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From Tiger to Panda: Animal Head Detection
Weiwei Zhang, Jian Sun, and Xiaoou Tang, Fellow, IEEE

Abstract—Robust object detection has many important appli-

cations in real-world online photo processing. For example, both
Google image search and MSN live image search have integrated

human face detector to retrieve face or portrait photos. Inspired by

the success of such face filtering approach, in this paper, we focus
on another popular online photo category—animal, which is one

of the top five categories in the MSN live image search query log.

As a first attempt, we focus on the problem of animal head detec-
tion of a set of relatively large land animals that are popular on

the internet, such as cat, tiger, panda, fox, and cheetah. First, we

proposed a new set of gradient oriented feature, Haar of Oriented
Gradients (HOOG), to effectively capture the shape and texture

features on animal head. Then, we proposed two detection algo-

rithms, namely Bruteforce detection and Deformable detection, to
effectively exploit the shape feature and texture feature simultane-

ously. Experimental results on 14 379 well labeled animals images

validate the superiority of the proposed approach. Additionally, we
apply the animal head detector to improve the image search result

through text based online photo search result filtering.

Index Terms—Feature, fusion, object detection.

I. INTRODUCTION

A UTOMATIC detection of all generic objects in a general

scene is a long term goal in image understanding and re-

mains to be an extremely challenging problem due to large intra-

class variation, varying pose, illumination change, partial occlu-

sion, and cluttered background. However, researchers have re-

cently made significant progresses on a particularly interesting

subset of object detection problems, face [21], [26], [28] and

human detection [3], achieving near 90% detection rate on the

frontal face in real-time [26] using a boosting based approach.

Meanwhile, with the recent advance on robust object detec-

tion, some major image search engines start to use high level

image features to filter text based image search results [1]. For

example, Google and MSN image search engines already in-

tegrated human face detection as a high level filter. However,

designing high level filter for objects other than human face is

still a challenging problem.

Inspired by the success of face detection and the real world

online photo search challenge, we are interested in investi-

gating whether the success of face detection can be extended to

a broader set of object detection applications for online photo
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processing. Obviously, it is difficult to use the face detection

approach on generic object detection such as tree, mountain,

building, and sky detection, since they do not have a relatively

fixed intra-class structure like human faces. To go one step

at a time, we need to limit the objects to the ones that share

somewhat similar properties as human face. If we can succeed

on such objects, we can then consider to go further.

According to MSN image search statistics, the top five

image search categories on the internet are Adult, Celebrity,

News, Travel, and Animal. Human face filter is clearly aimed

at celebrity search filtering. For the other categories, there are

already existing researches on adult image detection [8], [12],

news image categorization [11], scene image classification

[25]. Unfortunately, since news and travel are not limited to a

set of well defined scenes or subjects, it is difficult to develop a

practical filter. On the other hand, the “animal” category seems

to be less challenging with clearly defined objects in the image.

If we can detect some animals in the image, the detector can

then be used as an animal filter. In addition to online image

filtering, animal detection can also be useful for photo tagging

in online photo sharing and off-line photo album management

[2]. Therefore, in this paper, we focus on this popular image

category—animal.

Due to the large diversity of animal types, it is not possible

to develop detectors for all animals at once. As a first attempt,

we focus on relatively large land animals that are popular on the

internet, such as cat, tiger, panda, fox, and cheetah. We observe

that most of these animals have distinctive ears and frontal eyes.

We select ten representative ones to study in this paper which

includes: cat, tiger, panda, puma, leopard, wolf, fox, cheetah,

raccoon, and red panda. Sample images of these animals are

shown in Fig. 1. Moreover, it is not easy to detect the entire an-

imal body because of large variation. In this paper, we focus on

detecting animal head of the selected animals. Given the great

difficulty of the topic, we are not trying to cover a large number

of animals. Instead, as a first attempt, we hope this work will in-

spire more future researches on much larger number of animal

types.

A natural approach to start with is to look into human face

detection algorithm [26] since human face and animal head do

share some similar structures. Unfortunately, directly applying

the existing face detection approaches to detect the animal heads

has apparent difficulties. First, the animal faces have larger ap-

pearance variations compared with the human face, as shown in

Fig. 1. The textures on the animal faces are more complicated

than those on the human face. Second, the animal heads have a

globally similar, but locally variant shape or silhouette. How to

effectively utilize both texture and shape information to train a

robust animal head detector is a challenging new issue.

To deal with the above difficulties, we propose a joint learning

approach to jointly capture the shape and texture features on

animal head. Our basic idea is to decompose the animal head

1057-7149/$26.00 © 2010 IEEE
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Fig. 1. .Head images of popular animals on the internet: tiger, panda, leopard, puma, wolf, cat, fox, cheetah, raccoon, red panda.

into shape feature and texture feature according to animal ears

and animal eyes in the first step, and then jointly capture those

shape and texture features in the second step. The novelty of our

approach is the discovery that we need to separate the shape and

texture features first for feature extraction then combine them

through joint detector for detection.

First, to effectively capture both shape and texture features,

we proposed a new set of oriented gradient feature: Haar of Ori-

ented Gradients (HOOG) to handle the shape and texture varia-

tion on animal head. After that, we proposed two joint detection

algorithms: 1) Bruteforce detection, combine the shape and tex-

ture features in a straightforward approach. 2) Deformable de-

tection, combine the shape and texture features with misalign-

ment punish cost. Later experiment clearly validate the effec-

tiveness of the new proposed HOOG feature and the two joint

detection algorithms. In addition, we extend our Deformable

detection algorithm to multiple animal categories, i.e., train a

single binary classifier for the selected 10 animal categories.

Again, our Deformable detection shows much better perfor-

mance than either individual face detector or individual head

detector. Finally, we demonstrate the applications of the animal

head detector for online image search in terms of search result

filtering.

This paper is organized as follows. We review the related

works in Section II. The new proposed oriented gradient fea-

ture set HOOG is introduced in Section III. Two joint detection

algorithms are introduced in IV. Section V shows experimental

results. Finally, we conclude the proposed approaches and dis-

cuss future works in Section VI.

II. RELATED WORKS

Since a comprehensive review of the related works on object

detection is beyond the scope of the paper, we only review the

most related works here.

Low level features play a crucial role in object detection.

Those low level features can be grouped into two main cate-

gories: image features and gradient features. The image features

are directly extracted from the image, such as intensity values

[21], image patch [13], PCA coefficients [18], and wavelet co-

efficients [19], [23], [26]. Henry et al. [21] trained a neural

network for human face detection using the image intensities

in a 20 20 sub-window. Haar wavelet features have become

very popular since Viola and Jones [26] presented their real-time

face detection system. The image features are suitable for small

window and usually require a good photometric normalization.

Contrarily, the gradient features are more robust to illumina-

tion changes. The gradient features are extracted from the edge

map [9], [7] or oriented gradients, which mainly include SIFT

[15], EOH [14], HOG [3], covariance matrix [24], shapelet [22],

HOOG [29], and edgelet [27]. Tuzel et al. [24] demonstrated

very good results on human detection using the covariance ma-

trix of pixel’s 1st and 2nd derivatives and pixel position as fea-

tures. We will give a detailed comparison of our proposed fea-

tures with HOG and EOH features in Section III.A.

To detect all possible instances of an object in the image, two

different searching strategies have been developed. The sliding

window detection [21], [19], [26], [3], [24], [22], [28] sequen-

tially scans all possible sub-windows in the image and makes

a binary classification on each sub-window. Viola and Jones

[26] presented the first highly accurate real-time frontal face de-

tector. A cascade classifier is trained by AdaBoost algorithm on

a set of Haar wavelet features. Dalal and Triggs [3] described an

excellent human detection system through training a SVM clas-

sifier using histogram of gradient (HOG) features. On the con-

trary, the parts based detection [10], [20], [16], [13], [7] detects

multiple parts of the object and assembles the parts according to

geometric constrains. For example, the human can be modeled
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Fig. 2. Oriented gradients channels in four directions.

as assemblies of parts [16], [17] and the face can be detected

using component detection [10].

In this paper, we adopt the sliding window detection approach

due to its excellent real time performance. Meanwhile, we pro-

pose a set of low level features and two joint detection algo-

rithms to effectively capture both texture and shape information

on animal head.

III. HAAR OF ORIENTED GRADIENT

To effectively capture both shape and texture features on an-

imal head, we propose a set of new features based on oriented

gradients.

A. Oriented Gradients Features

Given an image , the image gradient for

the pixel is computed as

(1)

where and are horizontal and vertical filters, and is

convolution operator. A bank of oriented gradients are

constructed by quantifying the gradient on a number of

orientation bins

otherwise
(2)

where is the orientation of the gradient and is

gradient orientation histogram bin k. We call the image ori-

ented gradients channel. Fig. 2 shows the oriented gradients on

a cat head image. In this example, we quantify the orientation

into four directions. We also denote the sum of oriented gradi-

ents of a given rectangular region as

(3)

It can be very efficiently computed in a constant time using in-

tegral image technique [26].

Since the gradient information at an individual pixel is lim-

ited and sensitive to noise, most of previous works aggregate

the gradient information in a rectangular region to form more

informative, mid-level features. Here, we review two most suc-

cessful features: HOG and EOH.

HOG-cell. The basis unit in the HOG descriptor is the weighted

orientation histogram of a “cell” which is a small spatial region,

e.g., 8 8 pixels. It can be represented as

– (4)

The overlapped cells (e.g., 4 4) are grouped and normalized

to form a larger spatial region called “block.” The concatenated

histograms form the HOG descriptor.

In Dalal and Triggs’s human detection system [3], a linear

SVM is used to classify a 64 128 detection window consisting

of multiple overlapped 16 16 blocks. To achieve near real-

time performance, Zhu et al. [30] used HOGs of variable-size

blocks in the boosting framework.

EOH. Levi and Weiss [14] proposed three kinds of features on

the oriented gradients

where is the symmetric region of with respect to the ver-

tical center of the detection window, and is a small value for

smoothing. The first two features capture whether one direction

is dominative or not, and the last feature is used to find symmetry

or the absence of symmetry. Note that using EOH features only
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Fig. 3. HOOG. Left: in-channel features. Right: orthogonal features.

may be insufficient. In [14], good results are achieved by com-

bining EOH features with Haar features on image intensity.

B. Our Features—Haar of Oriented Gradients

In face detection, the Haar features demonstrated their great

ability to discover local patterns—intensity difference between

two subregions. But it is difficult to find discriminative local

patterns on the animal head which has more complex and subtle

fine scale textures. On the contrary, the above oriented gradi-

ents features mainly consider the marginal statistics of gradi-

ents in a single region. It effectively captures fine scale texture

orientation distribution by pixel level edge detection operator.

However, it fails to capture local spatial patterns like the Haar

feature. The relative gradient strength between neighboring re-

gions is not captured either.

To capture both the fine scale texture and the local patterns,

we develop a set of new features combining the advantage of

both Haar and gradient features. Taking a close look at Fig. 2,

we notice many local patterns in each oriented gradients channel

which is sparser and clearer than the original image. We may

consider that the gradient filter separates different orientation

textures and pattern edges into several channels thus greatly

simplified the pattern structure in each channel. Therefore, it is

possible to extract Haar features from each channel to capture

the local patterns. For example, in the horizontal gradient map

in Fig. 2, we see that the vertical textures between the two eyes

are effectively filtered out so we can easily capture the two eye

pattern using Haar features. Of course, in addition to capturing

local patterns within a channel, we can also capture more local

patterns across two different channels using Haar like operation.

In this paper, we propose two kinds of features as follows:

In-channel features:

(5)

These features measure the relative gradient strength between

two regions and in the same orientation channel. The de-

nominator plays a normalization role since we do not normalize

.

Orthogonal-channel features:

(6)

where is the orthogonal orientation with respect to , i.e.,

. These features are similar to the in-channel

features but operate on two orthogonal channels. In theory, we

can define these features on any two orientations. But we de-

cide to only compute the orthogonal-channel features based on

two considerations: 1) orthogonal channels usually containmost

complementary information. The information in two channels

with similar orientations is mostly redundant; 2) we want to

keep the size of feature pool small. The AdaBoost is a sequen-

tial, “greedy” algorithm for the feature selection. If the feature

pool contains too many uninformative features, the overall per-

formance may be hurt. In practice, all features have to be loaded

into the main memory for efficient training. We must be careful

about the size of the features.

Considering all combinations of and will be in-

tractable. Based on the success of Haar features, we use Haar

patterns for and , as shown in Fig. 3. We call the features

defined in (5) and (6), Haar of oriented gradients (HOOG).

IV. JOINT DETECTION

It is known that the animal head has similar facial structure

with the human face. Meanwhile, the animal head has a glob-

ally similar, but locally variant shape or silhouette. How to ef-

fectively make use of both texture and shape features to further

improve the detection performance is a challenging new issue.

In this paper, we proposed two joint detection approaches to ad-

dress this issue.

A. Shape and Texture on Animal Head

It is known that the accuracy of a detector can be dramati-

cally improved by first transforming the object into a canonical
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Fig. 4. Mean cat head images on all training data. (a) Aligned by ears. More shape information is kept. (b) Aligned by both eyes and ears using an optimal rotation
scale transformation. (c) Aligned by eyes. More texture information is kept.

pose to reduce the variability. For example, in human face de-

tection all training samples are normalized by a rotation & scale

transformation. The face is detected by scanning all sub-win-

dows with different orientations and scales. Unfortunately, un-

like the human face, the animal head cannot be well normalized

by a rotation & scale transformation due to the large intra-class

variation.

In Fig. 4, we show three mean cat head images over 5000

training images by three normalization methods. In Fig. 4(a),

we rotate and scale the cat head so that both ears appear on a

horizontal line and the distance between two ears is 36 pixels.

As we can see, the shape or silhouette of the ears is visually dis-

tinct but the textures in the face region are blurred. In a similar

way, we compute the mean image aligned by eyes, as shown

in Fig. 4(c). The textures in the face region are visible but the

shape of head is blurred. In Fig. 4(b), we take a compromised

approach to compute an optimal rotation scale transformation

for both ears and eyes over the training data, in a least square

sense. As expected, both ears and eyes are somewhat blurred.

Intuitively, using the optimal rotation+scale transformation

may produce the best result because the image normalized by

this method contains two kinds of information. However, the

detector trained in this way does not show superior performance

in our experiments. Both shape and texture information are lost

to a certain degree. The discriminative power of shape features

or texture features is hurt by this kind of compromised normal-

ization. Apparently, using single normalization method cannot

fully utilize both shape and texture information on the animal

head. Meanwhile, extending the traditional detection approach

with two normalizationmethods jointly is nontrivial. To this end,

we proposed two joint shape and texture detection approaches.

The first approach is to train two detectors, one for shape and the

other for texture, a fusion classifier is trained based on the output

of those two detectors, we named this approach as Bruteforce

Detection. To further considering themisalignment cost between

the two detectors, the second approach is proposed to consider

both misalignment cost and the shape/texture detector’s output,

we named this approach as Deformable Detection. We give the

details of those two joint detection approaches in the following

subsection. Please note that we denote the detector trained with

ears tips aligned images as “shape detector,” to emphasize the

silhouette of animal head.On the contrary,wedenote the detector

trained with eyes centers aligned images as “texture detector”

to emphasize the texture on the animal face.

B. Bruteforce Detection

First of all, we proposed the Bruteforce Detection approach

to jointly capture the shape and texture features. There are two

phases in this algorithm, training and detection.

1) Training: In the training phase, we train two individual

detectors and a fusion classifier:

1) Train a shape detector, using the aligned training images

by mainly keeping the shape information, as shown in

Fig. 4(a); train a texture detector, using the aligned training

image by mainly preserving the texture information, as

shown in Fig. 4(c). Thus, each detector can capture most

discriminative shape or texture features respectively.

2) Train a joint shape and texture fusion classifier to fuse the

output of the shape and texture detectors.

To train the fusion classifier, animal head images in the vali-

dation set are used as the positive samples. The key is the con-

struction of the negative samples which consist of all incorrectly

detected samples by either the shape detector or the texture de-

tector in the non-animal images. The learned fusion classifier is

able to effectively reject many false alarms by using both shape

and texture information. We use support vector machine (SVM)

as our fusion classifier and HOG descriptors as the representa-

tions of the features and .

2) Detection: In the detection phase, we first run the shape

and texture detectors independently. Then, we apply the joint

shape and texture fusion classifier to make the final decision.

Specifically, we denote as output scores or confidences

of the two detectors, and as extracted features in two

detected sub-windows. The fusion classifier is trained on the

concatenated features .
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Using two detectors, there are three kinds of detection re-

sults: both detectors report positive at roughly the same loca-

tion, rotation, and scale; only the shape detector reports positive;

and only the texture detector reports positive. For the first case,

we directly construct the features for the joint

fusion classifier. In the second case, we do not have .

To handle this problem, we scan the surrounding locations to

pick a sub-window with the highest scores by the texture de-

tector. Specifically, we denote the sub-window reported by the

detector as , where is window’s center,

are width and height, and are scale and rotation level.

We search sub-windows for the texture/shape detector in the

range . Note that

we use real value score of the texture detector and do not make

0–1 decision. The score and features of the picked sub-window

are used for the features . For the last case, we compute

in a similar way.

C. Deformable Detection

One problem of the Bruteforce Detection is that they do not

consider the spatial misalignment(deformation) cost between

the two detectors, it is desirable to design a detection approach to

considering both the spatial misalignment cost and appearance

likelihood. Inspired by the remarkable work of [5], [6] on human

detection, we introduce a distance transform and dynamic pro-

gramming approach to handle the misalignment cost, and we

named this approach as Deformable Detection. There are two

steps within the Deformable Detection, training and detection.

In training step, we train two detectors for shape and texture

respectively as in the Bruteforce detection approach. The detec-

tion procedure is described as below.

1) Detection: It is desirable to deform one detector around

the other detector to find the best match between the two detec-

tors and punish the misalignment between them. Without loss

generality, we fix the texture detector and deform the shape

detector around the texture detector in this paper. let

be the response of the detector and respectively. Specifically,

we denote as the response of detector at a given po-

sition , according to [5], [6], we can compute the response

transform for the detector as

(7)

where is a punish term for the misalignment

between the two detectors, in our experiment, we set

as

(8)

is an normalization term to balance the detection score and

the spatial misalignment, we set as 0.05 in this paper. Then

the final response of the two detectors are simply accumulation

of and .

(9)

V. EXPERIMENT

A. Performance Evaluation

1) Data Set and Evaluation Methodology: Our evaluation

data set includes two parts, the first part is our own data, which

contains 10 animal categories and 13 700 images. The animal

images are collected from Flickr.com and image search engine.

Most of the animal images have near frontal view. Each animal

head is manually labeled with nine points, two for eyes, one

for mouth, and six for ears, as shown in Fig. 5. We randomly

chose 50% of the images for training, 20% for validation and

30% for testing. Fig. 1 shows some sample images from our

database. The second part is from the PASCAL 2007 cat data,

which includes 679 cat images. We follow the PASCAL 2007

original separations of training, validation, and testing set on the

cat data. Table I summarizes the animal categories and statistics.

The data can be downloaded at http://mmlab.ie.cuhk.edu.hk.

We use the evaluation methodology similar to the PASCAL

challenge for object detection. Suppose the ground truth rec-

tangle and the detected rectangle are and , and the area of

those rectangles are and .We say we correctly detect a an-

imal head only when the overlap of and is larger than 50%

if %

otherwise
(10)

where is a function used to calculate detection rate

and false alarm rate.

2) Implementation Details: We discuss several implementa-

tion details in this subsection.

HOOG Features. We use six unsigned orientations to com-

pute the HOOG features. We find the improvement is marginal

when finer orientations are used. The horizontal and vertical fil-

ters are and . No thresholding is applied on

the computed gradients. For both shape and texture detector, we

construct feature pools with 200 000 features by quantifying the

size and location of the Haar templates. Meanwhile, we use the

gray image to extract the HOOG feature.

Joint Detection.We investigate the performance of the two pro-

posed joint detection algorithms. 1) For the Bruteforce detec-

tion, we trained two shape and texture detectors using HOOG

features and boosting classifier, and the final classifier is trained

based on the output of those two detectors as in Section IV.B.

2) For the Deformable detection, we train two detectors as in

Bruteforce Detection and we fix the texture detector and deform

the shape detector. For both approaches, the shift range of the

head window is , where is

the center of the face window and is the width and height

of the head window. We use 20% of animal images as valida-

tion set to tune the parameters for the final classifier for both

approaches. During detection, we use four pixels as the shift

step size of the head window . For deformable, we choose

with a straightforward approach based on our validation set.

First, we uniformly choose 20 value from 0 to 0.2, then we com-

pute the detection ROC performance. We found 0.05 is the best

value on our validation set, therefore, we use this value in all

experiment. The larger the , the more punishment on the two

detector’s misalignment and vice versa.
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Fig. 5. Cat head image is manually labeled by nine points.

TABLE I
SUMMARY OF THE ANIMAL DATABASE

Training samples. We choose the best cropping size for each

of the two joint detection algorithms. We align all animal head

image with respect to the ears to train the shape detector. We

rotate and scale the image so that two tips of the ears appear

on a horizontal line and the distance between the two tips is

36 pixel. Then, we extract a 48 48 pixel region, centered 20

pixels below the two tips. For the texture detector, a 32 32

pixel region is extracted. The distance between the two eyes is

20 pixels. The region is centered six pixel below the two eyes.

3) Comparison of Features: First of all, we compare the pro-

posed HOOG features with Haar, , and HOG fea-

tures on both the shape detector and the texture detector using

our own cat data. The reason is that: 1) We have enough cat data

to train a robust boosting detector. 2) Cat has bigger shape and

texture variations than the other animals, which could test the

Fig. 6. Comparison of Haar, Haar+EOH, HOG, and our features on the cat
data. (a) Shape detector. (b) texture detector.

feature’s performance more extensively. For the Haar features,

we use all four kinds of Haar templates. For the EOH features,
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Fig. 7. Best features learned by the AdaBoost. Left (shape detector): (a) Best Haar feature on image intensity. (b) Best in-channel feature. (c) Best orthogonal
feature on orientations 60 and 150 . Right (texture detector). (d) Best Haar feature on image intensity. (e) Best in-channel feature. (f) Best orthogonal-channel
feature on orientations 30 and 120 .

Fig. 8. Importance of in-channel features and orthogonal-channel features on the cat data. (a) Shape detector. (b) Texture detector.

we use default parameters suggested in [14]. For the HOG fea-

tures, we use 4 4 cell size which produces the best results in

our experiments.

Fig. 6 shows the performances of the four kinds of features on

the cat data. The Haar feature on intensity gives the poorest per-

formance because of large shape and texture variations of the

cat head. This in a way shows that the traditional human face

detection algorithm is not suitable for the cat head detection.

With the help of the oriented gradient features,

improves the performance. As expected, the HOG features per-

form better on the shape detector than on the texture detector.

Using both in-channel and orthogonal-channel information, the

detectors based on our features produce the best results.

In Fig. 7, we show the best in-channel features in (b) and (e),

and the best orthogonal-channel features in (c) and (f), learned

by the two detectors. We also show the best Haar features on

image intensity in Fig. 7(a) and (d). In both detectors, the best

in-channel features capture the strength differences between

a region with strongest horizontal gradients and its neigh-

boring region. The best orthogonal-channel features capture

the strength differences in two orthogonal orientations.

In the next experiment we investigate the role of in-channel

features and orthogonal-channel features. Fig. 8 shows the per-

formances of the detector using in-channel features only, or-

thogonal-channel features only, and both kinds of features. Not

surprisingly, both features are important and complementary.

4) Joint Detection: In this sub-section, we evaluate the

performance of the proposed two joint detection algorithms on

three data sets: cat, fox, and cheetah. Fig. 9 shows seven preci-

sion-recall curves on cat data set: a boost shape detector, a SVM

shape detector, a boost texture detector, a SVM texture detector,

a head detector using optimal transformation, a Bruteforce

detector, and a Deformable detector. The optimal transforma-

tion detector is trained using training samples aligned by an

optimal rotation+scale transformation. From Fig. 9, several

important observations can bemade: 1) The performance of joint

detector is substantially boosted! For a given precision 0.95,

the recall is improved from 0.74/0.75/0.78(boost shape/boost
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Fig. 9. Joint detection on the cat data.

Fig. 10. Joint detection on the fox and Cheetah data. (a) Fox. (b) Cheetah.

texture/boost optimal align) to 0.92/0.925 through Bruteforce

detector/Deformable detector. Or the precision is improved from

0.92/0.94/0.955(boost shape/boost texture/boost optimal align)

to 0.995/0.998, for a fixed recall 0.76 by Bruteforce detector/De-

formable detector. In image retrieval and search applications, it is

a very nice property since high precision is preferred; 2)Thehead

detector using optimal transformation does not show superior

performance. The discriminative abilities of both shape and tex-

ture features are decreased by the optimal transformation; 3) The

maximal recall value of the Bruteforce detector/Deformable

detector (0.92/0.935) is larger than the maximal recall values

of the three individual boost detectors(0.77/0.82/0.85). This

shows the complementary abilities of the two detectors—one

Fig. 11. Experiments on the PASCAL 2007 cat data. (a) Our approach and the
best reported method on Competition 3 (specified training data). (b) Four detec-
tors on Competition 4 (arbitrary training data).

detector can find many animal heads which is difficult to the

other detector; 4) Note that the curve of fusion detector is very

steep in the high recall region, which means the fusion detector

can effectively reject many false alarms while maintaining a

very high recall. 5) The Deformable detector has slightly better

detection performance than the Bruteforce detector. In some

case, it has noticeable improvement. For example, the recall is

improved from 0.92 to 0.935 for a given precision 0.85.

Fig. 10 shows the precision-recall curve on fox and cheetah

data set respectively. From those two figures we have the

following observations: 1) Both joint detectors have better

performance than individual shape detector and head detector

on the two data sets. For example, in Fig. 10, the best recall is

improved from 0.5/0.6 to 0.6/0.66 at a fixed precision 0.9. 2) The

Bruteforce detector and the Deformable detector have compa-

rable performance on the two data sets. The recall is 0.58/0.60 on

the fox data and 0.66/0.66 on the cheetah data at fixed precision

0.9. 3) Shape and texture have different performance on different

animal categories. For example, shape detector has better perfor-

mance than texture detector on the fox data, and texture detector

has better performance than shape detector on the cheetah data.

This is easy to understand, since the shape on fox head is more



ZHANG et al.: FROM TIGER TO PANDA: ANIMAL HEAD DETECTION 1705

Fig. 12. Detection results on the cat data set. The bottom row shows some detected cats in the PASCAL 2007 data.

discriminative than texture on fox head because: a) The ear tips

on the fox head are very sharp and big. b) The pose of the fox

head tends to affect the fox face more than the fox head shape

because of large depth on the fox face. On the contrary, the

cheetah texture detector has better performance than cheetah

shape detector because: a) Cheetah ear tips are round and small.

b) The pose of the cheetah head has smaller effect on the cheetah

face because of the smaller depth on the cheetah face. However,

through combining the two different features,we getmuch better

performance than either individual detector. These observations

validate our separation of shape and texture again.

Another interesting observation from Figs. 9 and 10 is that

the Bruteforce detection algorithm and Deformable detection

algorithm have overall comparable performance. However, the

Deformable detection is much fast to compute and more easy to

train. In practice, we suggest to use the Deformable detection as

the first choice.

5) Experiment on the Pascal 2007 Cat Data: We also eval-

uate the proposed Joint Detection algorithm I on the PASCAL

2007 cat data [4]. There are two kinds of competitions for the

detection task: 1)Competition 3—using both training and testing

Fig. 13. Comparison of the joint detector with basic detectors.

data from PASCAL 2007; 2) Competition 4—using arbitrary

training data. Fig. 11(a) shows the precision-recall curves of our

approach and the best reportedmethod [4] on Competition 3.We

compute the average precision (AP) as in [4] for a convenient
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Fig. 14. Failure cases.

comparison. The APs of our approach and the best reported

method is 0.364 and 0.24, respectively. Fig. 11(b) shows the pre-

cision-recall curves on Competition 4. Since there is no reported

result on Competition 4, we compare our approach with the

detectors using Haar, EOH, and HoG respectively. All detectors

are trained on the same training data. The APs of the four detec-

tors (ours, HOG, Haar+EOH, Harr) are 0.632, 0.427, 0.401, and

0.357. Using larger training data, the detection performance is

significantly improved. For example, the precision is improved

from 0.40 to 0.91 for a fixed recall 0.4. Note that the PASCAL

2007 cat data treat thewhole cat body as the object and only small

fraction of the data contain near frontal cat faces. However, our

approach still achieves good results on this very

challenging data (the best reported method’s ).

Moreover, the runtime is very important for online image pro-

cessing. Actually, it is one of advantages of our system based on

integral image and cascade structure. For example, to compute

a 320 240 image without extra rotation processing, we only

need 0.25 s on average with our unoptimized c++ code on a

Intel (Due Core) 2.66 GHz PC, which is acceptable for online

image processing. To process rotation, we rotate the images for

eight times, from to PI/2, and merge all the detection re-

sults to get the final detection results.

B. Extension to Multiple Animal Categories

It is interesting that our joint detection algorithm can be easily

extended to detect multiple animal categories, i.e., training a

single binary classifier for multiple animal categories. This

is quite useful when running multiple animal detectors is not

affordable. To this end, we construct an animal database which

include 2000 cat images and all images of other animals. As

before, we randomly choose 50% of the images as training set

and 20% as validation set, and the rest 30% as testing set. We

crop the animal face and animal head as in Section IV.C.We train

a binary Deformable detector and denote this detector as animal

joint detector (please note that we can train a Bruteforce detector

in a similar way, but omit it here to save space). We also trained

two individual binary detectors for animal face and animal head

using HOOG feature and boosting classifiers. We denote the

individual detectors as animal shape detector and animal texture

detector. Fig. 13 report the precision-recall curves of the three

detectors.Aswecan see fromFig. 13, our joint detector hasmuch

better performance compared with the two individual detectors.

Specifically, we improve the recall rate from less than 25% to

around 40% over the individual detector at a fixed precision 0.8.

C. Animal Photo Search Filtering

As discussed at the beginning, our animal head detector can be

used as a high levelfilter to help onfiltering the text based animal

photo search results. We download the first 200 images of the

selected 10 animals from Google image search engine and run

our animal head detector on those images. Table II shows the an-

imalfiltering result. In Table II, the first column is the total image

number of the ten animal categories used in this experiments.The

second and third column are the number of human labeled true

animal image and noise animal image respectively, and the forth

column and fifth column are the number of animal image and

noise image after filtering by our animal head detector. As we

can see from the table, most of the noise images are filtered out.
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TABLE II
ANIMAL PHOTO SEARCH FILTERING RESULT

D. Failure Case

In this subsection, we discuss the failure case of the proposed

algorithms. There are several cases which may cause the pro-

posed algorithm to fail. 1) large pose variation. 2) low contrast.

3) extreme facial expression. 4) partial occlusion. Those fac-

tors will distort both shape and cause failure case. We will ad-

dress these issues in our future work. Fig. 14 shows some failure

images.

VI. CONCLUSION

In this paper, we have presented an animal head detection

system. We achieved much improved results by decomposing

texture and shape features firstly and improve the detection re-

sults through joint detection based on the shape and texture fea-

tures. Then the texture and shape detectors are also improved by

a set of new oriented gradient features. Experiments on 14 379

well labeled animal image database validate the effectiveness of

our joint learning approach. Finally, we demonstrate the appli-

cations of the animal head detection for online image search. In

the future, we plan to extend the proposed animal detection in

two directions. First, we plan to cover more animal types and

further improve the detection performance, e.g., explore more

information such as texture on animal body, design more dis-

criminative features. Second, we hope to extend the animal head

detection tomore applications, such as animal image categoriza-

tion based on the detection results.
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