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From the betweenness centrality in street networks
to structural invariants in random planar graphs
Alec Kirkley1, Hugo Barbosa 1, Marc Barthelemy 2,3 & Gourab Ghoshal1,4

The betweenness centrality, a path-based global measure of flow, is a static predictor of

congestion and load on networks. Here we demonstrate that its statistical distribution is

invariant for planar networks, that are used to model many infrastructural and biological

systems. Empirical analysis of street networks from 97 cities worldwide, along with simu-

lations of random planar graph models, indicates the observed invariance to be a con-

sequence of a bimodal regime consisting of an underlying tree structure for high betweenness

nodes, and a low betweenness regime corresponding to loops providing local path alter-

natives. Furthermore, the high betweenness nodes display a non-trivial spatial clustering with

increasing spatial correlation as a function of the edge-density. Our results suggest that the

spatial distribution of betweenness is a more accurate discriminator than its statistics

for comparing static congestion patterns and its evolution across cities as demonstrated by

analyzing 200 years of street data for Paris.
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R
ecent years have witnessed unprecedented progress in our
understanding of spatial networks that are pervasive in
biological, technological and infrastructural systems1,2.

These networks are quite relevant in the context of urban sys-
tems3–7, where analysis of their structural properties has uncov-
ered unique characteristics of individual cities, as well as
surprising statistical commonalities across different urban con-
texts8–10. Patterns of streets and roads are particularly important,
allowing residents to navigate the different functional compo-
nents of a city. Different street structures result in varying levels
of efficiency, accessibility, and usage of transportation infra-
structure;11–17 consequently structural characteristics of roads
have been of great interest in the literature18–24.

Street networks fall into the category of planar graphs25 and
their edges constitute a physical connection, as opposed to rela-
tional connections found in many complex networks26. The
geographical embedding leads to strong effects on network
topology with limitations on the number of long-range connec-
tions and the number of edges incident on a single node (its
degree k)27,28. Degree-based network measures, while well-
studied on such systems, lead to rather uninteresting results;
the degree distribution is strongly peaked, and related metrics
such as clustering and assortativity are high2. Instead, more
information can be gleaned from non-local higher-level metrics
such as those based on network centralities, which while strongly
correlated with degree in non-spatial networks29, display non-
trivial behavior in planar networks30. Among the more studied
and illuminating of such metrics is the betweenness centrality
(BC), a path-based measure of the importance of a node in terms
of the amount of flow passing through it31. More precisely, the
BC for node i is defined as

gBðiÞ ¼
1

N

X

s≠t2V

σstðiÞ

σst
; ð1Þ

where σst is the number of shortest paths going from nodes s to t
and σst(i) is the number of these paths that go through i31. Here
N is a normalization constant, typically of order N2 where N is
the number of nodes, although for reasons that will be apparent
later in the manuscript, we will use here the unnormalized version
N ¼ 1.

In principle one can define a variety of different shortest paths:
the number of hops in the purely topological case, the shortest
distance between two points if the edges are weighted according
to Euclidean distances, taking into account route preferences if
edges are weighted according to a cost function such as capacity
or speed-limits, or indeed some combination of the above.
Incorporating this structural information into the edge-weights,
the BC can be used as a proxy for predicted traffic flow32–34. In
such a setting the paths can be considered as the optimal routes
between locations, and thus nodes with high BC should expect to
receive more traffic.

A number of studies have been conducted on the BC in planar
graphs35–37 finding among other things, a complicated spatial
behavior of the high BC nodes19,38, and in the case of street
networks, connections to the organization and evolution of
cities39–41. For non-planar graphs the average BC scales with the
degree k in a power law fashion thus gBðkÞ ¼

P

ijki¼k
gBðiÞ
NðkÞ / kη,

where N(k) is the number of nodes of degree k, and η is an
exponent depending on the graph42. In planar graphs, however,
the BC behaves in a more complex manner, as now both topo-
logical and spatial effects are at play.

Given their practical relevance as well as the relative abundance
of data, street networks have proven to be an excellent platform
on which to study the properties of planar graphs including the
BC. Existing analyses, however, suffer from limitations of scale

(unlike other structural properties, see ref. 43 for a recent global
description), and most comparative studies of the BC across cities
are typically restricted to a few square-kilometers, while studies
on more extensive street-maps have been examined for at most
tens of cities limited to those in Europe or North America12,38–41.
Furthermore, there have been limited studies of the BC dis-
tribution in its entirety, with the majority of analyses instead
focusing on the average BC (proportional to the average shortest
path44) or on its maximum value45,46.

To fill this gap in our understanding of this important class of
networks, we conduct here a large-scale empirical study of the BC
across 97 of the world’s largest cities as measured by population
(details on dataset in Methods). The cities are sampled from all
six inhabited continents and the analysis is conducted at scales on
the order of three thousand square-kilometers. We demonstrate
that the BC distribution is an invariant quantity for most planar
graphs and that it is robust to major alterations in the network,
including significant changes to its topology and edge weight
structure, with the relevant factors shaping the distribution being
the number of nodes and edges as well as the constraint of pla-
narity. Through simulations of random planar graph models and
analytical calculations on Cayley trees, we demonstrate this to be
a consequence of a bimodal regime consisting of an underlying
tree structure for high BC nodes, and a low BC regime corre-
sponding to loops providing local path alternatives. The high BC
nodes display increasing spatial correlation as a function of the
number of edges, leading them to cluster around the barycenter at
large edge densities. The observed invariance and spatial depen-
dence has practical implications for infrastructural and biological
networks. For the case of street networks, as long as planarity is
conserved, bottlenecks continue to persist, and the effect of
planned interventions to alleviate structural congestion will be
limited primarily to load redistribution, a feature confirmed by
analyzing 200 years of data for central Paris.

Results
Betweenness at different scales and rescaling. We group cities
into three categories according to the number of nodes, from
small (N ∼ 103), medium (N ∼ 104) to large road networks (N ∼

105) as shown in Fig. 1 (further details in Supplementary Note 1
and Supplementary Table 1). In Supplementary Fig. 1a, we show
the betweenness probability distribution for a selection of the
three categories of cities at the resolution of two and a half
square-kilometers. One sees significant variability between cities,
within and across categories, with mostly exponential tails
(Supplementary Fig. 2) as also seen for similar samples in39,40.
This is somewhat expected given the small sample size, and that
topology of cities are different due to geographic and spatial
constraints47,48. Indeed, variations may show up within the same
city where multiple samples of a similar resolution within a city
display fluctuations (Supplementary Fig. 1b). In all cases, we
observe a range of behavior in the tails of the BC ranging from
peaked to broad distributions, reflecting local variation in the
street network structure and fluctuations in the data. One sees a
dramatic difference at the scale of three thousand square-
kilometers (Supplementary Figs. 1c, d) where we observe that
the BC distribution for cities within each category is virtually
identical, and bimodal, with two regimes separated by a bump
roughly at gB∼N. For larger values of the BC we observe a slow
decay signaling a broad distribution.

These trends are apparent across all 97 cities with the two
regimes being separated by bumps spread across an interval of
103 ≤ gB ≤ 105 corresponding to the range of N in our data
(Fig. 2a). Indeed rescaling the betweenness of each node by the
number of vertices in the network gB ! ~gB ¼ gB=N , we see the
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distributions collapse on a single curve with a unique bump
separating two clear regimes (Fig. 2b). Fitting the distribution of
~gB with the function

pð~gBÞ � ~g�α
B e�~gB=β; ð2Þ

results in a tightly bound range for α≈1 and a broad size-
dependent distribution for β (Supplementary Fig. 4). Rescaling
the tail with respect to β results in a collapse of the curves for all
cities (Fig. 2c). (See Supplementary Note 2, Supplementary Fig. 3
and Supplementary Table 2 for details of the rescaling and fitting
procedures).

Determinants of the betweenness centrality distribution. Given
that cities are ostensibly quite different in terms of geography or
space, as well as their levels of infrastructure and socioeconomic
development, the observed invariance is quite striking. To
investigate the factors behind this behavior, we next system-
atically probe the effect of the main features that may be influ-
encing the betweenness distribution. Examining Eq. (1), apart
from its dependence on the number of nodes N and the number
of edges e, the other primary factors are the local connectivity
patterns of a street intersection as governed by its degree dis-
tribution; distribution of edge weights that can correspond either
to euclidean distances or some scalar quantity such as speed-
limits; and planarity, the effect of space. We select the BC dis-
tribution of a number of cities as baseline and generate multiple
variants of random graphs to compare with the original. In
Fig. 2d we show Phoenix (blue circles) as a representative
example of a city on which we perform this analysis.

To investigate the effect of varying the local neighborhood of a
given street intersection, we fix the spatial position of nodes on
the 2D plane and generate a Delaunay Triangulation (DT)49 of
the street network. The DT corresponds to the maximum number
of edges that can be laid down between a fixed number of nodes
distributed within a fixed space, without any edge-crossings.
Edges are then randomly eliminated until their number

corresponds exactly to our baseline example of Phoenix. A
hundred realizations of this procedure was conducted, having the
effect of rewiring the local neighborhood of intersections—by
changing a node’s degree and its neighbors—while still
maintaining planarity. In Fig. 2d we plot the average of these
realizations (orange triangles), showing differences with the
original street network in the lower range of the distribution, yet
showing minimal change in both the location of the peak as well
as the tail of the distribution. Similar random graphs were
generated using a number of other cities showing the same
behavior (Supplementary Fig. 5).

Next we investigate the effect of Euclidean distances on the BC
distribution. We fix the number of nodes N and instead of fixing
their positions according to the empirical pattern, we now
distribute them uniformly in the 2D plane with a scale
determined by the spatial extent of the considered city. Then
we generate the DT of the street network and randomly remove
edges until we match the number of roads in the data. A hundred
different realizations of this procedure has the effect of either
dispersing high density areas or compressing very long road
segments, and generating a distribution of distances that are
markedly different from the original (Supplementary Fig. 8).
Figure 2d (red triangles) suggests that while this has a marginally
stronger effect than edge rewiring, the tails of the original and
perturbed distributions are quite similar within the bounds of the
error-bars. Furthermore, the positions of the peaks remain
unchanged. Varying the area (and therefore density of nodes)
and conducting the same procedure over multiple cities yielded
identical results (Supplementary Fig. 9), suggesting that the
distribution of (spatial) edge-weights has negligible effect on the
BC distribution.

While the procedure outlined above does not preserve the local
topology it is possible to change the edge-weights while
preserving the degree sequence of nodes. This can be done by
taking the original street network and randomly sampling from
its associated distribution of distances, assigning each edge a
number from this distribution—the edge-weights now do not
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Fig. 1 Street networks at multiple scales Cities split into three categories based on the number of nodes (intersections) in the sampled street networks:

small (N∼103), medium (N∼104) and large (N∼105). a The networks at the full sampled range. b Selected smaller samples (on the order of one

square-mile)
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correspond to physical distances but can be interpreted instead as
a cost function such as speed-limits, travel demand, or road
capacity. In Fig. 2d we show the average of this process over a
hundred realizations (green triangles) where each realization
corresponds to a reshuffling of the edge weights over the network.
While there are some changes in the distribution with a minor
shift in the position of the peaks and a moderately heavier tail, no
drastic modifications are apparent. Strikingly, sampling from a
whole statistical family of distributions for the edge weights
produced identical results (Supplementary Fig. 10), indicating
little-to-no dependence on the specific nature of the weights.

Finally, we probe the effects of relaxing the constraint of
planarity. Fixing N, the degree-sequence, and assigning weights
sampled from the distance distribution of Phoenix, we use the
configuration model50 to generate one hundred non-spatial
versions of the street network resulting in the markedly different
curve in Fig. 2d (purple triangles). The shape of the curve is in
line with the known dependence of gB on the degree for non-
spatial networks, with a distribution of degrees peaked around
k= 3 (Supplementary Figs. 11 and 12). The markedly different
shape of the curve as compared to the actual street network shows
that planarity appears to be the dominant factor specifying the BC
distribution, with topological effects and edge-weights playing
only a negligible role. While this provides an explanation for the
observed similarity across cities, it does not by itself provide an
explanation for the form of the distribution, its scaling with N,
nor its bimodality, and we will provide in the following some
theoretical arguments.

Modeling the betweenness centrality distribution. A clue for the
bimodal behavior comes from the peak at N, a feature reminiscent
of nodes adjacent to the leaves of a minimum spanning tree
(MST). The MST consists of the subset of edges connecting all
nodes with the minimum sum of edge-weights51 and whose
betweenness value is of O(N). An examination of the BC dis-
tribution of trees therefore, may provide an explanation for the
observed scaling behavior. While an exact analytical expression
for the BC distribution of generalized MST’s is elusive, progress
can be made by approximating it as a k-ary tree (where each node
has a branching ratio bounded by k). Given that the degree dis-
tribution of streets is tightly peaked (Supplementary Fig. 11), we
assume a fixed branching ratio, in which case the k-ary tree
reduces to a Cayley tree where all non-leaf nodes have degree k.
Assuming all leaf nodes are at the same depth L and adopting the
convention l= L for the leaf level and l= 0 for the root, a simple
calculation reveals that for a node v at level l, the betweenness
scales as gBðvjk; lÞ � OðNkL�lÞ. After a sequence of manipulations
(Methods), it can be shown that

PðgBÞ / g�1
B ; ð3Þ

indicating that the node betweenness of a Cayley tree scales with
exponent α=−1, consistent with previous calculations of the link
betweenness52. This provides a possible explanation for the
scaling with N as well as the form of the tail found in the
empirical measurements (Eq. (2)), indicating an underlying tree
structure on which the high BC nodes of all cities lie, with the
majority of flow concentrated around a spanning tree53. While a
similar feature is seen for the BC of weighted (non-planar) ran-
dom graphs, this is only true for specific families of weight dis-
tributions54, a factor that has little-to-no effect in planar graphs.

Of course, street networks are not pure trees and contain loops
given by the cyclomatic number Γ= e−N+ 1 (for a connected
component) where N is the number of nodes and e is the number
of edges. In the absence of loops, N= e+ 1, and for fixed N, the
addition of further edges will necessarily produce loops leading to

alternate local paths for navigation. With increasing number of
edges, a large fraction of the (previously) high betweenness nodes
lying on the MST are bypassed, decreasing their contribution to
the number of shortest paths. This induces the emergence of a
low betweenness regime as well as increasingly sharp cutoffs in
the tail, in line with empirical observations (Fig. 2).

To investigate the effect of increasing edges on the between-
ness, we study a simple model of random planar graphs. Given
that e ∼ O(N) and that N varies over three orders of magnitude in
our dataset, we define a control parameter which we call the edge
density,

ρe ¼
e

eDT
; ð4Þ

defined as the fraction of extant edges e compared to the maximal
number of possible edges eDT (determined by the Delaunay
triangulation). The parameter varies between ρe≈1/3 for the MST
to ρe≈1 for the DT, and given that eDT ≈ 3N, this is equivalent to
the ratio of edges to nodes, or in the context of street networks,
the average degree 〈k〉 of street intersections49.

Next, we distribute N nodes uniformly in the 2D plane and first
study the MST. To vary the density, we generate the DT on the set
of nodes and remove edges until we reach the desired value for ρe.
Figure 3a–d shows the betweenness distribution resulting from a
hundred realizations of this procedure for N= 104 and for
increasing values of ρe from the MST to the DT. The distribution
for the MST seen in Fig. 3a is peaked at N and is bounded by N2

which gives here a range of order [104, 108]. In this interval the
distribution follows a form close to our calculation for the Cayley
tree (Eq. (3)). As one increases ρe and creates loops in the graph,
we see the emergence of a bimodal form, with a low betweenness
regime resulting from the bypassing of some of the high
betweenness nodes due to the presence of alternate paths
(Fig. 3b). As ρe is further increased, the distribution gets
progressively homogeneous, yet remains peaked around N even
as we approach the limiting case of the DT (Fig. 3d). As a guide to
the eye, we shade the “tree-like” region from the “loop-like”
region separated by the peak at N.

The simulations indicate the observed bimodality to be a
combination of a high betweenness backbone belonging to the
MST, and a low betweenness region generated by loops. The
transition between the two regimes is determined by the
minimum non-zero betweenness value for the MST, which is O
(N) and the tail may have different peaks, determined by the
distribution of branches emanating from the tree. Progressively
decorating the tree with loops leads to arbitrarily low betweenness
values due to the creation of multiple alternate paths, thus
smoothing out the distribution, as the betweenness transitions
from an interval [N,N2] for the MST to a continuous distribution
over [1,N2] for the DT.

Spatial distribution of high betweenness centrality nodes.
Figure 3e–h shows a single instance of the actual network gen-
erated by our procedure for each corresponding edge-density.
Highlighted in red are nodes lying in the 90th percentile of
betweenness. There is a distinct change in spatial pattern with
increasing ρe; for the MST, they span the network and are tree-
like with no apparent spatial correlation; as the network gets
more dense, the nodes cluster together and move closer to the
barycenter, suggesting a transition between a “topological regime”
and a “spatial regime”.

To quantify these observed changes, we investigate the
behavior of the high BC nodes at and above percentile θ through
a set of metrics: the clustering Cθ which measures the spread of
high betweenness nodes around their center of mass, the
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anisotropy factor Aθ which characterizes the spatial anisotropy of
this set of nodes, and finally, the detour factor D which measures
the average extent to which paths between two locations deviate
from their geodesic distance. (Details on metrics shown in
Methods)

In Fig. 4a we plot 〈Cθ〉 for θ= 90, 95, and 97 finding a clear
asymptotic decrease with increasing ρe. In Fig. 4b the plot of 〈Aθ〉
in function of ρe, for the same set of thresholds as before,
indicates a growing isotropic layout with a transition from a quasi
one-dimensional to a two-dimensional spatial regime. This is
confirmed by the corresponding decrease in the detour factor
shown in Fig. 4c, where there is a rapid drop around ρe≈0.4 (or
equivalently 〈k〉≈2) corresponding to the transition from the tree-
like to the loop-like region.

Plotting the rescaled average betweenness of nodes as a
function of the distance r from the barycenter (Methods),
demonstrates a monotonic decrease with distance in the high
density regime (Fig. 4d). For low values of ρe there appears no
distance dependence of the nodes, whereas for ρe > 0.4, a clear
dependence emerges with the curves converging to the form seen
for maximally dense random geometric graphs as calculated in55.
(Note that while both planar and geometric graphs are embedded
in space, the latter allows for edge-crossings and therefore

broader degree distributions and larger number of edges for the
same N. In light of this difference, the similarity between the two
ostensibly different classes of graphs is notable.) In combination,
the structural metrics suggest that while the spatial position of a
node is decoupled from its BC value in sparse networks, a strong
correlation emerges for increasingly dense networks.

We next investigate the spatial behavior of the high between-
ness nodes in the empirical data. The distribution of ρe in Fig. 5a
lies in a tight range (0.4 ≤ ρe≤ 0.6) with the majority of cities
peaked at ρe ≈ 0.5. The observed range is notable, as for one it
corresponds to a range of edge densities where a clear bimodal
regime exists as seen in Fig. 3, while the peaked nature of ρe
provide a further explanation for the observed similarity in BC
distributions, given that it is the key controlling parameter. On
the other hand, this provides a limited window for checking the
spatial trends; indeed the curves for 〈Cθ〉, 〈Aθ〉 and D shown in
Fig. 5b–d are noisy. Yet, within the extent of fluctuations, the
trend is reasonably consistent with that seen in Fig. 4 for the same
range of ρe. A clearer picture emerges when looking at individual
cities; in Fig. 5e–h we show the geospatial layout of the BC
distribution for the full street network in four representative cities
arranged in increasing order of ρe. Santiago, being a city with
relatively sparse number of streets, shows a tree-like anisotropic
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pattern for the high BC nodes that are spread mostly along a
single axis of the city. Paris and Tokyo, being in the intermediate
range, show a complicated lattice-like structure with loops
spanning the spatial extent of the cities. Finally, Shenyang, being
a city from the upper range of densities, shows a clear (relatively
symmetric) clustering of the high BC nodes around the city
center.

Temporal evolution of betweenness centrality in cities. The
changes in the structure of the random graph, shown in Fig. 3,
serves as a proxy for the evolution of a city as it experiences
refinements in infrastructure with increased connectivity. While
historical data of complete street networks in cities is limited,
progress can be made by examining smaller subsets. To this effect,
we make use of five historical snapshots of a portion of central
Paris spanning 200 years (1790–1999), previously gathered to
study the effects of central planning by city authorities41. The
selected portion of Paris is around thirty square kilometers with
about 103 intersections and road-segments, and represents the
essential part of the city around 1790. This particular period was
chosen to examine the effects of the so-called “Hausmann
transformation”, a major historical example of central planning in
a city that happened in the middle of the 19th century in an effort
to transform Paris and to improve traffic flow, navigability and
hygiene (see refs. 41 and 56 for historical details).

In Fig. 6a we show five instances of the street network (1790,
1836, 1849, 1888, 1999), corresponding to the region clipped to
1790. Highlighted in red are nodes at and above the 90th

percentile of betweenness. The spatial pattern of the nodes
remains virtually identical (with a radial, spoke-like appearance)
until 1849, and experiences an abrupt change to a ring-like

pattern in 1888 which persists to modern times. This change
corresponds to the period after the Haussmann transformation,
involving the creation of new roads, broader avenues, city squares
among other things. Yet, relative to the spatial extent of the
region the high betweenness nodes are located near the city
center. Also of note is the relative stability of the edge-density
(ρe≈0.5) across the temporal period, reflecting the fact that both
nodes and edges are growing at the same rate (Supplementary
Fig. 13).

The rescaled BC distribution, ~gB, is identical for all 5 snapshots
as seen in Fig. 6b despite the significant structural changes.
Figure 6c, d shows the clustering 〈C90〉and anisotropy metrics
〈A90〉 for the different eras, capturing the transition from
the radial to the ring pattern, but are nevertheless relatively
flat in correspondence with the trend in the planar random
graph for fixed ρe. For purposes of comparison, we plot the
averaged metrics for hundred random realizations (using the
same procedure as in Fig. 3) for each of the five networks showing
a remarkable similarity between the original and randomized
cities. To track the evolution of the BC at the local level, we
identify those intersections that are present throughout the
temporal interval (within a resolution of fifty meters) and
compute their betweenness in each instance of the network
normalizing by N2 to provide a consistent comparison, given the
historical increase in intersections and roads. In Fig. 6e we plot
the temporal evolution of gB/N

2 for these intersections, coloring
the points according to their corresponding relative rank. While
one observes significant fluctuations in the BC at the local level
(as expected), the high BC nodes are relatively stable from 1790 to
1849.

After the Haussmann intervention, one observes a dramatic
drop in rank of the high BC nodes-corresponding to the
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“decongesting” spatial transition from a radial to a circular
pattern-after which once again the high BC nodes are relatively
stable till 1999. It is important to note that the load is simply
redistributed to a different part of the network, as can be seen by
the transition of the middle-ranked nodes to the top positions in

the same periods. Furthermore, as indicated by the spatial layout
of these “new” high BC nodes, they continue to be relatively close
to the center (few or none are near the periphery), a pattern that
is consistent with what one would expect to find for the
corresponding random graphs.
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Discussion
Taken together our results shed new light on the understanding
of structural flow in spatial networks. The observed invariance in
the BC distribution appears to be a function of the strong con-
straint imposed by planarity, leaving only the number of nodes N
and the number of edges e as tunable parameters—a markedly
different phenomenon than seen for non-planar networks, where
betweenness is strongly correlated with degree. Empirical studies
on street networks, analytical calculations on Cayley trees, cou-
pled with simulations of random planar graph models, suggest
this to be a consequence of a bimodal regime consisting of
a tree-like structure with a tightly peaked branching ratio
comprising the high betweenness “backbone” of the network, and
a low betweenness regime dominated by the presence of loops.
The transition of nodes between regimes is driven by increasing
the density of edges in the network, which has the additional
effect of introducing a spatial correlation in the high BC nodes—
from being dominated by topology in the low-density regime to
being strongly dependent on spatial location in the high-density
regime. Given that the number of roads and intersection in our
sampled cities vary over three orders of magnitude, the similarity
in the BC distribution can be explained as a function of the
observed narrow range of ρe. Indeed, it appears that the char-
acteristics of flow across cities are better characterized by the
spatial distribution of the high BC set, as well as the specific
location of nodes that lie on this set, rather than global-level
statistics.

On the other hand, the relative lack of sensitivity of the BC
distribution to changes in the spatial layout, including distances
and local topological variations, has interesting implications for
urban planning. While the random graph models are closer in
spirit to so-called self-organized cities that grow organically, the
observed evolution of Paris suggests that central planning may
also have its limitations. The invariance of the BC distribution
suggests that congestion (in the structural sense) cannot be alle-
viated, but only redirected to different parts of the city. Indeed,
the Haussmann transformation succeeded in doing precisely that
by improving the navigability of Paris and decongesting the
center. However, the high BC backbone continued to be closer to
the center than the city periphery, a consequence of the spatial
distribution being a function of ρe. For cities with a higher ratio of
roads to intersections, the “decongestion-space” as it were, is
expected to be even more limited.

It must be noted that the BC does have limitations in terms of
predicting real-time traffic behavior. In particular, weighting
edges based only on Euclidean distance artificially places more
demand on shorter streets, although in reality, these streets may
have lower speed limits and thus receive less travel demand57.
There is also the issue of spatially irregular travel demand which
is overlooked in the betweenness formulation, as all pairs of nodes
are given equal weight in the calculation of the global metric58.
Various solutions to this route-sampling issue47 have been pro-
posed; in particular, there have been studies using alternative
versions of betweenness that weight each node pair proportional
to its perceived travel demand, obtained via both real dynamic
data and/or heuristics depending on the study59,60. The planarity
constraint is also alleviated in many cases with multilevel
underpasses, public transportation, etc, although the majority of
the network still remains planar. We argue that despite these
concerns, the results of this study are flexible enough to suggest
that load redistribution will be the primary result of planned
traffic intervention given static network structure. In particular,
we can absorb travel preference, distance, speed limits, and other
spatially heterogeneous factors into our edge weights, and the
invariance of the BC distribution to edge weight adjustment can
be used as evidence for these factors not affecting the global load

distribution (Cf. Supplementary Fig. 10). In addition, the con-
struction of detours and alternative paths can be absorbed into
factors affecting local topology, which also leaves the global BC
distribution invariant (see Supplementary Note 3, Supplementary
Fig. 14, Supplementary Table 3 for an analysis of the temporally
fastest routes in a city).

Generally speaking, the study of high BC nodes is an important
endeavor as they correspond to bottlenecks in networked systems.
In some sense, they represent a generalization of studying the
maximum BC node, that governs the behavior of the system in
saturation cases where the traffic exceeds the node-capacity. Our
analysis suggests, however, that for planar graphs, one needs to
take into account the entire high BC set, since the maximum BC
node can easily change due to local variations, yet is guaranteed to
lie somewhere along the spanning tree that constitutes the
backbone of the network. In this respect, further study of the
mechanisms governing the spatial distribution of BC is impor-
tant. Planar graphs are an important class of networks that
include infrastructural systems such as power grids and com-
munication networks, as well as transport networks found in
biology and ecology1. In particular, leaf venation
networks, arterial networks, and neural cortical networks rely on
tree-like structures for optimal function61. The lessons from this
analysis may well be gainfully employed in these other sectors.

Methods
Construction of street networks. The street networks used in our analysis were
constructed from the OpenStreetMaps (OSM) database62. For each city we
extracted the geospatial data of streets connecting origin-destination pairs within a
30 km radius from the city center (referenced from https://www.latlong.net), cor-
responding to a rectangular area of ~60 × 60 km2 with some variability due to road
densities, latitude and topographical variations. The 30 km radius was chosen to
encapsulate both high density urban regions and more suburban regions with
fewer, longer streets. Furthermore, the choice of scale negates any (minimal)
boundary effects on the calculated distribution of the BC38,63. The locations of the
street-intersections were found using an Rtree data structure for expedited spatial
search64. Lattitude and longitude coordinates were projected onto global distances
using the Mercator projection, and adjacent intersections lying along the same
roads were adjoined by edges with weights equal to the Euclidean distance between
the intersections. The resulting street networks are weighted, undirected planar
graphs with intersections as nodes, and edges between these nodes approximating
the contour of the street network. Aggregate statistics are shown in Table 1.

BC of Cayley trees. Let us consider a perfect Cayley tree of size N with fixed
branching ratio k and all leaf nodes at the same depth. Adopting the convention l
= L for the leaf level and l= 0 for the root, a node on the l-th level has k−1
branches directly below it at the (l+1)-th level, each with Ml+1 children such that
the set of branches {ni} stemming from this node will have sizes
fnig ¼ fMlþ1; :::;Mlþ1;N �Mlg. For fixed k there are k−1 copies of the term
Ml+1 which is of the form

Mλ ¼
X

L�λ

l′¼0

kl
′

¼
1� kL�λþ1

1� k
: ð5Þ

The betweenness value of a vertex v in any tree is given by gBðvÞ ¼
P

i<j ninj where
i, j are indices running over the branches coming off of v (excluding v), and ni, nj
are the number of nodes in each branch65. Combining this with Eq. (5) gives us the
betweenness of v at level l thus

gBðvjk; lÞ ¼
K � 1

2

� �

M2
lþ1 þ ðk� 1ÞMlþ1 N �Mlð Þ; ð6Þ

from which it is easy to see that for any level l, the betweenness scales as
gBðvjk; lÞ � OðNkL�lÞ. Thus, absorbing kL into the leading constant A, and letting
gBðvjk; lÞ � ANk�l , we have that since gB is completely determined by the level l in
which it lies in the tree,

PðgBÞ ¼
X

l

PðgBjlÞPðlÞ: ð7Þ

Now, using the fact that PðlÞ ¼ kl

N
and PðgBjlÞ ¼ δgB ;ANk�l , we have that

PðgBÞ ¼ Ag�1
B : ð8Þ
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Spatial metrics for high BC nodes. To measure the clustering, we specify a
threshold θ, i.e., we isolate nodes with a BC above the θ-th percentile-and then
compute their spread about their center of mass, normalizing for comparison
across networks of different sizes, thus,

Cθ ¼
1

NθhXi

X

Nθ

i¼1

jjxi � xcmjj: ð9Þ

Here xcm ¼ 1
Nθ

PNθ

i¼1 xi , Nθ is the number of high betweenness nodes isolated, {xi}
specify their coordinates, and 〈X〉 is the average distance of all nodes in the net-
work to the center of mass of the high BC cluster,

hXi ¼
1

N

X

N

i¼1

jjxi � xcmjj: ð10Þ

Equation 9 quantifies the extent of clustering of the high BC nodes relative to
the rest of the nodes in the network, with increased clustering resulting in low
values of Cθ.

In order to more precisely quantify the transition between the topological and
spatial regimes, a clue is provided by the increasingly isotropic layout of the high
BC nodes with increasing edge-density. To measure the extent of this observed (an)
isotropy, we define the ratio,

Aθ ¼
λ1
λ2

; ð11Þ

where λ1 ≤ λ2 are the (positive) eigenvalues of the covariance matrix of the spatial
positions of the nodes with BC above threshold θ. The metric is unitless and
measures the widths of the spread of points about their principal axes, analogous to
the principal moments of inertia. Low values of Aθ correspond to a quasi one-
dimensional structure with large anisotropy, whereas the system becomes
increasingly isotropic for larger values until it is roughly two-dimensional as Aθ →

1.
The detour factor measures the average extent to which paths between two

locations deviate from their geodesic distance and is given by

D ¼
1

NðN � 1Þ

X

i≠j

dGði; jÞ

dEði; jÞ
: ð12Þ

Here dE(i,j) is the euclidean distance between nodes i,j, and
dG(i, j) is their distance-weighted shortest path in the network G.

Distance dependence of BC. In our simulations, nodes were located on a 100×100
grid with coordinates in R2 2 ½�50; 50�. The center of the grid was chosen as the
origin (0, 0) and the average betweenness hgBðrÞi is computed over all nodes that
are located at a distance r from the origin, advancing in units of r= 1, until we
reach the grid boundary r= 50. In order to restrict hgBðrÞi to the interval [0, 1] we
measure the rescaled quantity

hg�b ðrÞi ¼
hgBðrÞi �minhgBðrÞi

maxhgBðrÞi �minhgBðrÞi
; ð13Þ

for different values of ρe. This was done to compare our results to the corre-
sponding expression in random geometric graphs, which was analytically calcu-
lated for (the somewhat artificial) limit of an infinitely dense disk of radius R55.

Data availability. All data needed to evaluate the conclusions are present in the
paper and/or the Supplementary Information. The street networks were con-
structed from open access data. Any additional data related to this paper are
available from the authors on reasonable request.
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