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Abstract

In 1966 Ivan Dimovski introduced and started detailed studies on the
Bessel type differential operators B of arbitrary (integer) order m ≥ 1. He
also suggested a variant of the Obrechkoff integral transform (arising in a
paper of 1958 by another Bulgarian mathematician Nikola Obrechkoff) as
a Laplace-type transform basis of a corresponding operational calculus for
B and for its linear right inverse integral operator L. Later, the devel-
opments on these linear singular differential operators appearing in many
problems of mathematical physics, have been continued by the author of
this survey who called them hyper-Bessel differential operators, in relation
to the notion of hyper-Bessel functions of Delerue (1953), shown to form a
fundamental system of solutions of the IVPs for By(t) = λy(t). We have
been able to extend Dimovski’s results on the hyper-Bessel operators and
on the Obrechkoff transform due to the happy hint to attract the tools
of the special functions as Meijer’s G-function and Fox’s H-function to
handle successfully these matters. These author’s studies have lead to the
introduction and development of a theory of generalized fractional calculus
(GFC) in her monograph (1994) and subsequent papers, and to various
applications of this GFC in other topics of analysis, differential equations,
special functions and integral transforms.
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Here we try briefly to expose the ideas leading to this GFC, its basic
facts and some of the mentioned applications.
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1. Introduction to fractional calculus

1.1. Definitions of classical FC

The classical fractional calculus can be thought as an upgrade of the
Calculus, originated as early as in 1695 (the famous l’Hospital’s letter to
Leibnitz). Since then, many known mathematicians and applied scientists
contributed to the development of this “strange” calculus, but the first
book and the first conference dedicated specially to that topic appeared
279 years (1974−1695=279) after the mentioned correspondence. And this
year we are marking 40 years (2014−1974=40) of these two events, when
there are published more than 100 monographs and topical selections on
the area of FC and its applications. The detailed history, theory and its
various applications, by the years of 1987-1993 was presented in the “FC
Encyclopedia” [42], and currently - in several recent surveys as [47], and
the posters at http://www.math.bas.bg/∼fcaa.

The classical FC is based on several (equivalent or alternative) defini-
tions for the operators of integration and differentiation of arbitrary (in-
cluding real fractional or complex) order, as continuations of the classical
integration and differentiation operators and their integer order powers
(n ∈ N), namely - the n-fold integration

Rnf(t) =

∫ t

0
dt1

∫ τ1

0
dτ2 . . .

∫ τn−2

0
dτn−1

∫ τn−1

0
f(τn)dτn

=
1

(n− 1)!

∫ t

0
(t− τ)n−1f(τ)dτ, (1.1)

and n-th order derivatives Dnf(t) = f (n)(t). The so-called Riemann-
Liouville (R-L) integration of arbitrary order δ > 0 is defined by analogy
with the above expression by means of replacing (n−1)! by Γ(δ):

Rδf(t)=D−δf(t)=
1

Γ(δ)

∫ t

0
(t−τ)δ−1f(τ)dτ= tδ

∫ 1

0

(1−σ)δ−1

Γ(δ)
f(tσ)dσ.

(1.2)
This definition concerns integrations of (real part) positive orders and could
not be used directly for a differentiation (�δ < 0). However, a little trick is
helpful for a suitable interpretation. For noninteger δ > 0 we set n := [δ]+1
(the smallest integer greater than δ), then we can define properly the R-L
fractional derivative by means of the differ-integral expression

http://www.math.bas.bg/~fcaa
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Dδf(t) := DnDδ−nf(t) =

(
d

dt

)n

Rn−δf(t)

=

(
d

dt

)n {
1

Γ(n− δ)

∫ t

0
(t− τ)n−δ−1f(τ)dτ

}
, (1.3)

since n− δ > 0. In suitable functional spaces,

DδRδf(t) = f(t), i.e. the inversion formula holds:
{
Rδ

}−1
= Dδ .

An interesting fact, to compare this with the classical calculus, follows from
the formula

Dδ {tα} =
Γ(α+ 1)

Γ(α+ 1− δ)
tα−δ, δ > 0, α > −1,

whence, for α = 0 we obtain:

Dδ{c} = c
t−δ

Γ(1− δ)
,

i.e. a R-L fractional derivative of a constant is zero only for positive integer
values δ = n = 1, 2, 3, . . . , and not for arbitrary δ /∈ N+. To improve this
situation, and also - for more important reasons - to be able to consider
problems where the initial values are given by integer order derivatives
instead of fractional order integrals or derivatives, an alternative definition
is often used, the so-called Caputo derivative of the form

∗Dδf(t) := Dδ−nDn f(t) = Rn−δf (n)(t)

=

{
1

Γ(n− δ)

∫ t

0
(t− τ)n−δ−1f (n)(τ)dτ

}
. (1.4)

The essence of the mathematical problem for defining integrals and
derivatives of fractional order laying on the base of FC consists in the
following: for each function f(t) of sufficiently large class and for each
number δ (rational, irrational, complex), to set up a correspondence to a
function g(t) = Dδf(t) satisfying the conditions (axioms of FC ):

• If f(t) is an analytic function of t, the derivative Dδf(t) is an ana-
lytic function of t and δ.

• The operation Dδ gives the same result as the usual differentiation
of order n, when δ = n is a positive integer, and the same effect as
the n-fold integration, if δ = −n is a negative integer (i.e. D−n =
Rn). Moreover, Dδf(t) should vanish at the initial point t = 0 (or
t = c) together with its first (n−1) derivatives.

• The operator of order δ = 0 should be the identity operator.
• The fractional operators are linear:

Dδ{af(t) + bg(t)} = aDδf(t) + bDδg(t).
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• For fractional integrations of arbitrary orders α > 0, β > 0 (�α >
0,�β > 0) the additive index law (semigroup property) holds:

D−αD−βf(t) = D−(α+β)f(t), i.e. RαRβ = RβRα = Rα+β,

if the denotation Rδf(t) := D−δf(t), �δ > 0 is used in the case of
derivative of negative (or with negative real part) order.

It is easily seen that the above mentioned fractional integrals and deriva-
tives satisfy all the above conditions, and in particular, coincide with the
repeated (n-fold) integration in the Dirichlet formula in (1.1) and with
(d/dt)n.

Along with the R-L fractional integration operator (1.2), several modifi-
cations and generalizations are widely used in FC. The most useful of them
seem to be the Erdélyi-Kober (E-K) integration operator (see e.g. Sneddon
[44]) whose general form

Iγ,δβ f(t) = t−β(γ+δ)

∫ t

0

(tβ − τβ)δ−1

Γ(δ)
τβγf(τ) d(τβ)

=

∫ 1

0

(1− σ)δ−1σγ

Γ(δ)
f(tσ

1
β ) dσ, γ ∈ R, with arbitrary β > 0, (1.5)

is used essentially in our works on the generalized FC. Initially, the E-K
operator was introduced with β = 2.

1.2. Attempts for generalized fractional calculi

Several authors, like Love [32], Saxena [43], Kalla and Saxena [18], Saigo
[39, 40], McBride [35], also Tricomi, Sprinkhuizen-Kuiper, Koornwinder,
etc., have studied and used different modifications (mainly in 60’s-70’s) of
the so-called hypergeometric operators of fractional integration

Hf(t) =
μt−γ−1

Γ(1− δ)

∫ t

0
2F1

(
δ, β +m; η; a(

τ

t
)
μ)

τγf(τ)dτ, (1.6)

involving the Gauss hypergeometric function.
An example of fractional integration operators involving other special

functions, is given by the operators of Lowndes [33]:

Iλ(η, ν+1)f(t) =
2ν+1

λν
t−(ν+η+1)

∫ t

0
τ2η+1(t2 − τ2)

ν
2 Jν(λ

√
t2 − τ2)f(τ)dτ,

related to the second order Bessel type differential operator

Bη = t−2η−1(d/dt)t2η+1(d/dt).

One of the most general fractional integration operators of R-L type
(1.2) can be obtained when the kernel-function is an arbitrary Meijer G-
function, as in Kalla [15], also in Parashar, Rooney, etc.:

IGf(t) = t−γ−1

∫ t

0
Gm,n

p,q

[
a(

τ

t
)r

∣∣∣∣ (aj)
p
1

(bk)
q
1

]
τγf(τ)dτ, (1.7)
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or its further generalization, the Fox H-function, as in Kalla [14], also in
Srivastava and Buschman [45], and others:

IHf(t) = t−γ−1

∫ t

0
Hm,n

p,q

[
a(

τ

t
)r

∣∣∣∣ (aj , Aj)
p
1

(bk, Bk)
q
1

]
τγf(τ)dτ. (1.8)

In his papers [15, 16] of years 1970-1979, Kalla suggested that all the
above operators of R-L type can be considered as “generalized operators of
fractional integration” of the general form:

If(t) = t−γ−1

t∫
0

Φ(
τ

t
) τγf(τ)dτ =

1∫
0

Φ(σ)σγf(zσ)dσ, (1.9)

where the kernel Φ(σ) is an arbitrary continuous function so that the above
integral makes sense in sufficiently large functional spaces. Kalla estab-
lished some general properties of (1.9), analogous to those of the classical
fractional integrals, and studied some special cases. By suitable choices of
the kernel-function Φ, the operators (1.9) can be shown to include all other
known fractional integrals as particular cases.

However, taking an arbitrary G- or H-function in the kernel of (1.9)
does not allow to develop a theory of a generalized fractional calculus and
to think about any possible applications. Thus, the very particular, or
the very general choice of the kernel special function, prevented the other
authors to develop further their operators’ theory beyond publishing some
few papers on them, containing formal manipulations.

Let us provide shortly the definitions of the two mentioned generalized
hypergeometric functions. More details on them can be found in the books
[12], [46], [38] and other newer ones. By a Fox’s H-function we mean the
generalized hypergeometric function defined by a contour integral

Hm,n
p,q (σ) = Hm,n

p,q

[
σ

∣∣∣∣ (a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

]
= Hm,n

p,q

[
σ

∣∣∣∣ (aj , Aj)
p
1

(bk, Bk)
q
1

]
=

1

2πi

∫
L

Hm,n
p,q (s)σsds,

(1.10)

where the integrand has the form

Hm,n
p,q (s) =

m∏
k=1

Γ(bk −Bks)
n∏

j=1
Γ(1− aj +Ajs)

q∏
k=m+1

Γ(1− bk +Bks)
p∏

j=n+1
Γ(aj −Ajs)

,

and L is a suitable contour in C; the orders (m,n; p, q) are nonnegative
integers such that 0 ≤ m ≤ q, 0 ≤ n ≤ q; the parameters Aj , j = 1, . . . , p
and Bk, k = 1, . . . , q are positive and aj, j = 1, . . . , p, bk, k = 1, . . . , q are
arbitrary complex numbers such that

Aj(bk+l) �= Bk(aj−l′−1); l, l′ = 0, 1, 2, . . . ; j = 1, . . . , p, k = 1, . . . , q.
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In particular, when all Aj = Bk = 1, we obtain the so-called Meijer’s
G-function:

Hm,n
p,q

[
σ

∣∣∣∣ (aj , 1)
p
1

(bk, 1)
q
1

]
= Gm,n

p,q

[
σ

∣∣∣∣ (aj)
p
1

(bk)
q
1

]
,

that is,

Gm,n
p,q

[
σ

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

]
=

1

2πi

∫
L

m∏
k=1

Γ(bk−s)
n∏

j=1
Γ(1−aj+s)

q∏
k=m+1

Γ(1−bk+s)
p∏

j=n+1
Γ(aj−s)

σsds.

(1.11)
Note that the known special functions all can be presented in terms of the
G- and H-functions.

It was a lucky hint for the author (myself) to make a very proper
choice of a peculiar Meijer’s G-function or Fox’s H-function, namely of the
form Φ(σ) = Gm,n

n,m+n[σ], Φ(σ) = Hm,n
n,m+n[σ] (n = 0 in case of R-L type

only), so to introduce and consider operators of form (1.9) for which a
full theory (Generalized Fractional Calculus, GFC) could be developed and
various applications to different areas of analysis, differential equations,
problems of mathematical physics, etc. have been demonstrated. The wide
applicability of the GFC theory is hidden in the fact that our basic operators
of generalized fractional integration (first introduced in [20], [21], [22]):

I
(γk),(δk)
(βk),m

f(t) :=

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣ (γk + δk)
m
1

(γk)
m
1

]
f(zσ)dσ =

m∏
k=1

Iγk ,δkβk
f(t),

(1.12)
happen to be compositions of finite number of commutable E-K operators
(1.5), while their operational rules and their theory could be easier derived
by using the special functions theory (G- and H-functions) in the represen-
tation of the form (1.9).

More details on the historical aspects of introduction of the GFC, its
concepts and examples can be seen in our previous paper [26].

It is a pleasure to express my personal gratitude to Prof. Dimovski
who was scientific advisor of both my M.Sc. thesis [19] of 1975 and Ph.D.
thesis [20] of 1986, and a colleague for 40 years. Thus, all my research had
been influenced by the starting point to deal with the hyper-Bessel operators
and our further collaboration. He introduced me to the field of integral
transforms, proposing me as a task of the M.Sc. thesis, to continue his
studies on the Obrechkoff integral transform. The relationship of its kernel
function to Meijer’s G-function generated my further interest to special
functions. And the hyper-Bessel operators and their fractional powers,
expressed in terms of integral operators involving G-functions gave rise to
the theory of the generalized operators of integration and differentiation of
fractional (multi-)order, the GFC, developed in my monograph [23].
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2. Dimovski’s hyper-Bessel operators and
the Obrechkoff integral transform

In 1958 Nikola Obrechkoff proposed a far reaching generalization of the
Laplace and Meijer transforms that later could be related to the hyper-
Bessel differential operators. Since his paper [36] appeared originally in
Bulgarian (and only recently also as English translation), it became known
to the specialists abroad after a long delay, due to the works of Dimovski
and our joint works, and their citations in international journals. Mean-
while, many special cases of the Obrechkoff transform were rediscovered by
different authors. Such integral transforms were proposed, for example, by
Ditkin and Prudnikov (1963), Botashev (1965), Krätzel (1965-67), Betan-
cor (1989), Mendez (1988), etc. (see details in [23, Ch.3], [10], and other
our works).

The original Obrechkoff integral transform from the paper [36] had the
form

F (s) =

∞∫
0

Φ(ts) f(t)dt (2.1)

with a kernel Φ(s) given by the integral representation

Φ(s) =

∞∫
0

· · ·
∞∫
0

uβ1
1 . . . u

βp
p exp

(
−u1 − · · · − up − s

u1 . . . up

)
du1 . . . dup.

(2.2)
Obrechkoff established that the above kernel-function satisfies a kind

of (what we call it now) hyper-Bessel differential equation of order p+1:

tβp+1 d

dt
t−βp+βp−1+1 d

dt
· · · t−β2+β1+1 d

dt
t−β1

d

dt
Φ(t) = (−1)p−1Φ(t),

and studied its asymptotic properties. Of this, it is close to realize that the
transform (2.1) can be used as a transform basis for an operational calculus
for the Bessel type differential operator

B =
d

dt
tβ1

d

dt
tβ2−β1−1 · · · d

dt
tβp−βp−1−1 d

dt
t−βp−1, (2.3)

as a kind of “adjoint” to the previously written differential operator.
After Obrechkoff’s death, since 1966, Dimovski [3], [4] developed a

Mikusinski-type approach to an operational calculus for a variant of (2.3),
namely for the most general differential operator of Bessel type of arbitrary
(integer) order m > 1 (called later as hyper-Bessel operator, see [23]):

B = tα0
d

dt
tα1

d

dt
· · · tαm−1

d

dt
tαm , 0 < t < ∞ , (2.4)

with real indices αk, k = 1, ...,m and β = m− (α0 + α1 + · · · + αm) > 0.
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Further, in the period 1968-1974, he duplicated his “algebraic” ap-
proach, by using a slight modification of Obrechkoff’s transform as a trans-
form basis of the operational calculus for the Bessel type differential operator
(2.4), see e.g. [5]. Dimovski was the first to use the notion “Obrechkoff
transform” for (2.1), accepted later in his and mine papers and now used
also by many other authors. Along with developing the relation of (2.1) to
the hyper-Bessel operators (2.4) and some of its basic operational proper-
ties and inversion formulas (summaries of these can be found in [23, Ch.3],
[10]), we have found also a close relation of these operators and of the
Obrechkoff transform to the Meijer G-functions (e.g. [8], [9], [20]) and
to the generalized fractional calculus ([20], [21], etc.) It seems that it re-
mained unknown for Obrechkoff himself that functions rather close to his
kernel (2.2) in (2.1) had been introduced by Erdélyi [11], in terms of the
generalized hypergeometric functions. In my case, I myself discovered that
this kernel-function is a case of Meijer’s G-function, by considering the form
of its Mellin transformation and reading the book of Bateman-Erdélyi [12,
Vol.1]. It was the crucial moment for the new developments in this field.

Practically, Dimovski proposed and considered a modification of the
Obrechkoff transform (2.1), suitable for building an operational calculus
for the Bessel-type differential operators in their general form (2.4).

Definition 2.1. Let m > 1 be an integer. By means of {αk, k =
0, 1, . . . ,m}, we define the set of parameters {γk, k = 1, . . . ,m; β > 0}:
β = m− (α0+α1+αm); γk =

1

β
(αk + · · ·+ αm −m+ k) , k = 1, . . . ,m.

Since

B = tα0
d

dt
tα1

d

dt
. . . tαm−1

d

dt
tαm

= t−β−βγ1+1 d

dt
tβγ1−βγ2+1 d

dt
. . . tβγm−1−βγm+1 d

dt
tβγm

= t−β(t−βγ1+1 d

dt
tβγ1)(t−βγ2+1 d

dt
tβγ2) . . . (t−βγm+1 d

dt
tβγm)

= t−β(t
d

dt
+ βγ1) . . . (t

d

dt
+ βγm),

the hyper-Bessel differential operators (2.4) can be alternatively defined by
a representation

B = t−β
m∏
k=1

(
t
d

dt
+ βγk

)
= t−βQm(t

d

dt
), 0 < t < ∞, (2.5)

which is symmetric with respect to the zeros μk = −βγk, k = 1, . . . ,m of
them-th degree polynomial Qm(μ). Thus, for convenience, one can suppose
that the γk’s are arranged in a nondecreasing order, say as:

γ1 ≤ γ2 ≤ · · · ≤ γm.
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To get a full impression on the nature of the hyper-Bessel differential
operators, let us mention also that usually they appear in the problems of
mathematical physics in the more conventional form

B = t−β

[
tm

dm

dtm
+ a1t

m−1 dm−1

dtm−1
+ · · ·+ am

]
,

which is equivalent to representations (2.4),(2.5), if we take

am−k =

m∑
j=0

[
(−1)j

j!(k − j)!

m∏
i=1

(βγi + k − j)

]
, k = 0, 1, . . . ,m− 1.

Thus, each Bessel-type differential operator of order m > 1 can be de-
fined uniquely by means of one of the (m+1)-parameters’ sets: (α0, α1, ..., αm),
(β; γ1, ..., γm), (β; a1, ..., am), resp. in the above 3 forms.

Definition 2.2. Let β > 0, γ1 ≤ γ2 ≤ · · · ≤ γm be real numbers and

K(s) =

∞∫
0

· · ·
∞∫
0

[
m−1∏
k=1

uγk−γm−1
k

]

× exp

(
−u1 − · · · − um−1 − s

u1 . . . um−1

)
du1 . . . dum−1.

(2.6)

The following modification of the original Obrechkoff transform (2.1):

O{s} = O{f(t); s} = β

∞∫
0

K
[
(ts)β

]
tβ(γm+1)−1 f(t)dt (2.7)

is further called, for simplicity, by the same name “Obrechkoff transform”.

However, from the point of view of the special functions, I have consid-
ered and worked with the Obrechkoff transform in its new alternative form
as a G-transform, that is with a G-function as a kernel (see [19], [20], [23],
etc).

Definition 2.3. The G-transformation

O{f(t); s} = βs−β(γm+1)+1

∞∫
0

Gm,0
0,m

[
(ts)β

∣∣∣∣ −
(γk − 1

β + 1)m1

]
f(t)dt (2.8)

is said to be an Obrechkoff integral transform, corresponding to hyper-Bessel
operators (2.4), (2.5).

This new definition allows us to simplify considerably most of the calcu-
lations and proofs of the properties of the Obrechkoff transform, by using
the known theory of the G-functions, see e.g. [13], as a differential law,
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real and complex inversion formulas, convolution and Abel-type theorems,
images of many sample functions, etc.

Note that the Obrechkoff transform includes, among the mentioned
special cases studied in 70s-80s, also the classical Laplace and Meijer trans-
forms as very special cases with m = 1,m = 2, serving for operational
calculi for the 1st order operator d/dt and the 2nd order Bessel differential
operator.

The notion hyper-Bessel integral operator L is used for the linear right
inverse operator of B, defined by means of the IVP

By(t) = f(t), lim
t→+0

Bi y(t) = 0, i = 1, . . . ,m,
where

Bi = tαi
d

dt
tαi+1 . . .

d

dt
tαm = tβγi

m∏
j=i+1

(
t
d

dt
+ βγj

)
denote the Bessel-type initial conditions. This integral operator has the
following explicit form used in the works of Dimovski:

y(t) = Lf(t) =
tβ

βm

1∫
0

· · ·
1∫

0

[
m∏
k=1

tγkk

]
f
[
t(t1 . . . tm)1/β

]
dt1 . . . dtm. (2.9)

It is considered usually in the space Cα of power-weighted continuous func-
tions of the form

C(k)
α :=

{
f(t) = tpf̃(t), p > α, f̃ ∈ C(k)[0,∞)

}
, C(0)

α := Cα, (2.10)

and L : Cα 
→ Cα+β ⊂ Cα.
Again using the Meijer G-function, in our works we have considered

and started to use it in the more concise form

Lf(t) =
tβ

βm

1∫
0

Gm,0
m,m

[
σ

∣∣∣∣ (γk + 1)m1
(γk)

m
1

]
f(tσ1/β)dσ. (2.11)

In the paper [4] of 1968, Dimovski considered also fractional powers of
the integral operator L, namely the operators Lλ, λ > 0. To express them,
he used his notion of convolution (basic one in the monograph [7]) defined
for the hyper-Bessel integral operators as follows ([3]):

f ∗ g(t) := Tν (f ◦ g) (t), ν > max
1≤k≤m

γk,

where

Tνf(t) =
tνβ∏m

k=1 Γ(ν − γk)
(2.12)

×
1∫

0

...

1∫
0

f [t(t1...tm)1/β ]
m∏
k=1

[
t2γk(1− tk)

ν−γk−1
]
dt1...dtm,

and
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f ◦ g(t) = tβ
1∫

0

...

1∫
0

f [t(t1...tm)1/β ] g[t((1 − t1)...(1 − tm))1/β ]

×
m∏
k=1

[tk(1− tk)]
γk dt1...dtm.

Namely, Dimovski represented the fractional powers of L as

Lλf = {lλ}∗f, with lλ =

⎧⎪⎪⎨⎪⎪⎩
tβ(λ−δ−1)

m∏
k=1

Γ(λ− δ + γk)

⎫⎪⎪⎬⎪⎪⎭ , (2.13)

where δ ≥ maxk γk. And he proved that under this definition, the semi-
group property of FC is satisfied: Lλ Lμ = Lλ+μ, λ > 0, μ > 0, Ln =
L · L · · · L.

However, from our point of view based on the G-functions, we were able
to find a representation similar in its form to (2.11),

Lλf(t) =
tβ

βm

1∫
0

Gm,0
m,m

[
σ

∣∣∣∣ (γk + λ)m1
(γk)

m
1

]
f(tσ1/β)dσ. (2.14)

This representation of the fractional powers of the hyper-Bessel operators
is first published in our paper joint with Dimovski [9] and coincides with
the results proposed by McBride [35] found in completely different way.

Then my step was to think about what was to be if I replace the param-
eters in the upper row of the above kernel G-function

(γ1 + λ, γ2 + λ, ..., γm + λ) by (γ1 + δ1, γ2 + δ2, ..., γm + δm)

with arbitrary and different δ1 > 0, δ2 > 0, ..., δm > 0 ? This led me to the
idea of the operators of fractional integration of multi-order (vector order)
(δ1, δ2, ..., δm), whose theory (GFC) was developed in [20] and [23].

3. Generalized fractional calculus

3.1. Basic definitions of the operators of GFC, [23]

Definition 3.1. Let m≥ 1 be integer, β > 0, γ1, ..., γm and δ1 ≥ 0,
..., δm ≥ 0 be arbitrary real numbers. By a generalized (multiple, m-tuple)
Erdélyi-Kober (E-K) operator of integration of multi-order δ = (δ1, ..., δm)
we mean an integral operator of the form

I
(γk),(δk)
β,m f(t) =

∫ 1

0
Gm,0

m,m

[
σ

∣∣∣∣ (γk + δk)
m
1

(γk)
m
1

]
f(tσ

1
β ) dσ, if

m∑
k=1

δk > 0,

(3.1)



988 V. Kiryakova

and I
(γk),(0,0,...,0)
β,m f(t) = f(t). Then, each operator of the form

If(t) = tβδ0 I
(γk),(δk)
β,m f(t) with arbitrary δ0 ≥ 0,

is said to be a generalized (m-tuple) operator of fractional integration of
Riemann-Liouville type, or briefly: a generalized (R.-L.) fractional integral.

Generalizing further the operators of fractional, calculus, in Kiryakova
[22], [17], [23, Ch.5] we introduced also operators involving classes of Fox’s
H-functions instead of the G-functions in (3.1). They are called in the same
way, namely generalized (multiple) E.-K. operators (fractional integrals):

I
(γk),(δk)
(βk),m

f(t)

=

⎧⎪⎨⎪⎩
1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk + 1− 1
βk
, 1
βk
)m1

(γk + 1− 1
βk
, 1
βk
)m1

]
f(tσ)dσ, if

m∑
k=1

δk > 0,

f(z), if δ1 = δ2 = · · · = δm = 0.

(3.2)
Thus, along with the multi-order of integration (δ1, ..., δm) and the

multi-weight (γ1, ..., γm), we introduced also a multi-parameter (β1 > 0, ...,
βm > 0) with different βk’s, instead of the same β > 0 in the case with a
G-function. Note that the operator (3.2) involving a H-function reduces to
its simpler form (3.1),

for β1 = β2 = ... = βm = β > 0 : I
(γk),(δk)
(β,β,...,β),m = I

(γk),(δk)
β,m .

Definition 3.2. With the same parameters as in previous definition,
and taking the integers

ηk =

{
δk if δk is integer,

[δk] + 1, if δk is noninteger,
k = 1, . . . ,m, (3.3)

we introduce the auxiliary differential operator

Dη =

⎡⎣ m∏
r=1

ηr∏
j=1

(
1

βr
t
d

dt
+ γr + j

)⎤⎦ . (3.4)

Then, we define the multiple (m-tuple) Erdélyi-Kober fractional derivative
of multi-order δ = (δ1 ≥ 0, . . . , δm ≥ 0) and of R-L type by means of the
differ-integral operator:

D
(γk),(δk)
(βk),m

f(t) = Dη I
(γk+δk),(ηk−δk)
(βk),m

f(t)

= Dη

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + ηk + 1− 1
βk
, 1
βk
)m1

(γk + 1− 1
βk
, 1
βk
)m1

]
f(tσ) dσ.

(3.5)
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In the case of equal βk’s, we obtain simpler representations involving the
Meijer G-function, corresponding to generalized fractional integral (3.1):

D
(γk),(δk)
β,m f(t) = Dη I

(γk+δk),(ηk−δk)
β,m f(t) (3.6)

=

⎡⎣ m∏
r=1

ηr∏
j=1

(
1

β
t
d

dt
+ γr + j

)⎤⎦ I
(γk+δk),(ηk−δk)
β,m f(t).

More generally, all differ-integral operators of the form

Df(t) = D
(γk),(δk)
β,m t−βδ0f(t) = t−βδ0D

(γk−δ0),(δk)
β,m f(t) with δ0 ≥ 0,

are called generalized (multiple, multi-order) fractional derivatives.

Let us note that recently, in our joint paper with Luchko [30], we have
introduced also the Caputo type generalized fractional derivative, as the
integro-differential operator

∗D(γk),(δk)
(βk),m

f(t) := I
(γk+δk),(ηk−δk)
(βk),m

Dηf(t) (3.7)

=

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk+ηk+1− 1
βk
, 1
βk
)m1

(γk+1− 1
βk
, 1
βk
)m1

] [ m∏
r=1

ηr∏
j=1

(
1

βr
t
d

dt
+γr+j

)
f(tσ)

]
dσ,

where the parameters are the same as in the previous definitions and the
order of the auxiliary differential operator Dη is interchanged with the
multiple E-K fractional integration.

3.2. Basic operational rules in GFC

Let us mention that the main functional spaces discussed in our works
on GFC are the same weighted spaces of continuous functions Cα as for
the hyper-Bessel operators, (2.10), also - these of Lebesgue integrable or
analytic functions with power weights, Lα,p(0,∞) and resp. Hα(Ω), Ω being
a starlike domain in C containing the zero point. We suppose, in principle
the following parameters’ conditions as satisfied:

γk ≥ − α

βk
− 1, δk ≥ 0, k = 1, ...,m. (3.8)

Let us state first the basic result for the generalized fractional integrals
(3.2) suggesting their alternative name “multiple (m-tuple)” E-K fractional
integrals.

Proposition 3.1. (Composition/Decomposition theorem) Under the

conditions (3.8), the classical E-K fractional integrals (1.5): Iγk,δkβk
, k =

1, . . . ,m, commute in the spaces Cα, Lα,p, Hα, and their product

Iγm,δm
βm

{
I
γm−1,δm−1

βm−1
. . .

(
Iγ1,δ1β1

f(t)
)}

f(t) =

[
m∏
k=1

Iγk,δkβk

]
f(t)
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=

1∫
0

. . .
(m)

1∫
0

[
m∏
k=1

(1 − σk)
δk−1σγk

k

Γ(δk)

]
f

(
tσ

1
β1
1 . . . σ

1
βm
m

)
dσ1 . . . dσm (3.9)

can be represented as an m-tuple E-K operator (3.2), i.e. by means of a
single integral involving the H-function:[

m∏
k=1

Iγk,δkβk

]
f(t) = I

(γk),(δk)
(βk),m

f(t)

=

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk + 1− 1
βk
, 1
βk
)m1

(γk + 1− 1
βk
, 1
βk
)m1

]
f(tσ)dσ, f ∈ Cα (resp. Lα,p,Hα).

Conversely, under the same conditions, each multiple E-K operator of form
(3.2) can be represented as a product (3.9).

Here we mention only briefly the basic operational rules for the opera-
tors of GFC, from Kiryakova [23], that have been proven by using the single
integral representation (3.2) and the tools of G- and H-function, much eas-
ier than to exploit complicated repeated integrations (and differentiations).

Lemma 3.1. The multiple E-K fractional integral (3.2) preserves the
power functions in Cα, with α ≥ max

k
[−β(γk + 1)] (this means (3.8) holds),

up to a constant multiplier:

I
(γk),(δk)
(βk),m

{tp} = cpt
p, p > α, where cp =

m∏
k=1

Γ(γk +
p
βk

+ 1)

Γ(γk + δk +
p
βk

+ 1)
,

and it is an invertible mapping I
(γk),(δk)
(βk),m

: Cα 
→ C
(η1+···+ηm)
α ⊂ Cα.

Analogously, under the same conditions, (3.2) maps the class Hα(Ω)
into itself, preserving the power functions (up to constant multipliers like
above) and the image of a power series has the same radius of convergence.

It is also shown that (3.2) has a Mellin type convolutional representa-
tion, based on its Mellin image. Another expected result is the following.

Lemma 3.2. Under conditions (3.8) the generalized fractional integral

I
(γk),(δk)
(βk),m

f(t) exists almost everywhere on (0,∞) and it is a bounded linear

operator from the Banach space Lα,p into itself. More exactly,∥∥∥I(γk),(δk)(βk),m
f
∥∥∥
α,p

≤ hα,p ‖f‖α,p, i.e.
∥∥∥I(γk),(δk)(βk),m

f
∥∥∥ ≤ hα,p

with hα,p =
m∏

k=1

Γ(γk − α
pβk

+ 1) / Γ(γk + δk − α
pβk

+ 1) < ∞.
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We list below the following operational rules confirming that the oper-
ators of our GFC satisfy the axioms of FC.

Proposition 3.2. Suppose conditions (3.8) hold. Then, in Cα, Lα,p,
Hα, the following basic operational rules hold:

I
(γk),(δk)
(βk),m

{λf(ct) + ηg(ct)} = λ
{
I
(γk),(δk)
(βk),m

f
}
(ct) + η

{
I
(γk),(δk)
(βk),m

g
}
(ct)

(bilinearity of (3.2));

I
(γ1,...,γs,γs+1,...,γm),(0,...,0,δs+1,...,δm)
(β1,...,βm),m f(t) = I

(γs+1,...,γm)(δs+1,...,δm)
(βs+1,...,βm),m−s f(t)

(if δ1 = δ2 = · · · = δs = 0, then the multiplicity reduces to (m−s));

I
(γk),(δk)
(βk),m

zλf(t) = zλI
(γk+

λ
βk

),(δk)

(βk),m
f(t), λ ∈ R

(generalized commutability with power functions);

I
(γk),(δk)
(βk),m

I
(τj ),(αj)

(εj),n
f(t) = I

(τj),(αj )

(εj),n
I
(γk),(δk)
(βk),m

f(t)

(commutability of operators of form (3.2));

the left-hand side of above = I
((γk)

m
1 ,(τj)

n
1 )((δk)

m
1 ,(αj)

n
1 )

((βk)
m
1 ,(εj)n1 ),m+n f(t)

(compositions of m-tuple and n-tuple integrals (3.2) give (m+n)-tuple
integrals of same form);

I
(γk+δk),(σk)
(βk),m

I
(γk),(δk)
(βk),m

f(t)=I
(γk),(σk+δk)
(βk),m

f(t), if δk > 0, σk > 0, k = 1, ...,m

(law of indices, product rule or semigroup property);{
I
(γk),(δk)
(βk),m

}−1
f(t) = I

(γk+δk),(−δk)
(βk),m

f(t)

(formal inversion formula).

The above inversion formula follows from the index law for σk = −δk <
0, k = 1, ...,m and the definition for zero multi-order of integration, since:

I
(γk+δk),(−δk)
(βk),m

I
(γk),(δk)
(βk),m

f(t) = I
(γk),(0,...,0)
βk,m

f(t) = f(t).

But symbols (3.2) have not yet been defined for negative multi-orders
of integration −δk < 0, k = 1, . . . ,m. The problem is to propose an appro-
priate meaning for them and hence to avoid the appearance of divergent
integrals. The situation is the same as in the classical case when the R-L
and E-K operators of fractional order δ > 0 can be inverted by appealing to
an additional differentiation of suitable integer order η = [δ]+1. In the case
of GFC, it was resolved by means of the auxiliary differential operator Dη

as in (3.4), used in the definitions of the generalized fractional derivatives
of R-L or Caputo type, (3.5), (3.6), (3.7).
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3.3. Examples of operators of GFC

Example 1. In the case m = 1, the “multiple” E-K operators and
the generalized fractional integrals and derivatives reduce to the classical
(“single”) E-K operators (1.5), resp. E-K derivatives, and for γ = 0 - to
the R-L integral, R-L and Caputo derivatives.

Example 2. For m = 2 the operators of the GFC reduce to the
hypergeometric operators (1.6), since G2,0

2,2 can be expressed via the Gauss

hypergeometric function function, see [23, p.18].

Example 3. For m = 3 the kernel-function G3,0
3,3 with special pa-

rameters gives the so-called Horn’s (Appell’s) F3-function, see [23, p.21].
Operators with such kernel have been considered by Marichev [34], Saigo
et al. [41], and appear as interesting cases of the generalized fractional
integrals and derivatives:

Ff(t) =

t∫
0

(t− τ)c−1

Γ(c)
F3(a, a

′, b, b′, 1 − t

τ
, 1− τ

t
) f(τ)dτ

= tc I
(a,b,c−a′−b′),(b,c−a′−b,a′)
1,3 f(t).

Example 4. Let m > 1 be arbitrary integer, but all δk = 1, βk = β >
0, k = 1, ...,m. Then, the operators of form (3.1)-(3.2) and (3.5)-(3.6):

Lf(t) = ctβI
(γk),(1,...,1)
β,m f(t), Bf(t) = (1/c)D

(γk),(1,...,1)
β,m t−β f(t) (3.10)

are the hyper-Bessel integral operators, resp. hyper-Bessel differential op-
erators! That is, the hyper-Bessel operators of order m giving us the hint
for the appropriate definitions of the operators of the GFC, appear as their
special cases when the integration and differentaition is of integer “multi-
order” (1, ..., 1), see [23, Ch.3]. Let us mention that in such case the R-L
and Caputo type generalized “fractional” derivatives both coincide with
the hyper-Bessel differential operators B.

Example 5. A more general case than Example 4 gives fractional
indices analogues of the hyper-Bessel operators. Let μ1, ..., μm be arbitrary
real and ρ1 > 0, ..., ρm > 0. With these parameters, for a power series

f(t) =
∞∑
k=0

akt
k convergent in {|t|<R} ⊂ C, (3.11)

we consider the following Gelfond-Leontiev (G-L) operator of generalized
integration

I(μk),(ρk)f(t) =

∞∑
k=0

ak
Γ(μ1 + k/ρ1)...Γ(μm + k/ρ1)

Γ(μ1 + (k+1)/ρ1)...Γ(μm + (k+1)/ρ1)
tk+1, (3.12)

and resp. the G-L generalized differentiation,
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D(μk),(ρk)f(t) =
∞∑
k=1

ak
Γ(μ1 + k/ρ1)...Γ(μm + k/ρ1)

Γ(μ1 + (k−1)/ρ1)...Γ(μm + (k−1)/ρ1)
tk−1.

(3.13)
It happens that their analytical continuations in starlike complex domains
Ω are generalized fractional integrals and derivatives of the form

I(μk),(ρk)f(t)= t I
(μk−1),(1/ρk)
(ρk),m

f(t), (3.14)

D(μk),(ρk)f(t)= t−1D
(μk−1−1/ρk),(1/ρk)
(ρk),m

f(t)−
[

m∏
k=1

Γ(μk)

Γ(μk−1/ρk)

]
f(0)

t
. (3.15)

Evidently, for parameters taken as μk = γk + 1, ∀ρk = 1, k = 1, ...,m these
G-L operators coincide with the hyper-Bessel operators L and resp. B (for
functions with a0 = 0) with parameter β = 1.

Example 6. Many linear integration and differentiation operators used
in geometric functions theory, in studies on classes of univalent functions,
are GFC operators, see for example [23, Ch.5].

A more extensive list of numerous other particular cases of the GFC op-
erators, including transmutation operators, can be found in [23] and other
our papers. Let us note, for example, that the operator Tν (2.12) in Di-
movski’s convolution for the hyper-Bessel operator L, the generalizations
of the Poisson and Sonine transformations related to same operator, are
also generalized fractional integrals.

4. Applications of GFC back to
special functions and integral transforms

In this part we survey in very short way some applications to the theory
of special functions and integral transforms that appear together with de-
velopment of the GFC, and therefore might be seen as aside effect from the
introduction of the hyper-Bessel operators dy Dimovski in 60s. Namely,
based on the GFC with the G- and H-functions, we have been able to
introduce and study some new classes of special functions and of Laplace
type integral transforms, as: the multi-index Mittag-Leffler functions and
the fractional Obrechkoff transform. Additionally, we had the idea to rep-
resent most of the special functions as GFC operators of 3 basic elementary
functions and accordingly to this, to classify them in 3 main classes.

4.1. Multi-index Mittag-Leffler functions

Let us go back to the notion of the generalized Gelfond-Leontiev inte-
gration and differentiation operators introduced in [13] in 1951, mentioned
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in the above Example 5. In the general case, to the series (3.11) the G-L
operators put in correspondence the series

Ĩf(t) =
∞∑
k=0

ak
ϕk+1

ϕk
tk+1, D̃f(t) =

∞∑
k=1

ak
ϕk−1

ϕk
tk−1, (4.1)

having the same radius of convergence R, where the multipliers are formed

by means of the coefficients ϕk of an entire function ϕ(λ) =
∞∑
k=0

ϕk λ
k, |t| <

∞, of order ρ > 0 and type σ �= 0 such that lim
k→∞

k1/ρ k
√|ϕk| = (σeρ)1/ρ. The

entire function ϕ(λ) is said to be a generating function of the G-L operators.
To make the matter more popular, have in mind that for ϕ(λ) = exp(λ) one

gets as Ĩ and D̃ the conventional integration and differentiation operators.
In earlier papers joint with Dimovski, we have considered G-L operators
generated by the Mittag-Leffler (M-L) function and they appeared as ex-
amples of the E-K operators, details can be seen in [23, Ch.2]. The form
of operators (3.12) and (3.13) suggested us to consider the entire function

ϕ(λ) = E( 1
ρk

),(μk)
(λ) =

∞∑
k=0

ϕkλ
k =

∞∑
k=0

λk

Γ(μ1 + k/ρ1) . . .Γ(μm + k/ρm)
.

(4.2)
We called it “multi-index Mittag-Leffler (M-L) function” and studied its
properties in a series of papers, for example [25], [28], [29], etc.

The same function, called “vector-indexed M-L function” happened to
be introduced also in some works by Luchko et al., for example in the
book Yakubovich-Luchko [48], the paper [31], etc. as a tool to represent
explicitly the solutions of some fractional order differential equations. It is
important to mention also that these authors have also studied the hyper-
Bessel operators of Dimovski, his convolutions and applied them to develop
operational methods for fractional order operators (see Luchko [31]), further
results on generalized Obrechkoff transform, etc.

Let us note that the multi-index M-L functions can be seen as fractional
indices analogues of the so-called hyper-Bessel functions of Delerue (on
their own side being multi-index analogues of the classical Bessel function)
that are eigenfunctions for the hyper-Bessel differential operators. Pre-
cisely, m-terms set of them with permutated indices form a fundamental
system of solutions of the hyper-Bessel differential equation By(t) = λy(t),
for details seen [23, Ch.3] and some information given also in the paper
by Paneva-Konovska [37] in the same FCAA issue (see there (1.1)-(1.2)
and the remark after (1.4)). To compare, let us mention the fact that
the “new” multi-index M-L functions provide solutions to more general
differential equations of multi-order (1/ρ1, ..., 1/ρm) instead of the integer
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multi-order (1, ..., 1) of B. Namely, it is proven that y(t) = E( 1
ρk

),(μk)
(λt)

solves the equation D(μk),(ρk)y(t) = λy(t), with the Caputo-type general-
ized fractional derivative in the sense of the G-L differentiation (3.13). See
for example, our paper [1].

4.2. Fractional indices analogue of the Obrechkoff transform

The introduction of the G-L operators (3.12)-(3.13) generated by the
multi-index M-L function (4.2) motivated us to look for a Laplace-type
integral transformation that would play for these generalized fractional dif-
ferentiations and integrations the same role as the Laplace transform for
the conventional differentiation and integration, as the Meijer transform
for the Bessel differential operator (m = 2) and as the Obrechkoff trans-
form for the hyper-Bessel operators (arbitrary m>1). Thus, we introduced
the following fractional indices analogue of the Obrechkoff transform, called
initially in our papers as multiple Borel-Dzrbashjan transform:

B(s) = B(ρk),(μk) {f(t); s} =
1

s

∞∫
0

Hm,0
0,m

[
st

∣∣∣∣ −
(μk, 1/ρk)

]
f(t)

t
dt. (4.3)

We skip here the details given in the papers [25], [2], and mention only
that (4.3) is closely related to the multi-index M-L function:

B(ρk),(μk)

{
E(1/ρk),(μk)(t); s

}
=

1

s− 1
,

and to the G-L operators generated by it. For example, the “integration”
and “differentiation” laws of the corresponding operational calculus hold:

B(ρi),(μi)

{
L(ρi),(μi)f(z); s

}
=

1

s
B(ρi),(μi) {f(z); s}

and

B(ρi),(μi)

{
D(ρi),(μi)f(z); s

}
= s B(ρi),(μi) {f(z); s} − f(0) [

m∏
i=1

Γ(μi)],

together with the found convolution, complex and real inversion formulas
for this H-transform. Evidently, for ∀ρk = 1, k = 1, ...,m it reduces to the
Obrechkoff transform as G-transform (2.8), and so, to its special cases.

4.3. Transmutation operators

As already mentioned, the operator Tν (2.12) in Dimovski’s convolution
for the hyper-Bessel operator L can be written as a generalized fractional in-
tegral with a G-function in the kernel instead of the repeated integrations.
So is for the generalizations of the Poisson and Sonine transformations
proposed by Dimovski in relation to the hyper-Bessel operators that we
have called later as Poisson-Sonine-Dimovski transformations. As trans-
mutation operators, they can be, and were, effectively used to reduce the
unknown solutions of problems for hyper-Bessel operators (as convolutions,
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solutions of equations, etc) to the known ones for the simpler operators of
same order m as d/dtm and the m-fold integration. See details in our works
as [23, Ch.3, Ch.4], [27], etc. Especially, the Poisson-Dimovski transforma-
tion and its generalization - as operators of GFC, have been applied also
to find new integral representations for the hyper-Bessel functions and for
the multi-index M-L functions, appearing as generalizations of the classical
Poisson integral representing the Bessel function by means of the cosine
function. On this matter, along with the stuff in [23], see some recent
papers as [28], [29].

The operators of GFC, used as transmutation operators have been used
also to construct new integral transforms of Laplace type with G- and H-
functions in the kernels, when applying them on the Laplace transform. As
a matter of fact, such one is the Obrechkoff transform itself, as generated
from the Laplace transform by means of the Sonine-Dimovski transform.
For more, see [23, Ch.3, Ch.5], [10], [2], etc.

Finally, we like separately to emphasize another important application
of the GFC operators as transmutation operators. To be short, we present
the basic proposition from the papers [24] and [29], whose origins are con-
tained in [23, Ch.4].

Proposition 4.1. All the generalized hypergeometric functions pFq(t),
that is all the classical special functions, can be considered as generalized
(q-multiple) fractional integrals (3.1), or/and their respective generalized
fractional derivatives (3.6), of one of the following 3 basic elementary func-
tions, depending on whether p < q, p = q or p = q + 1:

cosq−p+1(t) (if p < q) , tα exp t (if p = q) , tα (1− t)β (if p = q + 1).
(4.4)

Further, for the so-called “special functions of FC” including the Wright
generalized hypergeometric functions pΨq as Fox H-functions, analogous
assertion is proved in [29], where GFC operators with H-function are used.

This treatment allows to think about the special functions as general-
ized fractional integrals and derivatives of 3 simplest basic functions, and
to consider them as belonging to one of the 3 basic classes: generalized
hypergeometric functions (g.h.f.) of cosine-Bessel type (when p < q, as
are the cos, cosm, Bessel function, hyper-Bessel functions 0Fm), g.h.f. of
exponential-confluent type (when p=q, as are the exp, 1F1, pFp) and g.h.f.
of Gauss type (when p = q+1, as are the beta-distribution, the Gauss

2F1-function, p+1Fp).
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