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The Slit Island Method (SIM) is a technique for the estimation of the fractal dimension of an object by determining the area–
perimeter relations for successive slits. The SIM could be applied for image analysis of irregular grayscale objects and their
classification using the fractal dimension. It is known that this technique is not functional in some cases. It is emphasized in
this paper that for specific objects a negative or an infinite fractal dimension could be obtained. The transformation of the
input image data from unipolar to bipolar gives a possibility of reformulated image analysis using the Ising model context.
The polynomial approximation of the obtained area-perimeter curve allows object classification. The proposed technique is
applied to the images of cervical cell nuclei (Papanicolaou smears) for the preclassification of the correct and atypical cells.
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1. Introduction

There are numerous techniques for the description
of object shape and texture. The typical parameters
are the area, perimeter, Fourier descriptors and the
Ferret diameter. Loncaric (1998), Zieliński and Strzelecki
(2002), Mingqiang et al. (2008), Smereka and Dulęba
(2008), Costa and Cesar Jr. (2009) as well as Śmietański
et al. (2010) showed more than a hundred object
descriptors, related to the shape. New descriptors are
still being developed. The description of the texture is
more complex: statistical parameters, spatial relations and
multiscale techniques are applied (Engler and Randle,
2010).

The estimation of the Fractal Dimension (FD) is
very important for pattern recognition theory and its
applications. The FD creates a bridge between local and
global object characteristics. Original works related to
the FD are focused on the estimation of the single value
FD (Mandelbrot, 1983; Peitgen et al., 1991; 1992). The
single FD value is not feasible for real applications,
because FD changes are observed depending on the
scale. This is typical for many natural objects (Kaye,
1994; Barnsley et al., 1988). The estimation of the FD

is very important for large scale and microworld object
descriptions (Seuront, 2010; Kaye, 1994; Mandelbrot,
1983). The FD allows the estimation of the object’s
parameters and further computer synthesis of similar
objects that is used in computer graphics, for example.

The concept of the FD is based on non-integer
dimensions (Mandelbrot, 1983; Peitgen et al., 1991).
There are many definitions of the dimension, and some
of them allow fractional values of the dimension. The
fractional dimension is the effect of higher space filling
abilities of an object. A single curve (1D object) fills a
2D area, so it behaves as an object that has a non-integer
dimension with a value between 1 and 2. A similar
concept is related to 2D surfaces which fill the 3D space
partially.

The most well-known FD estimators are the coastline
stick, area (e.g., box-counting), or volume (Mandelbrot,
1983; Peitgen et al., 1991). Estimation of the FD is based
on the analysis of the space filling by the line, square
or box, depending on the scale. The scale is defined by
the size of the filling element. Changes in FD values
could be obtained depending on the scale. The graphical
representation in the double logarithmic plot is known
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as the Richardson plot (Mandelbrot, 1983; Peitgen et al.,
1991; Steven, 1993). The slope of the regression line from
the Richardson plot is used for the computation of the
FD, but some additional operations are desired for the
specific FD estimator. Many natural objects change the FD
depending on the scale, so local regression lines should be
used, and at least two values are obtained (Kaye, 1994;
Seuront, 2010; Harte, 2001).

FD estimation is an efficient technique for object
analysis and classification. Many types of objects are
characterized by a single FD value. Complex objects
require multiple FDs (Kaye, 1994; Seuront, 2010; Harte,
2001), which are scale dependent. Some non-fractal
parameters are scale independent, but scale dependent
parameters are also available. A combination of the FD
and non-fractal descriptors should also be considered an
important set of estimators.

1.1. Paper organisation. Various fractal dimension
estimators for grayscale images are considered briefly and
an example of the cell nucleus optical density is shown in
Section 2.

The application of the known Slit-Island Method
(SIM) for grayscale image analysis is considered in
Section 3. The main limitations of this method are
emphasized, like influence on the selection of the
boundary analysis approach and inadequate results of
FDs estimation, where infinite or negative FD could be
obtained.

The proposed approach for area-perimeter analysis
is considered in Section 4, instead of the rejection of
the SIM. The connection between the SIM and the 2D
Ising model is introduced. The magnetization curve for the
grayscale image could be obtained and the pseudo-Curie
point could be determined.

The shape of the magnetization curve for grayscale
image could be applied for the object’s parameters
estimation. The obtained parameters could be applied for
further analysis and classification of objects from the
database.

The proposed area-perimeter analysis in the context
of the magnetization curve is applied as an example
for the analysis of cytological images of cell nuclei in
Section 5. The magnetization curve is approximated using
polynomials. The relations of polynomial coefficients are
applied for classification purposes. Sensitivity analysis
using eroded images is also considered. It is especially
important, because cell nuclei segmentation is difficult
due to the inherent low quality of the images.

1.2. Related works and contribution of the pa-
per. Fractal analysis of grayscale images is possible
using many algorithms: the TPM (Triangular Prism
Method) (Clarke, 1986) and derivatives (Sun, 2006),

the variogram (Atkinson, 2002; Kaye, 1994),
the isarithm (Goodchild, 1980), the variation
estimator (Parker, 1997), as well as the probability
estimator (Voss, 1988).

The analysis of grayscale images is possible using
the SIM (Mandelbrot et al., 1984; Mandelbrot, 1983), as
an unordered set of binary images (layers). The perimeter
and area are estimated for every layer. This technique
is applied by many researchers. Some of them consider
limitations or even rejection of this technique.

In this paper, significant limitations of the SIM are
shown through illustrative examples. The rejection of
the SIM is not emphasized intentionally, because this
technique has a great potential of being valuable, if
a proper modification is applied. The modification of
the SIM allows the analysis of grayscale images. The
proposed layer number that corresponds to the threshold
level gives the area–perimeter relation. This relation
could be modified by the replacement of the unipolar
binary image representation, used in the original SIM,
by the bipolar binary image representation, which is
proposed in this paper. This modification establishes a
link between fractal analysis using the original SIM and
another important image analysis technique—the Ising
model. The area–perimeter relation in the context of the
Ising model allows the introduction of the pseudo-Curie
point, which could be used for classification purposes.

The proposed approach is applied for the
preclassification of biological objects. The test is related
to the possible application to cervical cancer diagnosis.
The cell nuclei of Papanicolaou strains are considered
instead of more complex analysis using, e.g., the NC
(Nuclear/Cytoplasmic) ratio, where the segmentations of
the cell nuclei and cytoplasm are necessary. Cytoplasm
segmentation is a very difficult task due to cytoplasm
overlapping in cell clusters.

The cell nucleus image is obtained using
transmissive microscopy, and the optical density of
a 3D object is acquired as a 2D image. The analysis of
the 3D shape of cell nuclei using, e.g., the 3D from focus
technique is beyond the paper scope. The classification of
cell nuclei using a single image is faster and sufficient.
The database contains many atypical cell nuclei that
are rare cases obtained from a 2-year screening period
in a medium scale laboratory. Cytodiagnosis screening
programs reduced the occurrence of cancer, but the
detection of atypical cells is very sophisticated (there are
many types of atypia). Cervical cancer is not a health
problem separately, but the source of many social and
psychological problems for patients if not detected in an
early stage.
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Fig. 1. Microscope image of a cervical uteri cell with an atypi-
cal cell nucleus.

2. Fractal dimension estimators for
grayscale images

There are many FD estimators for binary images, e.g.,
the ones based boxcounting. Multivalued (grayscale)
images need dedicated FD estimators because the
object representation could be three-dimensional. Some
examples were investigated: the TPM (Clarke, 1986) and
derivatives (Sun, 2006), the variogram (Atkinson, 2002;
Kaye, 1994), the isarithm (Goodchild, 1980), the variation
estimator (Parker, 1997), the probability estimator (Voss,
1988).

Overestimation and underestimation of the FD for
synthetically generated fractals is a well-known fact (Wen
and Sinding-Larsen, 1997; Zhou and Lam, 2005). Such
estimation errors are not important for pattern recognition
applications, if the monotonicity of the estimation is
preserved for the particular method.

The estimation of the FD is straightforward for
square images. Some constraints should be fulfilled for
specific methods, related to the width of the square side. A
typical requirement is the side length of the square, (2p +
1) or 2p, where p corresponds to the scale. Non-square
objects cannot be properly processed directly. Areas that
do not belong to the object influence the FD. Image area
reduction considered for FD estimation introduces errors,
unfortunately. Better fitting to the object area is possible
by the applications of tiled processing (e.g., the tiled TPM
algorithm (Oszutowska and Purczyński, 2012)), where
smaller portions of the object are used for FD estimation
instead of single square with a largest available area.

A cytological image of the cell, with the object
of, interest, i.e., a cell nucleus, is shown in Fig. 1.
The 3D representation of the optical density of the cell
nucleus is shown in Fig. 2 for the blue channel. Such a
surface is the DEM (Digital Elevation Map), processed
by, e.g., the variogram (Oszutowska-Mazurek et al., 2013)

Fig. 2. Three-dimensional visualization of the optical density of
the cell nucleus (background pixels are omitted) from
Fig. 1.

and TPM methods (Oszutowska and Purczyński, 2012;
Oszutowska-Mazurek et al., 2012).

3. Slit-island method

3.1. Introduction. The slit-island method, known
also as the slit-island technique or the area-perimeter
method (Mandelbrot et al., 1984; Mandelbrot, 1983),
could be applied for grayscale images. The application
to the grayscale image I is possible by the conversion to
multiple layers (binary valued) using thresholding:

XT (x, y) =
{

1 if I(x, y) < T,
0 if I(x, y) ≥ T.

(1)

The threshold value T defines a particular layer. The SIM
does not specify requirements related to the image I or the
threshold level T , which is an open problem.

The binary image XT , related to the particular
threshold, is processed and all islands, marked by i, are
analyzed. The relation of the perimeter Pi to the area Ai

gives a constant value ratio C, and it is defined by the
following formula:

CT (r) =
(
∑

i PT
i (r))1/D′

f

(
∑

i AT
i (r))1/2

, (2)

where Df is the fractal dimension,

Df = D′
f − 1. (3)

Such a dimension is independent of the length of
yardstick r used for the measurement. A fixed yardstick
is assumed, which is convenient for digital images. In this
case, r is equal to the pixel width/height size (r = 1). For
a monofractal, Df is not a function of layer (T ), but in real
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cases it is a function of the layer number (DT
f ), which is

discussed later.
The following formula uses the summation over all

islands for the perimeter and area, so the computation of
the area is based on the counting of pixels of specific
values, e.g., the 1s:

∑
i

AT
i (r) =

∑
x,y

XT (x, y), (4)

where x and y denote the 2D coordinates on the image X .
It is assumed that the value of 1 belongs to the pixel of the
island. The computation of the perimeter is possible using
the following formula:

∑
i

PT
i (r) =

1
2

∑
x,y

(
XT (x, y) ∧ XT (x, y − 1)

+ XT (x, y) ∧ XT (x, y + 1)

+ XT (x, y) ∧ XT (x − 1, y)

+XT (x, y) ∧ XT (x + 1, y)
)

. (5)

This formula allows the calculation of cliques
between two adjacent pixels. The edge exists if
neighborhood pixels values are opposite. The summation
of edges allows the estimation of the cumulative
perimeter. A scaling coefficient (1/2) is necessary,
because a single clique is detected and counted twice.

The SIM is applied to the multiple layers T of
the object, so successive sections of the 3D object
are obtained (Kaye, 1994; Mandelbrot et al., 1984;
Mandelbrot, 1983). The measurement of the cumulative
perimeter and area is plotted on a double logarithmic plot.
The slope of the regression line allows the estimation of
the FD. Example layers for the cell nucleus DEM are
shown in Fig. 3, but precise estimation of the FD should
be based on tens or hundreds of layers.

The SIM requires one very important assumption that
is not emphasized in literature. No islands can be located
on the boundary of the image. The relation between the
area and perimeter for an example object is shown in
Fig. 4. It is clear that the estimation of the FD for the
example object is very problematic. The curve is not
a straight line. The regression line cannot be properly
established. There are some parts of the curve where
the regression line should be ascending, descending or
even vertical. Those problems are considered in the next
subsections.

3.2. Boundary area. The SIM is very sensitive—the
boundary area of the image (the first and last row and
column of the image) influences on the results. A partially
available island limited the area and perimeter, so the
result is biased. In many applications, object images are
obtained by the successive cutting or polishing of the

Fig. 3. Layers of the cell nucleus representation from Fig. 2.

Fig. 4. Area–perimeter relation for the cell nucleus from Fig. 1.

sample, so the rejection of boundary islands cannot be
fulfilled due to physical properties of the object. The
rejection of such objects is possible for a single layer, but
rejection for multiple layers could be very sophisticated
because connection between islands on layers could be
considered. Some classes of objects create connections
between islands that are a merger for the lower layer to the
single area. The rejection of such island is the rejection of
the possibility of estimation.

The second influence is related to the perimeter
computation technique. Assuming a non-rectangular
sample, there are three areas: islands, lakes and the
background. The background is related to object image
storage inside the rectangular area.

A simple assignment of the pixel (1s to the islands,
0s to the lakes and background) is very attractive and
straightforward but influences the results. The clique
between the island pixel and background pixel increases
the perimeter. The perimeter is calculated using the
formula (5). Results are shown, for example, in Fig. 4.

An alternative assignment of a pixel (1s to the island,
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0s to the lakes) is more adequate to the relation between
pixels of the object. Background pixels are assigned to
the third (forbidden) value B (Fig. 5). The clique between
the island and background does not increase the perimeter.
The following formula is applied for the calculation of the
perimeter:

∑
i

PT
i (r) =

1
2

∑
x,y

(C1 + C2 + C3 + C4) , (6)

C1 = XT (x, y) ∧ XT (x, y − 1) ∧ · · ·
· · ·XT (x, y) �= B ∧ XT (x, y − 1) �= B, (7)

C2 = XT (x, y) ∧ XT (x, y + 1) ∧ · · ·
· · ·XT (x, y) �= B ∧ XT (x, y + 1) �= B, (8)

C3 = XT (x, y) ∧ XT (x − 1, y) ∧ · · ·
· · ·XT (x, y) �= B ∧ XT (x − 1, y) �= B, (9)

C4 = XT (x, y) ∧ XT (x + 1, y) ∧ · · ·
· · ·XT (x, y) �= B ∧ XT (x + 1, y) �= B. (10)

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

0 1 0 0 1 0

0 0 0 0 0 0

1

B B B B B B

B 1 0 0 B B

B 1 1 0 0 B

B 1 B 0 1 B

B B B B B B

Fig. 5. Example image (top), two level {0, 1} (bottom left),
three level {0, 1, B} (bottom right) representations of an
irregular object (0: lake, 1: island, B: background pixel.
Perimeter cliques are emphasized by the dashed line).

The three level variant gives different results
(Fig. 6) in comparison with the two-level variant
(Fig. 4). Artificial boundaries between islands and the
boundary are not processed, so some symmetry of the
area-perimeter curve is achieved (Fig. 6).

3.3. Infinite FD. The estimation of the FD should be
possible for any image. There are some objects that show
problems of the SIM. Assuming the starting image (layer)
X0 the satisfying

Fig. 6. Area–perimeter relation for three level representation for
the cell nucleus from Fig. 1.

X0(x, y) =
{

1 if x = y ∧ x, y > 1 ∧ x, y < N,
0 otherwise,

(11)
where the image has N × N resolution and x, y ∈ [1, N ]
are coordinates, a diagonal line is obtained. The boundary
of this image is filled with zeros. The perimeter of this
object is equal to 4 (N − 2) and the area is (N − 2). The
next images (layers of the grayscale image) are created
using a morphological operator or cellular automata.
Switching the pixel value to 1 is possible if there are two
adjacent pixels with value 1, for the 4-way neighborhood.
The following morphological operation could be applied:

Xn+1 = Xn � OPi, (12)

OP1 =
[

1 x
0 1

]
, (13)

OP2 =
[

1 0
x 1

]
, (14)

OP3 =
[

0 1
1 x

]
, (15)

OP4 =
[

x 1
1 0

]
. (16)

It is a kind of dilation. Only two operators are
useful, depending on the axes of image orientation. Two
others give no line expansion. One correct operator gives
the expansion toward the specific direction. The second
correct operator gives the expansion towards the opposite
direction.

Multiple iterations of such dilation are necessarily
related to a single pixel, using any update strategy
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(deterministic or stochastic). After some number of
operations, a box filled with 1s is obtained. Every
successful operation of switching the pixel value to 1,
according to the morphological formula, increases the
object area. The final box has the width of one side equal
to (N − 2)2 and the there are no perimeter changes at all.
The perimeter is always equal to 4 · (N − 2). A single
operation on a pixel is depicted in Fig. 7. A few example
results are shown in Fig. 8.

Fig. 7. Example of dilation without perimeter changes for a spe-
cific pixel (Pi = 8, Ai = 3 and Pi+1 = 8, Ai+1 = 4).

Fig. 8. Initial (P0 = 16, A0 = 4), intermediate (Pi = 16, Ai =
11) and final (PN = 16, AN = 16) dilation of the dia-
gonal line.

The estimation of the FD using a regression line
analysis is possible, and the value of the FD is infinity
because the regression line is vertical. This example
shows that a simple object with specific layers cannot be
processed using the SIM. Real images may preserve some
behaviors of this example and overestimate the FD.

3.4. Negative FD for an island with lakes. Islands
with lakes are very important. An island with a lake could
be a source of a negative FD. It is possible to obtain a
reduction in the perimeter and expansion of the area if the
starting image is a rectangle frame. The choice of lakes
within islands is questioned, e.g., by Huang et al. (1990).

The rectangle frame, with 1s at edges and zero filled
image boundaries, will evolve to the filled rectangle. The

initialization pattern is

X0(x, y) =

⎧⎨
⎩

0 if x, y > 2 ∧ x, y < N − 1,
0 if x = 1 ∨ x = N ∨ y = 1 ∨ y = N,
1 otherwise.

(17)
The first zero case is related to the inner part of

the rectangle and the second zero case is related to the
boundary of the image.

Fig. 9. Initial (P0 = 24, A0 = 12), intermediate (Pi =
22, Ai = 14) and final (PN = 16, AN = 16) dilation
of the rectangle.

Different types of islands, including an island with
lakes, may give noisy results, so the SIM cannot be
applied without additional assumptions. The closing of
lakes within islands is typical for binary images filled
with many 1s. Such an effect is typical for grayscale
images with multiple local maximums. The size of lakes is
increased, moving toward the bottom layers, for a blurred
image. Merging lakes is the source of the creation of large
islands with lakes inside them. Such lakes are closed in the
next bottom layers, so negative FD measurement results
are obtained.

Self-affine patterns create multiple FDs (Lu, 1995),
so only self similar islands should be processed. This is a
limitation of the SIM, which reduces application area to
specific objects only.

We would like to show the connectivity of the
SIM and the Ising model, which allows application
of area-perimeter analysis for more general classes of
objects, instead of the criticism of SIM only. The
extension of the SIM approach, where the FD is replaced
by a different estimator, is possible and desired, instead
of the SIM rejection only. The connection between
them is very interesting, because similar works of other
researchers in this area are not known.

4. Reformulation of the SIM in the Ising
model context

4.1. Spin based model of image. The SIM is based on
binary image analysis, where one of two unipolar values
is assigned to pixels:

XSIM(x, y) ∈ {0, 1} . (18)
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Fig. 10. Example of a finite size Ising model and the relation to
a binary image.

The replacement of such values by complementary
(bipolar) values gives the opportunity of area-perimeter
analysis reformulation in a different context:

X(x, y) ∈ {−1, +1} . (19)

The lattice X corresponds to a 2D crystal network.
The pixel values are spin values (Skomski, 2008),
which is depicted in Fig. 10. Statistical mechanics
allows the description of such a structure using many
models (Skomski, 2008; Styer, 2007), and the most
important is the 2D Ising model.

The Ising model is important for the description
of ferromagnetic properties of the lattice and supports
transitions of the II-type of critical phenomena (Binney
et al., 1992).

4.2. Magnetization. Overall magnetization is related
to the internal magnetic field, defined by the orientation
of the spins. The magnetization is the sum of the spins

M =
∑
x,y

X(x, y), (20)

which is equivalent to
∑

i Ai(r). The difference is the
offset coefficient K

2
∑

i

Ai(r) − K =
∑
x,y

X(x, y), (21)

where K is the number of spins (pixels). The state
where all pixels are zero (unipolar) corresponds to the
case where all spins are directed down −1 (bipolar).
The offset coefficient K is responsible for value shift.
Such a formulation for bipolar representation ensures the
symmetry for two opposite cases of magnetization:

Mmax = −Mmin = K. (22)

4.3. Hamiltonian. The Hamiltonian (Skomski, 2008)
is the total energy of a system. It governs the dynamics of
the system. The Hamiltonian for the Ising model is very
simple:

H = −1
2

∑
i,j

wi,jXiXj − hEXT
∑

i

Xi. (23)

Two parts are considered in the formula and related
to the interaction between lattice sites and between
the external field. Every lattice site (pixel) has four
neighborhoods.

The external field is not available for the case
considered, so the assumption hEXT = 0 is allowed. It is
one of the most well investigated random cluster models
that support ‘ferromagnetic’ properties. The following
formula corresponds to the number of cliques:

H = −1
2

∑
i,j

wi,jXiXj , (24)

where the scaling coefficient 1/2 is necessary due to
the removal of the double counting of cliques. The
weight wi,j is responsible for the set-up of, e.g., 4-way
connectivity. The relation between the Hamiltonian and
perimeter is finally

− H = P. (25)

4.4. Glauber dynamics. Thermal fluctuations in the
Ising model are specified by the Glauber dynamics and
simulated using, e.g., a Gibbs sampler or a heat-bath
algorithm (Glauber, 1963). The stochastic rule of changes
is defined using the following formula:

X(x, y) =
{

+1 with probability g(h),
−1 with probability 1 − g(h). (26)

The function g(h) is temperature dependent. According to
Glauber (1963), the following sigmoid function should be
used:

g(h) =
1

exp (−2βh)
, (27)

where β is the reciprocal of the absolute temperature

β =
1

kBT
. (28)

The Boltzmann constant is marked as kB , but it is
a physical constant. This formula for image processing
applications is not necessary, so β is used only or kB = 1
is assumed for simplification.

4.5. Curie temperature. The Curie temperature (TC)
is a temperature (T ) when the internal magnetization is
lost, which means that

M(TC) = 0. (29)

This is a singularity point and such behavior is
specific for ferromagnetic materials and occurs in phase
II-type transitions only. The curve M = f(T ) is
symmetrical around T -axis, additionally. There are two
branches of this function: upper and lower (Fig. 11). A
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single branch is depicted in most papers and books, but
both are very important for image analysis. The upper
branch is related to the image mostly filled with, e.g.,
white pixels, and the lower branch is related to the image
mostly filled with black pixels.

T
Tc

M

Fig. 11. Magnetization curve (both branches are shown).

The Glauber process defines the time evolution of
spin latices (images). A sequence of such images is
driven stochastically (26), depending on the assumed
temperature (27), (28). Fluctuations in the perimeter and
area of these binary images are achieved. Temperature
changes influence creation specific structures, e.g.,
magnetic domains.

Changes in the temperature allow movements from
−Mmin to the Curie point M0 and, further, to +Mmax.
This trajectory correspond to changes from −Amin to
A = 0 and further to +Amax, depending on the perimeter
(energy of cliques) for grayscale image layers. The
relation between magnetization and the area is the formula
(25). The higher energy of cliques is similar to higher
temperature, but the relation is not direct. The estimation
of the temperature and Curie temperature calculation,
based on the observations of spins orientation (images),
is not simple (Geman and McClure, 1987).

4.6. Layers of an object. Layers, processed by the
SIM (Fig. 3) are unordered, but they are significantly
correlated, because upper layers are subsets of bottom
layers:

· · ·XT+1 ⊂ XT ⊂ XT−1 · · · . (30)

Unordered processing of layers is the main drawback
of the SIM, because the regression line is fitted for both
branches together, which is incorrect. The layers are
ordered and the threshold is the parameter, so plotting the
curve, similar to the magnetization curve is possible (cf.
Figs. 11 and 6).

Successive cutting of an object gives layers that are
different or identical. Top layers are related to the object
with multiple islands. The size and perimeter increase
for next layers and the linear function of area-perimeter

on a double logarithmic plot could be obtained for some
classes of objects,. The connection between the island on
lower layers disturbs such relations and nonlinear regions
on the area-perimeter plot are observed.

The Glauber dynamics are applied to every pixel.
State switching (pixel value change) is related to the
specific time moment. The layers subset relation (26)
is not guaranteed if the Glauber dynamics simulation is
applied. The layers depend on the temperature, but they
are very specific realizations of the stochastic evolving
process.

4.7. Pseudo-Curie point. We introduce now the
pseudo-Curie point T ∗

C , because the direct relation
between the perimeter and temperature is not available.
The pseudo-Curie point is the equilibrium of the pixels of
the specific layer and grayscale image, because it is related
to the specific threshold T .

The proposed pseudo-Curie point is related to the
position of the maximum of the function P = f(A)
obtained from A = f(P ):

T ∗
C(P, A) = (max f(P ), A(max f(P )). (31)

The Curie point is quite often normalized for the Ising
model. We use an unnormalized pseudo-Curie point. The
normalization of the temperature and magnetization could
be a source of information lost, which is not desired.
Normalization in both the axes (perimeter and area)
depends on the application. The Ising model for the case
without an external magnetic field has a unique solution,
so Fig. 11 and the Curie temperature could be obtained.
More complex structures give different curves. The shape
of the magnetization curve could be used for the analysis
of unknown material. The differences between shapes
(M = f(T )) are important for classification purposes.
The function A = f(T ) could be used instead of M =
f(T ), due to the above-mentioned problem of temperature
estimation for a particular layer.

5. Application of the area–perimeter
relation of the Ising model to the
preclassification of cell nuclei

5.1. Cervical cancer. Cervical cancer is one of the
most important cancer types (Cibas and Ducatman, 2009;
Chosia and Domagała, 2010). It is an important problem
from medical, social and psychological points of view.
The cervical cancer screening process is based on a few
analyses. Modern reports of cervical cytology are based
on the Bethesda classification system of 1998, revisited in
2001 (Solomon and Nayar, 2004).

The most important is the Papanicolaou
process (Cibas and Ducatman, 2009; Chosia
and Domagała, 2010; Hoda and Hoda, 2007).
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The conventional Papanicolaou process requires
professional analysis of very complex microscopic
images (Kuehnel, 2003). The lack of process
standardization and the different quality of acquired
samples are very important problems that additionally
influence the variance of biological samples. There are
alternatives, like Liquid Based Cytology (LBC) (Sawaya
and Sox, 2007; Sykes et al., 2008). It is very well fitted
to automatic image analysis, due to the high quality of
images and separation of cells by the centrifugal process,
but some artifacts interesting from the medical point
of view are removed. The conventional Papanicolaou
process is one of the most complex biomedical image
classes. Such desired operations like cell segmentations
using image processing algorithms are extremely difficult.

Cancer is related to cell nuclei mainly, but many
properties of the image are analyzed by cytoscreeners.
The learning process of the cytoscreener is long (a few
years, typically). Computer aided analysis of cell nuclei
should improve the detection ratio. Even a single cell is
important from a medical point of view and allows the
detection of early stages of cancer. Such a preclassification
system should be used for rapid analysis of digital images
of smear obtained by the transmissive microscope or slide
scanner.

The analysis of the cell nuclei texture using
fractals is an active research area (Metze, 2013;
2010; Dey and Banik, 2012). Nuclei of melanoma
cells are analyzed by Bedin et al. (2010) using a 3D
box-counting algorithm. The Minkowski–Bouligand
dimension analysis of the B-cells of acute lymphoblastic
leukemia is considered (Adam et al., 2006), along
with multiple myeloma cells (Ferro et al., 2011). Oral
squamous cell carcinoma images are processed using
box-counting (Goutzanis et al., 2008). Lacunarity
is applied for fractal analysis of early ovarian
cancer (Nielsen et al., 2005).

Breast cytology images are considered in many
papers, and some algorithms are valuable for cervical
cytology analysis. Different techniques are used together,
like the shape of the cell, e.g., area, perimeter, convexity,
eccentricity and simple texture measure, based on the
average value of the red channel (Jeleń et al., 2008).
The segmentation of cell nuclei is possible using many
algorithms: the watershed algorithm, active contours,
cellular automata, the grow-cut technique, fuzzy sets of
the I and II types, the sonar-like method (Obuchowicz
et al., 2008; Hrebień et al., 2008), Hough transform
and (1+1) search strategy (Filipczuk et al., 2012;
Hrebień et al., 2007), swarm optimization and multi-level
thresholding (Kowal et al., 2013).

Much more complex types of images are in cervical
cytology and the segmentation process is related to
cytoplasm and the cell nucleus. Both of them are analyzed
by cytoscreeners. The cytoplasm of a single cell could

be deformed or overlapped by other cells, so the overall
process is very complex. There is research related to
the segmentation of cytoplasm (Walker, 1997; McKenna,
1994). Separated cell nuclei could be processed as binary
images (Sedivy et al., 1999).

We use the database of separate cell nuclei classified
as correct and atypical (there are many types of atypical
cell nuclei). There are 91 of correct and 59 of atypical cells
nuclei from a single pathomorphology laboratory in our
database. Images were acquired using an AxioCamMRc5
color camera, which supports the 2584x1936 resolution
(about 5 M pixels).

Every image is RGB coded (16-bit/channel,
uncompressed). The selection of the color channel is
based on the color of the cell nucleus region. The blue
channel is extracted if the cell and cytoplasm are blue.
The red channel is extracted if the cell and cytoplasm
are red. The selected channel is normalized using the
following formula:

X =
Xorg − min(Xorg)

max(Xorg) − min(Xorg)
, (32)

so values are from the range X ∈ [0, 1].
The color is related to the Papanicolaou process and

the age of a particular cell. The cell age and estimated
parameter relations are not considered in this paper. All
images are obtained at a 400× magnification (objective
40×), which is quite high for the optical microscope.
The 100× magnification is used in the screening process
typically. Higher magnification (400×) is used for the
cells that need a more detailed investigation.

Some researchers have good or poor results of
atypical cell nuclei preclassification. It is very hard to
compare the results, because most of the works are
based on a low resolution camera (VGA typically, color
or monochrome sensors) and lower magnifications (e.g.,
100×).

In our previous work (Oszutowska-Mazurek and
Mazurek, 2012) we described how low resolution and low
magnification together influence detection results even for
the simplest cases.

There are many types of atypical cells due to the
boundary shape, but limited availability of smears with
atypical cells is the reason for the binary preclassification
assumption. Hypothetically, such binary classification
is sufficient for image analysis. Another hypothesis is
related to the number and type of parameters that should
be used.

Cancerous changes are related to cell nuclei, so they
could be observed directly as differences related to the
cell size, boundary or texture. Secondary effects typical
for cancer, like specific clusters of cells, are visible in
Papanicolaou smears.

The most interesting is the texture of cell nuclei,
because it is related to the large part of the cell
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Fig. 12. Example of a cell nucleus (left), blue channel (middle),
low resolution of the blue channel (right).

nucleus. The boundary of the cell nucleus is analyzed
by cytoscreeners, but is difficult to analyse if the image
quality is low. Precised segmentation of cell nuclei is
not possible (Fig. 12) sometimes (bottom-left area of cell
nuclei, in particular). The texture is more independent on
such artifacts, so a cell nucleus area as large as possible
should be used.

5.2. Area-perimeter analysis. Area-perimeter covers
more information about texture than a single FD value.
Noise related to acquisition influences results. There is
also noise related to the texture. A specific texture gives
different area-perimeter trajectories. The area of the object
is the area for the first or last layer:

A = −Amin = Amax. (33)

The pseudo-Curie point is a possible descriptor of
texture, but it is insufficient for our database. We propose
the polynomial approximation of the area-perimeter curve
for Papanicolaou cell nucleus image analysis. This is
an approximation of empirical measurements. Multiple
observations with the same area and perimeter values are
rejected, so all area and perimeter pairs are unique for
the particular curve. A few variants of the polynomial
were tested (different orders and coefficient sets). The best
results are obtained for the third order of the polynomial.

Four coefficients {k0, k1, k2, k3} are fitted, using the
minimal Mean Square Error (MSE) criteria for every
curve (every nucleus):

P̂ (a) = k3a
3 + k2a

2 + k1a + k0, (34)

where a is the specific area and k0 is related
to the pseudo-Curie point position T ∗

C(P, A) =
(max f(P ), A(max f(P )):

k0 ∼ max f(P ). (35)

Three parameters are used for the cell nucleus
{k0, k1, k2} description. The k3 coefficient is rejected
because separation for {k0, k1, k3}, {k0, k2, k3} and
{k1, k2, k3} sets is less significant, which was empirically
tested.

The reduction of the number of parameters to
two, does not give good separation. The second order

polynomial, where are only three parameters available
{k0, k1, k2}, does not enable sufficient separation, which
was empirically tested. In Fig. 13 we show an example
result for the approximation of the area-perimeter curve.

Fig. 13. Area–perimeter relation and the approximation curve.

Area–perimeter relations for atypical cell nuclei are
shown in Fig. 14. The pseudo-Curie point is not located on
A = 0 line, which is clearly visible in the largest curve.

The reason for the visible gap between correct and
atypical cells is the fact that correct cell nuclei are usually
smaller (Fig. 15). The most important for the selection
of the preclassification algorithm are curves related to
atypical cell nuclei, which are located in the correct cells
nuclei area (Fig. 15).

Fig. 14. Area–perimeter relation for atypical cell nuclei.

The polynomial approximation allows the filtering of
the curves. The results of filtration are shown in Figs. 16
and 17.

The obtained parameters of the curve {k0, k1, k2}
could be used for the preclassification of the cells using
the texture of the cell nuclei only. The separation of the
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Fig. 15. Area–perimeter relation for correct cell nuclei. Atypi-
cal area–perimeter relations for atypical cells nuclei are
shown partially.

Fig. 16. Area–perimeter relation for atypical cell nuclei (poly-
nomial approximation).

correct and atypical cells nuclei for the database entries is
shown in Fig. 18. It is clearly visible that three parameters
are sufficient for this database.

5.3. Empirical sensitivity. The effects of cell nuclei
area reduction due to the segmentation problem of
blurred edges could be analyzed using mask reduction.
Morphological erosion using a circular Structuring
Element (SE) is applied for every mask of cell nuclei.
Reduction using SE = 2 and SE = 5 is shown in Figs. 19
and 20, respectively. The case SE = 5 of is related to a
significant reduction in the area of cell nuclei. The largest
correct cell nuclei has an area of 4323 pixels at SE = 0
and is reduced to 3346 pixels at SE = 5, which is a
significant (30%) reduction. Even such a large reduction
of cell areas allows classification.

There are two main populations of atypical cell

Fig. 17. Area–perimeter relation for correct cell nuclei (polyno-
mial approximation). Atypical area–perimeter relations
for atypical cell nuclei are shown partially.

nuclei. The first one could be characterized by a high
value of the ratio −k2/k0, which corresponds to large
sizes of the cell nuclei area (k0). The most important is
the separation of the second population, which has ratio of
the values −k2/k0 similar to the same correct cells nuclei.
This very important population could be separated using
the relation k1/k2.

Fig. 18. Separation of correct and atypical cell nuclei (stars—
atypical, circles—correct cell nuclei): the best mask es-
timated manually.

The cell nuclei segmentation algorithm is beyond
the scope of this paper. The impact of the sensitivity of
the proposed analysis technique on classification could be
analyzed empirically.

First of all, we assume the availability of a high
quality segmentation algorithm, which is comparable
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Fig. 19. Separation of correct and atypical cell nuclei (stars—
atypical, circles—correct cell nuclei): the best mask es-
timated manually eroded by 2 pixels.

with human based segmentation. Such segmentation is
sufficient and the separation results are depicted in Fig. 18.
Apart from that, a simple segmentation algorithm could
be based on local spatial analysis of the mean optical
density (Fig. 12). The area of cell nucleus is dark and
the cytoplasm is highly transmissive and bright. The
segmentation algorithm based on this knowledge could
estimate the area of the cell nuclei center, even if the image
is blurred due to biological artifacts. The boundary area
of cell nuclei, which is hard to assign to the cell nuclei
or the cytoplasm region, could be omitted in the analysis.
In such a case only the inner part of the cell nucleus
is processed by the image analysis algorithm and some
estimator values are obtained.

The reduction of the cell nuclei area influences the
separation depending on the significance of this area and
the selection of estimators, especially for a small size
object. A relative reduction in the small size cell nuclei
is significant in such cases (Figs. 19 and 20).

Simple classification, based on clustering related to
atypical cells, could be proposed. The area of the largest
population of atypical cells could be defined using a linear
discriminant function. This line could be located between
the smallest atypical cell of this population and largest the
cell of correct population using the ratio − log(k2/k0).
The second area of the atypical cells population could
be defined using an ellipsoid discriminant of a 95%
confidence region. The distribution cannot be determined
correctly for the second area due to very small sample size
(7 cases). Both discriminants are shown in Figs. 18–20.
The number of correct cells, which are inside defined
areas of atypical cells, is very small and amounts to
1, 2 and 7, respectively. Such cell nuclei and correctly

Fig. 20. Separation of correct and atypical cell nuclei (stars—
atypical, circles—correct cell nuclei): the best mask es-
timated manually eroded by 5 pixels.

detected atypical cell nuclei should be considered by the
cytoscreener immediately.

The reduction in the cell nuclei area is unknown
for the algorithm, and cumulative separation could be
computed. The results for the original mask and two
reduced cases (erosion by 2 and 5 pixels) are shown in
Fig. 21.

Fig. 21. Separation of correct and atypical cell nuclei (stars—
atypical, circles—correct cell nuclei): the best mask es-
timated manually eroded by 0, 2 and 5 pixels.

The number of atypical cases in the elliptical area is
21. The number of correct cases misclassified as a typical
is only 23 (it is 8% of the correct cell nuclei population).
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6. Discussion and conclusions

The application of FD analysis using the SIM is limited to
the part of the area-perimeter curve for a small perimeter
only if the layers are created by successive cutting. This
is the main limitation of the SIM, which cannot be
applied correctly for such objects. Incorrect results could
be obtained, which was shown in illustrative examples (a
negative or infinite fractal dimension).

The reformulation of the SIM in the context of
the Ising model is possible. The magnetization curve
allows the description of such materials. Instead of
magnetization, which is temperature dependent, we
proposed direct application of area-perimeter analysis,
with a pseudo-Curie point. The generalization of this
point (a single parameter is not enough for the description
of some objects) is the approximation curve using
a polynomial. A few coefficients (weights) of the
polynomial are sufficient for the description of the curve.
These coefficients are related, but not directly, to the
variability of the FD for different layers. The proposed
technique could be applied for other types of objects.

The obtained results are not a clinical proof of the
correctness of the proposed technique for the analysis
of cell nuclei of conventional Papanicolaou smears.
These results show that it is possible to use such a
technique separately or together with other techniques
for the detection of atypical cells. A reliable verification
needs a very large database of images obtained from
many laboratories, which is not available for the authors.
The comparison of other methods is discussed widely
by Oszutowska-Mazurek (2013).

It should be noted that separated cells with quite a
high quality image are intentionally selected for research
purposes. The results show the ability of the application
of the proposed technique. The area of the analysis
for the proposed technique is irregular, which is very
important for biological objects. Typical fractal estimator
algorithms, dedicated to textures, require a square area,
excluding the variogram algorithm. Computations of the
perimeter and area for multiple layers are possible using
parallel processing systems (SIMD processors, DSPs,
FPGAs, GPGPUs). Parallel computations are possible
because layers are separated. This is a very fast approach
for computing devices available nowadays. This algorithm
is based on very simple local morphological filers (cliques
detection), so memory consumption is very low. The
variogram algorithm requires comparison of the height
(values) between every pair of pixels. The variogram
requires a lot of memory access that is non-local, which
adds unnecessary delays.

It was preliminarily tested that the reduction of
the area of analysis does not influence significantly the
reduction of separation between the correct and atypical
cells. The analysis of sensitivity is shown in the paper.

Another interesting research area is the analysis of
non-separated cells. Cervical cancer cells very often are
grouped in clusters. Testing the ability of preclassification
of such clusters is important from the practical point of
view.
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