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From the Western Alps across Central Europe:
Postglacial recolonisation of the tufa stream
specialist Rhyacophila pubescens (Insecta,
Trichoptera)
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Abstract

Background: Dispersal rates, i.e. the effective number of dispersing individuals per unit time, are the product of

dispersal capacity, i.e. a species physiological potential for dispersal, dispersal behaviour, i.e. the decision to leave a

habitat patch in favour of another, and connectivity of occupied habitat. Thus, dispersal of species that are highly

specialised to a certain habitat is limited by habitat availability. Species inhabiting very stable environments may

also adopt a sedentary life-style. Both factors should lead to strong genetic differentiation in highly specialised

species inhabiting stable environments. These two factors apply to our model species Rhyacophila pubescens a
highly specialised freshwater insect that occurs in tufa springs, a very stable habitat.

Results: We examined the genetic population structure and phylogeography using range-wide mtCOI sequence

and AFLP data from 333 individuals of R. pubescens. We inferred the location of Pleistocene refugia and postglacial

colonisation routes of R. pubescens, and examined ongoing local differentiation. Our results indicate intraregional

differentiation with a high number of locally endemic haplotypes, that we attributed to habitat specificity and low

dispersal rates of R. pubescens. We observed high levels of genetic diversity south of the Alps and genetic

impoverishment north of the Alps. Estimates of migrants placed the refugium and the source of the colonisation in

the Dauphiné Alps (SW Alps).

Conclusions: This is the first example of an aquatic insect with a colonisation route along the western margin of

the Alps to the Central European highlands. The study also shows that specialisation to a stable environment may

have promoted a behavioural shift to decreased dispersal rates, leading to stronger local population differentiation

than in less specialised aquatic insects. Alternatively, the occurrence of highly specialised tufa spring habitats may

have been more widespread in the past, leading to range regression and fragmentation among present day R.
pubescens populations.

Background
In recent years our knowledge of phylogeographic pat-

terns of European animal and plant species has grown

tremendously [1-4]. From these studies we are gaining a

better understanding of the biogeography of the Eur-

opean flora and fauna and how current species distribu-

tion patterns were shaped by both ancient and recent

earth history [5]. We have also learned that terrestrial

species may exhibit different patterns than aquatic spe-

cies [6-8]. Species of aquatic insects, in particular, can

show different patterns of population structure, even if

they are co-distributed, are closely related, and/or share

the same ecological niche [9,10]. Historic population

movement and changes in effective population size, but

also recent or ongoing gene flow among populations,

shape present-day patterns of population structure. Cur-

rent dispersal rates and gene flow result from the dis-

persal capacity of a species (i.e. its physiological ability

to disperse and successfully find and recolonize new
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habitats), its dispersal behaviour [11], and the connectiv-

ity of suitable habitats. The latter can be reduced if spe-

cies are highly specialised in their habitat requirements

[11,12].

Compared to terrestrial niches, stream biotopes are

erratically distributed, making their inhabitants particu-

larly interesting for studying population genetics and

phylogeography. Many highland aquatic insect species

exhibit ‘insular’ distributions among mountain ranges,

but also within mountain ranges where populations

occur in isolated habitats with few or no interconnecting

corridors of suitable habitat. This is due to the linear

structure of stream habitats and the habitat specificity of

many species [13], the restriction of lateral dispersal to

the generally short-lived, winged adult stage, and the

behaviour of species to disperse primarily along stream

corridors [14,15]. Some aquatic insects, particularly

some species of caddisflies, are considered good fliers,

and long-distance dispersal has been documented for

several species [16-19]. Thus, dispersal behaviour may

play a very prevalent role in shaping genetic population

structure in aquatic insects [20]. Species living in rare,

isolated, but more or less stable habitats are expected to

disperse less frequently than species living in ephemeral

or more common habitats [19-22]. Permanent springs

and spring brooks are particularly stable as their physi-

cal-chemical parameters, e.g. temperature, are less prone

to seasonal or annual variation [23,24]. Tufa springs,

defined as calcareous springs with calcium carbonate

deposits, have constantly high pH and conductivity [25].

Thus, it is perceivable that tufa spring specialist aquatic

insect species may exhibit particularly low dispersal

rates, independent of adult dispersal ability.

The caddisfly Rhyacophila pubescens Pictet, 1834, is a

highly specialised cold-stenotherm species that only

occurs in permanent tufa spring brooks in limestone

mountain ranges from the spring source to 5 km down-

stream [26,27]. Using mitochondrial COI sequence data,

we previously examined the population structure of R.

pubescens north of the Alps [28] and observed one cen-

tral haplotype in all regions north of the Alps. This hap-

lotype putatively gave rise to many other haplotypes that

differed from it by one or two mutations. Based on this

pattern we hypothesized that R. pubescens postglacially

recolonised its Central European range from a single

refugial source. We also observed numerous private

haplotypes and hypothesized recent or ongoing in-situ

diversification. Since our sampling was limited to the

northern ranges and excluded common European refu-

gial areas, and we examined only mtDNA sequences, we

could not test these hypotheses in our previous study.

Our current study has three main objectives. First, we

explicitly test the hypothesis of a postglacial colonisation

of Central Europe from a single Pleistocene refuge. We

predict that genetic data will show a connection

between one, not several, southern refugia and the Cen-

tral European populations. Second, we want to identify

the location of the Pleistocene refugia of R. pubescens,

which we predict to be associated with the south-wes-

tern Alps based on calcareous Pleistocene refugia

known from the region for plants [29] or with refugia

on the Italian Peninsula [1-3,5]. Upon identifying the

refugia we wish to reconstruct the population history

and recolonisation process of R. pubescens. Third, we

ask if highly specialised inhabitants of stable environ-

ments - in this case R. pubescens - exhibit lower disper-

sal rates and higher levels of population differentiation

than other species that are less specialised. We predict

that R. pubescens exhibits high levels of population

structure, even at a small geographic scale, due to its

strong affiliation with isolated tufa spring environments.

To address these objectives we use a range-wide sam-

pling of both mtDNA sequence and nuclear Amplified

Fragment Length Polymorphisms (AFLP) data. We

employ both population genetic and phylogeographic

methods to elucidate patterns of population differentia-

tion, past migration rates and changes in demographic

history.

Materials and methods
We analysed 333 specimens of R. pubescens from 51

sites across the entire distribution range (Figure 1, Table

1). MtCOI sequence data for 197 specimens from the

Figure 1 Map of sampling sites covering the entire distribution

range of R. pubescens. Mountain regions are named according to

Table 1. Horizontal line shows regions north and south of the Alps

as referred to in this study. The Map was produced in ESRI GIS

based on GTOPO30. “Mts.” = Mountains.
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northern distribution were taken from Engelhardt et al.

[28]; additional sequences from the remaining distribu-

tion area and all AFLP data were newly generated. Col-

lection and storage of specimens followed Engelhardt et

al. [28]. Larvae and adults were identified using Warin-

ger & Graf [30] and Malicky [31], respectively. All speci-

men vouchers are deposited at Senckenberg, Germany.

Molecular Methods

Mitochondrial sequence data

DNA extraction and PCR amplification protocols of a

475bp long fragment of mtCOI followed Engelhardt et

al. [28]. Sequences were generated by Nano+Bio Center

Kaiserslautern, Germany, and AGOWA GmbH Berlin,

Germany. ABI traces were aligned, checked, and edited

manually using Sequencher Vers. 4.8 (Gene Codes Cor-

poration, Michigan, USA).

Amplified Fragment Length Polymorphism

The Amplified Fragment Length Polymorphism (AFLP)

protocol followed Huck et al. [32] with minor modifica-

tions: Genomic DNA concentration was standardised to

50 ng DNA/μl. 250 ng genomic DNA were digested.

The initial restriction-ligation lasted 14 h at 20°C. Multi-

plex AFLP products were genotyped on an ABI Prism

3100 DNA capillary sequencer (University of Mainz,

Germany) together with an internal size standard (Gen-

eScan ROX 500, ABI). Fragments were scored with Gen-

emarker Vers. 1.7 (SoftGenetics, Pennsylvania, USA).

Fragments were automatically scored as present when

peak height exceeded the standard parameter-setting

threshold (300). Trace files were also re-examined

visually. Fragments in the size range of 100-250 bp were

used for analysis. We used 18 replicate samples to assess

scoring error according to Bonin et al. [33]. Twelve frag-

ments were not included in the analyses because of

scoring errors; 19 fragments were only present in one or

two individuals and were thus excluded; one mono-

morphic fragment was also excluded.

Analyses

Mitochondrial sequence data

To examine genetic population structure we pooled the

51 sampled sites by mountain region and uniform geo-

logical units following Diercke Weltatlas [34] and Gon-

seth et al. [35]. This grouping is non-random but

reflects the existing geographic isolation of R. pubescens

across the distribution range. Samples were grouped

into 23 different geographic units, i.e., mountain

regions, which we refer to as regions (Table 1). We cal-

culated an unrooted median-joining haplotype network

[36] in Network 4.5.0.1 (Fluxus Technology) to illustrate

haplotype distribution. Exact tests of population differ-

entiation [37] and pairwise FST-values were used to

detect differentiation among regions. We partitioned

total genetic variation by geographic hierarchies using

Analysis of Molecular Variance (AMOVA) [38]: geo-

graphic hierarchies were “among 23 regions”, “among

populations, i.e. sampling sites, within regions” and

“within populations”. We also calculated independent

AMOVAs for the regions north and south of the Alps

(Figure 1). A Mantel test [39] for isolation-by-distance

was conducted using pairwise FST-values and geographi-

cal distance between all analysed populations. Analyses

were performed with Arlequin 3.1 [40] using default

settings, except for the AMOVAs that were run with

16,000 permutations. Mismatch distributions were cal-

culated with 1,000 bootstraps for 23 regions and for the

whole dataset. To test for demographic change in each

region and the whole dataset, we calculated two neutral-

ity tests: Tajima’s D and Fu’s FS. Significant negative D

and FS values can arise under selective effects but can

also indicate population expansion or bottlenecks

[41,42]. We also calculated gene and nucleotide diver-

sity. Analyses were performed in Arlequin 3.1 with

default settings.

Amplified Fragment Length Polymorphism

A Mantel test [39] was conducted using pairwise FST-

values and geographical distance between all analysed

populations with 999 permutations in GenAlEx 6.1 [43].

Using AFLPdat [44] we calculated the proportion of

polymorphic markers (95% confidence) and Nei’s gene

diversity H [45] in each region and for the regions north

and south of the Alps. We also calculated frequency

down weighted marker values DW for each region [46].

High DW-values would be expected in older popula-

tions where rare markers should accumulate due to

mutations, low values are expected in recently estab-

lished populations. Following Westberg & Kadereit [47]

we used AFLPdiv [48] with rarefaction set to 4, to assess

intrapopulation genetic diversity as band richness (br4),

i.e. “the number of phenotypes expected at each AFLP

locus when four individuals have been sampled from the

population.” Due to limited sample size we did not eval-

uate br4 in the Bilé Karpaty and Pieniny Mountains.

The Shannon Index of phenotypic diversity S [49] was

calculated in POPGENE 3.2. Private fragments, i.e. frag-

ments that only occured in one region or stream popu-

lation were counted using AFLPdat, to assess the degree

of divergence among populations and regions [50].

AMOVA [38] was calculated for the AFLP data in Arle-

quin 3.1 with 16,000 permutations.

We selected the regions where we sampled three or

more streams (Northern Hessian Mountains, Franconian

Alb, Northern Calcareous Alps, Swiss Jura and Northern

Alpine slope) to assess ongoing or recent diversification

among populations within regions. We calculated mean

GST [45] among populations within these regions using

POPGENE 3.2 [51].
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Table 1 Sampling sites of R. pubescens listed by mountain ranges (ranges are separated by horizontal lines).

Mountain
region

Country# Number of
individuals
for mtCOI/
AFLP

Nr. of endemic
haplotypes/
mountain
region

Stream name,
locality*

Latitude
(°N)

Longitude
(°E)

Collector Haplotype
(number of
individuals)*

Northern
Hessian
Mts. (HE)

DE 5/3 Flachsbach above
Wendershausen

51.30167 9.88778 Engelhardt
& Hövelborn

H1(5)

7/4 Gatterbach above
Wanfried

51.18306 10.22639 Engelhardt
& Hövelborn

H2(7)

2/2 0 Griesbach 51.30278 9.87583 Engelhardt
& Hövelborn

H1(2)

Franconian
Alb (FRA)

DE 6/5 Burglesauer Bächlein
above Burglesau

49.99611 11.08722 Engelhardt H1(6)

8/4 Tributary Ellerbach
above Tiefenellern

49.91667 11.07972 Engelhardt H1(5), H3(3)

7/6 Brook below
Tiefenhöchstädt

49.84111 11.07611 Engelhardt H1(3), H4(3), H5(1)

7/1 Rüsselbach at
Kirchrüsselbach

49.60139 11.27167 Engelhardt H1(4), H6(2), H7(1)

8/5 4 Hundshauptener
Bach below
Hundshaupten

49.72139 11.23028 Engelhardt H1(5), H2(3)

Swabian
Alb (SWA)

DE 3/3 Attenriedbach,
Geislingen

48.62139 9.81639 Mayer H1(2), H2(1)

8/2 0 Fils above
Wiesensteig

48.55944 9.59889 Engelhardt
& Schlünder

H1(8)

Eifel (EI) DE 8/7 Hygropetric,
Tränenlay

49.85500 6.32361 Engelhardt,
Pauls & Neu

H1(8)

LU 5/4 Spring near
Haalerbach

49.76667 6.31667 Graf H2(5)

LU 4/4 1 Walpengraben near
Metterich

49.98222 6.58111 Bálint & Neu H1(2), H2(1), H58(1)

Northern
Calcareous
Alps (NCA)

AT 8/7 Brook near Möggers 47.56167 9.81694 Graf H1(8)

1/1 Bertaquelle,
Hollensteingraben

47.66778 15.76139 Graf H1(1)

2/2 Schreiberbach,
Wiener Wald

48.27417 16.33444 Graf & Pauls H1(2)

9/7 Mayrgraben, Lunz 47.85000 15.08333 Malicky H1(9)

1/1 Weißenbach,
Reichraming

47.83111 14.46139 Graf H1(1)

3/3 Teufelsgraben 47.54528 13.41944 Pauls &
Theissinger

H29(2), H30(1)

1/1 2 Brook above
Dygrub

47.55139 13.41389 Engelhardt H1(1)

Alpine
foothills
(AFO)

DE 6/4 2 Mühltalbach above
Möggingen

47.76250 9.00806 Sundermann H8(4), H9(2)

Mittelland
(ML)

CH 6/4 1 Talbach above
Pratteln

47.50528 7.68611 Engelhardt
& Lehrian

H1(2), H10(2), H11(1), H12
(1)

Swiss Jura
(JU)

CH 8/7 La Motte above
Ocourt

47.35000 7.05667 Engelhardt
& Lehrian

H1(3), H13(2), H14(1), H24
(1), H59(1)

8/5 Dénériax, Noirvaux 46.85722 6.51722 Engelhardt
& Lehrian

H1(3), H10(4), H18(1)

8/6 Brook above Soubey 47.30250 7.05861 Engelhardt
& Lehrian

H1(6), H21(1), H25(1)

1/0 6 Chrintelbachquellen 47.43083 7.88361 Pauls H1(1)
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Table 1 Sampling sites of R. pubescens listed by mountain ranges (ranges are separated by horizontal lines).

(Continued)

Northern
Alpine
slope (NAS)

CH 5/5 Nameless brook,
Bächenmoos

47.20861 8.61306 Vicentini H1(5)

6/5 Nameless brook,
Prantin

46.49694 6.92417 Engelhardt
& Lehrian

H1(2), H19(4)

4/4 Warmbach above
Weissenbach

46.60056 7.37833 Engelhardt
& Lehrian

H1(3), H20(1)

8/6 3 Brook near Fanas 46.98139 9.66111 Lubini H1(7), H22(1)

Pieniny
Mts. (PIE)

PL 2/2 0 Pieninski Potok 49.41611 20.39889 Szczesny H1(2)

Bílé Karpaty
(BK)

CZ 3/3 1 Tributary of
Kloboucký Potok

49.10250 18.01833 Chvojka H27(3)

Český Kras
(CK)

CZ 6/6 1 Císařská rokle SW of
Srbsko

49.91806 14.13333 Engelhardt
& Schlünder

H26(6)

Mala Fatrá
(MFA)

SK 8/7 0 Valcansky Potok,
Martin

49.02278 18.78389 Engelhardt
& Bieber

H1(8)

Slovenské
Rudohorie
(SLR)

SK 8/4 Biele Vody, Murán 48.76000 20.07694 Engelhardt,
Blanár &
Trebulová

H1(6), H4(1), H28(1)

7/4 3 Potok Kamenárka,
Tisovec

48.69028 19.91111 Engelhardt,
Blanár &
Trebulová

H15(6), H23(1)

Northern
Hungarian
Mts. (HU)

HU 6/6 Tributary, Menes
Völgy, Aggtelek

48.54083 20.59806 Engelhardt
& Bieber

H2(4), H16(2)

6/3 2 Ban, Bükk Mountains 48.06750 20.39444 Kiss H1(5), H17(1)

Plateau
Langrès
(PLA)

FR 16/14 2 Cascade d’Etuf 47.87500 4.96528 Engelhardt
& Kind

H1(2),H13(1), H31(11),
H32(2)

Dauphiné
Alps (DA)

FR 12/4 2 Nameless brook
near Les Miards

44.88722 5.85167 Engelhardt
& Kind

H1(1), H13(8), H33(1),
H34(2)

French
Calcareous
Alps (FCA)

FR 7/4 Lalley 44.92361 5.67472 Bálint H1(4), H2(2), H12(1)

4/3 Torrent de la Sapie 44.53833 5.95083 Engelhardt
& Kind

H1(1), H35(2), H36(1)

17/13 2 Saint-Philibert,
Grande Chartreuse

45.37972 5.84917 Bálint H1(13), H2(2), H56(2)

Cottic Alps
(CA)

FR 5/5 Jausiers 44.39000 6.77600 Bálint H35(4), H52(1)

FR 5/3 La Condamine-
Châtelard

44.45100 6.74100 Bálint H35(5)

IT 6/6 2 Tributary of Dora
Riparia

45.10000 6.93333 Engelhardt
& Kind

H45(2), H46(4)

Provence
Alps (PA)

FR 18/15 3 Ravin de
Chambiéres

43.93278 6.63694 Engelhardt
& Kind

H1(3), H37(4), H38(10),
H39(1)

Ligurian
Alps (LA)

IT 12/8 Nameless brook
near Rezzo

44.02583 7.86667 Engelhardt
& Kind

H46(3), H47(1), H48(1),
H49(1), H50(1), H51(2),
H53(1), H54(1),H57(1)

8/8 9 Valle di Pietra 44.07722 7.80639 Delmastro H55(8)

Apennines
(APP)

IT 7/7 3 Tributary of Fiume
Tescio

43.09722 12.67556 Engelhardt
& Lehrian

H42(1), H43(3), H44(3)

Corsica
(COR)

FR 7/7 2 Tributary of
Tavignano

42.25639 9.20583 Engelhardt
& Kind

H40(3), H41(4)

#Country codes according to ISO 3166. *Mt DNA sequences generated for this study are in bold print, others were taken from Engelhardt et al. [28].
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Model-based coalescent estimates of migration

The distribution of the ancestral haplotype H1 in the

northern populations and the Western Alps (see

Results), combined with the strongly diverged and dif-

ferentiated haplogroups associated with the Ligurian

Alps and the Apennines, indicates that the most prob-

able location of the refuge and source for the northward

colonisation is somewhere in the Western Alps. We

therefore used Migrate 3.0.3 [52] to investigate past

gene flow in the Western Alps region to examine from

where the putative northward colonisation originated.

We calculated a stepping stone model for the popula-

tions Provence Alps, French Calcareous Alps, Dauphiné

Alps, Swiss Jura, Mittelland and Northern Alpine slope

(Table 1) to estimate effective migrants. The model was

set with asymmetric migration parameters and unrest-

ricted theta estimates. Thus the model estimated migra-

tion between neighbouring populations. Starting values

were estimated from FST-values for the first run. We

conducted a second run using the estimates for theta

and M of the first run as starting values. Both runs used

10 short chains and recorded 25,000 genealogies with a

sampling increment of 20 (500,000 genealogies visited),

and two long chains that recorded 200,000 genealogies

with as sampling increment of 50 (10,000,000 genealo-

gies visited). We used an adaptive heating scheme with

four chains (1.0, 1.5, 2.5, 5.0) and a swapping interval of

one to ensure sufficient mixing. The analysis was based

on the mtCOI dataset.

Results
MtDNA haplotype distribution

We generated unambiguous mtCOI sequences for 333

individuals. The 475 bp alignment contained no gaps or

length variants, 94 positions were variable and 83 sites

were parsimony informative. There were 59 unique hap-

lotypes (GenBank Accessions EU885387-EU885414,

GU186972-GU187002). The maximum difference was

70 bp (14.74%) between all haplotypes and 29 bp

(6.11%) for the “Central European” haplotypes without

the divergent haplotypes found in Liguria, the Apen-

nines and Corsica. The unrooted median-joining haplo-

type network (Figure 2) showed that the northern

populations were dominated by one central haplotype,

H1, which was carried by almost half of the specimens

examined (N = 149). This central haplotype was sur-

rounded by several haplotypes that differed from it by

one or two mutational steps. H1 was not present in the

Northern Alpine foothills, the Český Kras and the Bilé

Karpaty, the Cottic and Ligurian Alps, the Apennines or

on Corsica. In all regions north and south of the Alps

there were regional endemic haplotypes and haplotypes

Figure 2 Median-joining haplotype network of R. pubescens (mtCOI). Colours code for mountain regions. Size of haplotypes is relative to

the number of individuals carrying this haplotype. Numbers code for haplotypes, numbers in bold italics indicate mutational steps > 1. “Mts.” =

Mountains.
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endemic to single streams (Table 1). In the Western

Alps, Ligurian Alps, Apennines and on Corsica haplo-

types were highly divergent. A Bayesian Markov-Chain

Monte Carlo phylogenetic inference (results not shown)

was consistent with the median-joining network.

Genetic diversity

The final AFLP dataset comprised 132 fragments. Maxi-

mum scoring error at individual loci was 0.11; mean

mismatch value per fragment over all samples was 0.05.

Gene diversity based on mtCOI data of northern popu-

lations was 0.7290 +/- 0.0289, and 0.9240 +/- 0.0134 for

southern populations. Nucleotide diversity was also

lower in the north (0.012868 +/- 0.009120) than in the

south (0.161948 +/- 0.080769). The percentage of poly-

morphic AFLP loci (95% confidence), band richness and

Nei’s gene diversities based on AFLPs were highest in

the Ligurian Alps, followed by the Česky Kras, Cottic

Alps, French Calcareous Alps and the Provence Alps

(Table 2). Percentage of polymorphic loci was lower in

the region north of the Alps (0.63%) than in the region

south of the 231 Alps (0.95%), as was Nei’s gene diver-

sity (north: 0.05, south: 0.21). Shannon Index of pheno-

typic diversity based on AFLP was highest in the

Western Alps, on Corsica and in the two populations

from the Czech Republic (Table 2, Figure 3). As a mea-

sure of divergence the frequency down-weighted marker

value (DW) was calculated for AFLPs. We found the

highest value in Liguria, and high values in the Apen-

nines and on Corsica, and in the Czech populations

(Table 2, Figure 3). Private AFLP fragments were pre-

sent in the Apennines (4 fragments), Corsica (4), Liguria

(19), the Cottic Alps (1), and the Franconian Alb (1).

Fixed private fragments (i.e. private fragments that

occur in all sampled individuals from the respective

population) were found in the Apennines (1) and on

Corsica (3).

Population differentiation and genetic structure

Exact tests of population differentiation based on mtCOI

data indicated that 214 of 253 (84.6%) of all region pairs

were significantly differentiated (see Additional File 1).

Pairwise FST-values were significant for 182 of 253 com-

parisons (71.9%, p ≤ 0.05, Bonferroni adjusted a-value =

0.00020, see Additional File 1). Pairwise FST values of

AFLP data were significant for 123 of 253 comparisons

(48.62%, p ≤ 0.05, Bonferroni adjusted a-value =

0.00020, see Additional File 2).

AMOVA of both mtDNA and AFLP data showed that

populations in different regions were genetically differ-

ent from each other (mtCOI: 73.06%; AFLPs: 57.53%;

both p < 0.001) and that variance among populations

within regions was much lower (mtCOI: 26.94%; AFLPs:

42.47%; both p < 0.001). When only taking the

Table 2 Genetic diversity estimators of R. pubescens populations detected by AFLP’s.

Mountain Region * Prop. of polymorphic loci Band richness (br4)** Nei’s gene diversity H Shannon Index DW-value from means

HE 0.14 1.080 0.043 0.06 57.98

FRA 0.05 1.027 0.015 0.022 98.4

SWA 0.05 1.038 0.02 0.024 46.91

EI 0.04 1.021 0.011 0.017 45.31

NCA 0.11 1.033 0.017 0.03 53.41

AFO 0.05 1.053 0.028 0.031 59.22

ML 0.02 1.015 0.008 0.009 77.59

JU 0.11 1.062 0.034 0.05 178.34

NAS 0.09 1.032 0.017 0.028 77.2

PIE 0.02 n.c. 0.023 0.016 103.11

BK 0.08 n.c. 0.056 0.053 943.3

CK 0.48 1.416 0.233 0.283 457.82

MFA 0.01 1.004 0.002 0.003 39.12

SLR 0.02 1.014 0.007 0.01 39.74

HU 0.02 1.010 0.005 0.008 40.19

PLA 0.05 1.018 0.009 0.015 110.81

DA 0.04 1.038 0.02 0.022 39.65

FCA 0.3 1.145 0.078 0.12 144.69

CA 0.3 1.188 0.104 0.147 151.61

PA 0.21 1.138 0.076 0.107 93.13

LA 0.58 1.428 0.241 0.33 2504.97

APP 0.05 1.046 0.026 0.032 1484.31

COR 0.15 1.114 0.063 0.081 1423.44

*Letters indicate mountain regions according to Table 1.

** “n.c.": not calculated
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mountain ranges north of the Alps into account,

AMOVA of mtCOI data revealed more variation within

regions (63.78%, p < 0.001) than among regions (36.22%,

p < 0.001). In contrast, AMOVA of AFLPs from the

northern populations showed 45.72% variation within

regions and 54.28% variation among regions (p < 0.001

for both values). In the southern regions there was less

variation within regions (mtCOI: 24.95%; AFLPs:

46.46%; both p < 0.001) than among regions (mtCOI:

75.05%; AFLPs: 53.54%; both p < 0.001). The results

illustrate that differentiation among mountain ranges

north of the Alps was lower than among mountain

ranges south of the Alps. In general, the differences

were less pronounced in the AFLP data than in the

mtCOI data. A weak isolation-by-distance effect was

revealed by Mantel test (mtCOI: r = 0.151759, p = 0.02;

AFLP: r = 0.226, p < 0.01). A Mantel test considering

only the populations north of the Alps showed no corre-

lation based on mtCOI data (r = 0.038254, p = 0.30),

but did show a weak correlation in the AFLP data (r =

0.244, p < 0.01). In both data sets a much stronger cor-

relation was found in the southern populations (mtCOI:

r = 0.434078, p < 0.01; AFLP: r = 0.666, p < 0.01), indi-

cating that the southern populations were comparatively

closer to equilibrium between genetic drift and gene

flow than the northern ones.

We examined ongoing or recent diversification using

GST in the Northern Hessian Mountains, Franconian

Alb, Northern Calcareous Alps, Swiss Jura and Northern

Alpine slope. Mean GST among populations within each

of the five regions was 0.54 in the Northern Calcareous

Alps, 0.49 in the Swiss Jura, 0.45 in the Northern Alpine

slope, 0.41 in the Northern Hessian Mountains and 0.14

in the Franconian Alb.

Demographic expansion

In the regions studied north of the Alps, almost all mis-

match distributions of mtCOI haplotypes were unimodal

[28]. Unimodal distribution of pairwise differences indi-

cates recent population growth [53]. In the southern

regions most of the mismatch distributions were bi- or

multimodal except for the Dauphiné Alps and the

Apennines, indicating stable population sizes in the

south without any hint of population expansion. Nega-

tive significant values for Tajima’s D were found for the

Swiss Jura, the French Calcareous Alps and for the data-

set as a whole, indicating a high number of low fre-

quency polymorphisms in the mtCOI dataset and

potential population size expansion [41,42] (results not

shown). Values of Fu’s FS test for mtCOI data were

negative and significant for the Franconian Alb and the

entire dataset, and highly significant for the Swiss Jura

Figure 3 Shannon’s index and down-weighted marker value for AFLP samples for each region. Heights of bars indicate relative values

compared to the highest value found for each index.
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(results not shown). Negative, but non significant values

for both tests were found in the Swabian Alb, Northern

Calcareous Alps, Mittelland, Slovenské Rudohorie,

Northern Hungarian Mountains and the Dauphiné Alps.

Migration in the Western Alps

We used Migrate to test the hypothesis that the refuge

and source for the northern populations was located in

the south-western (SW) Alps. We calculated a stepping

stone model with mtCOI data to estimate numbers of

effective migrants and the direction of migration from

the populations in the SW Alps to the northern popula-

tions. Both Migrate runs yielded similar results. Results

of the second run are presented. Gene flow, measured

as effective migrants, was detected from the Dauphiné

Alps southward to the French Calcareous Alps, and

from these to the Provence Alps (Figure 4). There was

also northward gene flow from the Dauphiné Alps to

the Swiss Jura, to a higher degree from the Swiss Jura to

the Mittelland and from there to the Northern Alpine

slope. No gene flow was detected from the Provence or

Calcareous Alps northward or from the Swiss Jura

southward.

Discussion
Glacial refugia and postglacial recolonisation of R.

pubescens

Glacial Refugia

Rhyacophila pubescens is restricted to Central Europe

and the Italian peninsula, the latter a region of many

Pleistocene refuges [1,5]. Circum-alpine refugia are also

postulated for several aquatic insects [8,54,55]. Accord-

ingly, we consider the Apennines or the south-western

Alps - the latter also on the basis of haplotype sharing

with all central European populations [28] - as possible

refugial zones. We can dismiss the Apennines as a likely

source of refuges for the northern populations, because

the genetic composition of these populations differs dra-

matically from those of Central European populations.

Instead, our data show that the location of the refugium

was in the western part of the Alps. This is supported

by the fact that haplotype H1, which is the ancestral

haplotype of the northern populations, is not present in

the Italian Peninsula or Liguria, but in the French part

of the Alps. Also, all other haplotypes in Central Europe

are derived from H1, showing that the genetic make up

of the Central European populations was primarily influ-

enced from a common refugial source.

We thus propose that the northern edge of the distri-

bution of R. pubescens during the last glacial maximum

was in the region of the French Calcareous or Dauphiné

Alps, below the permafrost line and that northward

expansion started from there. The results of gene flow

analysis indicate that the Dauphiné Alps are the only

region from which migration occurred northwards and

southwards in the Western Alps (Figure 4). The north-

ward migration presumably coincided with gradual cli-

mate warming in the early Holocene, about 10,000 years

ago [56]. It would seem plausible that the French and

Swiss Jura were recolonised first, as the glacial retreat

was slower in the higher regions of the main Alpine

ridge. Gene flow and migration rates indicate a recoloni-

sation route along the Western Alps to Switzerland and

then to the Central European highlands.

Colonisation from the southwestern Alps seems plau-

sible since potential peripheral refugia with calcareous

bedrock have also been inferred for mountain plants

[29]. A southwestern Alps refugium and subsequent

recolonisation from there was shown for the plant Eryn-

gium alpinum that also exhibits a strong affinity to cal-

careous substrate [57]. A northward recolonisation route

along the Western Alps was also inferred for the butter-

fly Polyommatus coridon, a species typical of calcareous

Figure 4 Relative migration rate values (N_m) between each

population pair for the stepping stone model for the Western

Alps region (mtCOI data). Arrows show inferred direction of

effective migration. Pink line shows the maximum glacial expansion

20000 years bp; coloured areas represent inferred refugia on

calcareous bedrock (yellow: refugia outside the LGM glacial

extension; red: potential nunatak refugia below the permanent

snowline, but within the maximum glacial expansion). Maximum

extent of glaciation and inferred refugia were redrawn from

Schönswetter et al. [29].
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grasslands [58]. Interestingly, a glacial tongue was pre-

sent near the present-day city of Gap during the last

glacial maximum that could have caused a period of

separation between the Liguria/Provence populations

and the French Calcareous Alps/Dauphiné Alps popula-

tions [29]. When this glacial tongue retreated, gene flow

occurred again between the French Calcareous Alps/

Dauphiné Alps and the Provence Alps. This scenario is

concordant with the results of gene flow analysis in this

study and would explain the finding of both the “north-

ern” haplotype H1 and the"southern” haplotypes H37,

H38 in the Provence Alps. Based on haplotype distribu-

tion and results of the Migrate analysis, we infer a sec-

ondary contact zone for R. pubescens in the Provence

Alps.

Overall, haplotype divergence, molecular variance and

genetic diversity in R. pubescens are much greater in the

southern part of the range than in the north. Increasing

genetic impoverishment from former refugia to recently

recolonised areas is an expected and common pattern in

organisms [59-61], including aquatic species like the

bryozoan Cristatella mucedo [62], and the gastropod

Theodoxus fluviatilis [63]. The latter species exhibits

low genetic diversity in mtDNA in populations in

Northern Europe, where all haplotypes seem to be

derived from a single ancestral haplotype, similar to the

pattern we observed in R. pubescens. High values of

these diversity estimators are generally expected in

populations that are relatively old or in hybrid zones.

Diversity indices and down-weighted marker values

derived from AFLP data indicate that the south-western

Alps, the Apennines and Corsica have been inhabited

continuously by R. pubescens. Results from mtDNA and

AFLP analyses both support present complete isolation

of the Corsican populations. In the haplotype network

(Figure 2) H53 from Liguria is the closest haplotype to

the Corsican cluster, and is separated from it by 45

mutational steps (9.47% of 475 bp). This degree of

divergence is evidence of long-term isolation of the Cor-

sican lineage from the remaining mainland populations.

Monophyly of all known R. pubescens haplotypes from

the entire distribution was confirmed by a three gene

phylogeny of six closely related species in the Rhyaco-

phila tristis-group [64], but it seems evident that the

Corsican population of R. pubescens is in the process of

speciation. Clarifying the divergence times of the Corsi-

can population in the context of a phylogenetic study of

the R. tristis-group is a logical next step. While promis-

ing interesting biogeographical findings with regard to

Corsican Trichoptera, a detailed examination is not cen-

tral to our research questions and exceeds the scope of

our current study.

Postglacial colonisation of Central Europe

During the early Holocene (~10,000 years ago), vast

areas of Central Europe were covered by thick loess

deposits [65]. It is known that tufa formation occurred

in these loess deposits [66], though the exact processes

are not yet fully understood. It seems reasonable to

assume that this period was characterised by a highly

variable climate and dynamic fluvial processes [67],

which may have forced recolonising species like R. pub-

escens to disperse to more moderate environments or

more stable streams. The cold-tolerance of the species

and its ability to cope physiologically and functionally

with very high carbonate concentrations could have pro-

moted rapid recolonisation of Central Europe. Our

records [27,28,64] illustrate that the species is able to

inhabit calc-sinter streams where other macroinverte-

brate predators are very rare. Thus, the species appears

to be currently outcompeted in less marginal habitats by

other macroinvertebrate predator species. However, R.

pubescens’ physiological plasticity should be tested in

laboratory experiments.

More frequent long distance dispersal or more wide-

spread suitable habitat during this period of recolonisa-

tion would explain the presence of the common

haplotype H1 over the entire northern part of the pre-

sent range of R. pubescens. Other examples of rapid

northward recolonisation were shown to occur in the

pond turtle Emys orbicularis [67], and even in flightless

species like the grasshopper Chorthipppus parallelus

[60].

Rhyacophila pubescens is the first example of a Cen-

tral European aquatic insect that started postglacial

recolonisation from a south-western alpine refugium

along the western edge of the Alps to the former peri-

glacial area north of the Alps. This pattern differs con-

siderably from patterns of Pleistocene survival and

postglacial recolonisation of Central Europe observed in

other cold tolerant caddisflies and aquatic invertebrates,

for example, multiple glacial refugia (R. aquitanica [68],

D. romanicus [10]) or Central European refugia (e.g. D.

discolor [8]).

The case study in R. pubescens provides another

example that phylogeographic history appears to be lar-

gely species-specific in aquatic insects with no common

patterns emerging to date. This is quite different to the

situation in terrestrial species, where several common

patterns are known [3,5]. Differences among terrestrial

and aquatic responses to historic climate change may

result from the fundamental difference in thermal

regimes of terrestrial and aquatic ecoystems, and stream

ecosystems in particular. Specific differences observed

among stream dwelling aquatic insects likely relate to
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the different habitat specialisation of the species, their

cold-tolerance, their dispersal ability, habitat availability

during major glaciations and in the postglacial period of

recolonisation or a combination of these factors.

Habitat specialisation, population differentiation, and

dispersal behavior

The caddisfly R. pubescens is adapted to a specialised

habitat that also happens to be characterised by stable

environmental conditions: small permanent headwater

tufa streams and springs. While we sampled a variety of

habitat types from all regions over several years, R. pub-

escens was only collected from tufa springs, underscor-

ing its restriction to this habitat type. As is to be

expected for any species that occurs in patchily distribu-

ted headwater stream environments with specific phy-

sico-chemical characteristics, R. pubescens exhibits

regional differentiation. A similar pattern was also

observed in other highland caddisflies in Europe

[8,10,68]. However, even within regions where there

were no obvious barriers to dispersal between suitable

habitats, we detected genetic differentiation in R. pubes-

cens, as evidenced by GST and private haplotypes. The

presence of private haplotypes in almost all mountain

ranges and in single streams across the entire distribu-

tion of the species indicates low dispersal rates between

streams. This observation is supported by the absence of

an isolation-by-distance effect in the northern popula-

tions. The lack of an isolation-by-distance pattern across

much of the northern part of the range of R. pubescens

indicates that higher genetic drift in marginal popula-

tions is not the main reason for the observed pattern

[69]. R. pubescens is rarely collected in large numbers

[27], and low effective population sizes combined with

low or zero gene flow between habitat patches, in addi-

tion to genetic drift, may be changing the composition

of each local gene pool [70,71].

Several studies suggest that highly specialised species

are more isolated because of habitat availability than

generalist species. A comparatively lower local dispersal

rate may result in a high number of rare or locally

restricted alleles as shown for the butterfly M. aurelia

[72], a calcareous grassland specialist. Matern et al. [12]

also inferred a low dispersal capacity and a high degree

of within drainage genetic differentiation for the head-

water specialist beetle Carabus variolosus. Molecular

studies of European caddisflies have not yet examined

differences among specialist and generalist species, but

the available studies do allow for some comparisons. In

Hydropsyche tenuis the genetic diversity and differentia-

tion are lower than in R. pubescens and there is evidence

for ongoing or recent long-distance dispersal surround-

ing the Alps in H. tenuis [9]. Hydropsyche tenuis is less

selective regarding its habitat, occurring in the very

dynamic headwater and mid-range stream regions of

calcareous and siliceous streams [13]. Rhyacophila aqui-

tanica, Drusus discolor, and Drusus romanicus are more

strongly associated with cold habitats than H. tenuis, but

occur in both siliceous and calcareous streams. They

exhibit greater population differentiation than H. tenuis

[8,10,68], but the degree of intraregional differentiation

is not nearly as pronounced as it is in R. pubescens. The

comparison with the available studies does suggest that

specialisation may lead to greater population differentia-

tion in aquatic insects.

Why is R. pubescens apparently not dispersing among

its specialised habitats? At first, this result seems at

odds with the widespread occurrence of the dominant

haplotype and the hypothesis of a rapid postglacial reco-

lonisation of Central Europe. The observed patterns are

consistent with a recent reduction of suitable habitat

and resulting local allopatric fragmentation. The vast

loess deposits over Central Europe in the early Holocene

[65] may have provided more widespread tufa habitats

[66] suitable for R. pubescens. After the postglacial

expansion and the decrease in loess deposits across Eur-

ope, the primarily sedentary species would have experi-

enced allopatric fragmentation into more isolated

outcrops of calcareous rocks where tufa streams form

and persist to the present. Unfortunately with so little

knowledge about tufa development in loess deposits and

limited paleosol data, it is currently not possible to

reconstruct the distribution of tufa habitats during the

early Holocene to test this idea.

The contrast between widespread haplotypes and

many private fragments and haplotypes is also consistent

with a shift in dispersal rates either following a change

in dispersal capacity of the species, or a change in dis-

persal behavior. We favour the explanation of a shift in

dispersal behaviour over a relatively recently evolved

morphological or physiological adaptation resulting in

reduced dispersal capacity. Hoffsten [73] showed that

morphology of the thorax and its effect on flight was

linked to site occupancy in many stream species of cad-

disflies. In his study he examined two species of Rhyaco-

phila, both of which showed morphological attributes

related to strong flight (e.g., relatively high relative thor-

acic mass, which reflects the amount of flight muscle

available). However one species, R. fasciata was limited

in the number of sites where it occurred (27%), while R.

nubila occurred at all sites (100%). Thus, while both

species have the physiological capacity for flight and dis-

persal, one species disperses less. Dispersal rates are not

limited solely by flight capacity, i.e. the physiological

ability to fly certain distances or for certain periods of

time, but also by behaviour. If dispersal behaviour is

linked to habitat stability [19-22], then it seems reason-

able that R. pubescens, which currently only inhabits
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environmentally stable tufa springs and headwater

streams, has adopted a more or less sedentary life style

with little lateral dispersal among streams. The wide-

spread occurrence of a common haplotype suggests that

long distance dispersal is possible in R. pubescens, but in

this specialist caddisfly, dispersal rate may be responding

to habitat availability and habitat persistence [21]. Cur-

rent geographic conditions, the stability of spring habi-

tats, and the high degree of habitat specialisation of R.

pubescens could be promoting a predominantly seden-

tary behaviour.

Conclusions
Our study shows that changes in habitat availability

through time or plasticity in ecological life history traits

can shape a species’ distribution pattern and genetic

population structure. This is particularly true for high

specialised species. In response to inhabiting a very

stable but generally harsh environment (tufa springs), R.

pubescens may have adopted a more or less sedentary

behavior with limited dispersal rates leading to rare

exchange of genetic material among populations and

thus the evolution of locally restricted haplotypes and

AFLP fragments. Nevertheless diversity indices and shal-

low genetic population structure show that widespread

postglacial dispersal from a southern refuge and occu-

pancy of habitats north of the Alps was possible, high-

lighting the species’ high physiological dispersal

capacity. This apparent contradiction suggests a shift in

dispersal behaviour or availability of habitat between the

early postglacial and today. Our study species shows

Pleistocene persistence and postglacial colonisation from

a single refugial source in the southwestern Alps, a pat-

tern hitherto unknown in aquatic insects. Both aspects

highlight the specificity of aquatic species responses to

past and potentially future climate change.

Additional material

Additional file 1: Regional differentiation based on mtCOI data.
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