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Abstract—Conventional sub-Nyquist sampling methods for
analog signals exploit prior information about the spectral sup-
port. In this paper, we consider the challenging problem of blind
sub-Nyquist sampling of multiband signals, whose unknown fre-
quency support occupies only a small portion of a wide spectrum.
Our primary design goals are efficient hardware implementation
and low computational load on the supporting digital processing.
We propose a system, named the modulated wideband converter,
which first multiplies the analog signal by a bank of periodic
waveforms. The product is then low-pass filtered and sampled
uniformly at a low rate, which is orders of magnitude smaller than
Nyquist. Perfect recovery from the proposed samples is achieved
under certain necessary and sufficient conditions. We also develop
a digital architecture, which allows either reconstruction of the
analog input, or processing of any band of interest at a low rate,
that is, without interpolating to the high Nyquist rate. Numerical
simulations demonstrate many engineering aspects: robustness
to noise and mismodeling, potential hardware simplifications,
real-time performance for signals with time-varying support and
stability to quantization effects. We compare our system with two
previous approaches: periodic nonuniform sampling, which is
bandwidth limited by existing hardware devices, and the random
demodulator, which is restricted to discrete multitone signals and
has a high computational load. In the broader context of Nyquist
sampling, our scheme has the potential to break through the band-
width barrier of state-of-the-art analog conversion technologies
such as interleaved converters.

Index Terms—Analog-to-digital conversion (ADC), compressive
sampling (CS), infinite measurement vectors (IMV), multiband
sampling, spectrum-blind reconstruction, sub-Nyquist sampling.

I. INTRODUCTION

R ADIO frequency (RF) technology enables the modulation
of narrowband signals by high carrier frequencies. Con-

sequently, man-made radio signals are often sparse. That is, they
consist of a relatively small number of narrowband transmis-
sions spread across a wide spectrum range. A convenient way to
describe this class of signals is through a multiband model. The
frequency support of a multiband signal resides within several
continuous intervals spread over a wide spectrum. Fig. 1 depicts
a typical communication application, the wideband receiver, in
which the received signal follows the multiband model. The
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Fig. 1. Three RF transmissions with different carriers � . The receiver sees a
multiband signal (bottom drawing).

basic operations in such an application are conversion of the in-
coming signal to digital, and low-rate processing of some or all
of the individual transmissions. Ultimately, the digital product
is transformed back to the analog domain for further transmis-
sion.

Due to the wide spectral range of multiband signals, their
Nyquist rates may exceed the specifications of the best
analog-to-digital converters (ADCs) by orders of magnitude.
Any attempt to acquire a multiband signal must therefore
exploit its structure in an intelligent way. When the carrier fre-
quencies are known, a common practical engineering approach
is to demodulate the signal by its carrier frequency such that the
spectral contents of a band of interest are centered around the
origin. A low-pass filter follows in order to reject frequencies
due to the other bands. Conversion to digital is then performed
at a rate matching the actual information width of the band of
interest. Repeating the process for each band separately results
in a sampling rate which is the sum of the bandwidths. This
method achieves the minimal sampling rate, as derived by
Landau [1], which is equal to the actual frequency occupancy.
An alternative sampling approach that does not require analog
preprocessing was proposed in [2]. In this strategy, periodic
nonuniform sampling is used to directly sample a multiband
signal at an average rate approaching that derived by Landau.
Both conventional demodulation and the method of [2] rely on
knowledge of the carrier frequencies.

In scenarios in which the carrier frequencies are unknown
to the receiver, or vary in time, a challenging task is to de-
sign a spectrum-blind receiver at a sub-Nyquist rate. In [3] and
[4], a multicoset sampling strategy was developed, indepen-
dent of the signal support, to acquire multiband signals at low
rates. Although the sampling method is blind, in order to re-
cover the original signal from the samples, knowledge of the
frequency support is needed. Recently in [5], we proposed a
fully spectrum-blind system based on multicoset sampling. Our
system does not require knowledge of the frequency support in
either the sampling or the recovery stages. To reconstruct the
signal blindly, we developed digital algorithms that process the
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samples and identify the unknown spectral support. Once the
support is found, the continuous signal is reconstructed using
closed-form expressions.

Periodic nonuniform sampling is a popular approach in the
broader context of analog conversion when the spectrum is fully
occupied. Instead of implementing a single ADC at a high-rate

, interleaved ADCs use devices at rate with ap-
propriate time shifts [6]–[8]. However, time interleaving has
two fundamental limitations. First, the low-rate samplers
have to share an analog front-end which must tolerate the input
bandwidth . With today’s technology the possible front-ends
are still far below the wideband regime. Second, maintaining
accurate time shifts, on the order of , is difficult to im-
plement. Multicoset sampling, is a special case of interleaved
ADCs, so that the same limitations apply. In Section II-B we
discuss in more detail the difficulty in implementing interleaved
ADCs and multicoset sampling. In practice, such systems are
limited to intermediate input frequencies and cannot deal with
wideband inputs.

Recently, a new architecture to acquire multitone signals,
called the random demodulator, was studied in the literature of
compressed sensing (CS) [9], [10]. In this approach, the signal
is modulated by a high-rate pseudorandom number generator,
integrated, and sampled at a low rate. This scheme applies
to signals with finite set of harmonics chosen from a fixed
uniform grid. Time-domain analysis shows that CS algorithms
can recover such a multitone signal from the proposed sam-
ples [10]. However, as discussed in Section VI, truly analog
signals require a prohibitively large number of harmonics to
approximate them well within the discrete model, which in
turn renders the reconstruction computationally infeasible and
very sensitive to the grid choice. Furthermore, the time-domain
approach precludes processing at a low rate, even for multitone
inputs, since interpolation to the Nyquist rate is an essential
ingredient in the reconstruction.

In this paper, we aim to combine the advantages of the pre-
vious approaches: The ability to treat analog multiband models,
a sampling stage with a practical implementation, and a spec-
trum-blind recovery stage which involves efficient digital pro-
cessing. In addition, we would like a method that allows low-
rate processing, namely the ability to process any one of the
transmitted bands without first requiring interpolation to the
high Nyquist rate.

Our main contribution is an analog system, referred to as the
modulated wideband converter (MWC), which is comprised of
a bank of modulators and low-pass filters. The signal is mul-
tiplied by a periodic waveform, whose period corresponds to
the multiband model parameters. A square-wave alternating at
the Nyquist rate is one choice; other periodic waveforms are
also possible. The goal of the modulator is to alias the spec-
trum into baseband. The modulated output is then low-pass fil-
tered, and sampled at a low rate. The rate can be as low as
the expected width of an individual transmission. Based on fre-
quency-domain arguments, we prove that an appropriate choice
of the parameters (waveform period, sampling rate) guarantees
that our system uniquely determines a multiband input signal. In
addition, we describe how to trade the number of channels by
a higher rate in each branch, at the expense of additional pro-

cessing. Theoretically, this method allows to collapse the entire
system to a single channel operating at a rate lower than Nyquist.

Our second contribution is a digital architecture which en-
ables processing of the samples for various purposes. Recon-
struction of the original analog input is one possible function.
Perhaps more useful is the capability of the proposed system to
generate low-rate sequences corresponding to each of the bands,
which, in principle, allow subsequent digital processing of each
band at a low rate. This architecture also has the ability to treat
inputs with time-varying support. At the heart of the digital pro-
cessing lies the continuous to finite (CTF) block from our pre-
vious works [5], [11]. The CTF separates the support recovery
from the rest of the operations in the digital domain. In our pre-
vious works, the CTF required costly digital processing at the
Nyquist rate, and therefore provided only analog reconstruction
at the price of high rate computations. In contrast, here, the CTF
computations are carried out directly on the low-rate samples.

The main theme of this paper is going from theory to prac-
tice, namely tying together a theoretical sampling approach with
practical engineering aspects. Besides the uniqueness theorems
and stability conditions, we make use of extensive numerical
simulations, in Section V, to study typical wideband scenarios.
The simulations demonstrate robustness to noise and signal mis-
modeling, potential hardware simplifications in order to reduce
the number of devices, fast adaption to time-varying spectral
support, and the performance with quantized samples. A cir-
cuit-level realization of the MWC is reported in [12].

This paper is organized as follows. Section II describes the
multiband model and points out limitations of multicoset sam-
pling in the wideband regime. In Section III, we describe the
MWC system and provide a frequency-domain analysis of the
resulting samples. This leads to a concrete parameter selection
which guarantees a unique signal matching the digital samples.
We conclude the section with a discussion on the tradeoff be-
tween the number of channels, rate, and complexity. The ar-
chitecture for low-rate processing and recovery, is presented in
Section IV. In Section V, we conduct a detailed numerical eval-
uation of the proposed system. A review of related work con-
cludes the paper in Section VI.

II. FORMULATION AND BACKGROUND

A. Problem Formulation

Let be a real-valued continuous-time signal in .
Throughout the paper, continuous signals are assumed to be
bandlimited to . Formally, the Fourier
transform of , which is defined by

(1)

is zero for every . We denote by the Nyquist
rate of . For technical reasons, it is also assumed that
is piecewise continuous in . We treat signals from the multi-
band model defined below.

Definition 1: The set contains all signals , such that
the support of the Fourier transform is contained within
a union of disjoint intervals (bands) in , and each of the
bandwidths does not exceed .
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Signals in have an even number of bands due to the
conjugate symmetry of . The band positions are arbitrary,
and in particular, unknown in advance. A typical spectral sup-
port of a signal from the multiband model is illustrated in the
example of Fig. 1, in which and are dictated
by the specifications of the possible transmitters.

We wish to design a sampling system for signals from the
model that satisfies the following properties:

1) The sampling rate should be as low as possible;
2) the system has no prior knowledge of the band locations;
3) the system can be implemented with existing analog de-

vices and (preferably low-rate) ADCs.
Together with the sampling stage we need to design a recon-

struction scheme, which converts the discrete samples back to
the continuous-time domain. This stage may involve digital pro-
cessing prior to reconstruction. An implicit (but crucial) require-
ment is that recovery involves a reasonable amount of computa-
tions. Real-time applications may also necessitate short latency
from input to output and a constant throughput. Therefore, two
main factors dictate the input spectrum range that the overall
system can handle: analog hardware at the required rate that can
convert the signal to digital, and a digital stage that can accom-
modate the computational load.

In our previous work [5], we proved that the minimal sam-
pling rate for to allow perfect blind reconstruction is ,
provided that is lower than the Nyquist rate. The case

represents signals which occupy more than
half of the Nyquist range. No rate improvement is possible in
that case (for arbitrary signals), and thus we assume

in the sequel. Concrete algorithms for blind recovery,
achieving the minimal rate, were developed in [5] based on a
multicoset sampling strategy. The next section briefly describes
this method, which achieves the goals of minimal rate and blind-
ness. However, limitations of practical ADCs, which we detail
in the next section, render multicoset sampling impractical for
wideband signals. As described later in Section III-A, the sam-
pling scheme proposed in this paper circumvents these limita-
tions and has other advantages in terms of practical implemen-
tation.

B. Multicoset Using Practical ADCs

In multicoset sampling, samples of are obtained on a pe-
riodic and nonuniform grid which is a subset of the Nyquist grid.
Formally, denote by the sequence of samples taken at the
Nyquist rate. Let be a positive integer, and be
a set of distinct integers with . Multicoset
samples consist of uniform sequences, called cosets, with the
th coset defined by

(2)

Only cosets are used, so that the average sampling rate
is , which is lower than the Nyquist rate .

A possible implementation of the sampling sequences (2) is
depicted in Fig. 2(a). The building blocks are uniform sam-
plers at rate , where the th sampler is shifted by from

Fig. 2. Schematic implementation of multicoset sampling (a) requires no fil-
tering between the time shifts and the actual sampling. However, the front-end
of a practical ADC has an inherent bandwidth limitation, which is modeled in
(b) as a low-pass filter preceding the uniform sampling.

the origin. Although this scheme seems intuitive and straight-
forward, practical ADCs introduce an inherent bandwidth lim-
itation, which distorts the samples. The distortion mechanism,
which is modeled as a preceding low-pass filter in Fig. 2(b),
becomes crucial for high rate inputs. To understand this phe-
nomenon, we focus on the model of a practical ADC, Fig. 2(b),
ignoring the time shifts for the moment. A uniform ADC at rate

samples/s attempts to output pointwise samples of the input.
The design process and manufacturing technology result in an
additional property, termed analog (full-power) bandwidth [13],
which determines the maximal frequency that the device can
handle. Any spectral content beyond Hz is attenuated and dis-
torted. The bandwidth limitation is inherent and cannot be sep-
arated from the ADC. Therefore, manufacturers usually recom-
mend adding a preceding external anti-aliasing low-pass filter,
with cutoff , since the internal one has a parasitic response. The
ratio affects the complexity of the ADC circuit design, and
is typically in the range [14]

(3)

The practical ADC model raises two difficulties in imple-
menting multicoset sampling. First, RF technology allows
transmissions at rates which exceed the analog bandwidth of
state-of-the-art devices, typically by orders of magnitude. For
example, ADC devices manufactured by Analog Devices Corp.
have front-end bandwidths which reach up to MHz
[14]. Therefore, any attempt to acquire a wideband signal with
a practical ADC results in a loss of the spectral contents beyond

Hz. The sample sequences (2) are attenuated and distorted
and are no longer pointwise values of . This limitation is
fundamental and holds in other architectures of multicoset (e.g.,
a single ADC triggered by a nonuniform clock). The second
issue is a waste of resources, which is less severe, but applies
also when the Nyquist rate for some available
device. For a signal with a sparse spectrum, multicoset reduces
the average sampling rate by using only out of possible
cosets, where is commonly used. Each coset in Fig. 2
samples at rate . Therefore, the ADC samples at rate

, which is far below the standard range (3). This im-
plies sampling at a rate which is much lower than the maximal
capability of the ADC.

As a consequence, implementing multicoset for wideband
signals requires the design of a specialized fine-tuned ADC cir-
cuit, in order to meet the wide analog bandwidth, and still ex-
ploit the nonstandard ratio that is expected. Though this may
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Fig. 3. Modulated wideband converter—a practical sampling stage for multiband signals.

be an interesting task for experts, it contradicts the basic goal
of our design—that is, using standard and available devices. In
[15] a nonconventional ADC is designed by means of high-rate
optical devices. The hybrid optic-electronic system introduces a
front-end whose bandwidth reaches the wideband regime, at the
expense and size of an optical system. Unfortunately, at present,
this performance cannot be achieved with pure electronic tech-
nology.

Another practical issue of multicoset sampling, which also
exists in the optical implementation, arises from the time shift
elements. Maintaining accurate time delays between the ADCs
in the order of the Nyquist interval is difficult. Any uncer-
tainty in these delays influences the recovery from the sampled
sequences [16]. A variety of different algorithms have been pro-
posed in the literature in order to compensate for timing mis-
matches. However, this adds substantial complexity to the re-
ceiver [17], [18].

III. SAMPLING

We now present an alternative sampling scheme that uses
available devices, does not suffer from analog bandwidth issues
and does not require nonzero time synchronization. The system,
referred to as the modulated wideband converter (MWC), is
schematically drawn in Fig. 3 with its various parameters. In the
next subsections, the MWC is described and analyzed for arbi-
trary sets of parameters. In Section III-C, we specify a parameter
choice, independent of the band locations, that approaches the
minimal rate. The resulting system, which is comprised of the
MWC of Fig. 3 and the recovery architecture that is presented
in the next section, satisfies all the requirements of our problem
formulation.

A. System Description

Our system exploits spread-spectrum techniques from com-
munication theory [19], [20]. An analog mixing front-end
aliases the spectrum, such that a spectrum portion from each
band appears in baseband. The system consists of several
channels, implementing different mixtures, so that, in principle,
a sufficiently large number of mixtures allows to recover a
relatively sparse multiband signal.

More specifically, the signal enters channels simul-
taneously. In the th channel, is multiplied by a mixing
function , which is -periodic. After mixing, the signal
spectrum is truncated by a low-pass filter with cutoff
and the filtered signal is sampled at rate . The sampling
rate of each channel is sufficiently low, so that existing com-
mercial ADCs can be used for that task. The design parameters
are therefore the number of channels , the period , the sam-
pling rate , and the mixing functions for .

For the sake of concreteness, in the sequel, is chosen as
a piecewise constant function that alternates between the levels

for each of equal time intervals. Formally,

(4)

with , and for every .
Other choices for are possible, since in principle we only
require that is periodic.

The system proposed in Fig. 3 has several advantages for
practical implementation.

A1) Analog mixers are a provable technology in the wide-
band regime [21], [22]. In fact, since transmitters use
mixers to modulate the information by a high-carrier
frequency, the mixer bandwidth defines the input band-
width.

A2) Sign alternating functions can be implemented by a stan-
dard (high rate) shift register. Today’s technology allows
to reach alternation rates of 23 GHz [23] and even 80
GHz [24].

A3) Analog filters are accurate and typically do not require
more than a few passive elements (e.g., capacitors and
coils) [25].

A4) The sampling rate matches the cutoff of .
Therefore, an ADC with a conversion rate , and
any bandwidth can be used to implement this
block, where serves as a preceding anti-aliasing
filter. In the sequel, we choose on the order of ,
which is the width of a single band of . In
practice, this sampling rate allows flexible choice of an
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ADC from a variety of commercial devices in the low
rate regime.

A5) Sampling is synchronized in all channels, that is there
are no time shifts. This is beneficial since the trigger for
all ADCs can be generated accurately (e.g., with a zero-
delay synchronization device [26]). The same clock can
be used for a subsequent digital processor which re-
ceives the sample sets at rate .

Note that the front-end preprocessing must be carried out by
analog means, since both the mixer and the analog filter operate
on wideband signals, at rates which are far beyond digital pro-
cessing capabilities. In fact, the mixer output is not ban-
dlimited, and therefore there is no way to replace the analog
filter by a digital unit even if the converter is used for low-rate
signals. The purely analog front-end is the key to overcome the
bandwidth limitation of ADCs.

B. Frequency Domain Analysis

We now derive the relation between the sample sequences
and the unknown signal . This analysis is used for

several purposes in the following sections. First, for specifying
a choice of parameters ensuring a unique mapping between
and the sequences . Second, we use this analysis to explain
the reconstruction scheme. Finally, stability and implementation
issues will also be based on this development. To this end, we
introduce the definitions

(5a)

(5b)

Consider the th channel. Since is -periodic, it has a
Fourier expansion

(6)

where

(7)

The Fourier transform of the analog multiplication
is evaluated as

(8)

Therefore, the input to is a linear combination of
-shifted copies of . Since for , the

sum in (8) contains (at most) nonzero terms1.

1The ceiling operator ��� returns the greater (or equal) integer which is
closest to �.

The filter has a frequency response which is an ideal
rectangular function, as depicted in Fig. 3. Consequently, only
frequencies in the interval are contained in the uniform se-
quence . Thus, the discrete-time Fourier transform (DTFT)
of the th sequence is expressed as

(9)

where is defined in (5b), and is chosen as the smallest
integer such that the sum contains all nonzero contributions of

over . The exact value of is calculated by

(10)

Note that the mixer output is not bandlimited, and, theoret-
ically, depending on the coefficients , the Fourier transform
(8) may not be well defined. This technicality, however, is re-
solved in (9) since the filter output involves only a finite number
of aliases of .

Relation (9) ties the known DTFTs of to the unknown
. This equation is the key to recovery of . For our pur-

poses, it is convenient to write (9) in matrix form as

(11)

where is a vector of length with th element
. The unknown vector

is of length

(12)

with

(13)

The matrix contains the coefficients

(14)

where the reverse order is due to the enumeration of in
(13). Fig. 4 depicts the vector and the effect of aliasing

in -shifted copies for bands, aliasing rate
and two sampling rates, and . Each

entry of represents a frequency slice of whose length
is . Thus, in order to recover , it is sufficient to determine

in the interval .
The analysis so far holds for every choice of -periodic func-

tions . Before proceeding, we discuss the role of each pa-
rameter. The period determines the aliasing of by set-
ting the shift intervals to . Equivalently, the aliasing
rate controls the way the bands are arranged in the spectrum
slices , as depicted in Fig. 4. We choose so that
each band contributes only a single nonzero element to
(referring to a specific ), and consequently has at most

nonzeros. In practice is chosen slightly more than to
avoid edge effects. Thus, the parameter is used to translate
the multiband prior to a bound on the sparsity level
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Fig. 4. Relation between the Fourier transform ���� and the vector set ����
of (13). In the left pane, � � � so that the length of ���� is� � ��. The right
pane demonstrates � � �� which gives � � ��. Entries in locations � � �

�� � � � �� contain shifted and windowed copies of ���� to the right (left)
of the frequency axis. No shift occurs for the middle entry, � � � � �.

of . The sampling rate of a single channel sets the fre-
quency range in which (11) holds. It is clear from Fig. 4 that
as long as , recovering from the sample sequences

amounts to recovery of from , for every .
The number of channels determines the overall sampling rate

of the system. The simplest choice , which is
presented on the left pane of Fig. 4, allows to control the sam-
pling rate at a resolution of . Later on, we explain how to trade
the number of channels by a higher rate in each channel.
Observe that setting determines by (10) and (12), which
is the number of spectrum slices in that may contain en-
ergy for some .

The role of the mixing functions appears implicitly in (11)
through the coefficients . Each provides a single row in
the matrix . Roughly speaking, should have many tran-
sients within the time period so that its Fourier expansion
(6) contains about dominant terms. In this case, the channel
output is a mixture of all (nonidentically zero) spectrum

slices in . The functions should differ from each other
to yield linearly independent rows in . The precise measure
for the amount of required transients is captured by the singular
values of all possible column subsets of [27]. Further discus-
sion on the choice of appears in Section IV.D. We next
study a specific choice of —the sign waveforms.

Consider the sign alternating function , depicted in
Fig. 3. Calculating the coefficients in this setting gives

(15)

Evaluating the integral we have

(16)

where , and thus

(17)

Let be the discrete Fourier transform matrix (DFT)
whose th column is

(18)

with , and let be the matrix with
columns —a reordered column subset of .
Note that for is unitary. Then, (11) can be written as

(19)

where is the sign matrix, with , and
is an diagonal matrix with de-

fined by (16). As in (14), the reverse order is due to the aliasing
enumeration. The dependency on the sign patterns is fur-
ther expanded in (20), shown at the bottom of the page.

A sign alternating function is implemented by a shift
register, where determines the number of flops, and
initializes the shift register. The clock rate of the register

is also dictated by . The next section shows that
, where is defined in (12), is one of the conditions

for blind recovery. To reduce the clock rate the minimal as

...
...

. . .
...

. . .

...

...

(20)
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derived in the sequel is always preferred. Since is roughly
for , this implies a large value for . In

practice this is not an obstacle, since standard logic gates and
feedback can be used to generate a sign pattern of length
(a.k.a, m-sequence) with just a few components [19], [20]. In
future work, we will investigate the preferred sign pattern for
stable reconstruction. In the implementation [12], we use a
length register without a supporting logic, in order to allow
any of the possible patterns.

An important consequence of periodicity is robustness to
time-domain variability. As long as the waveform is
periodic, the coefficients can be computed, or can be cali-
brated in retrospect. Time-domain design imperfections are not
important. In particular, a sign waveform whose alternations do
not occur exactly on the Nyquist grid, and whose levels are not
accurate levels is fine, as long as the same pattern repeats
every seconds.

Note that the magnitude of decays as moves away from
. This is a consequence of the specific choice of sign al-

ternating waveforms for the mixing functions . Under this
selection, spectrum regions of are weighted according to
their proximity to the origin. In the presence of noise, the signal
to noise ratio depends on the band locations due to this asym-
metry.

C. Choice of Parameters

An essential property of a sampling system is that the sample
sequences match a unique analog input , since otherwise re-
covery is impossible. The following theorems address this issue.
The first theorem states necessary conditions on the system pa-
rameters to allow a unique mapping. A concrete parameter se-
lection which is sufficient for uniqueness, is provided in the
second theorem. The same selection works with half as many
sampling channels, when the band locations are known. Thus,
the system appearing in Fig. 3 can also replace conventional de-
modulation in the non-blind scenario. This may be beneficial
for a receiver that switches between blind and non-blind modes
according to availability of the transmitter carriers. More im-
portantly, Fig. 3 suggests a possible architecture in the broader
context of ADC design. The analog bandwidth of the front-end,
which is dictated by the mixers, breaks the conventional band-
width limitation in interleaved ADCs.

For brevity, we use sparsity notations in the statements below.
A vector is called -sparse if contains no more than
nonzero entries. The set denotes the indices of the
nonzeros in . The support of a collection of vectors over a con-
tinuous interval, such as is defined
by

(21)

A vector collection is called jointly -sparse if its support con-
tains no more than indices.

Theorem 1 (Necessary Conditions): Let be an arbitrary
signal within the multiband model , which is sampled ac-
cording to Fig. 3 with . Necessary conditions to allow
exact spectrum-blind recovery (of an arbitrary ) are

. For mixing with sign waveforms an addi-
tional necessary requirement is

(22)

Note that for of (12); see also Fig. 4.
Proof: Observe that according to (9) and Fig. 4, the fre-

quency transform of the th entry of sums -shifted copies
of . If , then the sum lacks contributions from

for some . An arbitrary multiband signal may
contain an information band within those frequencies. Thus,

is necessary.
The other conditions are necessary to allow enough linearly

independent equations in (11) for arbitrary . To prove
the argument on , first consider the linear system for
the matrix of (11). In addition, assume

. Substituting these values into (10), (12) and using
gives , namely has more than columns.

If , then since rank there exist two
-sparse vectors such that . The proof

now follows from the following construction. For a given
-sparse vector , choose a frequency interval of

length . Construct a vector of spectrum slices, by
letting for every , and otherwise.
Clearly, that corresponds to some (see below
an argument that treats the case that this construction results
in a complex-valued ). Follow this argument for
to provide within . Since ,
both are mapped to the same samples. It can be
verified that since , the existence of complex-valued

implies the existence of a corresponding
real-valued pair of signals within , which have the same
samples.

The condition (22) comes from the structure of . For
contains identical columns, for example .

Now, set to be the zero vector except the value on the
first entry. Similarly, let have zeros except for on
the th entry. We can then use the arguments above to
construct the signals from . It is easy to see
that the signals (or their real-valued counterparts) are mapped
to the same samples although they are different.

The proof on the necessity of for
follows from the same arguments.

We point out that the necessary conditions on may
change with other choices of . However, is suf-
ficient for our purposes, and allows to reduce the total sam-
pling rate as low as possible. In addition, note that it is rec-
ommended (though not necessary) to have . This
requirement stems from the fact that is defined over a finite
alphabet and thus cannot have more than lin-
early independent columns. Therefore, in a sense, the degrees
of freedom in are decreased2 for . We
next show that the conditions of Theorem 1 are also sufficient
for blind recovery, under additional conditions.

2Note that repeating the arguments of the proof for � � � allows to
construct spectrum slices ���� in the null space of ��. However, these do not
necessarily correspond to ���� � � and thus this requirement is only a rec-
ommendation.
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Theorem 2 (Sufficient Conditions): Let be an arbitrary
signal within the multiband model , which is sampled ac-
cording to Fig. 3 with sign waveforms . If:

1) , and is not too large (see the proof);
2) , where is defined in (22);
3) for non-blind reconstruction or for blind;
4) every columns of are linearly independent, then,

for every , the vector is the unique -sparse
solution of (19).
Proof: The choice ensures that every band can

contribute only a single nonzero value to . Fig. 4 and the
earlier explanations provide a proof of this statement. As a con-
sequence, is -sparse for every .

For contains nonzero diagonal entries, since
only for for some . The same also holds for

as long as the ratio is less than
. This implies that is nonsingular and rank

rank . Thus linear independence of any column subset of
implies corresponding linear independence for SFD.

In the non-blind setting, the band locations imply the support
for every . The other two conditions (on

) ensure that (19) can be inverted on the proper column
subset, thus providing the uniqueness claim. A closed-form ex-
pression is given in (29) below.

In blind recovery, the nonzero locations of are unknown.
We therefore rely on the following result from the CS literature:
A -sparse vector is the unique solution of if every

columns of are linearly independent [28]. This condition
translates into and the condition on of the the-
orem.

To reduce the sampling rate to minimal we may choose
and (for the blind scenario). This translates to

an average sampling rate of , which is the lowest possible
for [5]. Table I presents two parameter choices for
a representative signal model. Option A in the table uses

and leads to a sampling rate as low as 615 MHz, which is
slightly above the minimal rate MHz. Option B is
discussed in the next section.

Recall the Proof of Theorem 1, which shows that has
columns. Therefore, if is sufficiently small, then

the requirement may contradict the recommendation
. This situation is rare due to the exponential na-

ture of the upper bound; it does not happen in the examples of
Table I. Nonetheless, if it happens, then we may view
as conceptually having bands, each of width , and set

. The upper bound on grows exponentially with
while the lower bound grows only linearly, thus for some integer

we may have a valid selection for . This approach re-
quires branches which correspond to a large number

TABLE I
POSSIBLE PARAMETER CHOICES FOR MULTIBAND SAMPLING

of sampling channels. Fortunately, this situation can be solved
by trading the number of sampling channels for a higher sam-
pling rate .

To complete the sampling design, we need to specify how
to select the matrix , namely the sign patterns , such
that the last condition of Theorem 2 holds. This issue is shortly
addressed in Section IV.

D. Trading Channels for Sampling Rate

The burden on hardware implementation is highly impacted
by the total number of hardware devices, which includes the
mixers, the low-pass filters and the ADCs. Clearly, it would be
beneficial to reduce the number of channels as low as possible.
We now examine a method which reduces the number of chan-
nels at the expense of a higher sampling rate in each channel
and additional digital processing.

Suppose , with odd . To analyze this
choice, consider the th channel of (11) for

(23)

where . The first equality follows from a change of
variable, and the second from the definition of in (10), which
implies that over for every

. Now, according to (23), a system with provides
equations on for each physical channel. Equivalently,

hardware branches (including all components) amounts to

...

...

...
. . .

...

...
. . .

...

(24)

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on March 17,2010 at 07:16:25 EDT from IEEE Xplore.  Restrictions apply. 



MISHALI AND ELDAR: FROM THEORY TO PRACTICE: SUB-NYQUIST SAMPLING OF SPARSE WIDEBAND ANALOG SIGNALS 383

channels having . Equation (24) expands this relation,
shown at the bottom of the previous page.

Theorem 2 ensures that has nonzero elements for
every . Nonetheless, as detailed in the next section, for
efficient recovery it is more interesting to determine the joint
sparsity level of over . As Fig. 4 depicts, over

is -jointly sparse, whereas over the wider range
may have a larger joint support set. It is therefore ben-

eficial to truncate the sequences appearing in (23) to the in-
terval , prior to reconstruction. In terms of digital processing,
the left-hand side of (24) is obtained from the input sequence

as follows. For every , the frequency shift
is carried out by time modulation. Then, the se-

quence is low-pass filtered by and decimated by . The
filter is an ideal low-pass filter with digital cutoff ,
where corresponds to half of the input sampling rate . This
processing yields the rate sequences

(25)

Conceptually, the sampling system consists of channels
which generate the sequences (25) with .

Table I presents a parameter choice, titled Option B, which
makes use of this strategy. Thus, instead of the proposed setting
of Theorem 2 with channels, uniqueness can be guar-
anteed from only three channels. Observe that the lowest sam-
pling rate in this setting is higher than the minimal , since
the strategy expands each channel to an integer number of se-
quences. In the example, three channels are digitally expanded
to channels. In Section V-C we demonstrate this ap-
proach empirically using a finite impulse response (non-ideal)
filter to approximate .

Theoretically, this strategy allows to collapse a system with
channels to a single channel with sampling rate .

However, each channel requires digital filters to reduce the
rate back to , which increases the computational load. In ad-
dition, as grows, approximating a digital filter with cutoff
requires more taps.

IV. RECONSTRUCTION

We now discuss the reconstruction stage, which takes the
sample sequences (or the decimated sequences )
and recovers the Nyquist rate sequence (or its analog
version ). As we explain, the reconstruction also allows to
output digital low-rate sequences that capture the information in
each band.

Recovery of from the sequences boils down to re-
covery of the sparsest of (11) for every . The system
(11) falls into a broader framework of sparse solutions to a pa-
rameterized set of linear systems, which was studied in [11].
In the next subsection, we review the relevant results. We then
specify them to the multiband scenario.

A. IMV Model

Let be an matrix with . Consider a param-
eterized family of linear systems

(26)

indexed by a fixed set that may be infinite. Let
be a collection of -dimensional vectors that

solves (26). We will assume that the vectors in are jointly
-sparse in the sense that . In other words,

the nonzero entries of each vector lie within a set of at
most indices.

When the support is known, recovering
from the known vector set is

possible if the submatrix , which contains the columns of
indexed by , has full column rank. In this case

(27a)

(27b)

where contains only the entries of indexed by and
is the (Moore–Penrose) pseudoinverse

of . For unknown support , (26) is still invertible if
is known, and every set of columns from is linearly inde-
pendent [11], [28], [29]. In general, finding the support of
is NP-hard because it may require a combinatorial search. Nev-
ertheless, recent advances in compressive sampling and sparse
approximation delineate situations where polynomial-time re-
covery algorithms correctly identify for finite . This chal-
lenge is referred to as a multiple measurement vectors (MMV)
problem [27], [29]–[34].

The sparsest solution of a linear system, for unknown sup-
port , has no closed-form solution. Thus, when has infi-
nite cardinality, referred to as the infinite measurement vectors
(IMV) problem [11], solving for conceptually requires
an independent treatment for infinitely many systems [11]. To
avoid this difficulty of IMV, we proposed in [5] and [11] a two
step flow which recovers the support set from a finite-dimen-
sional system, and then uses (27) to recover . The algo-
rithm begins with the construction of a (finite) frame for

. Then, it finds the (unique) solution to the MMV system
that has the fewest nonzero rows. The main result is

that equals , namely the index set of
the nonidentically zero rows of . In other words, the support
recovery is accomplished by solving only a finite-dimensional
problem. These operations are grouped in a block entitled con-
tinuous to finite (CTF), depicted in Fig. 5. The tricky part of
the CTF is in exchanging the infinite IMV system (26) by a fi-
nite-dimensional one. Computing the frame , which theoret-
ically involves the entire set of infinitely many vectors,
can be implemented straightforwardly in an analog setting as
we discuss in the next subsection. Isolating the infiniteness to
the frame construction stage enables us to solve (26) exactly
with only one finite-dimensional CS problem.

B. Multiband Reconstruction

We now specify the CTF block in the context of multiband
reconstruction from the MWC samples. The linear system (11)
clearly obeys the IMV model with . In order to use the
CTF, we need to construct a frame for the measurement set

. Such a frame can be obtained by computing [11]

(28)
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Fig. 5. Recovery of the joint support � � ����������.

where is the vector of samples at
time instances . Then, any matrix , for which ,
is a frame for [11]. The CTF block, Fig. 5, can then be
used to recover the support .

The frame construction (28) is theoretically noncausal. How-
ever, rank due to the sparsity prior [5], and thus there
is no need to collect more than linearly independent terms in
(28). In practice, only pathological signals would require signif-
icantly larger amount of samples to reach the maximal rank [5].
Section V-A demonstrates recovery de-facto from frame con-
struction over a short time interval. Therefore, the infinite sum
in (28) can be replaced by a finite sum and still lead to perfect
recovery since the signal space is directly identified.

Once is found

(29a)

(29b)

where and is the inverse-DTFT
of . Therefore, the sequences are generated at the
input rate . At this point, we may recover by either of the
two following options. If is not prohibitively large, then
we can generate the Nyquist rate sequences digitally and
then use an analog low-pass (with cutoff ) to recover .
The digital sequence is generated by shifting each spec-
trum slice to the proper position in the spectrum, and then
summing up the contributions. In terms of digital processing,
the sequences are first zero padded

otherwise
(30)

Then, is interpolated to the Nyquist rate, using an ideal
(digital) filter. Finally, the interpolated sequences are modulated
in time and summed

(31)

The alternative option is to handle the sequences directly
by analog hardware. Every passes through an analog low-
pass filter with cutoff and gives (the complex-valued)

. Then,

(32)

where denote the real and imaginary part of their
argument, respectively. By abuse of notation, in both (31) and
(32), the sequences are enumerated to
shorten the formulas. We emphasize that although the analysis
of Section III-B was carried out in the frequency domain, the
recovery of is done completely in the time-domain, via
(28)–(32).

The next section summarizes the recovery flow and its advan-
tages from a high-level viewpoint.

C. Architecture and Advantages

Fig. 6 depicts a high-level architecture of the entire recovery
process. The sample sequences entering the digital domain are
expanded by the factor (if needed). The controller
triggers the CTF block on initialization and when identifying
that the spectral support has changed. Spectral changes are
detected either by a high-level application layer, or by a simple
technique discussed hereafter. The digital signal processor
(DSP) treats the samples, based on the recovered support, and
outputs a low-rate sequence for each active spectrum slice,
namely those containing signal energy. A memory unit stores
input samples (about instances of ), such that in case of
a support change, the DSP produces valid outputs in the period
required for the CTF to compute the new spectral support. An
analog back-end interpolates the sequences and sums them up
according to (32). The controller has the ability to selectively
activate the digital recovery of any specific band of interest, and
in particular to produce an analog counterpart (at baseband) by
overriding the relevant carrier frequencies.

CTF and sampling rate. The frame construction step of
the CTF conceptually merges the infinite collection to
a finite basis or frame, which preserves the original support.
For the CTF to work in the multiband reconstruction, the sam-
pling rate must be doubled due to a specific property that this
scenario exhibits. Observe that under the choices of Theorem
2, is jointly -sparse, while each is -sparse.
This stems from the continuity of the bands which permits
each band to have energy in (at most) two spectrum pieces
within . Therefore, when aggregating the frequencies the
support cannot contain more than indices.
An algorithm which makes use of several CTF instances and
gains back this factor was proposed in [5]. Although the same
algorithm applies here as well, we do not pursue this direction
so as to avoid additional digital computations.

MMV recovery complexity. The CTF block requires
solving an MMV system, which is a known NP-hard problem.
In practice, suboptimal polynomial-time CS algorithms may
be used for this computation [11], [29], [32]–[34]. The price
for tractability is an increase in the sampling rate. In the next
section, we quantify this effect for a specific recovery approach.
We refer the reader to [29], and [33]–[35] for theoretical guar-
antees regarding MMV recovery algorithms.

Realtime processing. Standard CS algorithms, for the finite
scenario, couple the tasks of support recovery and the con-

struction of the entire solution. In the infinite scenario, however,
the separation between the two tasks has a significant advantage.
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The support recovery step yields an MMV system, whose di-
mensions are . Thus, we can control the recovery problem
size by setting the number of channels , and setting via

in (12). Once the support is known, the actual recovery
has a closed form (29), and can be carried out in real-time. In-
deed, even the recovery of the Nyquist rate sequence (30)–(32),
can be done at a constant rate. Had these tasks been coupled,
the reconstruction stage would have to recover the Nyquist rate
signal directly. In turn, the CS algorithm would have to run on a
huge-scale system, dictated by the ambient Nyquist dimension,
which is time and memory consuming.

In the context of real-time processing, we comment that the
CTF is executed only when the spectral support changes, and
thus the short delay introduced by its execution is negligible on
average. In a real-time environment, about consecutive input
vectors should be stored in memory, so that in case of a
support change the CTF has enough time to provide a new sup-
port estimate before the recovery of , (29), reaches the point
that this information is needed. The experiment in Section V-D
demonstrates such a real-time solution. In either case, there is
no need to recover the Nyquist rate signal before a higher appli-
cation layer can access the digital information.

In order to notice the support changes once they occur, we can
either rely an indication from the application layer, or automat-
ically identify the spectral variation in the sequences . To
implement the latter option, let be the last sup-
port estimate of the CTF, and define for some entry

. Now, monitor the value of the sequence . As long as
the support does not change, the sparsity of implies that

or contains only small values due to noise. Whenever,
this sequence crosses a threshold (for certain number of consec-
utive time instances) trigger the CTF to obtain a new support
estimate. Note that the recovery of requires to implement
only one row from . Since, the values are not important for
the detection purpose, the multiplication can be carried out at a
low resolution.

Robustness and sensitivity. The entire system, sampling and
reconstruction, is robust against inaccuracies in the parameters

. This is a consequence of setting the parameters according
to Theorem 2, with only the inequalities . In par-
ticular, is chosen above the minimal to ensure safety guard
regions against hardware inaccuracies or signal mismodeling.
Furthermore, observe that the exact values of do not ap-
pear anywhere in the recovery flow: the expanding (25), the
frame construction (28), the CTF block—Fig. 5, and the re-
covery (29). Only the ratio is used, which remains
unchanged if the a single clock circuitry is used in the design.
In addition, in the recovery of the Nyquist rate sequence (31),
only the ratio is used, which remains fixed for the same
reasons. When recovering via (32), is provided to the
back-end from the same clock triggering the sampling stage.
The recovery is also stable in the presence of noise as numeri-
cally demonstrated in Section V-A.

Digital implementation. The sample vectors arrive syn-
chronously to the digital domain. As mentioned earlier, a pos-
sible interface is to trigger a digital processor from the same
clock driving the ADCs, namely at rate . Since the dig-
ital input rate is relatively low, on the order of Hz, commer-

cial cheap DSPs can be used. However, here the actual number
of channels has a great impact. Each sample is quantized
by the ADC to a certain number of bits, say 8 or 16. The bus
width towards the DSP becomes of length 8 m or 16 m, respec-
tively. Care must be taken when choosing the processing unit
in order to accommodate the bus width. Note that some recent
DSPs have analog inputs with built-in synchronized ADCs so
as to avoid such a problem. See other aspects of quantization in
Section V-E.

Finally, we point out an advantage with respect to the recon-
struction of a multicoset-based receiver. The IMV formulation
holds for this strategy with a different sampling matrix [5].
However, the IMV system requires a (Nyquist rate) zero padded
version of (2) in this case. Consequently, constructing a frame

from the multicoset low-rate sequences (2) requires interpo-
lating the sample sequences to the Nyquist rate. Only then can

be computed [see (61)–(62) in [5]]. Furthermore, reconstruc-
tion of the signal also requires the same interpolation to the
Nyquist grid, that is even for a known spectral support. In con-
trast, the current mixing stage has the advantage that the IMV
is expressed directly in terms of the low-rate sequences ,
and the computation of in (28) is carried out directly on the
input sequences. In fact, one may implement an adaptive frame
construction at the input rate . Digital processing at rate
is obviously preferred over a processor running at the Nyquist
rate.

D. Choosing the Sign Patterns

Theorem 2 requires that for uniqueness, every columns of
must be linearly independent. To apply the CTF block the

requirement is strengthened to every columns, which also
implies the minimal number of rows in [5]. Verifying that a
set of sign patterns satisfies such a condition is computa-
tionally difficult because one must check the rank of every set
of columns from . In practice, when noise is present or
when solving the MMV by suboptimal polynomial-time CS al-
gorithms, the number of rows in should be increased beyond

. A preliminary discussion on the required dimensions
of is quoted below from the conference version of this work
[36]. The actual choice of the patterns will be investigated in fu-
ture work.

Consider the system , where is an unknown sparse
vector, is the measurement vector, and is of size . A
matrix is said to have the restricted isometry property (RIP)
[27] of order , if there exists such that

(33)

for every -sparse vector [27]. The requirement of Theorem
2 thus translates to . The RIP requirement is also hard to
verify for a given matrix. Instead, it can be easier to prove that a
random , chosen from some distribution, has the RIP with high
probability. In particular, it is known that a random sign matrix,
whose entries are drawn independently with equal probability,
has the RIP of order if , where is a
positive constant independent of everything [37]. The log factor
is necessary [38]. The RIP of matrices with random signs re-
mains unchanged under any fixed unitary transform of the rows
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Fig. 6. High-level architecture for efficient multiband reconstruction.

[37]. This implies that if is a random sign matrix, possibly
implemented by a length shift register per channel, then
has the RIP of order for the above dimension selection. Note
that is ignored in this analysis, since the diagonal has nonzero
entries and thus for any vector .

To proceed, observe that solving for would require the com-
binatorial search implied by

(34)

A popular approach is to approximate the sparsest solution by

(35)

The relaxed program, named basis pursuit (BP) [39], is convex
and can be tackled with polynomial-time solvers [27]. Many
works have analyzed the basis pursuit method and its ability to
recover the sparsest vector . For example, if
then (35) recovers the sparsest [40]. The squared error of the
recovery in the presence of noise or model mismatch was also
shown to be bounded under the same condition [40]. Similar
conditions were shown to hold for other recovery algorithms.
In particular, [35] proved a similar argument for a mixed
program in the MMV setting (which incorporates the joint spar-
sity prior). See also [34].

In practice, the matrix is not random once the sampling
stage is implemented, and its RIP constant cannot be calcu-
lated efficiently. A reviewer also pointed out that when imple-
menting a binary sequence using feedback logic, as popular for
m-sequences, the set of possible sign patterns is much smaller
than . In this setting, alternative randomness properties, such
as almost -wise independency can be beneficial [41]. Exten-
sive simulations on synthesized data are often used to evaluate
the performance and the stability of a CS system when RIP
values are difficult to compute (e.g., see [11], [29], and [31]).
Clearly, the numerical results do not ensure a desired RIP con-
stant. Nonetheless, for practical applications, the behavior ob-
served in simulations may be sufficient. The discussion above
implies that stable recovery of the MMV of Fig. 5 requires
roughly

(36)

channels to estimate the correct support, using polynomial-time
algorithms.

V. NUMERICAL SIMULATIONS

We now demonstrate several engineering aspects of our
system, using numerical experiments.

1) A wideband design example in the presence of wideband
noise, for a synthesized signal with rectangular transmis-
sion shapes.

2) Hardware simplifications: using a single shift-register to
implement several periodic waveforms at once.

3) Collapsing the number of hardware channels, evaluating
the idea presented in Section III-D.

4) Fast adaption to time-varying support, for quadrature phase
shift keying (QPSK) transmissions.

5) Quantization effects.

A. Design Example

To evaluate the performance of the proposed system (see
Fig. 3) we simulate the system on test signals contaminated by
white Gaussian noise.

More precisely, we evaluate the performance on 500 noisy
test signals of the form , where is a multiband
signal and is a white Gaussian noise process. The multiband
model of Table I is used hereafter. The signal consists of three
pairs of bands (total ), each of width MHz,
constructed using the formula

(37)

where . The energy coefficients are
and the time offsets are s.

The exact values takes on the support do not affect the
results and thus are fixed in all our simulations. For
every signal the carriers are chosen uniformly at random in

with GHz.
We design the sampling stage according to “Option A” of

Table I. Specifically, MHz. The
number of channels is set to , where each mixing
function alternates sign at most times.
Each sign is chosen uniformly at random and fixed for the
duration of the experiment. To represent continuous signals
in simulation, we place a dense grid of 50 001 equispaced
points in the time interval s . The time resolution under
this choice, , is used for accurate representation of the
signal after mixing, which is not band-limited. The Gaussian
noise is added and scaled so that the test signal has the desired
signal-to-noise ratio (SNR), where the SNR is defined to be

, with the standard norms. To imitate
the analog filtering and sampling, we use a lengthy digital FIR
filter followed by decimation at the appropriate factor. After
removing the delay caused by this filter, we end up with 40
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Fig. 7. Image intensity represents percentage of correct support set recovery
�� � �, for reconstruction from different number of sampling sequences �� and
under several SNR levels.

samples per channel at rate , which corresponds to observing
the signal for 780 ns. We emphasize that these steps are re-
quired only when simulating an analog hardware numerically.
In practice, the continuous signals pass through an analog filter
(e.g., an elliptic filter), and there is no need for decimation or a
dense time grid.

The support of the input signal is reconstructed from
channels. (More precisely, is recovered.)
We follow the procedure described in Fig. 5 to reduce the IMV
system (19) to an MMV system. Due to Theorem 2, is ex-
pected to have (at most) dominant eigenvectors. The
noise space, which is associated with the remaining negligible
eigenvalues is discarded by simple thresholding ( is used
in the simulations). Then, the frame is constructed and the
MMV is solved using simultaneous orthogonal matching pur-
suit [31], [32]. We slightly modified the algorithm to select a
symmetric pair of support indices in every iteration, based on
the conjugate symmetry of . Success recovery is declared
when the estimated support set is equal the true support, .
Correct recovery is also considered when contains a few
additional entries, as long as the corresponding columns are
linearly independent. As explained, recovery of the Nyquist rate
signal can be carried out by (31)–(32). Fig. 7 reports the per-
centage of correct support recoveries for various numbers of
channels and several SNRs.

The results show that in the high SNR regime correct recovery
is accomplished when using channels, which amounts
to less than 18% of the Nyquist rate. This rate conforms with
(36) which predicts an order of channels
for stable recovery. A saving factor 2 is possible if using more
than a single CTF block and a complicated processing (see [5]
for details) or by brute-force MMV solvers with exponential
recovery time. An obvious trend which appears in the results is
that the recovery rate is inversely proportional to the SNR level
and to the number of channels used for reconstruction.

B. Simplifying the Mixing Stage

Each channel needs a mixing function , which suppos-
edly requires a shift register of flip flops. In the setting of

Fig. 8. Percentage of correct support recovery, when drawing the sign patterns
randomly only for the first � channels. Results are presented for (a) SNR � ��

dB and (b) SNR � �� dB.

Fig. 7, every channel requires flip flops with a clock
operating at GHz.

We propose a simple method to reduce the total number of flip
flops by sharing the same register by a few channels, and using
consecutive taps to produce several mixing functions simulta-
neously. This strategy however reduces the degrees of freedom
in and may affect the recovery performance. To qualitatively
evaluate this approach, we generated sign matrices whose
first rows are drawn randomly as before. Then, the th row,

, is five cyclic shifts (to the right) of the th
row. Fig. 8 reports the recovery success for several choices of
and two SNR levels. As evident, this strategy enables a saving of
80% of the total number of flip flops, with no empirical degra-
dation in performance.

C. Collapsing Analog Channels

Section III-D introduced a method to collapse sampling
channels to a single channel with a higher sampling rate

. To evaluate this strategy, we choose the parameter set “Op-
tion B” of Table I. Specifically, the system design of Section V-A
is now changed to , with physical channels.

In the simulation, the time interval in which the signal is
observed is extended to s , such that every channel
records (after filtering and sampling) about 500 samples. The
extended window enables accurate digital filtering in order
to separate each sequence to different equations. We
design a 100-tap digital FIR filter with the Matlab command

to approximate the optimal filter
of Section III-D. Then, for the th sample sequence is
convolved with each of the modulated versions ,
where . Fig. 9 reports the recovery per-
formance for different SNR levels and versus the number of
sampling channels. The performance trend remains as in Fig. 7.
In particular, channels achieve an acceptable recovery
rate. This implies a significant saving in hardware components.
The combination of collapsing channels and sharing the same
shift register for different channels was realized in [12] for

.

D. Time-Varying Support

To demonstrate the real-time capabilities of our system, we
consider a communication system with three concurrent quadra-
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Fig. 9. Image intensity represents percentage of correct support set recovery
�� � �, for reconstruction from different number of hardware channels �� and
under several SNR levels. The input sample sequences are expanded to ��� ��
digital sequences.

Fig. 10. Spectral density of a QPSK transmission is plotted in (a). Reconstruc-
tion of a signal with time-varying spectral support is demonstrated in (b).

ture phase shift keying (QPSK) transmissions of width
MHz each. Each QPSK signal is given by

(38)

where are the energy and the duration of a
symbol. The in-phase and quadrature bit streams are ,
and is the pulse shaping. We chose the standard shaping

and generated the bit streams uniformly
at random. The power spectral density around the carrier is
illustrated in Fig. 10(a). Evidently, real-life transmissions have
nonsharp edges, as opposed to nice rectangular signals,
which were synthesized in (37).

The experiment was set up as follows. Three QPSK signals
of the form (38) were generated with symbol
energies , respectively. The carriers were drawn as be-
fore uniformly at random over a wideband range with

GHz. Every s the carrier were redrawn independently
of their previous values. Each interval of s gave about 500
time samples . In addition, the SNR was fixed to 30 dB. The

sampling parameters are the same of Fig. 7, except for a fixed
number of channels so as to simplify the presentation.

In order to handle the time-varying support, we decided to
use time samples for the frame construction
of the CTF. In addition, we considered the architecture of Fig. 6
with a memory stack that can save only vectors.
As a result, whenever the spectral support changes, the low-
rate sequences remain valid only for 20 cycles, and then
becomes invalid for 30 more cycles, until the CTF provides a
new support estimate. To identify the support changes, we used
the technique described earlier in Section IV-C.

Fig. 10(b) shows the normalized squared baseband error,
which is defined as

Baseband error (39)

where corresponds to the signal without noise, ac-
cording to (13), while are the actual recovered sequences,
including noise and possible wrong indices in the recovered
support. We measure the baseband error, rather than the output
error , since the low-pass filter in the
output recovery, either in (31) or in (32), has its
own memory which smooths out the error to negligible values.
In the figure, the noise floor is due to the normalization in (39)
and our choice of 30 dB SNR.

This experiment highlights that the CTF requires only a short
duration to estimate the support. Once a new support estimate
is ready, the baseband error drops down, and consequently the
reconstruction is correct. In the experiment, we intentionally
used a memory size smaller than , in order to
demonstrate error in this setting. In practice, one should use

for normal operation. When changing the SNR
and the number of channels, we found that can be much
lower than 50. The bottom line is that the CTF introduces only a
short delay in real-time environments, and the memory require-
ments are consequently very low.

E. Quantization

The ADC device performs two tasks: taking pointwise sam-
ples of the input (up to the bandwidth limitation), and quantizing
the samples to a predefined number of bits. So far, we have ig-
nored quantization issues. A full study of these effects is be-
yond the current scope. Nonetheless, we provide a preliminary
demonstration of the system capabilities in that context.

Quantization is usually regarded as additive noise at the input,
though the noise distribution is essentially different from the
standard model of white Gaussian noise. Since Fig. 7 shows
robustness to noise, it is expected that the system can handle
quantization effects in the same manner. To perform the exper-
iment, we used the setting of the first experiment, Fig. 7, with
the following exceptions: QPSK transmissions (37), no additive
wideband noise (in order to isolate the quantization effect), and
a variable number of bits to represent . We used the simplest
method for quantization—uniformly spaced quantization steps
that covers the entire dynamic range of . Fig. 11 shows that
indeed the support recovery functions properly even from a few
number of bits.
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Fig. 11. Support recovery from quantized samples of QPSK transmissions.

Fig. 12. Block diagram of the random demodulator [10].

VI. DISCUSSION

A. Related Work

The random demodulator is a recent system which also aims
at reducing the sampling rate below the Nyquist barrier [9], [10].
The system is presented in Fig. 12. The input signal is first
mixed by a sign waveform with a long period, produced by a
pseudorandom sign generator which alternates at rate . The
mixed output is then integrated and dumped at a constant rate

, resulting in the sequence .
The signal model for which the random demodulator was de-

signed consists of multitone functions:

(40)

where is a finite set of tones

(41)

The analysis in [10] shows that can be recovered from ,
using the linear system

(42)

where is matrix and collects the coefficients .
Despite the somewhat visual similarity between Figs. 12 and

3, the systems are essentially different in many aspects. The
most noticeable is the discrete multitone setting in contrast to
the analog multiband model that was considered throughout this

paper. When attempting to approximate analog signals in the
discrete model, such as those used in the previous section, the
number of tones is about the Nyquist rate, and

is required [10]. In practice, this results in a huge-scale
(millions of rows by tens of millions of columns), which may
not allow to solve for the coefficients in a reasonable amount
of computations. In contrast, the MWC is developed for contin-
uous signals, and the matrix has low dimensions, in
our experiments, for the same signal parameters.

Besides model and computational aspects, the systems also
differ in terms of hardware. Our approach is easily adapted to
arbitrary periodic waveforms by just recalculating the Fourier
coefficients in (7). In contrast, the analysis in [10] is more
tailored for the specific choice of sign waveforms. The hardware
of [10] also requires accurate integration, as opposed to flexible
analog filter design in the MWC.

Finally, we point out that (42) aims at Nyquist rate recovery.
In contrast, our approach combines standard sampling theory
tools, such as frequency-domain analysis, Section III-B, and in-
corporates CS only where beneficial. The CS problem of the
CTF, (19), is used only for support recovery, which is the key
for reducing recovery complexity and allowing low-rate pro-
cessing. A detailed comparison of our system with the random
demodulator appears in [42].

B. Concluding Remarks

We presented a sub-Nyquist sampling system, the modulated
wideband converter, which is designed independently of the
spectral support of the input signal. The analog front-end sup-
ports wideband applications and can also be used to sample
wideband inputs occupying the entire spectral support. A uni-
fied digital architecture for spectrum-blind reconstruction and
for low-rate processing was also provided. The architecture con-
sists of digital support recovery and an analog back-end. The
digital operations required for the support recovery need only
a small number of observations, thus introducing a short delay.
Once the support is known, various real-time computations are
possible. Recovery of the original signal at the Nyquist rate is
only one application. Perhaps more important is the potential to
digitally process any information band at a low rate.

This work bridges theory to practice. In theory, we prove that
analog signals are determined from minimal rate samples. In the
bridge to practice, we utilized numerical simulations to prove
the concept of stable recovery in challenging wideband con-
ditions. Finally, we presented various practical considerations,
both for the implementation of the analog front-end (e.g., setting
the number of channels, trading system branches by a higher
sampling rate, and some potential hardware simplifications),
and for the digital stage (e.g., low-rate and real-time processing,
handling time-varying spectrum, and quantization). The engi-
neering aspects are the prime focus of the current paper, while
future work will sharpen the theoretical understandings and re-
port on circuit-level implementation [12].

The current work embeds theorems and algorithms from
compressed sensing (CS), an emerging research field which
exploits sparsity for dimension reduction. The mainstream line
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of CS papers studies sparsity for discrete and finite vectors. The
random demodulator expands this approach by parameterizing
continuous signals in a finite setting. In contrast, this work
continues the line of [5] and [11] and belongs to a recently-de-
veloped framework within CS [35], [43], [44], which studies
signals from a truly continuous domain. Within this analog
framework, we propose selecting a practical implementation
among the various possible sampling stages covered by [43].
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