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Abstract Timely and accurate monitoring of crops is essential for food security. Here, we examine how

well solar‐induced chlorophyll fluorescence (SIF) can inform crop productivity across the United States.

Based on tower‐level observations and process‐based modeling, we find highly linear gross primary

production (GPP):SIF relationships for C4 crops, while C3 crops show some saturation of GPP at high light

when SIF continues to increase. C4 crops yield higher GPP:SIF ratios (30–50%) primarily because SIF is

most sensitive to the light reactions (does not account for photorespiration). Scaling to the satellite, we

compare SIF from the TROPOspheric Monitoring Instrument (TROPOMI) against tower‐derived GPP and

county‐level crop statistics. Temporally, TROPOMI SIF strongly agrees with GPP observations upscaled

across a corn and soybean dominated cropland (R2 = 0.89). Spatially, county‐level TROPOMI SIF correlates

with crop productivity (R2 = 0.72; 0.86 when accounting for planted area and C3/C4 contributions),

highlighting the potential of SIF for reliable crop monitoring.

Plain Language Summary Crop monitoring is essential for ensuring food security, but reliable,

instantaneous production estimates at the global scale are lacking. The monitoring of crop production in a

changing climate is of paramount importance to sustainable food security. Accurate estimates of crop

production are dependent on adequately quantifying crop photosynthesis. Our paper demonstrates that

solar‐induced chlorophyll fluorescence (SIF), an emission of red to far‐red light from chlorophyll is highly

correlated with crop photosynthesis. We show that a new high spatial resolution satellite SIF data set is

highly correlated with crop productivity in the United States, which is benchmarked by the United States

Department of Agriculture county‐level crop statistics. These results will improve the understanding of crop

production and carbon flux over agricultural lands, as well as provide an accurate, large‐scale, and timely

monitoring method for global crop production estimates.

1. Introduction

Cropping systems not only provide sustenance for the world's human population and livestock, but they also

have a major impact on both local climate (Mueller et al., 2016) and the carbon cycle (Peters et al., 2007).

Hence, large‐scale crop monitoring and yield forecasting are necessary to support food security and to quan-

tify the overall impact on the climate and carbon cycle.

Crop productivity is reliant upon its ability to convert light energy into sugar via photosynthesis. Therefore, a

reliable measure of gross primary production (GPP) is a key step toward crop monitoring. Satellite observa-

tions have the potential to provide GPP estimates from regional to global scales (Running et al., 2004; Ryu

et al., 2019; Turner et al., 2006; Yuan et al., 2007; Zhao et al., 2005). Most remote sensing‐based GPP esti-

mates use spectral information in the visible and near infrared (NIR) regions that are related to greenness
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(Huete et al., 2002) or thermal (Anderson et al., 2012) and microwave bands, which are sensitive to

vegetation/soil water content (Guan et al., 2017; Konings et al., 2017). In most cases, predicting GPP largely

depends on empirical estimates of light use efficiency (LUE, efficiency with which absorbed light is used for

CO2 fixation), which is highly uncertain.

The emission of red and far‐red light from excited chlorophyll‐a molecules, denoted solar‐induced chloro-

phyll fluorescence (SIF), offers a physiologically based GPP proxy, potentially avoiding the need for LUE

parameterizations. In fact, an empirical linear scaling between SIF and GPP across various vegetation types

under different environmental conditions has already been shown inmany studies (Frankenberg et al., 2011;

Guanter et al., 2014; Guan et al., 2016; Li et al., 2018; Magney, Bowling, et al., 2019; Smith et al., 2018; Song

et al., 2018; Sun et al., 2018; Verma et al., 2017; Wood et al., 2017; Zhang et al., 2016; Zuromski et al., 2018),

revealing the potential of SIF to monitor GPP across all spatial scales.

The rationale of linking SIF with crop productivity can be shown using the following equations

(Guan et al., 2016):

∑NPP ¼ ∑GPP−∑Ra ¼ CUE·∑GPP; (1)

Crop Productivity ¼ ∑NPP·fAG·HI; (2)

∑SIF ∼ ∑GPP; (3)

where ∑ means the temporal integration of the variable over the growth period. NPP refers to net primary

production, calculated as GPP minus the amount of carbon consumed by plants by autotrophic respiration

(Ra), which includes maintenance and growth respiration. During the growing period, we can assume that

growth respiration dominates the Ra term, which in theory should scale with GPP. CUE is the carbon use

efficiency, which varies across species and environmental conditions (Amthor, 1989; DeLucia et al., 2007).

fAG is the fraction of the aboveground to total biomass and HI is the harvest index—the mass of harvested

grain divided by total aboveground biomass. Both fAG andHI are related to the crop type and environmental

conditions but are usually treated as constant parameters for individual crops. These equations exhibit the

underlying relationship among SIF, NPP, GPP, and crop productivity and show that even if GPP and SIF

are perfectly correlated, variations in CUE, fAG, and HI can still impact the relationship of SIF to crop

productivity.

Some efforts have been made to explore the potential of satellite SIF in estimating crop productivity.

Guanter et al. (2014) found that the highest SIF values observed from the Global Ozone Monitoring

Experiment‐2 (GOME‐2) satellite are associated with the Corn Belt in the United States Midwest. In

addition, SIF captured the photosynthetic activity over highly productive croplands, while traditional

vegetation indices (VIs) show saturation effects in dense canopies. In some cropping systems, however,

the use of NIRv (Badgley et al., 2017) might track productivity quite well (Dechant et al., 2019) but may

be less sensitive to rapid changes in PSII operating efficiency. Thus, SIF has its own unique advantage

to track crop photosynthesis over VIs. Guan et al. (2016) used GOME‐2 SIF as an approximation of

photosynthetic electron transport rate (ETR) to derive GPP and crop yield, which has shown a signifi-

cant improvement in county‐level crop yield estimates. Zhang et al. (2014) proposed the utility of

space‐based SIF measurements, combined with a process‐based model, to estimate the photosynthetic

capacity over six crop flux sites in the United States. However, direct comparisons of SIF and crop yields

have been restricted by the coarse spatial resolution of available satellite SIF measurements. In the

United States, the average area of counties that are predominantly agricultural is ~1,700 km2, with

the smallest one ~430 km2. A single GOME‐2 footprint (80 km × 40 km) thus covers several counties,

making it challenging to compare SIF with the benchmark of county‐level annual crop statistics from

the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture

(USDA). Fine spatial resolution (1.3 km × 2.25 km) SIF data from the Orbiting Carbon Observatory

(OCO‐2) has been available since September 2014 (Frankenberg et al., 2015; Sun et al., 2017) but does

not provide contiguous spatial coverage. To fill this knowledge gap, we leverage SIF inferred from mea-

surements of the TROPOspheric Monitoring Instrument (TROPOMI), with an unprecedented spatial

resolution (up to 7 km × 3.5 km) and near‐global daily coverage (Köhler et al., 2018), which allows

us to achieve robust SIF averages for individual counties.
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A thorough understanding of the relationship between SIF and GPP and how it might vary depending on

photosynthetic pathway (C3, C4) is important to achieve accurate estimates of crop photosynthesis from

SIF. Some studies found stronger relationships between SIF and absorbed light by chlorophyll, than GPP

(Li et al., 2020; Yang et al., 2018). As SIF emanates from the light reactions of photosynthesis, it is expected

to bemore closely related to the ETR in photosystem II than to GPP (Frankenberg et al., 2011; Gu et al., 2019;

Porcar‐Castell et al., 2014). Thus, the GPP:SIF ratio should vary between C3 and C4 photosynthetic path-

ways (Gu et al., 2019; Guan et al., 2016; Porcar‐Castell et al., 2014), because it is important to know how effi-

ciently electrons from the light reactions are used for carbon fixation. This is fundamentally different for C3

and C4 plants, with the latter inhibiting photorespiration, which generally leads to a higher and less variable

efficiency. Typical C3 crops include soybeans, wheat, barley, oats, and rice, whereas typical C4 crops include

corn, sugarcane, and sorghum. Several recent studies point to a different GPP:SIF ratio for C3 and C4 plants

(Li et al., 2018; Liu et al., 2017; Wood et al., 2017); however, there is still limited understanding of how

exactly these mechanisms influence the GPP:SIF relationship across time and space. To fill this knowledge

gap, we include both field measurements and a biophysical model to explain the discrepancies of GPP:SIF of

C3 and C4 crops and use this to inform our interpretation of the satellite data.

In this paper, the objectives are to (i) compare observed and modeled GPP:SIF relationships for C3 and C4

crops at site level, (ii) examine whether aggregated TROPOMI SIF at local (10 km) scales can represent the

seasonality of GPP observations over homogenous croplands, and (iii) evaluate how well aggregated

TROPOMI SIF at the county level can be used to estimate crop productivity and NPP in the United States.

2. Data and Methods

2.1. Site‐Level SIF and GPP Observations

2.1.1. Eddy‐Covariance GPP

In this paper, eddy‐covariance (EC) data were collected at long‐term and well‐characterized USDA agricul-

tural flux towers within C3 (soybeans, Glycine max L. Merr.) and C4 (corn, Zea mays L.) cropping systems in

central Iowa. Specific sites are Brooks Field (41.974536°N, −93.693711°W) and Coles Field (42.488414°N,

−93.522582°W) for the PhotoSpec comparison in 2017 as well as two nearby towers at Coles Field covering

soy (42.488414°N,−93.522582°W) and corn (42.481677°N,−93.523521°W) for the TROPOMI comparison in

2018. These farming systems are typical for those in the Upper Midwest corn belt (more details in Dold

et al., 2017, 2019). Data were excluded under unfavorable weather conditions (e.g., rainfall, low wind turbu-

lence, and high humidity) (Baker & Griffis, 2005), screened for outliers (Dold et al., 2017), and gap‐filled.

Turbulent CO2 fluxes were computed using the ECmethod (Burba, 2013), and then net ecosystem exchange

was partitioned into GPP and ecosystem respiration (Re). Note that we do not have overlapping data sets of

TROPOMI, PhotoSpec and EC systems; thus, the EC to PhotoSpec comparison is limited to 2017 and the EC

to TROPOMI comparison to 2018.

2.1.2. PhotoSpec SIF

We installed two PhotoSpec instruments in a soybean (Brooks Field, 41.974203°N, −93.695839°W) and corn

field (Coles Field, 42.48655°N, −93.52641°W) in central Iowa following planting in late May 2017 and mea-

sured SIF until harvest in September 2017 (Magney, Frankenberg, et al., 2019). PhotoSpec consists of a 2D

scanning telescope to guide reflected radiances into a set of high‐resolution spectrometers (Grossmann

et al., 2018) to infer SIF using the solar Fraunhofer line in‐filling technique, similar to all current satellite

retrievals. The scanning telescope was placed atop a 7‐m tower, and we calculate a “canopy average” of

all viewing angles at an hourly time step to match the temporal resolution of flux tower data (following

Magney, Frankenberg, et al., 2019). Because the scanning telescope revisits every measuring point within

an hour, this canopy average is more representative of a hemispherical sensor with a footprint of a few

meters around the tower (an average of all viewing directions). Due to the narrow field of view of

PhotoSpec, we can isolate between vegetation and nonvegetation signals, where we have determined

NDVI at 0.6 to be sufficient for the definition of the peak growing season, when our analysis was conducted

(as can be seen in Figure S1 in the supporting information, where the rows can be seen early in the season).

Notably, while the escape ratio and angular dependencies are an important consideration for tower‐based

SIF measurements (Zeng et al., 2019), this makes little difference in our study for the canopy structure is

relatively stable during the peaking growing season. More details on PhotoSpec retrievals and instrument

specifications can be found in Grossmann et al. (2018) and Magney, Frankenberg, et al. (2019).
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2.2. TROPOMI SIF

On 13 October 2017, the TROPOMI instrument onboard the European Sentinel‐5 Precursor satellite was

launched. TROPOMI is a multiband push‐broom imaging grating spectrometer, which also covers the

far‐red part of the SIF emission spectrum (Köhler et al., 2018). The SIF retrieval window ranges from 743

to 758 nm, a subset of TROPOMI's band 6 (725–775 nm). A daily correction factor is applied to convert

instantaneous SIF to a daily average (following Frankenberg et al., 2011).

For the comparison with GPP observations, we extracted TROPOMI SIF within +/−10 km of two nearby

flux towers and applied a +/−4‐day moving average, sampled every 4 days. The agricultural cover is quite

homogeneous within +/−10 km, with ~58% corn and ~30% soybeans derived from the 30‐m cropland data

layer (CDL; https://nassgeodata.gmu.edu/CropScape/) (Figure S2). Since TROPOMI SIF represents an aver-

age of all crops within the sampling area, we assume a⅔:⅓weighted average of flux tower GPP for corn and

soy, respectively.

For the comparison with county‐level crop statistics reported by USDA NASS, we aggregated SIF at the

county scale, yielding on average 700 TROPOMI soundings per month for counties with >45% planted areas.

The planted ratio of each county is shown in Figure S3.

2.3. Crop Statistics From USDA NASS

We obtained the county‐level total crop production and planted area for individual crop types from the

USDA NASS Quick Stats Database (quickstats.nass.usda.gov). In most studies, crop yield refers to the

amount of grain per unit of harvested land area per crop (Fischer, 2015). Therefore, it is associated with accu-

mulated NPP weighted by aboveground biomass during the crop growth season (Lobell et al., 2002). Thus,

NPP acts as a bridge to link crop statistics with satellite observations (Smith et al., 2014).

We used crop production and acreage for individual crop types to calculate county‐level crop productivity as
total crop production
total county area

. From a physical perspective, this definition is more comparable with the county‐level aggre-

gated satellite TROPOMI SIF, since satellite SIF records represent the entire footprint, regardless of land

type.

Following Lobell et al. (2002), Guan et al. (2016), and Guan et al. (2017), we converted crop productivity to

NPP at the county level:

NPP
gC

m2

� �

¼ ∑N
i¼1

Pi·MRPi· 1−MCið Þ·0:45 gC
C

HI i·fAGi

=total county area; (4)

¼ ∑N
i¼1

Y i·MRPi· 1−MCið Þ·0:45 gC
C

HI i·fAGi

; (5)

where i represents the crop type (dominated by corn and soybean here), P the reported crop production,MRP

the mass per unit of report production, MC the moisture content, and Y the crop productivity based on the

definition given before. The list of fAG andHI of common crops can be found in Lobell et al. (2002) and Guan

et al. (2016) (see Table S1).

2.4. Site‐Level GPP and SIF Modeling

We use the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model, a 1D integrated

radiative transfer and energy balance model, to simulate photosynthesis, fluorescence, the surface energy

balance, and reflectance/emission spectra at leaf and canopy scales (van der Tol et al., 2009). This mechan-

istic model helps to understand the connection between SIF, GPP, quantum yield of photosystem II (PSII)

(PSIIyield) and actual ETR (Ja) under different environmental conditions for C3 and C4 plants. We modeled

GPP and SIF at nadir viewing using SCOPE at two flux tower sites with concurrent PhotoSpec and GPP

observations. We used available meteorological data from the flux tower (i.e., incoming shortwave and long-

wave radiation, air temperature, ambient atmospheric pressure, vapor pressure, and wind speed) and opti-

mized canopy parameters (leaf area index, VCMAX, and Chl content) via a Bayesian inversion system

(Dutta et al., 2019).
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3. Results and Discussion

3.1. Observed and Modeled GPP:SIF for C3 and C4 at the Site Level

We compared ground‐based PhotoSpec SIF measurements throughout the peak growing season in both C3

(soybean) and C4 (corn) crops with flux tower GPP as well as photosynthetically active radiation (PAR)

(Figures 1a–1c). The peak growing season is defined as DOY 210‐235 for soybean and DOY 175‐190 for corn.

Here, hourly SIF is linearly correlated with PAR for soybean (R2= 0.87) and corn (R2= 0.84), with negligible

differences in the SIF:PAR ratio (Figure 1a). This indicates that during the peak growing season in both agri-

cultural sites, SIF is mostly driven by incident radiation and exhibits negligible differences due to the fluor-

escence yield. To first order, we expect SIF to be tightly related to PAR in systems where there is little stress

(i.e., low variations in SIFyield), which can be expected in highly efficient agricultural areas. Little apparent

stress is also indicated by the canopy‐scale light response curve of GPP vs. PAR (Figure 1b), with a

near‐linear relationship for corn and some saturation effects for soybean at higher light levels.

Consequently, we found that hourly averaged SIF is strongly correlated with GPP in both soybean

(R2 = 0.51) and corn (R2 = 0.64), however, with a larger GPP:SIF ratio observed for corn, leading to roughly

a 30% higher GPP per unit SIF in corn at higher light levels (Figure 1c). This implies that the light‐use effi-

ciency of corn is higher than that of soybean, due to the evolved mechanism to concentrate CO2 at the

Figure 1. Canopy‐scale relationships in the peak growing season (DOY 175‐190 for corn and 210‐235 for soybean) based on hourly averaged data from PhotoSpec

for soybean (gold) and corn (green): (a) SIF:PAR, (b) GPP:PAR, and (c) GPP:SIF for both soybeans and corn. SCOPE modeled relationships are for the same

time‐periods and based on hourly averaged data for soybean and corn: (d) SIF:PAR, (e) GPP:PAR, and (f) GPP:SIF. The results of PhotoSpec‐measured relative SIF,

which is normalized by incoming NIR‐reflected radiance to reduce the effects of structural and bidirectional reflectance of the signal (Yang et al., 2018), are shown

in Figure S4.
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rubisco site and thereby minimize photorespiration as well as the occurrence of carboxylation limited photo-

synthetic rates in C4 plants.

To test whether the GPP:SIF relationship observed in the field is consistent with what is expected from bio-

physical models, we compared the simulated far‐red SIF at 740 nm and GPP against PAR using SCOPE

(Figures 1d– 1f). For both soybean and corn, the PAR:SIF relationship is highly linear yet with slightly dif-

ferent slopes (Figure 1d). In the light response curve for GPP (Figure 1e), soybean GPP saturates at higher

light levels, when the rate of photosynthesis is limited by the carboxylation rate. Corn remains highly linear

even at high light levels, resulting in a more linear GPP:SIF relationship. Apart from the high SIF values

modeled for corn leading to diverging SIF:PAR relationships between corn and soy, these simulations are

broadly consistent with our observational evidence. We found that the high SIF to PAR slope for C4 is likely

related to how SCOPE computes the PSIIyield for C4 plants, which are in the range of a maximum SIFyield

given by the PSIIyield:SIFyield parameterization (Van der Tol et al., 2014). Our canopy spectrometer data sup-

ports this, as we observe similar SIF yields for C3 and C4 crops. The overly highmodeled SIF values as well as

the inconsistency with our field measurements point to an overestimation in the SIFyield for C4 plants in the

SCOPE model. Apart from that, the measurement and modeling perspective agree very well.

Both our observations at the site level as well as the SCOPE modeling results showed that the GPP:SIF rela-

tionship is more linear for C4 than C3 plants. It is well established that SIF is a better proxy for the actual

ETR (Ja) than for GPP, which requires us to separate C3 and C4 photosynthetic mechanisms if we use Ja

to estimate GPP. The explicit relationships among the four variables, SIF, Ja, PSIIyield, and SIFyield, can be

described as follows (Gu et al., 2019; Porcar‐Castell et al., 2014):

Ja ¼ ΦPSII · β · APARgreen; (6)

SIF ¼ ΦSIF · β · ε · APARgreen; (7)

whereΦPSII andΦSIF is the quantum yield of PSII and SIF, respectively; APARgreen is absorbed PAR by green

elements (Gitelson & Gamon, 2015); β is the fraction of APARgreen allocated to PSII; ε is the escape probabil-

ity of fluorescence from the canopy (Zeng et al., 2019). Here, we neglect variations in the canopy structure

and thus ε as we focus on the peak growing season, where we observe little structural change (Figure S1).

Combing 6 and 7, we obtain

Ja

SIF
∼
ΦPSII

ΦSIF
; (8)

which demonstrates that Ja:SIF is determined by ΦPSII and ΦSIF, which is dependent on environmental con-

ditions (e.g., light intensity, drought, and heat stress). The lessΦPSII is varying—as is often the case for highly

efficient crops—the more constant and linear the SIF to Ja relationship is. Leaf‐level measurements have

been used to derive the empirical relationship between ΦPSII and ΦSIF (Lee et al., 2013; Van der Tol

et al., 2014). For example, Flexas et al. (2002) found that for under stress,ΦPSII andΦSIF are usually positively

correlated if substantial nonphotochemical quenching exists. At the canopy level, ΦPSII and ΦSIF are mostly

positively correlated at the seasonal scale (Porcar‐Castell et al., 2014; Song et al., 2018; Verma et al., 2017;

Yang et al., 2015; Zhang et al., 2016), mainly due to averaging effects of the canopy, which integrates over

a variety of ΦPSII and ΦSIF values for all leaves (similar to our PhotoSpec observations).

The linkage between GPP and Ja depends on the photosynthetic pathway (Collatz et al., 1992; Farquhar

et al., 1980):

GPP ¼
Ja· Cc−Γ*

� �

4Cc þ 8Γ*
for C3; (9)

GPP≈
Ja

6
for C4 ; (10)

where Cc is chloroplast CO2 partial pressure and Γ* is chloroplastic photorespiratory CO2 compensation

point. Comparing 9 and 10, for C3 plants, an additional nonlinearity in GPP:Ja arises, which is attributed
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to the varying fraction of electrons used in photorespiration. Due to the lack of photorespiration in C4 plants,

the relationship between Ja and GPP is strictly linear. For the same reason, the conversion factor from Ja to

GPP is mostly higher for C4 than C3 plants, as about⅓ of the ETR is wasted in photorespiration in C3 plants.

Since SIF is mostly proportional to Ja, 9 and 10 directly explain the more linear behavior and steeper GPP:

SIF slope for C4 versus C3 plants. It should be noted that at high Cc values, the slope for C3 plants can be

steeper (e.g., at low light levels). In general, variations in the GPP:SIF scaling at the leaf scale can thus be

attributed to two different effects: (i) variations in the ratio of ΦPSII and ΦSIF in the light reactions as well

as (ii) the scaling from Ja to GPP, which depends on the photosynthetic pathway.

3.2. Consistent Seasonal Cycle Seen by TROPOMI SIF and Field GPP Measurements

Here, we evaluate how well TROPOMI SIF represents local GPP patterns in a corn/soybean dominated area

in Iowa during the growing season of 2018. The seasonal cycle of footprint‐level TROPOMI SIF and flux

tower GPP at both soybean and corn sites is shown in Figure 2. Corn GPP increases more rapidly and reaches

its maximum of ~25 gC/m2/day around 10 July, while soybean GPP approachesmaximum of ~15 gC/m2/day

more gradually, around 20 July. As mentioned in Section 2.2, TROPOMI SIF represents an average of all

crops in the area, for which we calculate the weighted average of GPP assuming a ⅔:⅓ contribution of corn

and soy, respectively. There is strong agreement between TROPOMI SIF and the weighted area‐averaged

GPP estimate (R2 = 0.89) (Figure 2), motivating our use of TROPOMI SIF in large‐scale crop monitoring.

In particular, the GPP:SIF ratio at both satellite and flux tower scales is consistent—around 12 (gC/m2/

day)/(W/m2/μm/sr). While there is close correspondence between SIF and GPP during senescence, there

is a small mismatch early in the growing season, which could be explained by (1) fewer TROPOMI observa-

tions due to increased cloud cover during this time of year (see Figure S5), (2) different planting and emer-

gence dates within the satellite footprint, and (3) potentially higher SIF escape probabilities at the beginning

of the season as the canopy is more open at that stage. We also did not find any apparent viewing angle

dependent behavior in the TROPOMI data sets (see Figure S5). Importantly, it should be noted that this is

the first time that satellite‐based SIF can be compared with GPP at weekly temporal resolution and

~10 km spatial scales—a significant improvement over previous satellites providing monthly data at

0.5° resolution.

Figure 2. The 2018 seasonal cycle of flux tower GPP for soybeans and corn in Iowa and TROPOMI SIF (within +/−0.1°

latitude and longitude, shaded area showing 2 sigma uncertainty range). A moving average of +/−4 days and 4‐day

sampling interval is applied to both data sets. The upscaled GPP (green) is approximated by a weighted average of ⅔ corn

and⅓ soy contributions, determined by computing crop fraction within +/−0.1° (in total, 88% of this area is covered by

either corn and soybean).
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Tower‐level SIF was not included in this comparison as there was no temporal overlap between tower SIF

data and TROPOMI in 2018. In recent years, more ground‐based SIF measurements have become available

(Dechant et al., 2019; Du et al., 2019; Grossmann et al., 2018; Li et al., 2020;Magney, Frankenberg, et al., 2019;

Miao et al., 2018; Zhang et al., 2019; Yang et al., 2015; Yang et al., 2018), which will help disentangle various

factors (e.g., view angles, canopy structure, and overpass times) that might also impact the SIF to

GPP relationship.

3.3. Spatial Correlation Between County‐Level TROPOMI SIF and Crop Productivity

Here, we focus on the county level in the United States to evaluate the capability of using TROPOMI SIF to

predict crop productivity. We define the growth period for each county as the period in which SIF exceeds

10% of its peak value within the year. The spatial pattern of crop productivity and the average

growing‐season TROPOMI SIF of 2018 is shown in Figures 3a and 3c. The SIF map closely matches the

NASS yield‐based NPP pattern in the Corn Belt, the most dominant region of corn/soybean staple crop pro-

duction in the United States. For counties with >45% planted areas, we found that crop productivity and con-

verted NPP are both highly correlated with SIF, with R2 = 0.72 and R2 = 0.71, respectively (Figures 3b and

3d). As discussed previously, crop productivity: SIF and NPP:SIF relationships are not identical for C3 and

C4 crops. At the same level of SIF, higher crop productivity and NPP are observed for counties with more

C4, which is expected based on the ground‐based measurements and modeling results (Sections 3.1). In con-

trast to the nonlinear pattern observed for temporal variations at the site level, spatial variations in the

county‐level analysis are more linear. The main reason is that the nonlinear pattern is only apparent at high

light levels. In contrast, the spatial correlation is discussed for seasonal averages, in which the impact of high

light levels is smoothed out.

In theory, crop productivity is associated with temporally integrated net photosynthesis over the growing

season. Therefore, we also tested the correlation between crop productivity and the corresponding NPP

Figure 3. Spatial pattern of county‐scale (a) crop productivity derived from USDANASS and (c) average TROPOMI SIF during the growth period of 2018. In coun-

ties with planted area >45%, the relationship of (b) crop productivity: SIF and (d) NPP:SIF. The color scheme represents the relative fraction of C3 crops, with blue

meaning more C3 and red means more C4. The maps of C3 and C4 crops distributions are shown in Figure S6. The growth period here is defined as the time when

SIF exceeds 10% of max (SIF) within a year. The results are robust with different thresholds defining the growing season (see Figure S7) and TROPOMI relative SIF

(see Figure S8).
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against integrated SIF over the growing period. We found that the crop productivity:integrated SIF and NPP:

integrated SIF correlations are still consistent and robust yet weaker than when using the average growing

season SIF (see Figure S9).

Overall, the crop productivity (NPP):SIF relationship at the county level is almost linear. This is likely due to

the high efficiency of crops (generally high photosynthetic yields) as well as large contributions from C4

crops, where the relationship is more linear. In addition, crop productivity (NPP):SIF ratio is 25–50% higher

for C4 than C3, which is consistent with ground‐based measurements and modeling outputs in Sections 3.1.

Including results from field measurements (PhotoSpec) and a biophysical model (SCOPE) give us more con-

fidence in explaining the discrepancies between C3 and C4 crops and the associated GPP:SIF relationship. A

more detailed understanding of the GPP:SIF slope for different crops at different environmental conditions

based on field‐level measurements would help us to better estimate NPP:SIF for a variety of crops and ulti-

mately improve the prediction of crop productivity at the global scale, where ground‐based measurements

are lacking.

3.4. Improving the Productivity Prediction Performance Using Additional Information

Although crop productivity can be estimated with SIF observations alone, we can further improve the per-

formance by adding two other explanatory variables, which are easily accessible: planted area fraction per

county (Cropfraction) and fraction of C3 plants per county (C3ratio). The SIF signal from crops will be dam-

pened if the planted area fraction is low, and a correction factor should be considered between C4 and C3,

since higher productivity is expected for C4 at the same level of SIF. Here, we fit the two multiple linear

regression models for crop productivity based on (i) SIF and Cropfraction (ii) SIF, Cropfraction, and C3ratio,

(Figure 4). With the added information of Cropfraction, R
2 improved from 0.72 to 0.79, and adding the

C3ratio, R
2 improved to 0.86 (Figures 3 and 4), which also converges into a more normal distribution of

the residuals for C3 and C4 dominated counties around the line of best fit. This behavior is consistent with

our field‐level measurements and modeling, given us mechanistic confidence in such an approach.

It should be noted that we currently use several assumptions and do not use any model information for this

upscaling approach. For instance, we assume that respiration scales with GPP, which results in a linear scal-

ing of GPP to NPP. Notably, other growing season environmental conditions (temperature, vapor pressure

deficit, and soil moisture) as well as canopy structure and associated variations in the escape probability of

SIF could have an impact on our interpretation of the SIF signal. Theoretically, however, SIF contains the

information on environmental conditions and tracks GPP variations better than traditional

reflectance‐based VIs (e.g., NDVI), though its response to stress is weaker than for GPP (or LUE) (Magney

et al., 2017; Van der Tol et al., 2014). Additionally, HI, the process of plant NPP converting to ultimate grain

yield, which is also controlled by reproductive processes and environmental conditions during grain fill, is

an important consideration. Despite this, it is hard to justify adding more complexity to the analysis given

the already strong empirical linear relationship between crop NPP and SIF.

3.5. Toward Finer‐Resolution Crop Productivity Estimates

Our SIF‐only‐based crop productivity proxy approach achieved robust and reliable performance over agri-

culture dominated counties in the United States. To fully exploit the potential of this approach in other

Figure 4. The relationships between true crop productivity and predicted crop productivity using multiple linear regres-

sion based on variables (a) SIF and crop fraction per county and (b) SIF, crop fraction, and relative C3 ratio per county.
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regions of the world, especially for small‐scale, diverse, and fragmented agricultural fields, high spatially and

temporally resolved remote sensing data sets will be required. This is still challenging for current satellite SIF

products (e.g., short record of TROPOMI, sparse spatiotemporal sampling of OCO‐2 and large footprint of

GOME‐2). Recently, some machine learning‐based long‐term SIF products of high spatiotemporal resolu-

tion have been developed (e.g., CSIF, GOSIF, RSIF, and SIFoco2) based on satellite SIF, high‐resolution spec-

tral information, and meteorology data (Gentine & Alemohammad, 2018; Yu et al., 2019; Zhang et al., 2018;

Li & Xiao, 2019; Turner et al., 2020). Future work across all scales will be needed to test the long‐term per-

formance of SIF products on the global scale, particularly as we link these measurements to photosynthesis

(Ryu et al., 2019). A combination of high‐resolution reflectance‐based remote sensing products and crop

models (Jin et al., 2017; Lobell et al., 2015) has already shown great potential in fine‐scale yield estimates.

4. Conclusions

We investigated the GPP:SIF relationship of crops from ground‐based measurements and validated the bio-

physics with model runs for C3 and C4 crops at two field sites in the Upper Midwest corn belt of the United

States during the 2017 growing season. Generally, we find a linear GPP:SIF relationship except for high‐light

levels when GPP starts to saturate, whereas SIF still increases, especially for C3 crops. This is attributed to

two effects: (1)
PSIIyield
SIFyield

of crops varies less than in other ecosystems, since crops in this region rarely experi-

enced severe stress conditions, which would lead to a strong reduction of
PSIIyield
SIFyield

. Thus, the correspondence

between SIF and actual ETR (Ja) is highly linear for crops; (2) Ja:GPP varies between C3 and C4, which is

determined by the number of electrons required for carboxylation. The latter consideration also results in

a different GPP:SIF relationship between C3 and C4 crops, with a steeper GPP:SIF slope for C4 plants—

an important consideration when using SIF as a proxy for crop productivity. A direct comparison of satellite

SIF measurements against two flux tower sites in a highly agricultural area in Iowa further supports this

finding at larger spatial scales. At the county scale, we found that SIF is highly correlated with crop produc-

tivity derived from the USDA NASS database (R2 = 0.72). Using ancillary information on crop‐planted frac-

tion and relative C3 crop ratio per county, we can further improve our estimate using a multiple linear

regression model to R2 = 0.86. Our model‐free SIF‐based crop productivity estimation framework appears

promising and can provide insights to monitor the crop productivity globally outside the United States, espe-

cially in developing agricultural countries. A validation approach against well‐documented productivity esti-

mates in the United States represented a necessary proof of concept before applying the method to less

well‐monitored agricultural areas.
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