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From t-Closeness-Like Privacy to
Postrandomization via Information Theory
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Abstract—t-Closeness is a privacy model recently defined for data anonymization. A data set is said to satisfy t-closeness if, for each
group of records sharing a combination of key attributes, the distance between the distribution of a confidential attribute in the group
and the distribution of the attribute in the entire data set is no more than a threshold t. Here, we define a privacy measure in terms of
information theory, similar to t-closeness. Then, we use the tools of that theory to show that our privacy measure can be achieved by
the postrandomization method (PRAM) for masking in the discrete case, and by a form of noise addition in the general case.
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1 INTRODUCTION

AMICRODATA set is a data set whose records carry
information on invidual respondents, like people

or enterprises. The attributes in a microdata set can be
classified as follows:

• Identifiers. These are attributes that unambiguously
identify the respondent. Examples are passport
number, social security number, full name, etc. Since
our objective is to prevent confidential information
from being linked to specific respondents, we shall
assume in what follows that, in a preprocessing step,
identifiers have been removed or encrypted.

• Key attributes. Borrowing the definition from [2], [3],
key attributes are those that, in combination, can
be linked with external information to reidentify
(some of) the respondents to whom (some of) the
records in the microdata set refer. Examples are
job, address, age, gender, etc. Unlike identifiers, key
attributes cannot be removed, because any attribute
is potentially a key attribute.

• Confidential outcome attributes. These are attributes
which contain sensitive information on the respon-
dent. Examples are salary, religion, political affilia-
tion, health condition, etc.

Some parts of this paper (a reduced version of Sections 1 through 4) together
with a sketch theoretical analysis for a univariate sensitive attribute were
presented at the International Conference on Privacy in Statistical Databases,
Istanbul, Turkey, Sep. 2008 [1]. The current multivariate theoretical analysis
(Section 5), the experimental work (Section 6), the conclusions (Section 7)
and the proofs given in the Appendices are all new work.
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The classification of attributes as key or confidential
need not be disjoint or objectively unique. Ultimately,
it relies on the specific application the microdata set is
intended for.

There are several privacy models to anonymize mi-
crodata sets. k-Anonymity [3], [4] is probably the
best known. However, it presents several shortcomings
which have motivated the appearance of enhanced pri-
vacy models reviewed below. t-Closeness [5] is one of
those recent proposals. Despite its conceptual appeal, t-
closeness lacks computational procedures which allow
reaching it with minimum data utility loss.

1.1 Contribution and Plan of this Paper
Here, we define a privacy measure similar to the idea
of t-closeness and provide an information-theoretic for-
mulation of the privacy-distortion trade-off problem in
microdata anonymization. This is done in such a way
that the knowledge body of information theory can be
used to find a solution to it. The resulting solution
turns out to be the postrandomization (PRAM) masking
method [6], [7], [8] in the discrete case and a form of
noise addition in the general case.

Section 2 reviews the state of the art in k-anonymity-
based privacy models. Mathematical conventions and a
brief review of information-theoretic concepts are pro-
vided in Section 3. Section 4 gives an information-
theoretic formulation of the privacy-distortion trade-
off problem, similar to t-closeness. Section 5 contains
a theoretical analysis of the solution to this problem.
Empirical results are reported in Section 6. Conclusions
are drawn in Section 7.

2 BACKGROUND AND MOTIVATION

k-Anonymity requires that each combination of key
attribute values be shared by at least k records in the
data set. To enforce k-anonymity, there are at least two
computational procedures: the original approach based

Digital Object Indentifier 10.1109/TKDE.2009.190 1041-4347/$25.00 ©  2009 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 29,2010 at 17:14:00 UTC from IEEE Xplore.  Restrictions apply. 



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Height Weight
High 

Cholesterol

5’4’’

5’3’’

5’6’’

158

162

161

N

Y

N

5’8’’ 157 N

Key Attributes
Confidential 
Attributes

Height Weight
High 

Cholesterol

5’5’’

5’5’’

5’5’’

160

160

160

N

Y

N

6’0’’ 155 N

Perturbed Key 
Attributes

Confidential 
Attributes

A
gg

re
ga

te
d 

Re
co

rd
s

Posterior 
Distribution

Fig. 1: Perturbation of key attributes to attain k-anonymity, t-closeness and similar privacy properties.

on generalization and recoding of the key attributes [3],
[4] and a microaggregation-based approach described
in [9], [10], [11], [12], and illustrated in Fig. 1. While k-
anonymity prevents identity disclosure (re-identification
is infeasible within a group sharing the same key at-
tribute values), it may fail to protect against (approx-
imate) attribute disclosure: such is the case if the k
records sharing a combination of key attribute values
also share the value of a confidential attribute. Several
enhancements of k-anonymity have been proposed to
address the above and other shortcomings. Some of them
are mentioned in what follows.

In [13], [14], an evolution of k-anonymity called p-
sensitive k-anonymity was presented. Its purpose is to
protect against attribute disclosure by requiring that
there be at least p different values for each confidential
attribute within the records sharing a combination of
key attributes. p-Sensitive k-anonymity has the limitation
of implicitly assuming that each confidential attribute
takes values uniformly over its domain, that is, that
the frequencies of the various values of a confidential
attribute are similar. When this is not the case, achieving
p-sensitive k-anonymity may cause a huge data utility
loss.

Like p-sensitive k-anonymity, l-diversity [15] was de-
fined with the aim of solving the attribute disclosure
problem that can arise with k-anonymity. A data set is
said to satisfy l-diversity if, for each group of records
sharing a combination of key attributes, there are at
least l “well-represented” values for each confiden-
tial attribute. Depending on the definition of “well-
represented”, l-diversity can reduce to p-sensitive k-
anonymity or be a bit more complex. However, it shares
with the latter the problem of huge data utility loss. Also,
it is insufficient to prevent attribute disclosure, because
at least the following two attacks are conceivable:

• Skewness attack. If, within a group of records sharing
a combination of key attributes, the distribution of
the confidential attribute is very different from its
distribution in the overall data set, then an intruder
linking a specific respondent to that group may

learn confidential information (e.g., imagine that the
proportion of respondents with AIDS within the
group is much higher than in the overall data set).

• Similarity attack. If values of a confidential attribute
within a group are l-diverse but semantically similar
(e.g., similar diseases or similar salaries), attribute
disclosure also takes place.

t-Closeness [5] tries to overcome the above attacks. A
microdata set is said to satisfy t-closeness if, for each
combination of key attributes, the distance between the
distribution of the confidential attributes in the group
and the distribution of the attributes in the whole data
set is no more than a threshold t. t-Closeness can be ar-
gued to protect against skewness and similarity (see [16]
for a more detailed analysis):

• To the extent to which the within-group distribution
of confidential attributes resembles the distribution
of those attributes for the entire dataset, skewness
attacks will be thwarted.

• Again, since the within-group distribution of con-
fidential attributes mimics the distribution of those
attributes over the entire dataset, no semantic simi-
larity can occur within a group that does not occur
in the entire dataset. (Of course, within-group simi-
larity cannot be avoided if all patients in a data set
have similar diseases.)

The main limitation of the original t-closeness paper
is that no computational procedure to reach t-closeness
was specified. This is what we address in the remainder
of this paper by leaning on the framework of information
theory. Throughout Section 4 we provide specific details
on additional connections between our work and the
literature, from a more technical, information-theoretic
perspective.

3 MATHEMATICAL CONVENTIONS AND
INFORMATION-THEORETIC PRELIMINARIES

Throughout the paper, the measurable space in which
a random variable (r.v.) takes on values will be called
an alphabet. We shall follow the convention of using
uppercase letters for r.v.’s, and lowercase letters for
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particular values they take on. Probability density func-
tions (PDFs) and probability mass functions (PMFs) are
denoted by p, subindexed by the corresponding r.v. in
case of ambiguity risk. For example, both pX(x) and
p(x) denote the value of the function pX at x, which
aids in writing more concise equations. Informally, we
occasionally refer to the function p as p(x). Similarly, we
use the notations pX|Y and p(x|y) equivalently.

We adopt the same notation for information-theo-
retic quantities used in [17]. Specifically, the symbol
H will denote entropy, h differential entropy, I mutual
information, and D relative entropy or Kullback-Leibler
(KL) divergence. We briefly recall those concepts for the
reader not intimately familiar with information theory:

• The entropy H(X) of a discrete r.v. X with PMF p is
a measure of its uncertainty, and it is defined as

H(X) = −E log p(X) = −
∑

x

p(x) log p(x).

If X is a continuous r.v. instead, say distributed
in R

k and with PDF p, the analogous measure is
the differential entropy

h(X) = −E log p(X) = −
∫

Rk

p(x) log p(x) dx.

• The conditional entropy of a r.v. X given a r.v. Y is
the entropy of X conditioned on each value y of Y ,
averaged over all values y. In the discrete case,

H(X|Y ) = −E E [log p(X|Y )|Y ] = −E log p(X|Y )

= −
∑

y

p(y)
∑

x

p(x|y) log p(x|y)

= −
∑
x,y

p(x, y) log p(x|y),

where p(x|y) is the probability of X = x given that
Y = y. The conditional differential entropy of two
continuous r.v.’s is defined in an entirely analogous
manner, with expectations taking the form of inte-
grals in lieu of summations.

• Let p(x) and q(x) be two probability distributions
over the same alphabet. The KL divergence D(p‖q) is
a measure of their discrepancy.In the case when p
and q are PMFs, it is defined as

D(p‖q) = E p log
p(X)
q(X)

=
∑

x

p(x) log
p(x)
q(x)

.

When p and q are PDFs, the expectation is written as
an integral. The KL divergence might be thought of
as a “distance” between distributions, in the sense
that D(p‖q) � 0, with equality if, and only if, p = q
(almost surely).

• The conditional KL divergence D(p(x|y)‖q(x|y)) is the
average, over the conditioning distribution p(y), of
the KL divergence between the conditional distribu-
tions p(x|y) and q(x|y) (regarded as unconditional
distributions for each y). Precisely, in the discrete
case,

D(p(x|y)‖q(x|y)) = E p(y) E p(x|y)

[
log

p(X|Y )
q(X|Y )

∣∣∣∣ Y

]

= E p(x,y) log
p(X|Y )
q(X|Y )

=
∑
x,y

p(x, y) log
p(x|y)
q(x|y)

,

where the joint distribution is taken to be p(x, y) =
p(x|y) p(y).

• The mutual information I(X; Y ) of two r.v.’s X , Y
is a measure of the amount of information that one
random variable contains about the other, satisfying
I(X; Y ) � 0, with equality if, and only if, X and Y
are statistically independent. It is defined as the KL
divergence between the joint distribution p(x, y) and
the independent distribution p(x) p(y) generated by
the marginal ones:

I(X; Y ) = D(p(x, y)‖p(x) p(y)) = E log
p(X, Y )

p(X) p(Y )
.

In the discrete case,

I(X; Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x) p(y)

= H(X)−H(X|Y ) = H(Y )−H(Y |X),

that is, the mutual information is the uncertainty
reduction on X if Y is observed, and viceversa.
An entirely analogous expression is satisfied in the
continuous case, with differential entropies and in-
tegrals in lieu of entropies and summations.

A (deterministic) quantizer is a function that partitions a
continuous range of values x, approximating each result-
ing cell by a value x̂ of a discrete r.v. Often, the quantizer
map x̂(x) is broken down into two steps. Namely, an as-
signment to quantization indices, usually natural numbers,
by means of a function q(x), and a reconstruction function
x̂(q) mapping indices into values that approximate the
original data, so that x̂(x) = x̂(q(x)). A randomized
version generalizes the function x̂(x) by a conditional
PMF p(x̂|x), or p(q|x) in terms of indices.

Occasionally, the expectation of a r.v. is written as the
letter μ subindexed by its name. Variances and covari-
ances are written as the squared lowercase letter σ2 and
the uppercase letter Σ, respectively, subindexed by the
name of the r.v.’s involved. The notation X ∼ N (μ,Σ)
will be used to indicate that X is a Gaussian r.v. with
mean μ and positive definite covariance Σ.

The set of real m × n matrices is denoted by R
m×n.

diag(d1, . . . , dn) denotes a diagonal matrix with entries
d1, . . . , dn. Curly inequality symbols are used to repre-
sent matrix definiteness. For example, A � 0 indicates
that A is nonnegative definite.

4 INFORMATION-THEORETIC FORMULATION
OF THE PRIVACY-DISTORTION TRADE-OFF

Let W and X be jointly distributed r.v.’s in arbitrary al-
phabets, possibly discrete or continuous. In the problem
of database t-closeness described above and depicted
in Fig. 1, X represents (the tuple of) key attributes to
be perturbed, which could otherwise be used to iden-
tify an individual. In the same application, confidential
attributes containing sensitive information are denoted
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by W . Assume that the joint distribution of X and W is
known, for instance, an empirical distribution directly
drawn from a table, or a parametric statistical model
inferred from a subset of records.

4.1 Distortion Criterion
A distortion measure d(x, x̂) is any measurable, nonneg-
ative, real-valued function representing the distortion
between the original data X and a perturbed version X̂ ,
the latter also a r.v., commonly but not necessarily in the
same alphabet of X . The associated expected distortion
D = E d(X, X̂) provides a measure of utility of the
perturbed data, in the intuitive sense that low distortion
approximately preserves the values of the original data,
and their joint statistical properties with respect to any
other data of interest, in particular W . For example, if
d(x, x̂) = ‖x − x̂‖2, then D is the mean-square error
(MSE). Intuitively, a more general form d(w, x, x̂) of
distortion measure might interestingly widen the range
of applications of our framework, possibly at the cost of
mathematical tractability.

4.2 Privacy Criterion
Consider now, on the one hand, the distribution pW

of the confidential information W , and on the other,
the conditional distribution pW |X̂ given the observa-
tion of the perturbed attributes X̂ . In the database k-
anonymization problem, whenever the posterior distri-
bution pW |X̂ differs from the prior distribution pW , we
have actually gained some information about individu-
als statistically linked to the perturbed key attributes X̂ ,
in contrast to the statistics of the general population.
Concordantly, define the privacy risk R as the conditional
KL divergence D between the posterior and the prior
distributions, that is,

R = D(pW |X̂‖pW ) = E X̂ D(pW |X̂(·|X̂)‖pW )

= E X̂ E W |X̂

[
log

p(W |X̂)
p(W )

∣∣∣∣∣ X̂

]
= E log

p(W |X̂)
p(W )

. (1)

Section 3 recalls the concept of conditional KL diver-
gence, also explained, for instance, in [17]. A conditional
KL divergence is a KL divergence averaged over a
conditioning variable. Conceptually, R is a measure of
discrepancy between pW |X̂ and pW , averaged over X̂ .
Technically, pW is regarded as a degenerate conditional
distribution of W given X̂ but in fact independent of X̂ .

A simple manipulation of (1) shows that

R = E log
p(W |X̂) p(X̂)
p(W ) p(X̂)

= E log
p(W, X̂)

p(W ) p(X̂)
= I(W ; X̂),

in other words, the privacy risk thus defined coincides
with the mutual information (see Section 3) of W and X̂ .
Thus,

R = I(W ; X̂) = H(W )−H(W |X̂) (2)

in the discrete case, and similarly in terms of differential
entropies in the continuous case. Two important remarks
are in order. Firstly, owing to the symmetry of mutual
information, this shows that the privacy risk (1) may be
equivalently defined exchanging the roles of W and X̂ .
Secondly, recall that the KL divergence in (1) vanishes
if, and only if, the prior and the posterior distributions
match (almost surely), which is equivalent to requir-
ing that the mutual information in (2) vanish, in turn
equivalent to requiring that W and X̂ be statistically
independent. Of course, in this extreme case, the utility
of the published data, represented by the distribution
pWX̂ , usually by means of the corresponding table, is
severely compromised. In the other extreme, leaving the
original data undistorted, i.e., X̂ = X , compromises
privacy, because in general pW |X and pW differ.

4.3 Connections with Other Privacy Criteria
We would like to stress that the use of an information-
theoretic quantity for privacy assessment is by no means
new. First and foremost, we would like to acknowledge
that our privacy measure is tightly related to the measure
of t-closeness in [5]. Direct application of the concept of
t-closeness to our formulation would lead to define that a
distribution satisfies the criterion of t-closeness provided
that D(pW |X̂(·|x̂)‖pW ) � t for all values x̂ of X̂ . This
would naturally suggest measuring privacy risk as the
essential supremum (maximum in the discrete case) of
D(pW |X̂(·|X̂)‖pW ), in lieu of the average of (1). Although
in our paper we choose to give credit to the idea of t-
closeness with regard to the privacy criterion followed
in our formulation, the above discussion clarifies that,
technically, below the conceptual level, the t-closeness
criterion is not quite the same.

Basically, our privacy criterion is an average measure
over a divergence. Recall that, by definition, a diver-
gence itself is also an average measure. In the finite-
alphabet case, t-closeness is a maximum over diver-
gences, themselves averages. It might still be question-
able whether the original t-closeness also succeeds in
capturing the disclosure risk for a particular record. A
related, more conservative criterion named δ-disclosure
privacy is proposed in [18], which measures the max-
imum difference between the prior and the posterior
distributions for each group sharing a common x̂. More
precisely, in terms of our formulation and still in the
finite case, a distribution satisfies this criterion provided
that maxw

∣∣∣log
pW |X̂(w|x̂)

pW (w)

∣∣∣ < δ for all values x̂ of X̂ .
Simply put, δ-disclosure is a maximum over a maximum.

It is fair to stress that average-case optimization may
not address worst cases properly, although the price of
worst-case optimization is, in general, a poorer average,
ceteris paribus. In other words, we must acknowledge
that our privacy criterion, in spite of its mathematical
tractability, as any criterion based on averages, may not
be adequate in all applications [19]. More generally, in
spite of its conceptual, information-theoretic appeal, it is
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important to point out that the adequacy of our formu-
lation relies on the appropriateness of the criteria opti-
mized, which in turn depends on the specific application,
on the statistics of the data, on the degree of data utility
we are willing to compromise, and last but not least,
on the adversarial model and the mechanisms against
privacy contemplated. Neither our privacy criterion, nor
other widely popular criteria such as k-anonymity in its
numerous varieties, are the be-all and end-all of database
anonymization [18].

A much earlier connection with the literature can
be traced back to the work by Shannon in 1949 [20].
Note that I(W ; X̂) and H(W |X̂) in (2) are equivalent
minimization objectives in the design of X̂ , under the as-
sumption that W and therefore H(W ) are given. Shannon
introduced the concept of equivocation as the conditional
entropy of a private message given an observed cryp-
togram, later used in the formulation of the problem of
the wiretap channel [21] as a measure of confidentiality.
We can also trace back to the fifties the information-
theoretic interpretation of the divergence between a prior
and a posterior distribution, named (average) information
gain in some statistical fields [22], [23].

In addition to the work already cited, [7], [24], [25]
already used Shannon entropy as a measure of informa-
tion loss, pointing out limitations affecting specific ap-
plications. We would like to stress out that we use a KL
divergence as a measure of information disclosure (rather
than loss), consistently with the equivalence between the
case when pW |X̂ = pW and the complete absence of
privacy risk. On the other hand, the flexibility in our def-
inition of distortion measure as a measure of information
loss may enable us to preserve the statistical properties
of the perturbed data to an arbitrary degree, possibly
with respect to any other data of interest. Of course, the
choice of distortion measure should ultimately rely on
each particular application.

4.4 Problem Statement

Consequently, we are interested in the trade-off between
two contrasting quantities, privacy and distortion, by
means of perturbation of the original data. More pre-
cisely, consider randomized perturbation rules on the orig-
inal data X , determined by the conditional distribution
pX̂|X of the perturbed data X̂ given X . In the special
case when the alphabets involved are finite, pX̂|X may
be regarded as a transition probability matrix, such as
the one that appears in the PRAM masking method [6],
[7], [8]. Considering randomized rules with only X as
input, but not W , formally assumes the conditional
independence of X̂ and W given X . Two remarks are
in order. First, we consider randomized rules because
deterministic quantizers (see Section 3) are a particular
case, and at this point we may not discard the possibility
that more general rules attain a better trade-off. Secondly,
we consider rules that affect and depend on X only,
but not W , for simplicity. Specifically, implementing and

estimating convenient conditional distributions pX̂|WX

rather than pX̂|X will usually be more complex, and
require large quantities of data to prevent overfitting
issues.

To sum up, we are interested in a randomized per-
turbation minimizing the privacy risk given a distortion
constraint (or viceversa). In mathematical terms, we
consistently define the privacy-distortion function as

R(D) = inf
pX̂|X

E d(X,X̂)�D

I(W ; X̂). (3)

We allow ourselves a small abuse of notation and reuse
the letter D for various mathematical flavors of dis-
tortion. These include, on the one hand, the previous
definition D = E d(X, X̂) in Section 4.1, and on the other,
the bound variable acting as an argument of the above
function, where merely E d(X, X̂) � D for each value
of D, not necessarily with equality. For conceptual conve-
nience, we provide an equivalent definition introducing
an auxiliary r.v. Q, playing the role of randomized
quantization index, a randomized quantizer pQ|X , and
a reconstruction function x̂(q) (see Section 3):

R(D) = inf
pQ|X , x̂(q)

E d(X,X̂)�D

I(W ; Q). (4)

Proposition 3 in Section A.1 asserts that there is no loss
of generality in assuming that Q and X̂ are related bijec-
tively, thus I(W ; Q) = I(W ; X̂), and that both definitions
indeed lead to the same function. The elements involved
in the definition of the privacy-distortion function are
depicted in Fig. 2.
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Fig. 2: Information-theoretic formulation of the privacy-distortion
problem.

Even though the motivating application for this work
is the problem of database t-closeness, it is important to
notice that our formulation in principle addresses any
applications where perturbative methods for privacy are
of interest. Another illustrative application is privacy
for location-based services (LBS) [26]. In this scenario,
private information such as the user’s location (or a
sequence thereof) may be modeled by the r.v. X , to be
perturbed, and W may represent a user ID. The posterior
distribution pX̂|W now becomes the distribution of the
user’s perturbed location, and the prior distribution pX̂ ,
the population’s distribution.
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4.5 Connections with Rate-Distortion Theory

Perhaps the most attractive aspect of the formulation
of the privacy-distortion problem in Section 4.4 is the
strong resemblance it bears with the rate-distortion prob-
lem in the field of information theory. We shall see that
our formulation is a generalization of a well-known,
extensively studied information-theoretic problem with
half a century of maturity. Namely, the problem of lossy
compression of source data with a distortion criterion,
first proposed by Shannon in 1959 [27].

To emphasize the connection, briefly recall that the
simplest version of the problem of lossy data compres-
sion, shown in Fig. 3, involves coding of identically
distributed (i.i.d.) copies X1, X2, . . . of a generic r.v. X .
To this end, an n-letter deterministic quantizer maps
blocks of n copies X1, . . . , Xn into quantization indices
Q in the set {1, . . . , �2nR�}, where R represents the
coding rate in bits needed to represent an index, per
sample [17]. An estimation X̂1, . . . , X̂n of the source data
vector is recovered to minimize the expected distortion
per sample D = 1

n

∑
i E d(Xi, X̂i), according to some

distortion measure d(x, x̂). Intuitively, a rate of zero bits
may only be achieved in the uninteresting case when no
information is conveyed, whereas in the absence of dis-
tortion, the rate is maximized. Rate-distortion theory [17]
deals with the characterization of the optimal trade-off
between the rate R and the distortion D, allowing codes
with arbitrarily large block length n. Accordingly, the
rate-distortion function is defined as the infimum of the
rates of codes satisfying a distortion constraint.

A surprising and fundamental result of rate-distortion
theory is that such function, defined in terms of blocks
of samples, can be expressed in terms of a single copy or
letter of the source data vector [17], often more suitable
for theoretical analysis. More precisely, the single-letter
characterization of the rate-distortion function is

R(D) = inf
pX̂|X

E d(X,X̂)�D

I(X; X̂) = inf
pQ|X , x̂(q)

E d(X,X̂)�D

I(X; Q), (5)

represented in Fig. 4. Aside from the fact that the equiv-
alent problem is expressed in terms of a single letter X
rather than n copies, there are two additional differences.
First, the quantizer is randomized, and determined by
a conditional distribution pQ|X . Secondly, the rate is no
longer the number of bits required to index quantization
cells, or even the lowest achievable rate using an ideal
entropy coder, namely the entropy of the quantization
index H(Q). Instead, the rate is a mutual information
R = I(X; X̂).

Interestingly, the single-letter characterization of the
rate-distortion function (5) is almost identical to our
definition of privacy-distortion function (3), except for
the fact that in the latter there is an extra variable W , the
confidential attributes, in general different from X , the
key attributes. It turns out that some of the information-
theoretic results and methods for the rate-distortion
problem can be extended, with varying degrees of effort,

to the privacy-distortion problem formulated in this
work. These extensions are discussed in the next section.

Clearly, the more general privacy-distortion function
boils down to Shannon’s rate-distortion in the special
case when W = X . The interpretation behind this case,
in light of the formulation of Section 4.4, is that all
available attributes are regarded as both key and confi-
dential. In this case, the privacy-distortion function can
be computed with the Blahut-Arimoto algorithm [17].

We would like to remark that recent work [28], [29]
uses the concept of Shannon’s equivocation [20] as a
measure of anonymity, similarly to our privacy crite-
rion (2). In addition, it elegantly establishes a relation-
ship between rate-distortion theory on the one hand,
and, on the other, the trade-off between throughput and
anonymity against traffic analysis in network packet
scheduling. It is important to notice that the parallelism
in the work cited is for the original rate-distortion func-
tion proposed by Shannon (5), expressed in terms of
two variables, namely X and X̂ in our notation. In
our work, however, we extend Shannon’s function to
three variables (3), namely W , X and X̂ . This does not
only require a substantially more complex theoretical
and computational analysis, as we shall see in Sections 5
and 6, but also formulates a substantially more general
problem. On a secondary note, our application, random-
ized database anonymization, is completely different
from network traffic anonymization: just note that our
application has one more variable W , in general different
from X .

5 THEORETICAL ANALYSIS

This section investigates the privacy-distortion func-
tion (3) introduced in Section 4, by means of extending
some of the fundamental properties of its information-
theoretic analogous, namely the rate-distortion function.
Particularly, we confirm that the privacy-distortion func-
tion is convex, extend Shannon’s lower bound, and
analyze the quadratic-Gaussian case in detail.

5.1 Convexity of the Privacy-Distortion Function

The following theorem states that, similarly to the rate-
distortion function, the privacy-distortion function is
nonincreasing, convex, and therefore continuous in the
interior of its domain.

Theorem 1: The privacy-distortion function (3) is non-
increasing and convex.
The proof of the theorem is provided in Section A.2.

Furthermore, the optimization problem determin-
ing (3), with pX̂|X as unknown variable, is itself convex.
This means that any local minimum is also global, and
makes the powerful tools of convex optimization [30]
applicable to compute numerically but efficiently the
privacy-distortion function. In Section 6, an example of
numerical computation will be discussed.
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Fig. 3: Information-theoretic formulation of the rate-distortion problem.
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Fig. 4: Single-letter characterization of the rate-distortion problem.

5.2 Quadratic-Gaussian Lower Bound
While a general closed-form expression for privacy-
distortion function has not been provided, the Shannon
lower bound for the rate-distortion function can be
extended to find closed-form lower bounds under certain
assumptions. Furthermore, the techniques used to prove
this bound may yield an exact closed formula in specific
cases. A closed-form upper bound is presented later in
this section.

Recall the notational conventions introduced in Sec-
tion 3. Throughout this section, W and X are r.v.’s
taking values in R

m and R
n, respectively, and MSE is

used as distortion measure, thus D = E ‖X − X̂‖2. The
covariance ΣW |X of the error of the best (i.e., minimum
MSE) linear estimate of W from X is

ΣW |X = ΣW − ΣWXΣ−1
X ΣT

WX .

On account of the next theorem, the following function
will be called the quadratic-Gaussian lower bound (QGLB):

RQGLB(D) = h(W )− m
2 log (2πe)

− max
Σ∈R

n×n

0�Σ�ΣX

tr Σ�D

1
2 log det

(
ΣW |X + ΣWXΣ−1

X Σ Σ−1
X ΣT

WX

)
.

(6)
The theorem asserts that the QGLB is indeed a lower
bound on the privacy-distortion function (3), for any joint
distribution of W and X in Euclidean spaces of arbitrary
dimension, Gaussian or not. The name is given in recog-
nition of the fact that the bound holds with equality
in the Gaussian case, and of the role that properties of
Gaussian r.v.’s play in the general proof.

Theorem 2: Provided that W and X are r.v.’s in Eu-
clidean spaces of arbitrary dimension, and that MSE
is used as distortion measure, R(D) � RQGLB(D) for
all D. In the special case when W and X are jointly
Gaussian, the bound holds with equality, and the op-
timal solution Σ in the bound and the optimal solu-
tion X̂ in the privacy-distortion function are related
by X̂ = (I − A) X + A Z, where A = ΣΣ−1

X and
Z ∼ N (μX , (I −A)ΣXA−T) is independent of X and W .

The proof of the theorem is presented in Appendix B.
Fortunately, the matrix optimization problem in the def-
inition of the QGLB (6) is convex. More precisely, it
requires the maximization of a convex function sub-
ject to linear matrix inequalities [30]. But the major
practical advantage over the general expression of the
privacy-distortion function (3) is the number of real-
valued variables in the new optimization problem (6),
given by the size n × n of the matrix Σ. This number,
n(n − 1)/2 since Σ is symmetric, will be much smaller
than the number of variables required in a discretized
optimization of the continuous problem posed by (3)
(for example, in the simple experiments of Section 6,
where n = 1, the discretization used involves a matrix
representing pX̂|X with 312 entries.) Methods to solve
these problems numerically are outlined in Appendix C
for the QGLB, and in Section 6 for the general privacy-
distortion function. Furthermore, Appendix C provides a
closed-form, parametric upper bound on the maximum
of the optimization problem inherent in the QGLB, and
consequently a looser lower bound on the privacy-
distortion function. Aside from not requiring numerical
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optimization, this second bound comes with the conve-
nient property of matching the QGLB for small distortion
values.

In the special case when W and X are random scalars
(m = n = 1), direct application of Theorem 2 yields a
closed-form expression for the QGLB, and a closed-form
solution in the Gaussian case. Define the normalized
distortion d = D

σ2
X

, where σ2
X denotes the variance of X .

Let σ2
W be the variance of W , and ρWX the correlation

coefficient of W and X . Then,

R(D) � RQGLB(D)

= h(W )− 1
2 log

(
2πe

(
1− (1− d)ρ2

WX

)
σ2

W

)
(7)

for 0 � d � 1 (for d � 1, clearly R = 0).
Provided that W and X are jointly Gaussian random

scalars, and that MSE is used as distortion measure, the
QGLB (6) is tight:

R(D) = − 1
2 log

(
1− (1− d)ρ2

WX

)
, (8)

with d = D
σ2

X

� 1 as before. The optimal random-
ized perturbation rule achieving this privacy-distortion
performance is represented in Fig. 5. Observe that the

d

1¡ d
X̂X

N(¹X; 1¡dd ¾2X)

N(¹X; ¾2X) N(¹X; (1¡ d)¾2X)

Independent 
Noise

Fig. 5: Optimal randomized perturbation in the quadratic-Gaussian
case.

perturbed data X̂ is a convex combination of the source
data X and independent noise, in a way such that the
final variance achieves the distortion constraint with
equality.

5.3 Mutual-Information Upper Bound
With the same assumptions of multidimensional, Eu-
clidean r.v.’s, and MSE distortion measure, extend the
definition of the normalized distortion to d = D/ tr ΣX ,
and consider the two trivial cases d = 0 and d = 1.
The former case can be achieved with X̂ = X , yielding
R(D) = I(W ; X), and the latter with X̂ = μX , the mean
of X , for which R(D) = 0. Now, for any 0 � d � 1, set
X̂ = X with probability 1− d, and X̂ = μX with proba-
bility d. Convexity properties of the mutual information
guarantee that the privacy-distortion performance of this
setting cannot lie above the segment connecting the two
trivial cases. Since the setting is not necessarily optimal,

R(D) � RMIUB(D) = I(W ; X)(1− d). (9)

We shall call this bounding function the mutual-informa-
tion upper bound (MIUB). The pX̂|X determined by the
combination of the two trivial cases for intermediate

values of d may be a simple yet effective way to initial-
ize numerical search methods to compute the privacy-
distortion function, as it will be shown in Section 6.

6 EXPERIMENTAL RESULTS

6.1 Computation of the Privacy-Distortion Function
In this section, we illustrate the theoretical analysis of
Section 5 with experimental results for a simple, intuitive
case. Specifically, W and X are jointly Gaussian random
scalars with correlation coefficient ρ (after zero-mean,
unit-variance normalization). In terms of the database
anonymization problem, W represents sensitive infor-
mation, and X corresponds to key attributes that can
be used to identify specific individuals. These variables
could model, for example, the plasma concentration
of LDL cholesterol in adults, which is approximately
normal, and their weight, respectively. MSE is used as a
distortion measure. For convenience σ2

X = 1, thus d = D.
Since the privacy-distortion function is convex, mini-
mization of one objective with a constraint on the other
is equivalent to the minimization of the Lagrangian cost
C = D + λR, for some positive multiplier λ. We wish to
design randomized perturbation rules pX̂|X minimizing
C for several values of λ, to investigate the feasibility of
numerical computation of the privacy-distortion curve,
and to verify the theoretical results for the quadratic-
Gaussian case of Section 5. As argued in Section 4.4
the perturbation pX̂|X is basically the PRAM masking
method in the discrete case, and a form of noise-addition
in the continuous case; we take here microaggregation as
a noise addition method.

We implement a slight modification of a simple op-
timization technique, namely the steepest descent algo-
rithm, operating on a sufficiently fine discretization of
the variables involved. More precisely, pWX is the joint
PMF obtained by discretizing the PDF of W and X ,
where each variable is quantized with 31 samples in
the interval [−3, 3]. The starting values for pX̂|X are
convex combinations of the extreme cases corresponding
to d = 0 and d = 1, as described in Section 5 when the
MIUB (9) was discussed. Only results corresponding to
the correlation coefficient ρ = 0.95 are shown, for two
reasons. First, because of their similarity with results for
other values of ρ. Secondly, because for high correlation,
the gap between the MIUB (which approximates the
performance of the starting solutions) and the QGLB (6)
is wider, leading to a more challenging problem.

The definitions of distortion and privacy risk in Sec-
tion 4 for the finite-alphabet case become

D =
∑

x

∑
x̂

p(x)p(x̂|x)d(x, x̂),

R =
∑
w

∑
x̂

p(w)p(x̂|w) ln
p(x̂|w)
p(x̂)

.

The conditional independence assumption in the same
section enables us to express the PMFs of X̂ in the
expression for R as p(x̂) =

∑
x p(x̂|x)p(x) and p(x̂|w) =
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∑
x p(x̂|x)p(x|w), in terms of the optimization variables

p(x̂|x). Our implementation of the steepest descent algo-
rithm uses the exact gradient with components ∂C

∂p(x̂|x) =
∂D

∂p(x̂|x) + λ ∂R
∂p(x̂|x) , where ∂D

∂p(x̂|x) = p(x)d(x, x̂) and

∂R
∂p(x̂|x)

= p(x)

(∑
w

p(w|x) ln p(x̂|w)− ln p(x̂)

)

(after nontrivial simplification).
Two modifications of the standard version of the steep-

est descent algorithm [30] were applied. First, rather
than updating pX̂|X directly according to the negative
gradient multiplied by a small factor, we used its pro-
jection onto the affine set of conditional probabilities
satisfying

∑
x̂ p(x̂|x) = 1 for all x, which in fact gives

the steepest descent within that set. Secondly, rather than
using a barrier or a Lagrangian function to consider the
constraint p(x̂|x) � 0 for all x and x̂, after each iteration,
we reset possible negative values to 0 and renormalized
the probabilities accordingly. This may seem unneces-
sary since the theoretical analysis in Section 5 gives a
strictly feasible solution (i.e., probabilities are strictly
positive), and consequently the constraints are inactive.
However, the algorithm operates on a discretization of
the joint distribution of W and X in a machine with finite
precision. The fact is that precision errors in the com-
putation of gradient components corresponding to very
low probabilities activated the nonnegativity constraints.
Finally, we observed that the ratio between the largest
and the smallest eigenvalue of the Hessian matrix was
large enough for the algorithm to require a fairly small
update factor, 10−4, to prevent significant oscillations.

The privacy-distortion performance of the randomized
perturbation rules pX̂|X found by our modification of
the steepest descent algorithm is shown in Fig. 6, along
with the bounds established in Section 5, namely the
QGLB (6) and the MIUB (9). On account of (8), it can

D = E(X ¡ X̂)2
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Fig. 6: Privacy-distortion performance of randomized perturbation
rules found by a modification of the steepest descent algorithm.

be shown that λ = 2σ2
X

(
1/ρ2 − 1 + d

)
. Accordingly,

we set λ approximately to 0.72, 1.22 and 1.72, which
theoretically corresponds to d = 0.25, 0.5, 0.75.

We would like to remark that a completely mean-
ingful interpretation of the values of D and R would

necessarily lie within the specific application or dataset
our formulation is used for. The purpose of this brief
experimental section is to illustrate our complex theo-
retical analysis with quite simple statistics, informally
motivated at the beginning of this section by the cor-
relation between cholesterol and weight, but ultimately
synthetic. Keep in mind that our framework is not aimed
at recommending a particular point in the privacy-dis-
tortion plane, but at characterizing a trade-off by means
of a curve. Having said that, we attempt to partially
interpret the results of Fig. 6, not without a certain
degree of abstraction. For instance, the figure shows that
for a distortion D = E(X − X̂)2 = d = 0.5 the corre-
sponding privacy risk is roughly R = I(W ; X̂) � 0.3.
This means that the randomized perturbation X̂ distorts
the original data X , leading to an MSE of half of the
variance σ2

X = 1 of the unperturbed data. This enormous
perturbation in turn reduces the privacy risk, that is,
the mutual information, from roughly I(W ; X) � 1.2
to I(W ; X̂) � 0.3. Recall that mutual information is the
amount of information that one variable contains about
the other (see Sections 3 and 4.2, and the connection
with Shannon’s equivocation in Section 4.3). Our the-
ory implies that such ambitious reduction in mutual
information is not possible without incurring at least
this much data distortion. In addition, the same figure
unsurprisingly confirms that perfect privacy R = 0,
that is, statistical independence between W and X , is
unattainable without an absolutely detrimental impact
on the distortion D = d = σ2

X = 1.
A total of 32000 iterations were computed for each

value of λ, at roughly 150 iterations per second on a
modern computer1. The large number of iterations is
consistent with the fact that the Hessian is ill-conditioned
and the small updating step size. One would expect that
methods based on Newton’s technique [30] converge
to the optimal solution in less iterations (at the cost
of higher computational complexity per iteration), but
our goal was to check the performance of one of the
simplest optimization algorithms. In all cases, the condi-
tional PMFs found had a performance very close to that
described by (8) in Section 5. Their shape, depicted in
Fig. 7, roughly resembled the Gaussian shape predicted
by the theoretical analysis as the number of iterations
increased. The shape of the solution plotted is due to the
fact that, intuitively, the steepest descent method moves
from a “peaky” initial guess towards the optimum,
without quite reaching it. Specifically, Fig. 7 corresponds
to λ � 1.22, was obtained after 32000 iterations, and
the number of discretized samples of X and W was in-
creased from 31 to 51. Increasing the number of iterations
to 128000 resulted in an experimental solution shaped
almost identically to the optimal one, although the one
in Fig. 7, corresponding to one fourth of the number of
iterations, already achieves values of C nearly optimal.

1. Implementation used Matlab R2008a on Windows Vista SP1, on
an Intel Core2 Quad Q6600 CPU at 2.4 GHz.
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Fig. 7: Shape of initial, optimal, and experimental randomized pertur-
bation rules pX̂|X found by the steepest descent algorithm.

6.2 Performance of MDAV and μ-Approx

Finally, we investigate the privacy-distortion perfor-
mance of two well-known microaggregation algorithms,
namely the maximum distance to average vector
(MDAV) algorithm [11], [31] (implemented in the μ-
Argus [32] and SDCmicro [33] freeware packages), and
the μ-Approx algorithm [12]. The experiment used n =
215 = 32768 drawings of W, X , according to the very
same Gaussian distribution used in the verification of
the QGLB in Fig. 6. The privacy risk R = I(W ; X̂) was
estimated from a fine quantization of interval length 0.15
on W and the X̂ resulting from the application of each
of the k-anonymity algorithms mentioned. The distortion
D = E(X−X̂)2 was computed directly from the original
samples and the centroids of the aggregation cells.

The results for several values of k/n are shown in Figs.
8 and 9. The most striking finding is the near-optimality
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Fig. 8: Privacy-distortion performance of MDAV on scalar data.

of both algorithms in terms of the performance criteria
proposed in this work. Intuition suggests, however, that
part of their success for this particularly simple data is
due to the fact that the key attribute X is a random scalar.
The performance of both algorithms would probably
deviate more from optimality in case of a multidimen-
sional key attribute (or several key attributes). On the
other hand, we would like to mention two reasons why
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Fig. 9: Privacy-distortion performance of μ-Approx on scalar data.

the k-anonymity algorithms do not achieve the QGLB
even in this simple setting. First, the perturbation rules
considered in the optimization problem inherent in the
privacy-distortion function are not constrained to be
deterministic. Secondly, the two k-anonymity algorithms
investigated operate solely on X , whereas our criterion
for privacy risk involves W as well.

7 CONCLUSION

An information-theoretic formulation of the privacy-
distortion trade-off in applications such as microdata
anonymization and location privacy in location-based
services is provided. Inspired by the t-closeness model
and Shannon’s concept of equivocation, the privacy risk
is measured as the mutual information between per-
turbed key attributes and confidential attributes, equiv-
alent to the conditional KL divergence between poste-
rior and prior distributions. We consider the problem
of maximizing privacy (that is, minimizing the above
mutual information) while keeping the perturbation of
data within a prespecified bound to ensure that data
utility is not too damaged.

We establish a strong connection between this privacy-
perturbation problem and the rate-distortion problem of
information theory and extend of a number of results,
including convexity of the privacy-distortion function
and the Shannon lower bound.

In principle, it is clear that randomized perturbation
rules, being more general, cannot lead to worse perfor-
mance than deterministic aggregation, such as that used
by MDAV and μ-Approx. A privacy-distortion formula
is obtained for the quadratic-Gaussian case, proving that
the optimal perturbation is in general randomized rather
than deterministic, at least in the continuous case. On
the other hand, experimental results with discretized
statistics show better performance compared to popular
deterministic aggregation algorithms. This evidence sup-
ports the use of PRAM in the case of attributes with finite
alphabets and noise addition in the continuous case.
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APPENDIX A
FUNDAMENTAL PROPERTIES OF THE PRIVACY-
DISTORTION FUNCTION

A.1 Optimal Reconstruction
The following proposition is a fundamental result on the
reconstruction function x̂(q) in the quantizer formulation
of the privacy-distortion function.

Proposition 3: Definitions (3) and (4) of the privacy-
distortion function are equivalent. Furthermore, without
loss of generality, one may assume that Q and X̂ are
related bijectively, or even that they are equal, in the
sense that the assumption does not compromise the
optimization problem in the second definition. Finally,
in the special case when MSE is used as distortion
measure, it may be assumed without loss of generality
that X̂ = Q = E [X|Q], i.e., X̂ = Q, where Q is the best
(nonlinear) MSE estimate of X from Q.

Proof: For simplicity, we only consider the case when
the infimum is in fact a minimum, and when E d(X, X̂)
can also be minimized. The general proof is similar. Let
Q, X̂ = x̂(Q) correspond to an optimal solution to the
optimization problem in (4). Suppose that Q and X̂ are
both replaced by a common function of Q minimizing
E d(X, X̂). In the special case when MSE is used as
distortion measure, such function is simply the best MSE
estimate E [X|Q] of X from Q. Clearly, this new function
of Q will satisfy the distortion constraint. In addition,
the data processing inequality [17] guarantees that the
mutual information I(W ; Q) cannot increase. This means
that the new choice for Q and X̂ must also correspond
to an optimal solution. �

A.2 Convexity
We prove that the privacy-distortion function (3) is non-
increasing and convex, as stated in Theorem 1.

Proof: The monotonicity of R(D) follows immedi-
ately from the fact that increasing values of D relax the
minimization constraint in its definition.

To prove convexity, for simplicity, we assume that
the infimum is achieved, thereby being a minimum.
The general proof is similar. Let (R1,D1) and (R2,D2)
be pairs on the R(D) curve, achieved by p1(x̂|x) and
p2(x̂|x), respectively. Consider the convex combination
of randomized rules pλ = λp1 + (1 − λ)p2. Since the
distortion corresponding to this new rule Dλ is a linear
functional of pλ(x̂|x), clearly Dλ = λD1 + (1− λ)D2.

Similarly, by construction W ↔ X ↔ X̂λ, hence
pλ(x̂|w) =

∑
x pλ(x̂|x)p(x|w) also depends linearly on the

randomized rule, thus

pλ(x̂|w) = λp1(x̂|w) + (1− λ)p2(x̂|w).

Recall that mutual information is a convex function of
the conditional distribution [17]. Consequently,

I(W ; X̂λ) � λ I(W ; X̂1) + (1− λ) I(W ; X̂2).

Finally, on account of the definition of R(D),

R(Dλ) � I(W ; X̂λ)

� λ I(W ; X̂1) + (1− λ) I(W ; X̂2)
= λR(D1) + (1− λ)R(D2). �

APPENDIX B
QUADRATIC-GAUSSIAN LOWER BOUND
We prove that the QGLB (6) is in fact a lower bound
of the privacy-distortion function (3), as stated in Theo-
rem 2 in Section 5.2, and that it holds with equality in
the Gaussian case.

Proof: Here we essentially exploit statistical and
information-theoretic properties of Gaussian distribu-
tions in order to transform a convex optimization prob-
lem in a conditional distribution into a convex optimiza-
tion problem in a covariance matrix.

Let ŵQ(Q) be the best linear MSE estimate of W
from Q, and denote the covariance of the estimation
error W − ŵQ(Q) by

ΣW |Q = ΣW − ΣWQΣ−1
Q ΣT

WQ.

According to the definition of the privacy-distortion
function (4), we wish to minimize

I(W ; Q) = h(W )− h(W |Q),
subject to a number of constraints. Equivalently, we wish
to maximize

h(W |Q) = h(W − ŵQ(Q)|Q)
(a)
� h(W − ŵQ(Q))
(b)
� 1

2 log
(
(2πe)m det ΣW |Q

)
,

where
(a) holds with equality if and only if W − ŵQ(Q) and

Q are statistically independent, and
(b) follows from the fact that Gaussian r.v.’s maximize

the differential entropy among all r.v.’s with a fixed
covariance matrix (ΣW |Q in this case).

Proposition 3 enables us to assume without loss of
generality that X̂ = Q = E [X|Q]. But if Q is the best MSE
estimate of X from Q, then the best linear MSE estimate
x̂Q(Q) of X from Q is Q itself as well. Note, however,
that the reverse implication is not necessarily true. In
other words, the linear constraint x̂Q(Q) = Q is never
more restrictive than the nonlinear one Q = E [X|Q].

To sum up,

R(D) � h(W )
− max

pQ|X
Q=x̂Q(Q)

E ‖X−Q‖2�D

1
2 log

(
(2πe)m det ΣW |Q

)
, (10)

with equality if and only if W − ŵQ(Q) and Q are
statistically independent, W − ŵQ(Q) is Gaussian, and
x̂Q(Q) = E [X|Q]. Keep in mind that all three conditions
for equality are satisfied, in particular, if W , X and Q
are jointly Gaussian.

We now focus our attention on the optimization prob-
lem in the right-hand side of (10), in the variable pQ|X ,
after removing the superfluous constant (2πe)m:

maximize 1
2 log detΣW |Q
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subject to Q = x̂Q(Q), and E ‖X −Q‖2 � D,

and realize that the problem is completely determined by
the first and second-order statistics of the r.v.’s involved.
Consequently, without loss of generality, but for the
exclusive purpose of solving this maximization problem,
we may regard W , X and Q as jointly Gaussian, and
concern ourselves solely with means and covariances. To
complete the proof of the theorem, it remains to show
that the maximum of this optimization problem is the
same as that of the problem

maximize 1
2 log det

(
ΣW |X + ΣWXΣ−1

X Σ Σ−1
X ΣT

WX

)
subject to 0 � Σ � ΣX , and tr Σ � D,

in the variable Σ ∈ R
n×n, under the assumptions that all

variables involved are jointly Gaussian and, of course,
that W ↔ X ↔ Q.

First, we verify that the constraints are equivalent, and
that the variable Σ is in fact ΣX−Q. From the application
of the orthogonality principle of linear estimation to the
constraint Q = x̂Q(Q), it follows that ΣX = ΣQ + ΣX−Q

(i.e., the observation Q and the error X−Q are uncorre-
lated). Consequently, 0 � ΣX−Q � ΣX . Conversely, since
μQ = μX , any ΣX−Q satisfying these matrix inequalities
completely determines a ΣQ � 0 and therefore all the
statistics needed to specify Q, assumed Gaussian. On the
other hand, the distortion constraint may be equivalently
written as tr ΣX−Q � D.

Secondly, we check that the optimization objective is
the same by expressing ΣW |Q in terms of second-order
statistics of W and X . The constraint Q = x̂Q(Q) implies
that μQ = μX , due to the fact that optimum linear MSE
estimators are unbiased, and that ΣQX = ΣQ, because
of the orthogonality principle. Since by assumption Q
and X are jointly Gaussian and W ↔ X ↔ Q, one
may write Q as the sum of two terms. Namely, the sum
of ΣQXΣ−1

X (X − μX) + μQ, its best linear MSE estimate
from X , and the error N (0, ΣQ|X), which must be in-
dependent of both W and X . More precisely, defining
A = ΣQ−XΣ−1

X , we have I −A = ΣQΣ−1
X and

Q = ΣQΣ−1
X (X − μX) + μX +N (0, ΣQ − ΣQΣ−1

X ΣQ)

= (I −A) X + AN (μX , (I −A)ΣXA−T).

In addition, the covariance between W and Q is the
same as the covariance between W and the estimate
Q = ΣQΣ−1

X (X − μX) + μX . This means that ΣQW =
ΣQΣ−1

X ΣXW , and finally,

ΣW |Q = ΣW − ΣWQΣ−1
Q ΣT

WQ

= ΣW − ΣWXΣ−1
X ΣQΣ−1

Q ΣQΣ−1
X ΣT

WX

= ΣW − ΣWXΣ−1
X (ΣX − ΣX−Q)Σ−1

X ΣT
WX

= ΣW |X + ΣWXΣ−1
X ΣX−QΣ−1

X ΣT
WX . �

APPENDIX C
COMPUTATION OF THE QGLB
In this section we investigate the convex optimiza-
tion problem included in the QGLB (6). Specifically, let
X, Y ∈ R

n×n, A ∈ R
m×n, B ∈ R

m×m and t � 0.

We consider the following optimization problem in the
matrix variable X :

maximize det(BBT + AXAT) (11)
subject to 0 � X � Y , and tr X � t.

This is in general a loose bound on the privacy-distortion
function, in the sense that equality might not hold even
in the Gaussian case, but it matches the QGLB for small
distortion. We may solve problem (11) numerically by
applying an interior-point method with log-det barrier
functions [30] for the constraints 0 � X � Y .

A lower bound on the QGLB, that is, a second lower
bound on the privacy-distortion function, is given in
Proposition 5, by means of an upper bound on prob-
lem (11). While the bound is loose in the sense that equal-
ity does not necessarily hold even in the Gaussian case,
it is expressed in parametric, closed form, not requiring
numerical optimization. For sufficiently low distortion,
however, Proposition 6 guarantees that both bounds
match. A preliminary lemma is required, which solves a
convex optimization problem bearing some resemblance
to the usual reverse water-filling problem of information
theory, arising in the computation of the rate-distortion
function for multivariate Gaussian statistics. Just as in
that problem, the solution is given in parametric form.

Lemma 4: For any r ∈ Z
+, let λ1 � · · · � λr > 0 and

y1, . . . , yr, t � 0. Consider the following optimization
problem in the variables x1, . . . , xr:

maximize
r∏

i=1

(1 + λixi)

subject to 0 � xi � yi for all i, and
r∑

i=1

xi � t.

The solution to the problem is given by

xi = max
{

0, min
{

1
μ
− 1

λi
, yi

}}
(12)

in the case when
∑

i=1 yi > t, and xi = yi otherwise.
In the first case, the parameter μ is chosen to satisfy
t =

∑r
i=1 xi. Also in this case, μ � λ1 implies that xi = 0

for all i, and μ � 1/(1/λr +max{yi}) implies that xi = yi

for all i.
Proof (Sketch): The lemma can be proved by a sys-

tematic application of the Karush-Kuhn-Tucker (KKT)
conditions [30]. A more intuitive proof exploits the fact
that maximizing the equivalent objective

∑
i ln(1+λixi)

subject to
∑

i xi � t and the rest of constraints is
in fact a resource allocation problem. For instance, for
all i such that 0 < xi < yi, the Pareto equilibrium
condition means that the marginal ratios of improvement

d
dxi

ln(1 + λixi) must all be the same. Otherwise, minor
allocation adjustments on the resources xi could improve
the objective. �

The next proposition gives an upper bound on the
maximum of problem (11).

Proposition 5: Let X, Y ∈ R
n×n, A ∈ R

m×n, B ∈ R
m×m

and t � 0. Consider the following optimization problem
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in the matrix variable X :

maximize det(BBT + AXAT)
subject to 0 � X � Y , and tr X � t.

Assume that B is invertible, and write the spec-
tral decomposition of the nonnegative definite matrix
AT(BBT)−1A as V ΛV T, with V = (v1, . . . , vn) orthonor-
mal, Λ = diag(λ1, . . . , λr, 0, . . . , 0) and λ1 � · · · � λr >
0 (r is in fact the rank of A). Suppose further that
Y ′ = V TY V is diagonal. Then, the maximum in the
optimization problem is

det(BBT)
r∏

i=1

(1 + λiξi), (13)

attained by X =
∑r

i=1 ξiviv
T
i , where

ξi = max
{

0, min
{

1
μ
− 1

λi
, y′

ii

}}
in the case when

∑
i=1 y′

ii > t, and ξi = y′
ii otherwise.

In the first case, the parameter μ is chosen to satisfy
t =

∑r
i=1 ξi. Also in this case, μ � λ1 implies that ξi = 0

for all i, and μ � 1/(1/λr+max{y′
ii}) implies that ξi = y′

ii.
In the more general situation when Y ′ fails to be

diagonal, then (13) is only an upper bound on the
maximum in the optimization problem.

Proof: We proceed by gradually reducing the opti-
mization problem of the lemma to a simpler form, finally
obtaining a convex optimization problem solvable by
standard techniques.

First, since B is invertible, write the optimization
objective det(BBT + AXAT) as

det(BBT) det(I + B−1AX(B−1A)T),

where the first factor is positive, and only the second
factor depends on the variable X . Let USV T be a full
singular-value decomposition of B−1A consistent with
the eigenvalue decomposition V ΛV T of (B−1A)TB−1A =
AT(BBT)−1A in the statement of the lemma. In particu-
lar, this means that S ∈ R

m×n, with exactly r nonzero en-
tries sii placed along the diagonal, satisfying sii =

√
λi,

for i = 1, . . . , r. Define X ′ = V TXV . Thus,

I+B−1AX(B−1A)T = I+USX ′STUT = U(I+SX ′ST)UT.

The above observations, together with the fact that U
is orthonormal, lead us to conclude that maximizing the
objective is equivalent to maximizing det(I+SX ′ST). It is
left to formulate the optimization constraints in terms of
the transformed variable X ′. To this end, use the fact that
V is orthonormal to write tr X ′ = tr(V TXV ) = trX � t.
On the other hand, since X ′ and Y ′ are defined by the
same congruence transformation, the constraint 0 � X �
Y is equivalent to 0 � X ′ � Y ′.

Next, we claim that the transformed optimization
problem in the variable X ′ is in fact equivalent to the
simpler maximization of

∏r
i=1(1+λix

′
ii) in the variables

x′
11, . . . , x

′
rr, subject to the constraints 0 � x′

ii � y′
ii and∑r

i=1 x′
ii � t, for each i = 1, . . . , r. But this is precisely

the optimization problem of Lemma 4, with xi in place
of x′

ii, renamed ξi in this lemma, and yi in place of y′
ii.

It now remains to verify the claim under the hypoth-
esis that Y ′ is diagonal. Observe first that SX ′ST is an
m ×m matrix which may only contain nonzero entries
in the upper-left r × r block. Secondly, the constraints
tr X ′ � t and 0 � X ′ � Y ′ are less restrictive than the
new ones. Finally, on account of Hadamard’s inequality,
det(I + SX ′ST) �

∏r
i=1(1 + λix

′
ii), with equality if X ′ is

diagonal. Consequently, the optimum is precisely X ′ =
diag(x′

11, . . . , x
′
rr, 0, . . . , 0), where x′

ii are the solution to
the last equivalent problem. To complete the proof of
the lemma, observe that if Y ′ is not diagonal, then the
solution for X ′ proposed may not satisfy the constraint
X ′ � Y ′. �

The following proposition means that for sufficiently
small values of t in Proposition 5, the constraint X � Y
will be inactive. In that case, it is clear from the proof of
Proposition 5 that the solution (13) matches the QGLB.

Proposition 6: Let X,Y ∈ R
n×n satisfy X � 0 and

Y 
 0. Let λY
min denote the minimum eigenvalue of Y .

Provided that t < λY
min, the constraint tr X � t implies

that X ≺ Y .
Proof: Since X and Y are symmetric, for any unit-

norm u ∈ R
n, uTY u � λY

min. Similarly, and since X � 0,

uTXu � λX
max �

∑
i

λX
i = trX � t.

Hence, uT(Y −X)u � λY
min − t > 0. �
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