Lamsweerde 20

From System Goals SFM ’ 03, 22/09/03

to Software Architecture

Intertwining between late RE & early AD

(1) Alternative goal refinements

ConstraintsKnown/

Participants ByEmailRequests
ConstraintsKnown

ConstraintsKnown
ByE-AgendaAccess

Intertwining between late RE & early AD

(1) Alternative goal refinements

ConstraintsKnown
ConstraintsKnow‘

(2) Alternative agent assignments

. /0/<%Meeting [nitiator>
Constraints 4
Regquested v @ ; ;

= early “architectural” choices to meet QoS goals

@ Axe van Lamsweerde

21

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Intertwining between late RE & early AD

(3) Alternative granularities for software agents

. Software-to-be >
Constraints
Requested .\é

oftwareRequesto r>

Fine, function-level granularity will be selected
to meet NFR Maximize [Cohesion (C)]

Intertwining between late RE & early AD

%Communic

Speed/Accel

@ Axel van Lamsweerde 22

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Alternative goal refinement & assignment

/ Maintain[WC-SafeDistanceBetwTrains] /

/Mt[PrecedTrainlnfp //Mt[SafeAcceIFrom
KnownToNextTrain] PrecedTrainInfo]

==
/Mt[AccurateEstimate /Achv[PrecedTrainInfo TrainControl

OfSpeed/Position] //CommunicToNextTrain]

System Infrastruct
different system proposal:
fully distributed system

Outline

¢ Background: some bits of RE

¢ From system goals to software requirements
- Building goal-oriented requirements models
- Intertwining between late RE & early AD
- Goal-level reasoning for higher assurance

& From software requirements to software specs

& From software specs to software architecture
- Derivation of abstract dataflow architecture to achieve
functional specs
- Style-based refinement to meet architectural
constraints
- Pattern-based refinement to achieve NFRs

@ Axel van Lamsweerde 23

From System Goals SFM ’ 03, 22/09/03

to Software Architecture

Formal goal-level reasoning for higher assurance

+ Early analysis on partial models, intertwined with
model construction

Wide range of opportunities:
checking/deriving goal refinements
checking/deriving operationalizations
generating obstacles
generating boundary conditions for conflict
goal mining from scenarios
generating state machines from operationalizations

reusing goal-based specs by analogy

Formal goal-level reasoning for higher assurance

+ Early analysis on partial models, intertwined with
model construction

¢ Wide range of opportunities:
- checking/deriving goal refinements
- checking/deriving operationalizations
- generating obstacles
- generating boundary conditions for conflict
- goal mining from scenarios
- generating state machines from operationalizations

- reusing goal-based specs by analogy

@ Axe van Lamsweerde

24

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Checking goal refinements

o Aim: show that refinement is correct & complete
R, Ass, Dom |-- G
R: conjunctive set of requirements or subgoals

Checking goal refinements

o Aim: show that refinement is correct & complete
R, Ass, Dom |-- G
R: conjunctive set of requirements or subgoals

o Approach 1: use TL theorem prover

heavyweight, non-constructive

@ Axel van Lamsweerde 25

From System Goals SFM ’ 03, 22/09/03

to Software Architecture

Checking goal refinements

o Aim: show that refinement is correct & complete
R, Ass, Dom |- G
R: conjunctive set of requirements or subgoals

o Approach 1: use TL theorem prover
heavyweight, non-constructive

& Approach 2: use formal refinement patterns

lightweight, constructive:
- to complete partial refinements
- to explore alternative refinements

Checking goal refinements (2

Idea:
+ Buid library of patterns (structured by tactics)

+ Prove patterns once for all
& Reuse through instantiation, in matching situation

e.g. frequent patterns:

[ce at/
/i\ /%\

milestone-driven case-driven

@ Axe van Lamsweerde

From System Goals

to Software Architecture

Checking goal refinements (3

/ Maintain [WorstCaseStoppingDistance] /

-~ -

Maintain Maintain
SafeAcceleration ReceivedCommand
Computed Executed

Achieve Achieve
AccelerCommand SentCommand
Sent Received

Checking goal refinements ()

? Achieve [TrainProgress] |

missing subgoal !!
etectable automatically

Achieve [ProgressWhenGo] Achieve [SignalSetToGo]

On (tr, b) b aGo [next()]

On (tr, b) U Go[next(b)]

@ Axe van Lamsweerde

SFM 03, 22/09/03

27

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Checking goal refinements ()

n (tr,b) P a0on (tr, next(b))

/ Achieve [TrainProgress] /
O

-~ -

Achieve [ProgressWhenGo]
On (tr, b) U Go [next(b)]
P aon (tr, next(h))

Achieve [SignalSetToGo]
On (tr,b) P & Go [next(b)]

On(tr, b) b

mathematical proof On (tr, b) W On (tr, next(b))
hidden

Maintain [TrainWaiting] /

Checking goal refinements (s)

¢ Approach 3: Early bounded model checking

checking of goal models

partial models

incremental checking/debugging

on selected object instances (propositionalization)

ouput:
OK
KO + counter-example scenario

Roundtrip use of SAT solver, NuSMV, theorem prover

Time for demo...

@ Axel van Lamsweerde 28

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

prliiiie e S =s The GRAIL tool

KAOS model editor |

Requirements
documents
generation

KAOS
model
browser

The GRAIL/FAUST toolkit

Consistency/Completeness
Analys

@ Axel van Lamsweerde 29

From System Goals

to Software Architecture

SFM 03, 22/09/03

Generating obstacles

/ MovingOnRunway P o0 ReverseThrustEnabled /

expectation requirement

3

MovingOnRunway WheelsTurning
U WheelsTurning P o ReverseThrustEnabled

1 t

? ?

Generating obstacles (2)

+ Deriving precondition for obstruction

MovingOnRunway P WheelsTurning

@ Axe van Lamsweerde

30

From System Goals

to Software Architecture

SFM 03, 22/09/03

Generating obstacles (2)

+ Deriving precondition for obstruction

MovingOnRunway P WheelsTurning
® goal negation:

a MovingOnRunway U- WheelsTurning

Generating obstacles (2)

+ Deriving precondition for obstruction

MovingOnRunway P WheelsTurning
® goal negation:

a MovingOnRunway U- WheelsTurning
® regress through Dom:

? necessary conditions for wheels turning ?

WheelsTurning P = Aquaplaning
i.e. Agquaplaning P = WheelsTurning

@ Axe van Lamsweerde

31

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Generating obstacles (2)

+ Deriving precondition for obstruction

MovingOnRunway P WheelsTurning
® goal negation:

a MovingOnRunway U- WheelsTurning
® regress through Dom:

? necessary conditions for wheels turning ?

WheelsTurning P = Aquaplaning
i.e. Agquaplaning P = WheelsTurning

® RHS unifiable:

a MovingOnRunway UAquapIaning Warsaw obstacle

Generating obstacles (3)

+ Using formal obstruction patterns

in fact we just used a frequent pattern:

[eos]

obstacle domain property

@ Axe van Lamsweerde 32

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Verifying/deriving operationalizations

+ Build a library of formal operationalization patterns
for frequent goal specification patterns

e.g. Achieve goals: Chb ayT ChboOT
Maintain goals: cpOT Cb TWN

+ extensions adapted from Dwyer et al
& Prove pattern correctness once for all

¢ Reuse through instantiation, in matching situations

Verifying/deriving operationalizations
Chb oT
&
patterns proved correct
once for all
: Operation Opl Lo Operation Op2
DomPre @ T DomPre T
DomPost T DomPost @ T
ReqTrig for RootGoal RegPre for RootGoal
C @ C

@ Axe van Lamsweerde 33

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Verifying/deriving operationalizations

/ WheelsPulseOn b O RevThrustEnabled /

ﬁ

C: WheelsPulseOn
T: RevThrustEnabled

6peration EnabIeRevThrust\ Gperation DisabIeRevThrust\
DomPre @ RevThrustEnabled DomPre RevThrustEnabled
DomPost RevThrustEnabled DomPost @ RevThrustEnabled
ReqTrig for RootGoal RegPre for RootGoal

K WheelsPulseOn j k @ WheelsPulseOn

Verifying/deriving operationalizations

"T shall hold between C and N"

Cb o(TW(NUT))

4

; Operation Opl : ! Operation Op2

DomPre @ T DomPre T
DomPost T DomPost @ T
ReqTrig for RootGoal RegPre for RootGoal
C @CB(NU@C) ./

@ Axe van Lamsweerde 34

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Generating state machines from goal operationalizations

Goal model

/ f i / FSMs class

—— — /,//
Compilation /

Object g i //

model)
Structuring

ot/

Operation model \L Instantiation
a7/l

KAOS/SMs mapping ,’i’gUD/

for goal-oriented animation

FSMs instance

Generating state machines from goal operationalizations (2)

Step 1: Build FSM class declarations

for each e: Entity E Agent in Object model
- create a new FSM class;

- build state attribute declaration for all
behavioural attributes and relationships of e ;

- for each behavioural attribute attr

identify all legal states of attr in DomPre/DomPost
identify additional legal states of attr in Goal

@ Axe van Lamsweerde 35

From System Goals
to Software Architecture

SFM 03, 22/09/03

Goal Maintain[DoorsClosedWhileMoving]
FormaDef " tr: Train, s: Station
At (tr, s) Uo @ AL (tr, s)

P tr.Doors = ‘closed’ W At (tr, next(s)) -
Entity Station
Entity Train next : Station

Has Speed: speedUnit _)

Relationship next Stepl
Links Station {card 0:1}
Relationship At i
Links Train {card 0:1}, Station {card 0:N} speed : speedUnit

Operation OpenDoors
Input tr: Train; Output tr: Train closed open
DomPre tr.Doors = ‘closed’
DomPost tr.Doors = ‘open’
RegPre for DoorsClosedWhileMoving stopped moving

$ s : Station At (tr,s)

Operation StartTrain
Input tr: Train; Output tr: Train At a At
DomPre tr.Status = ‘stopped’

DomPost tr.Status = ‘moving’ K j
RegPre for DoorsClosedWhileMoving
tr.Doors = ‘closed’

Station

Train

Generating state machines from goal operationalizations (3)

Step 2: Build transitions

For each op in Operation model
- create a new transition class;

- op.DomPre ® source state; (propositionalization)
- op.DomPost ® destination state; (propositionalization)
- op.RegPre ® guard condition;

- op.ReqTrig ® trigger condition;

- op.DomPost , op.ReqPost ® action vector;

- host the transition;

@ Axe van Lamsweerde

36

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Goal Maintain[DoorsClosedWhileMoving]
FormaDef " tr: Train, s: Station

At (tr,s) Uo @ At (tr, s) Train

b tr.Doors = ‘closed’ W At (tr, next(s)) speed : SpeedUnit
Entity Station B
Entll:);s—rgsg;d: SpeedUnit closed [* open
Relationship next StartTrain

Links Station {card 0:1} stopped B moving

Relationship At
Links Train {card 0:1}, Station {card 0:N}

Operation OpenDoors Step2 k At D At j
Input tr: Train; Output tr: Train >
DomPre tr.Doors = ‘closed’

DomPost tr.Doors = ‘open’
RegPre for DoorsClosedWhileMoving:

Transition StartTrain

$ s : Station At (tr, s) SourceState stopped
Operation StartTrain DestState moving
Input tr: Train; Output tr: Train Guard closed
DomPre tr.status = 'stopped’ Actions null

DomPost tr.status = ‘'moving
RegPre for DoorsClosedWhileMoving:
tr.Doors = ‘closed’

Generating state machines from goal operationalizations (4)

Step3: Structure the state space

- source state structuring:

if states sl, s2 have same transition to same dest state
then aggregate si, s2 into more general state;

- guard migration:

if guard Grd on transition T refers to state s of hosting
object then move Grd as substate s of T.SourceState
(+ i/0 transitions)

- additional state space structuring by analyst

@ Axe van Lamsweerde 37

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Train / Train
speed : SpeedUnit speed : SpeedUnit
OpenDoors
closed [=] open Step3 stopped__s
" . .
CloseDoors \ dlesma StartTrain
StartTrain - I — > moving
stopped [r.novmg - StopTrain
StopTrain
e leaveStat [
At — At At 3 oAt
K RIS j k ArriveStat j
Transition StartTrain Transition StartTrain
SourceState stopped SourceState stopped
DestState moving DestState moving
Guard closed Guard
Actions null Actions null

(Tran Van & AvL, 2003)

Outline

¢ Background: some bits of RE

¢ From system goals to software requirements
- Building goal-oriented requirements models
- Intertwining between late RE & early AD
- Goal-based reasoning for higher assurance

& From software requirements to software specs

& From software specs to software architecture

— Derivation of abstract dataflow architecture to achieve
FRs

- Style-based refinement to meet architectural
constraints

— Pattern-based refinement to achieve NFRs

@ Axe van Lamsweerde 38

From System Goals

SFM 03, 22/09/03

to Software Architecture

From requirements to software specs

& Requirements vs. software specifications:

Input Devices (e.g. sensors)

TrainMoving measuredSpeed
M: monitored variables I: input data

Environment SoftwareToBe

DoorsClosed doorsState
C: controlled variables O: output results

Output Devices (e.g. actuators)

Regi M~” C Spec =Translation (Req) such that
Speci 170 {Spec, Dom} |= Req

From requirements to software specs (2)

¢ To map Regs to Specs:

- translate goals assigned to software agents in vocabulary
of software-to-be: input-output variables (if needed)

- map (domain) object model elements to their images in
the software’s object model (if needed)

- introduce (non-functional) accuracyGoals requiring the
consistency between monitored/controlled variables in
the environment & their software image (input/output
vatiables, database elements)

- introduce input/output agents to be responsible for such
accuracy goals (sensor, actuator & other input/output devices)

@ Axe van Lamsweerde

39

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

From requirements to software specs (3)

o Example:

- Req:
MotorReversed U MovingOnRunway

- TargetSpec:
Reverse = ‘enabled’” U WheelPulses = ‘on’
- accuracyGoals:

MovingOnRunway U WheelPulses = ‘on’
expectation on wheelSensor

MotorReversed U Reverse = ‘enabled’

expectation on motorActuator

Outline

¢ Background: some bits of RE

¢ From system goals to software requirements
- Building goal-oriented requirements models
- Intertwining between late RE & early AD
- Goal-level reasoning for higher assurance

& From software requirements to software specs

& From software specs to software architecture
- Derivation of abstract dataflow architecture to achieve
functional sw specs
- Style-based refinement to meet architectural
constraints
- Pattern-based refinement to achieve NFRs

@ Axel van Lamsweerde 40

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

M‘Eﬁ Output of architecture derivation process
S

Structure of ...

¢ components, ports

¢ connectors
- static: channels, roles, constraints
- dynamic: interaction protocol

+ configurations

... to be...
- correct: functional requirements are met
- good quality: QoS & development goals are met

Assumption: requirements conflicts are resolved before

Deriving an abstract dataflow architecture

¢ For each “functional” or “critical” goal assigned to
software-to-be:

define one dedicated component ...

- software agent + all operations operationalizing this
goal

- interface = monitored & controlled variables in goal
formulation

¢ Derive dataflow connector between components from
data dependency links

Flows (d, C1, C2)° Controls (C1, d) UMonitors (C2, d)

@ Axe van Lamsweerde 41

From System Goals
to Software Architecture

SFM 03, 22/09/03

Deriving dataflow architecture: example

/EffectiveMeetingScheduIing/

/éonstraintsKnowr}/ /MeetingPlannedFromConstraint§/
Constraints Constraints
Requeste CoIIected

Constraints Constraints
Received Merged

Deriving dataflow architecture: example

/EffectiveMeetingScheduIing/

ConstraintsKnow /MeetingPIannedFromConstraints/

MeetRequest (Plist, m) Up in Plist P ae rT ConstrReq (p, m)

@ Axe van Lamsweerde

42

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Deriving dataflow architecture: example

/EffectiveMeetingScheduIing/

/éonstraintsKnowr}/ /MeetingPlannedFromConstraint§/

Constraln Constramts
Requeste CoIIected

Constraints, Constraints
Received Merged
onstralntsRequesto

Monitors MeetRequest[Plist,m]
Controls ConstrReq[Plist,m]

ConstraintsMerger>

Deriving dataflow architecture: example

/EffectiveMeetingScheduIing/

ConstraintsKnow /MeetingPIannedFromConstraints/

{ Constramt? < >

Monitors ConstrReq[Plist,m]

Constraint PartConstr
Controls ConstraintsTable

w

Monitors MeetRequest[Plist,m] Monitors ConstrReq[Plist,m]
Controls ConstrReq[Plist,m] Controls PartConstr

@ Axel van Lamsweerde 43

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Deriving dataflow architecture: example

/EffectiveMeetingScheduIing/

/éonstraintsKnowr}/ /MeetingPlannedFromConstraint§/

Constraln Constramts/
Requeste Collected r< onstraintsMerger>
Monitors ConstrReq[Plist,m]
Constralnts Constralnts PartConstr <
Received Merged Controls ConstraintsTable

onstralntsRequesto (XParticipant

Monitors ConstrReq[Plist,m]
Controls PartConstr

Monitors MeetRequest[Plist,m]
Controls ConstrReq[Plist,m]

Resulting dataflow architecture

%Participant

PartConstr

ConstraintsRequestor

ConstrReq[...]

A v

(‘nnctraintel\/lnrgnr

@ Axe van Lamsweerde 44

From System Goals SFM ’ 03, 22/09/03

to Software Architecture

Resulting dataflow architecture

%Participant

ConstrReql.

PartConstr

ConstraintsRequestor

ConstrReq[...]

ConstraintsMerger

Resulting dataflow architecture

%Participant

v
ConstrRe
ConstraintsRequestor PartConstr
ConstrReq[...]
r

(‘nnctraintel\/lnrgnr

- »,

@ Axe van Lamsweerde

45

From System Goals
to Software Architecture

SFM 03, 22/09/03

ConstraintsRequestor

ConstrReq[...]

%Participant

ConstrReql.

PartConstr

ConstraintsMerger

Resulting dataflow architecture

Notifier

Plan [d,Ioc,CT]T

Planner

ConstraintsTable][...]

/MeetingPIannedFromConstraints/

%\Appfing ILnitiator

»

\4

ConstraintsRequestor

ConstrReq[...]

%Participant

Resulting dataflow architecture

MeetRequest]...] ConstrRe

v
PartConstr
r

(‘nnctraintel\/lnrgnr

WT]

Notifier

Plan [d,Ioc,CTﬁ

Dlannaoy
v rrafhet

ConstraintsTable][...]

@ Axe van Lamsweerde

46

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Outline

¢ Background: some bits of RE

¢ From system goals to software requirements
- Building goal-oriented requirements models
- Intertwining between late RE & early AD
- Goal-level reasoning for higher assurance

¢ From software requirements to software specs

o From software specs to software architecture
- Derivation of abstract dataflow architecture to achieve
functional specs
- Style-based refinement to meet architectural
constraints
- Pattern-based refinement to achieve NFRs

Refinement to meet architectural constraints

Domain-specific constraints ...

- from environment agents: features, inter-relationships
- global constraints on architectural design space

e.g. Meeting scheduling system:
distribution of participants, meeting initiator

ldea:

¢ Document styles by rules
(domain conditions, target_ NFR) ® effect

& Apply rule matching architectural constraint

& Proof obligation: rule application must preserve properties
of components & connectors (e.g., dataflows)

@ Axe van Lamsweerde 47

From System Goals
to Software Architecture

SFM 03, 22/09/03

%void Knows (Ci, Cj)/

% EventProd
PR

-

C d2

/9(EventProd
1

Distributed (EventProd,
el olh

/% EventCons

d2

FrontEndEvProd

FrontEndEvCons

EventBroker

Id2

%\Appfinglnifiafnr %PartiCipant

From MeetingScheduler dataflow architecture ...

v
MeetRequest]...] ConstrRe
v
ConstraintsRequestor PartConstr
ConstrReq[...]
2V

(‘nnctraintel\/lnrgnr

WT]

Notifier

Plan [d,Ioc,CTﬁ

Dlannaoy
v rrafhet

ConstraintsTable][...]

@ Axe van Lamsweerde

48

From System Goals
to Software Architecture

SFM 03, 22/09/03

| FrontEndInitiator |

! MeetRequest[]

<%l\/leetinglnitiato>
MeetRequest[...]/ ConstrReq[...]/ \gartConsb

</9(Participant ‘> NOtif[..]

| FrontEndparticipant |

|
Pam%f[f
| Notif]...]

b
? MeetReq%

ConstraintsRequestor

EventBroker
A \
]

]
1
]
]
I
]
]
I
]
]
I
? PartCopstrl...]

Notifier

[-]

Planner

I
PN

ConstraintsMerger

¢ Background: some
¢ From system goals

functional specs
- Style-based refin
constraints

- Building goal-oriented requirements models
- Intertwining between late RE & early AD
- Goal-level reasoning for higher assurance

& From software requirements to software specs

& From software specs to software architecture
— Derivation of abstract dataflow architecture to achieve

— Pattern-based refinement to achieve NFRs

Outline

bits of RE
to software requirements

ement to meet architectural

@ Axe van Lamsweerde

49

From System Goals
to Software Architecture

SFM 03, 22/09/03

Architecture refinement

interaction

Accuracy (C1,C2): data consistency

Interoperable (C1,C2), ...

- MaxCohesion (C): fine-grained functionality

¢ Many non-functional goals impose constraints on component

Confidentiality (C1,C2): limitation on info flow
Usability (C1,C2): requirement on presentation, dialog
etc: MinCoupling (C1,C2), InfoHidden (C1, C2),

¢ Some NFGs impose contraints on single component

Architecture refinement (2

Plan[d,l

/ Co/nﬁ%(ikal itv/
LJ Conf_io!ential

1. For each terminal NFG in goal refinement graph ...

- identify all connectors/components constrained by it

- instantiate it to those connectors/components

"

Notifier

el

Planner

v

@ Axe van Lamsweerde

50

From System Goals
to Software Architecture

SFM 03, 22/09/03

Architecture refinement (3)

2. For each NFG-constrained connector/component ...
- refine it to meet instantiated NFG

NFG

Refinement example: multi-level security

/ Co/nﬁﬁenikalitv/
L_/ Avoid[CIa_ssified

@ Axe van Lamsweerde

51

From System Goals
to Software Architecture

SFM 03, 22/09/03

Refinement example:

/ Confidentiality /
o

{ .. | /Avoid[Classified
DataFlowing]

multi-level security

"d: Data, C1, C2
Flows (d, C1, C2) b
d.Label £ C2.Clearance

Refinement example:

/ Confidentialitv/
/g\

L_/ Avoid[CIa_ssified

multi-level security

" d: Data, C1, C2
Flows (d, C1, C2) b
d.Label £ C2.Clearance

@ Axe van Lamsweerde

52

From System Goals

SFM 03, 22/09/03

to Software Architecture

Refinement example: multi-level security

/ Confidentiality /
o

"d: Data, C1, C2
: — Flows (d, C1, C2) b
L/ Avoid[Classified d.Label £ C2.Clearance
DataFlowing]

cl DE c2 . c1 '\.’:LS c2
DF’ Filter DE”

Refinement example: multi-level security

/ Co/nﬁﬁenikalitv/
L_/ Avoid[CIa_ssified

" d: Data, C1, C2
Flows (d, C1, C2) b
d.Label £ C2.Clearance

RegPost for Avoid[CDF]:
d.Label £ C2.Clearance

@ Axe van Lamsweerde

53

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Architecture refinement (4)

2. For each NFG-constrained connector/component ...
- refine it to meet instantiated NFG ...

by use of architectural refinement patterns:
« catalog of refinement patterns
e each pattern is annotated by underlying design
goals & tradeoff documentation
(cf. [Gross&Yu'01])
* pattern selection by goal matching

(conflict resolution by goal prioritization based on
tradeoff analysis a la NFR)

A few general patterns ...

Avoid [Confidential

@ Axe van Lamsweerde 54

From System Goals
to Software Architecture

SFM 03, 22/09/03

C1

A few general patterns ... (2)

Maintain [Accurate
Data (C1, C2)]

DF c2 —_—

cf. Observer, MVC patterns

DF
DF' ®Consistencylg’ DF”
Maintainer

A few general patterns ... (3)

/

Maintain [Availability /
(C1,¢2 _C3)]

> Monitor

@ Axe van Lamsweerde

55

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

A few general patterns ... (4)

Maintain [FaultTolerant
Communication (C1, C2)]

Cl C2 - C1 C2

C1 Cc2

A few general patterns ... (5)

/I nfoHiding (Cl,CZ)/

Lo o] —

put get

Q

aat
gttx

@ Axel van Lamsweerde 56

From System Goals

to Software Architecture

SFM 03, 22/09/03

C1

C1

A few general patterns ... (6)

/MinCoupIing (Cl,CZ)/

/ generate register
event nterest

DE c2 —» | Cl | *|Registrar[| C2
notify
event

Datalntegration (Cl,CZ)/

/"

DF c2 o

A few general patterns ... (7)

/ MaxCoht?n/

c1

Use ‘Ede

@ Axe van Lamsweerde

57

From System Goals
to Software Architecture

SFM 03, 22/09/03

Pattern application: back to meeting scheduling

%\/Ieeting Initiator %Participant

MeetRequest]..] ConstrReq[.

PartConstr

ConstraintsRequestor

ConstrReq[...]

ConstraintsMerger

Notifier

Plan[d,loc, CT] T

Planner

ConstraintsTable][...]

Pattern application: back to meeting scheduling

%\Appfing Initiator %Participant
v
MeetRequest[..] ConstrRe
\4
ConstraintsRequestor PartConstr
ConstrReq[...]
T

(‘nnctraintel\/lnrgnr

WT]

Notifier

Plan[d,loc, CT] *

Dlannaoy
v rrafhet

ConstraintsTable][...]

{Mai_nt_ain[Confiden_tiaI /

@ Axe van Lamsweerde

58

From System Goals
to Software Architecture

SFM 03, 22/09/03

%\/Ieetinglnitiator

ConstraintsRequestor

ConstrReq[...]

Pattern application: back to meeting scheduling

%Participant

MeetRequest]..] ConstrReq[.

Notifier

PartConstr

- L —¥
Particlnfo d,loc, AnonymCT
Filter Y~Plan [d.loc,CT]

Planner

ConstraintsMerger

ConstraintsTable][...]

%\Appfing ILnitiator

»

\4

ConstraintsRequestor

ConstrReq[...]

Pattern application: back to meeting scheduling (2)

MeetRequest]...] ConstrRe

%Participant WT]
v

Notifier
/'
PartConstr Particlnfo d,loc, AnonymCT
Fittet Ptarfd;toc,CiT]
v—Planner
2V

ConstraintsTable[...]

(‘nnctraintel\/lnrgnr

{ InfoHiding /

@ Axe van Lamsweerde

59

From System Goals
to Software Architecture

SFM 03, 22/09/03

%\/Ieetinglnitiator

ConstraintsRequestor

Pattern application: back to meeting scheduling (2)

%Participant

MeetRequest[...i/ ConstrReq([,

PartConstr

ConstrReq\.

Notifier

a | —V
Particlnfo d,loc, AnonymCT

Filter ™~ Plan[d loc.C

]

Planner

ConstraintsMerger

/e

\ ConstraintsTable
put

put
get

- systematic
- incremental

Conclusion

R

view extraction through architectural net queries:
security view, accuracy view, reusability view, ...

¢ Much room for incremental analysis of partial
models at goal level

— locality principle; compositional

+ Derivation of architecture from requirements ...

+ Refined connectors/components explicitly linked
to non-functional goals

@ Axe van Lamsweerde

60

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Conclusion

¢ Much room for incremental analysis of partial
models at goal level

+ Derivation of architecture from requirements ...
- systematic
- incremental
— locality principle; compositional

+ Refined connectors/components explicitly linked
to non-functional goals
3

view extraction through architectural net queries:
security view, accuracy view, reusability view, ...

Conclusion

Opportunities for goal-level tool support

Consistency/Completeness

@ Axe van Lamsweerde 61

From System Goals SFM ’ 03, 22/09/03
to Software Architecture

Limitations & further work

+ Only refinement-based:
no bottom-up propagation of middleware requirements

R

need for complementary abstraction patterns

+ No derivation of interaction protocols
3

integration of previous work on synthesis of concurrent
interaction schemes from goal-based invariants

o RE_NET: towards requirements/architecture
co-design & co-evolution...

- at development time
- at run time

For more info ...

+ Papers:
GOOGLE Axel van Lamsweerde goals KAOS

+ Forthcoming book

@ Axe van Lamsweerde 62

