WellBeing International **WBI Studies Repository**

2-2009

From traumatic brain injury to posttraumatic epilepsy: What animal models tell us about the process and treatment options

Asla Pitkänen University of Kuopio

Riikka J. Immonen University of Kuopio

Olli H.J. Gröhn University of Kuopio

Irina Kharatishvili University of Kuopio

Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/bioamres

Part of the Animal Experimentation and Research Commons, Animal Studies Commons, and the Other **Medical Sciences Commons**

Recommended Citation

Pitkänen, A., Immonen, R. J., Gröhn, O. H., & Kharatishvili, I. (2009). From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options. Epilepsia, 50, 21-29. https://doi.org/10.1111/j.1528-1167.2008.02007.x

This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact wbisr-info@wellbeingintl.org.

SOLUTIONS FOR PEOPLE. ANIMALS AND ENVIRONMENT

POSTTRAUMATIC EPILEPSY

From traumatic brain injury to posttraumatic epilepsy: What animal models tell us about the process and treatment options

*†Asla Pitkänen, ‡Riikka J. Immonen, ‡Olli H.J. Gröhn, and *Irina Kharatishvili

 *Epilepsy Research Group, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland; †Department of Neurology, Kuopio University Hospital, Kuopio, Finland; and ‡Biomedical NMR research group, Biomedical Imaging Unit, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland

SUMMARY

A large number of animal models of traumatic brain injury (TBI) are already available for studies on mechanisms and experimental treatments of TBI. Immediate and early seizures have been described in many of these models with focal or mixed type (both gray and white matter damage) injury. Recent long-term video-electroencephalography (EEG) monitoring studies have demonstrated that TBI produced by lateral fluid-percussion injury in rats results in the development of late seizures, that is, epilepsy. These animals develop hippocampal alterations that are well described in status epilepticus-induced spontaneous seizure models and human posttraumatic epilepsy (PTE). In addition, these rats have damage ipsilaterally in the cortical injury site and thalamus. Although studies in the trauma field provide a large amount of information about the molecular and cellular alterations corresponding to the immediate and early phases of PTE, chronic studies relevant to the epileptogenesis phase are sparse. Moreover, despite the multiple preclinical pharmacologic and cell therapy trials, there is no information available describing whether these therapeutic approaches aimed at improving posttraumatic recovery would also affect the development of lowered seizure threshold and epilepsy. To make progress, there is an obvious need for information exchange between the trauma and epilepsy fields. In addition, the inclusion of epilepsy as an outcome measure in preclinical trials aiming at improving somatomotor and cognitive recovery after TBI would provide valuable information about possible new avenues for antiepileptogenic interventions and disease modification after TBI. KEY WORDS: Antiepileptic drug, Epileptogenesis, Fluid-percussion injury, Recovery, Surrogate marker.

HETEROGENEITY OF TBI IN Humans—A Challenge for Animal Model Development

Traumatic brain injury (TBI) in humans is a heterogeneous disorder that can differ in the type of injury, distribution of damage, or mechanisms of damage (Gennarelli & Graham, 2005). Regarding the type of injury, TBI can be classified into those injuries that result from a direct

Wiley Periodicals, Inc. © 2009 International League Against Epilepsy mechanical force to the head occurring at the time of injury (primary TBI, Table 1), or those that result from nonmechanically induced secondary complications that were or were not initiated by the primary damage (secondary TBI, Table 1). The extent and distribution of damage can vary from focal to diffuse, comprising a variety of different types of lesions (Table 1). Mechanisms of damage can vary from the direct impact to the skull/brain (e.g., a fall) to the acceleration/deceleration type of injury (e.g., rapid head rotation in a car accident) (Table 1). This variability challenges not only modelers of TBI, but in particular those who wish to develop models for posttraumatic epilepsy (PTE). This relates to the fact that information about the risk factors for PTE originates mostly from retrospective epidemiologic studies rather than prospective

Address correspondence to Dr. Asla Pitkänen, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland. E-mail: asla.pitkanen@uku.fi

A. Pitkänen et al.

Table 1. Classification of traumatic brain injury,type of damage, and mechanisms of damageaccording to Gennarelli and Graham (2005)				
Traumatic brain injury				
Primary				
Injury to scalp				
Skull fracture				
Surface contusion/laceration				
Intracranial hematoma				
Diffuse axonal injury				
Diffuse vascular injury Injury to cranial nerves and pituitary stalk				
Secondary				
Hypoxia-ischemia				
Swelling/edema				
Raised intracranial pressure and associated vascular changes				
Meningitis/abscess				
Damage after brain injury				
Focal				
Injury to scalp				
Skull fracture				
Surface contusion/laceration				
Intracranial hematoma				
Raised intracranial pressure and associated vascular changes				
Diffuse (multifocal)				
Diffuse axonal injury				
Hypoxic–ischemic damage				
Meningitis				
Vascular injury				
Mechanisms of damage				
Contact				
Injury to scalp				
Fracture of skull with or without an associated extradural hematoma				
Surface contusions and lacerations and associated intracerebral				
hematomas				
Acceleration/deceleration				
Tearing of bridging veins with formation of subdural hematoma				
Diffuse axonal injury, tissue tears, and associated intracerebral hematomas				
Diffuse vascular injury				

studies that would have carefully characterized the details of injury type, distribution, or the mechanisms of damage associated with subsequent epileptogenesis using novel imaging and other methodologies (see Pitkänen & McIntosh, 2006).

Currently available TBI models can be divided into focal models of TBI, diffuse brain injury models, mixed models of focal and diffuse brain injury, combined injury models, experimental models of coma, and models of repetitive concussive injury (Cernak, 2005; Morales et al., 2005). Most of these models are performed in rodents and utilize a direct impact on the epidural space or the brain tissue (Cernak, 2005). Acceleration models resulting in widespread white matter damage (diffuse axonal injury, DAI) have been successfully applied in primates and miniature swine that have a larger amount of white matter than rodents (Gennarelli et al., 1981; Smith et al., 1997a). Although none of the TBI models recapitulates fully the human syndrome, it is well acknowledged that these models are useful for understanding the molecular mechanisms of TBI and testing the efficacy of novel treatments for TBI (Cernak, 2005; Morales et al., 2005). Therefore, there are plenty of possibilities when planning to use TBI models as a starting point for modeling PTE.

USING TBI MODELS FOR MODELING PTE

A PubMed search in April 2008 for the term "TBI model" yielded approximately 900 references, whereas the search for the term "post-traumatic epilepsy model" resulted in only around 40 references. In most of these models, PTE has been triggered by iron injection to the cortex or the amygdala, or by cortical undercut (Willmore et al., 1978; see Prince et al., 2009). Only recently, models developed in the trauma field to investigate human TBI have been used to assess the development of lowered seizure threshold and epilepsy (Table 2). The large majority of these studies have used lateral fluid-percussion (LFP) or central fluid-percussion (CFP) TBI models that produce both gray matter and white matter damage (Fig. 1). Other models used include weight drop, controlled cortical impact, or penetrating ballistic injury models (see Table 2). All of these models belong to mixed type or focal models of TBI (Morales et al., 2005).

In Table 2, we have divided the observations made about the posttraumatic brain excitability into immediate (within 24 h postinjury), early (between 24 h and 1 week postinjury), and late changes (>1 week postinjury) (Frey, 2003). At the immediate phase, a subpopulation of animals that experienced either weight drop or LFP-induced TBI were reported to experience spontaneous postinjury seizures (Nilsson et al., 1994; Kharatishvili et al., 2006). In addition, seizure threshold for induced seizures was reduced (Roncati Zanier et al., 2003) and in vitro studies demonstrated hyperexcitability in the CA1 subfield of the hippocampus (Reeves et al., 2000; Griesemer & Mautes, 2007). In addition, during the first week after TBI (early phase, between 24 h and 1 week postinjury), spontaneous, presumably injury-related seizures can still occur as reported by Williams and coworkers in the new penetrating ballistic-like injury (Williams et al., 2005, 2006). At this later phase, most of the in vitro electrophysiologic studies have demonstrated increased excitability not only in the CA1 (Reeves et al., 1997; Akasu et al., 2002) but also in the dentate gyrus (Lowenstein et al., 1992; Coulter et al., 1996; Reeves et al., 1997; Toth et al., 1997; Santhakumar et al., 2001; Witgen et al., 2005; Tran et al., 2006). In addition to changes in local excitability, Baker et al. (2002) reported an axonal conductance defect in the

Initial Type Description Progration Change in accertability Reference Memoliking plane; (~241) 0.2 h prost-TB In visio E& of ract had detercing applic growthesed seture; the postering and the prost-of and the metod seture of detercing applic growthese and the metod seture; the postering and the post-TB NMERON et al. (1994) UP 1.1 h post-TB Hepocampal date Department of the metod seture of the postering and the postering and the postering and the postering and the metod seture of the postering and the po		Table 2. Summa	ıry of studies that have inve	Table 2. Summary of studies that have investigated changes in brain excitability after traumatic brain injury	
offertop C_AI Mission etal. (19) Ørdrop 1- hoer: TBI Hippocumpal allee Despiration (1, 14, 14, 12) Nission etal. (10) Ørdrop 1- hoer: TBI Hippocumpal allee Despiration (1, 14, 12) Nission etal. (10) Ørdrop 1- hoer: TBI Invoio Despiration (11, 14, 12) Nission etal. (10) Ørdrop 2-34 hpocr.TBI Invoio Despiration (11, 14, 12) Nission etal. (10) Ørdrop 2-34 hpocr.TBI Invoio Despiration (11, 14, 12) Nission etal. (10) Prices (21, 14, 12) Invoio Despiration (11, 14, 12) Nission (11, 12) Nission (11, 12) Prices (21, 14, 12) Invoio Despiration (11, 14, 12) Nission (11, 12) Nission (11, 12) Prices (21, 14, 12) Invoio Despiration (11, 12) Nission (11, 12) Nission (11, 12) Prices (21, 12) Invoio Despiration (11, 12) Nission (11, 12) Nission (11, 12) Prices (21, 12) Invoio Despiration (11, 12) Nission (11, 12) Nission (11, 12) Prices (21, 12) Invoio Despiration (11, 12)	Injury type	Postinjury assessment	Preparation	Change in excitability	Reference
Bit of choic D-3 house: TBI In ovo Description Nison call (0)	Immediate phase (<24 h)				
University Hepocampalatic Treatment of during or dead of any protect of during or during o	Weight drop	0–2 h post-TBI	In vivo	82% of rats had electrographic generalized seizures	Nilsson et al. (1994)
I-1 Hipocampal site Dependencing shift in the restrict monthaine potential of dentate Rois & Solitaci (C) Brt drop 0-24 Name 0-34 Name	LFP -	h post-TB	Hippocampal slice	Increased duration of evoked presvnaptic vollevs in CAI	Reeves et al. (2000)
Monect Bill Inversion Internation of (accord) Advised A	I FP	I-4 h post-TBI	Hippocampal slice	Depolarizing shift in the resting membrane potential of dentate	Ross & Soltesz (2000)
In post-TBI Invico Lowine of threshold for kaimate-induced behavioral setures Roment Zumere gift chop 2 hand 2H host-TBI Invico Lowine of threshold for the post-relation of the short and the short and the short and the short and the strends Research 2M investion et al. orbital (5/ week) 1 week post-TBI Invico Lowing a direct (20 week) Lowing d	·			interneurons (recovers in 4 days)	
Control Control <t< td=""><td>ΕĐ</td><td>l h nost-TRI</td><td>la vivo</td><td>l owered threshold for kainate-induced hehavioral seizures</td><td>Roncati Zanier et al (2003)</td></t<>	ΕĐ	l h nost-TRI	la vivo	l owered threshold for kainate-induced hehavioral seizures	Roncati Zanier et al (2003)
gr. drop 2-net Hyper- I hand AI hoster TBI Http://ministance. Out or soft can real read conduction and set sutationed and interest of the interest o				LOWOLCO CHI CONTOLIO NATINACCINICACCO OCTIANO AI OCIANI CO	
gr crop 1 And 24 n post-18 Hippocampalatee CA hyprometer and advance Ortenance Carl pyramid curry presercitability Ortenance Conterere at all operation r/place (c/1 week) 1 week post-18 Invvo Inveo Conterere at all operation Conterere at all operation 1 week post-18 Hippocampal entorhinal Inveo Inveo Conterere at all operation Conterere at all operation 2 days post-18 Hippocampal site Decreased finablicon in CAI Reeves et al. (193) 1 week post-18 Hippocampal site Decreased finablicon in CAI Reeves et al. (193) 1 week post-18 Hippocampal site Nets y cal and granule call hyperexcitability to low-frequency stimulation of granule To the tal. (193) 1 week post-18 Hippocampal site Nets y cal and granule call hyperexcitability to low-frequency stimulation (recovers in standalomar et all nom) 1 week post-18 Hippocampal site Nets of an and standar callosum Sambalumar et al. (200) (mice) 6-8 days post-18 Hippocampal site Nets of an and standar Netson standalomar et al. (200) (mice) 7 days post-18 Hippocampal site Nets of an and standar Netson standalomar et al. (200) (mice) 6-8 days post-18 Hippocampal site Not opticate and inhibition in callosum Netson standalomar et al. (200) <td>LFF \&/-:-L+J+</td> <td></td> <td></td> <td></td> <td></td>	LFF \&/-:-L+J+				
r/place (51 week) worden of the control is unappoinded affection of granule cell/prevencibility Lowenstain cell (1997) I week post-TBI Hypocampal-retronhinal Increased signature cell hypersectibility Lowenstain cell (1997) 2 days post-TBI Hypocampal site Decreased freed forward GABA, receptor-mediated inhibition of granule Toth tera. (1997) 1 week post-TBI Hypocampal site Decreased freed forward GABA, receptor-mediated inhibition of granule Toth tera. (1997) 1 week post-TBI Hypocampal site Nossy cell and granule cell hyperexcitability Toth tera. (1997) 1 week post-TBI Hypocampal site Nossy cell and granule cell hyperexcitability Toth tera. (1997) 1 week post-TBI Hypocampal site Nossy cell and granule cell hyperexcitability Samhakumar eta. (1997) 1 week post-TBI Hypocampal site Nossy cell and granule cell hybrity in the dentace grans hyperexcitability Samhakumar eta. (2006) (mice) 6-8 days post-TBI Hypocampal site North dentace grans North dentace (1,097) (mice) 7 days post-TBI Hypocampal site North dentace grans North dentace (1,097) (mice) 7 days post-TBI Hypocampal site	Weight drop	Z h and Z4 h post- I Bl	Hippocampal slice	CAI pyramidal cell hyperexcitability (not detected in CA3). Normalized	Griesemer & Mautes (2007)
I week post-TBI Invio Invested Invio Invested Invio Invested Invio Invested Invio Conterest and anticidanty of the excitability Invested Invested Invested Invio Conterest and anticidanty of the excitability Invested Invested </td <td>Early bhase (≤1 week)</td> <td></td> <td></td> <td></td> <td></td>	Early bhase (≤1 week)				
i week post-TBI Hippocampul-encorhinal increased seminus-induced afteroficitange duration and self-sustained Coulter era.i. (19) 2 days post-TBI Invoio Decreased inhibition in dentate grus Reveise et al. (1997) 1 week post-TBI Hippocampal slice Decreased inhibition in dentate grus Toh era.l. (1997) 1 week post-TBI Hippocampal slice Decreased inhibition in dentate grus Toh era.l. (1997) 1 week post-TBI Hippocampal slice Decreased inhibition in dentate grus Toh era.l. (1997) 1 week post-TBI Hippocampal slice Decreased inhibition in the cell hyperexcitability Toh era.l. (1997) 1 week post-TBI Hippocampal slice Coronal slice with Associate and inhibition of granule Toh era.l. (1997) 1 week post-TBI Hippocampal slice Coronal slice with Coronal slice with Associated inhibition of granule Toh era.l. (1997) 1 week post-TBI Hippocampal slice Coronal slice with Coronal slice with Associated inhibition in the detrate grus 1 month) Associated inhibition in the detrate grus Coronal slice with Associated inhibition in the detrate grus 1 month) Associated inhibition in the detrate grus Coronal slice with Associated inhibition in the detrate grus 1 month) T days post-TBI Hippocampal slice Novio <td></td> <td>l week nost-TBI</td> <td>In vivo</td> <td>Increased granule cell hynerexcitability</td> <td>l owenstein et al (1992)</td>		l week nost-TBI	In vivo	Increased granule cell hynerexcitability	l owenstein et al (1992)
2 days post-TBI invico Eccessed inhibition in CA1 Revese eral. (193) 1 week post-TBI Hippocampal site Decreased inhibition in CA1 Revese eral. (193) 1 week post-TBI Hippocampal site Decreased feed-forward GABA, receptor-mediated inhibition of granule Torb eral. (193) 1 week post-TBI Hippocampal site Masu eral Torb eral. (193) Torb eral. (193) 1 week post-TBI Hippocampal site Mosy cell and granule cell hyperexcitability to low-frequency stimulation (recovers in corpus callosum Santhalumar eral. (200) 3 h-7 days post-TBI Hippocampal site CA1 hyperexcitability to low-frequency stimulation (recovers in corpus callosum Santhalumar eral. (200) 5 el days post-TBI Hippocampal site CA1 hyperexcitability to low-frequency stimulation (recovers in corpus callosum Santhalumar eral. (200) 6 -8 days post-TBI Hippocampal site CA1 hyperexcitability to low-frequency stimulation (recovers in corpus callosum Santhalumar eral. (200) 6 adays post-TBI Hippocampal site CA1 hyperexcitability to low-frequency stimulation (recovers in low-frequency stimulation in corpus callosum Santhalumar eral. (200) 7 days post-TBI Hippocampal site Blater eral graus William eral. (200) 7 days post-TBI Invivo Sature site struts graus William eral. (200) 7 days post-TBI Invivo <t< td=""><td>LEP</td><td>I week post-TBI</td><td>Hippocampal-entorhinal</td><td>Increased stimulus-induced afterdischarge duration and self-sustained</td><td>Confrer et al. (1996)</td></t<>	LEP	I week post-TBI	Hippocampal-entorhinal	Increased stimulus-induced afterdischarge duration and self-sustained	Confrer et al. (1996)
2 days post-TBI Invico Decreased finibition in dentate grus Reves et al. (1997) 1 week post-TBI Hippocampal silee Decreased finibition in dentate grus Toth et al. (1997) 1 week post-TBI Hippocampal silee Post call and granule cell hyperexcitability to low-frequency stimulation (recovers in anthatumare as a cells) Toth et al. (1997) 1 week post-TBI Hippocampal silee Post call and granule cell hyperexcitability to low-frequency stimulation (recovers in a santhatumare as a low corpus cells) Santhatumare as (2003) 3 h-7 days post-TBI Hippocampal silee Post call and granule cell hyperexcitability to low-frequency stimulation (recovers in a santhatumare as a low corpus cells) Santhatumare as (2003) 2 days post-TBI Hippocampal silee Nons is conductance defect in corpus callosum Santhatumare as (2003) 2 days post-TBI Hippocampal silee Nons is conductance defect in corpus callosum Nongen et al. (2003) 2 days post-TBI Hippocampal silee Bilateral dentate grus hyperexcitability Nigen et al. (2003) 2 days post-TBI Invivo Secure dinhibition in dentate grus Nigen et al. (2004) 2 days post-TBI Invivo Secure dinhibition in dentate grus Nigen et al. (2005) 2 days post-TBI Invivo Secure dinhibition in dentate grus Nigen et al. (2005) 2 days post-TBI Invivo Not diff	-			endentic activity in dentate avrise	
I week post-TBI Hippocampal slice Increased inhibition in dentate grus I week post-TBI Hippocampal slice Decreased feed-forward GABA, receptor-mediated inhibition of granule Toh et al. (1997) I week post-TBI Hippocampal slice Mossy cell and granule cell hyperexcitability Toh et al. (1997) I week post-TBI Hippocampal slice Mossy cell and granule cell hyperexcitability Santhalkumar et al. (2002) I week post-TBI Hippocampal slice CAI hyperexcitability Massu et al. (2002) Balter et al. (2002) 3 h-7 days post-TBI Hippocampal slice CAI hyperexcitability C - T2 h Hippocampal slice CAI hyperexcitability Massu et al. (2003) Port sells O-T2 h Hippocampal slice Ningane et al. (2003) Port sells O-T2 h Hippocampal slice Ningane et al. (2003) Port sells Dort sells Blateral dentate grus hyperexcitability Vingane et al. (2003) Port sells Hippocampal slice Blateral dentate grus hyperexcitability Vingane et al. (2005) Port sells Blateral dentate grus hyperexcitability Vingane et al. (2005) Vingane et al. (2005) Port sells In vivo Blateral dentate grus hy	LFP	2 days post-TBI	In vivo	Decreased inhibition in CAI	Reeves et al. (1997)
I week post-TBI Hippocampal slice Decreased feed-forward GABA, receptor-mediated inhibition of granule Toh et al. (197), cells I week post-TBI Hippocampal slice Decreased feed-forward GABA, receptor-mediated inhibition of granule Toh et al. (197), cells I week post-TBI Hippocampal slice Decreased feed-forward GABA, receptor-mediated inhibition of granule Toh et al. (197), cells I week post-TBI Hippocampal slice Demate graus hyperexcitability to low-frequency stimulation (recovers in sumhakumar et a low or al slice with corronal slice Demate graus hyperexcitability to low-frequency stimulation (recovers in sumhakumar et a low or al slosum Toh et al. (200) 3 h-7 days post-TBI Hippocampal slice Demate grus hyperexcitability to low-frequency stimulation (recovers in corpus callosum Alassue et al. (200) 3 hold reg 0-72 h Invivo Enhanced inhibition in CAI Wirgen et al. (200) 7 days post-TBI Hippocampal slice Blateral dentate grus hyperexcitability Villiams et al. (200) 7 l week 0-72 h Hippocampal slice Blateral dentate grus hyperexcitability Villiams et al. (200) 7 l week 0-72 h Hippocampal slice Blateral dentate grus hyperexcitability Villiams et al. (200) 7 l week 0-72 h Hippocampal slice Blateral dentate grus hyperexcitability Villiams et al. (200) 7 l week) 7 day				Increased inhibition in dentate evrus	
I week post-TBI Hippocampal site cells I week post-TBI Hippocampal site Mossy cell and granule cell hyperexcitability I week post-TBI Hippocampal site Mossy cell and granule cell hyperexcitability I week post-TBI Hippocampal site Mossy cell and granule cell hyperexcitability I week post-TBI Hippocampal site Coronal site with Average Carl hyperexcitability Atasu et al. (2002) 3 h-7 days post-TBI Hippocampal site Carl hyperexcitability 6-8 days post-TBI Hippocampal site Carl hyperexcitability 6-72 h In vivo Enhanced inhibition in CAI Witigen et al. (2005) 7 days post-TBI Hippocampal site Blateral dentate gyrus Williams et al. (2005) 7 days post-TBI Hippocampal site Blateral dentate gyrus Williams et al. (2005) 7 days post-TBI Hippocampal site Blateral dentate gyrus Williams et al. (2005) 7 days post-TBI Hippocampal site Blateral dentate gyrus Williams et al. (2005) 7 days post-TBI Hippocampal site Blateral dentate gyrus Williams et al. (2005) 7 days post-TBI Hippocampal site Blateral de	LFP	week post-TB	Hippocampal slice	Decreased feed-forward GABA ^A receptor-mediated inhibition of granule	Toth et al. (1997)
I week post-TBI Hippocampal slice Mossy cell and graule cell hyperexcitability Santhakumar eta I week post-TBI Hippocampal slice Dentate grust hyperexcitability to low-frequency stimulation (recovers in 1 week post-TBI Akasu et al. (2002 3 h-7 days post-TBI Hippocampal slice Orth hyperexcitability Akasu et al. (2002 3 h-7 days post-TBI Hippocampal slice Cartonal slice Akasu et al. (2002 4 days post-TBI Hippocampal slice Cartonal slice Cartonal slice Akasu et al. (2002 5 days post-TBI Hippocampal slice Tal hyperexcitability Nitigen et al. (2002 Witigen et al. (2002) 6 days post-TBI Invivo Seizures in 14% of animals Witigen et al. (2003) Witigen et al. (2004) 7 days post-TBI Hippocampal slice Bilateral dentate grus hyperexcitability Tran et al. (2004) 7 days post-TBI Hippocampal slice Bilateral dentate grus hyperexcitability Tran et al. (2005) 7 days post-TBI Invivo Notes Bilateral dentate grus hyperexcitability Tran et al. (2005) 7 days post-TBI Invivo Notes Bilateral dentate grus hyperexcitability Tran et al. (2005) 7 days post-TBI Invivo </td <td></td> <td></td> <td></td> <td>cells</td> <td></td>				cells	
I week post-TBI Hippocampal slice Denáte grus hyperexcitability to low-frequency stimulation (recovers in anthakumar et a 1, month) Santhakumar et a 1, month) I week post-TBI Hippocampal slice Denáte grus hyperexcitability to low-frequency stimulation (recovers in anthakumar et a 1, month) Santhakumar et a 1, 2003 g ballistic-like 0-72 h Hippocampal slice Coronal slice with be conductance defect in corpus callosum Baker et al. (2003) g ballistic-like 0-72 h Invivo Enhanced inhibition in CA1 Writgen et al. (2005) 7 d ys post-TBI Hippocampal slice Bilateral dentate grus hyperexcitability Writgen et al. (2005) 7 l week) T d ys post-TBI Hippocampal slice Bilateral dentate grus hyperexcitability Writgen et al. (2005) 7 l week) T d ys post-TBI Hippocampal slice Bilateral dentate grus hyperexcitability Tran et al. (2005) 7 l week) TZ kindling started Invivo Not difference in kindling rate as compared to controls Writgen et al. (2005) 7 l weeks TZ kindling started Invivo Not difference in kindling rate as compared to controls Hamm et al. (195) 7 l weeks post-TBI Invivo Not difference in kindling rate as compared to controls Hamm et al. (195) 7 l weeks post-TBI Hippocampal - entorhinal Invivo Decrease in the threshold for generatio	LFP	I week post-TBI	Hippocampal slice	Mossy cell and granule cell hyperexcitability	Santhakumar et al. (2000)
1 week post-TBI I month) I month) Alsau et al. (2003) 3 h-7 days post-TBI Cornva allocum Avaau et al. (2003) 3 h-7 days post-TBI Cornva allocum Avaau et al. (2003) 8 ballistic-like 0-72 h Nivio Baker et al. (2003) 8 ballistic-like 0-72 h Nivio Seizures in 14% of animals 7 days post-TBI Hippocampal slice Enhanced inhibition in CAI Wrigen et al. (2005) 7 days post-TBI Hippocampal slice Blateral dentate grus Wrilliams et al. (2005) 7 days post-TBI Hippocampal slice Blateral dentate grus hyperexcitability Tran et al. (2005) 7 days post-TBI Hippocampal slice Blateral dentate grus sompared to controls Hamm et al. (2005) 7 days post-TBI Invivo No difference in kindling rate as compared to controls Hamm et al. (2005) 2 days post-TBI Invivo No difference in kindling rate as compared to controls Hamm et al. (2005) 2 days post-TBI Invivo No difference in kindling rate as compared to controls Hamm et al. (2005) 3 <td>LFP</td> <td>l week post-TBl</td> <td>Hippocampal slice</td> <td>Dentate øvrus hvoerexcitability to low-frequency stimulation (recovers in</td> <td>Santhakumar et al. (2001)</td>	LFP	l week post-TBl	Hippocampal slice	Dentate øvrus hvoerexcitability to low-frequency stimulation (recovers in	Santhakumar et al. (2001)
I week post-TBI Hippocampal slice CAI hyperexcitability Avasu et al. (2002) 3 h-7 days post-TBI Coronal slice with Axonal conductance defect in corpus callosum Baker et al. (2002) 6 days post-TBI Hippocampal slice Can hanced inhibition in the dentate gyrus Wrigen et al. (2002) 7 days post-TBI Hippocampal slice Enhanced inhibition in the dentate gyrus Wrigen et al. (2002) 7 days post-TBI Hippocampal slice Bilateral dentate gyrus hyperexcitability Wrilliams et al. (2003) 7/1 week) 7 days post-TBI Hippocampal slice Bilateral dentate gyrus hyperexcitability Wrilliams et al. (2005) 7/1 week) PTZ kindling started In vivo Not difference in kindling rate as compared to controls Hamm et al. (1995) 7/1 week) PTZ kindling started In vivo Not difference in kindling rate as compared to controls Hamm et al. (1995) 7/1 weeks post-TBI In vivo Not difference in kindling rate as compared to controls Hamm et al. (1995) 7/1 weeks post-TBI In vivo Not difference in kindling rate as compared to controls Hamm et al. (1995) 7/2 weeks post-TBI In vivo Not difference in kindling rate as compared to controls Hamm et al. (1995)	·			I month)	
3 h-7 days post-TBI Coronal slice with corpus callosum Baker et al. (2002) 6-8 days post-TBI Hippocampal slice Rhanced inhibition in CAI Wrigen et al. (2002) 6-8 days post-TBI Hippocampal slice Reduced inhibition in the dentate gyrus Wrigen et al. (2002) 7 days post-TBI Hippocampal slice Bilateral dentate gyrus hyperexcitability Wrigen et al. (2005) (>1 week) PTZ kindling started Invivo No difference in kindling rate as compared to controls Hamm et al. (195) (>1 week) PTZ kindling started Invivo No difference in kindling rate as compared to controls Hamm et al. (195) (>1 week) PTZ kindling started Invivo No difference in kindling rate as compared to controls Hamm et al. (195) (>1 week) PTZ kindling started Invivo No difference in kindling rate as compared to controls Revess et al. (195) (>2 weeks post-TBI Invivo No difference in kindling rate as compared to controls Hamm et al. (195) (>1 weeks post-TBI Invivo No difference in kindling rate as compared to controls Revess et al. (195) (>2 weeks post-TBI Invivo Invivo No difference in kindling rate as compared to controls Revess et al. (195)	LFP	l week post-TBI	Hippocampal slice	CAI hvperexcitability	Akasu et al. (2002)
Contraction Contraction Addition of the dentate grus Dental contraction of the dentate grus Dental contraction of the dentate grus Virgen et al. (200 g ballistic-like 0-72 h In vivo E duce dinhibition in the dentate grus Virgen et al. (200 7 days post-TBI Hippocampal slice Blateral dentate grus hyperexcitability Virgen et al. (200 7 days post-TBI Hippocampal slice Blateral dentate grus hyperexcitability Virgen et al. (200 7 lays post-TBI In vivo Not Ordifierence in kindling rate as compared to controls Virgen et al. (200 7 lays post-TBI In vivo Not Ordifierence in kindling rate as compared to controls Tran et al. (199 7 days post-TBI In vivo Not Increased in hibition in dentate grus Tran et al. (199 7 days post-TBI In vivo Not Increased in the threshold for generation of self-sustaining epileptiform Santhakumar et al. (199 7 days post-TBI In vivo In vivo Increased susceptibility to PTZ-induced seizures Golarai et al. (200 9 3 weeks post-TBI In vivo Blateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 9 I.5 weeks p		2 h_7 dave notet_TBI	Coronal slice with	Avonal conductance defect in comus callosum	Balar at al (2002)
6-8 days post-TBI Hippocampal slice In hocampal slice Enhanced inhibition in CAI Wrigen et al. (2000) g ballistic-like 0-72 h In vivo Seizures in 14% of animals Wrilliams et al. (2000) 7 days post-TBI Hippocampal slice Bilateral dentate gyrus hyperexcitability Tran et al. (2000) 7 veek/ PTZ kindling started In vivo No difference in kindling rate as compared to controls Hamm et al. (1990) 7 veek/ PTZ kindling started In vivo No difference in kindling rate as compared to controls Hamm et al. (1990) 7 veek/ PTZ kindling started In vivo In vivo Increased inhibition in dentate gyrus Reeves et al. (1990) 9 7 days post-TBI In vivo Increase in the theore in kindling rate as compared to controls Hamm et al. (1990) 9 24 hafter TBI In vivo Increase in the threshold for generation of self-sustaining epileptiform Santhakumar et al. (1990) 9 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate (2000) Golarai et al. (2000) 9 15 weeks post-TBI In vivo Increased susceptibility of the granule cell and molecular layers of dentate (2000) Golarai et al. (2000) 9 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molec		all nave hose in			Danci et al. (2002)
gballistic-like 0-72 h Invivo Reduced inhibition in the dentate gyrus Williams et al. (2006) 7 days post-TBI Hippocampal slice Bilateral dentate gyrus hyperexcitability Villiams et al. (2006) (>1 week) PTZ kindling started Invivo No difference in kindling rate as compared to controls Hamm et al. (199 24 h after-TBI Invivo No difference in kindling rate as compared to controls Hamm et al. (199 3 months post-TBI Invivo No difference in kindling rate as compared to controls Reeves et al. (199 3 months post-TBI Invivo No difference in kindling rate as compared to controls Reeves et al. (199 3 months post-TBI Invivo Invivo Decrease in the threshold for generation of self-sustaining epileptiform Santhakumar et a activity to high-frequency stimulation in CAI 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate gorai et al. (200 p 15 weeks post-TBI Invivo Bilateral hyperexcitability to fthe granule cell and molecular layers of dentate granule granule granule cell and molecular layers of dentate granule granule gra	LFP (mice)	6–8 davs post-TBI	Hippocampal slice	Enhanced inhibition in CA1	Witzen et al. (2005)
g ballistic-like 0-72 h In vivo Seizures in 14% of animals Williams et al. (2006) 7 days post-TBI Hippocampal slice Bilateral dentate gyrus hyperexcitability Tran et al. (2006) 7 l week) FTZ kindling started In vivo No difference in kindling rate as compared to controls Hamm et al. (199- 24 h after TBI 15 days post-TBI In vivo No difference in kindling rate as compared to controls Reeves et al. (199- 3 months post-TBI 15 days post-TBI Hippocampal - entorhinal Decrease in the threshold for generation of self-sustaining epileptiform Santhakumar et a strivity to high-frequency stimulation in CAI 0p 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 0p 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 0p 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 0p 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200				Reduced inhibition in the dentate gyrus	
7 days post-TBI Hippocampal slice Blateral dentate gyrus hyperexcitability Tran et al. (2006) 7 l week) PTZ kindling started Invivo No difference in kindling rate as compared to controls Hamm et al. (199 24 h after TBI Invivo No difference in kindling rate as compared to controls Hamm et al. (195 3 months post-TBI Invivo Inreased inhibition in dentate gyrus Reeves et al. (195 3 months post-TBI Invivo Inreased inhibition in dentate gyrus Reeves et al. (195 3 months post-TBI Invivo Inreased inhibition in dentate gyrus Reeves et al. (195 3 months post-TBI Invivo Inreased inhibition in dentate gyrus Reeves et al. (195 3 weeks post-TBI Hippocampal slice Blateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (206 p 15 weeks post-TBI Invivo Blateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (206 prove Blateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (206 p I5 weeks post-TBI Invivo Blateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (206 p </td <td>Penetrating ballistic-like</td> <td>0–72 h</td> <td>ln vivo</td> <td>Seizures in 14% of animals</td> <td>Williams et al. (2006)</td>	Penetrating ballistic-like	0–72 h	ln vivo	Seizures in 14% of animals	Williams et al. (2006)
7 days post-TBI Hippocampal slice Bilateral dentate gyrus hyperexcitability Tran et al. (2006) 7 l week) PTZ kindling started In vivo No difference in kindling rate as compared to controls Hamm et al. (199 24 h after TBI In vivo In vivo No difference in kindling rate as compared to controls Hamm et al. (199 24 h after TBI In vivo In vivo Increased inhibition in dentate gyrus Reeves et al. (199 26 days post-TBI In vivo In vivo In vivo Santhakumar et a activity to high-frequency stimulation in CAI Reeves et al. (190 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 3 weeks post-TBI In vivo Bilateral hyperexcitability to PTZ-induced seizures Golarai et al. (200 3 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 3 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 3 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 3 weeks post-TBI	injury				
PTZ kindling started In vivo No difference in kindling rate as compared to controls Hamm et al. (199) 24 h after TBI In vivo In reased inhibition in dentate gyrus Reeves et al. (19) 3 months post-TBI In vivo Increased inhibition in dentate gyrus Reeves et al. (19) 3 months post-TBI Hippocampal - entorhinal Decrease in the threshold for generation of self-sustaining epileptiform Santhakumar et a activity to high-frequency stimulation in CAI 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 15 weeks post-TBI In vivo Inviso Inviso Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 Bilateral hyperexcitability of the granule cell and molecular layers of dentate Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 Bilateral hyperexcitability of the granule cell and molecular layers of dentate Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200	LFP (mice)	7 days post-TBI	Hippocampal slice	Bilateral dentate gyrus hyperexcitability	Tran et al. (2006)
PTZ kindling started In vivo Hamm et al. (19). 24 h after TBI In vivo No difference in kindling rate as compared to controls Hamm et al. (19). 15 days post-TBI In vivo Increased inhibition in dentate gyrus Reeves et al. (19). 15 days post-TBI In vivo Increased inhibition in dentate gyrus Reeves et al. (19). 3 months post-TBI Hippocampal - entorhinal Decrease in the threshold for generation of self-sustaining epileptiform Reeves et al. (19). 3 months post-TBI Hippocampal - entorhinal Decrease in the threshold for generation of self-sustaining epileptiform Santhakumar et a activity to high-frequency stimulation in CAI 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 9 Novo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular laye	Late Phase (>1 week)				
24 h after TBI In vivo Reeves et al. (199 15 days post-TBI In vivo Increased inhibition in dentate gyrus Reeves et al. (199 3 months post-TBI Hippocampal - entorhinal Decrease in the threshold for generation of self-sustaining epileptiform Santhakumar et a activity to high-frequency stimulation in CAI ght drop 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 ght drop 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 ght drop 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200	CFP	PTZ kindling started	In vivo	No difference in kindling rate as compared to controls	Hamm et al. (1995)
I5 days post-TBI In vivo Increased inhibition in dentate gyrus Reeves et al. (199 3 months post-TBI Hippocampal - entorhinal Decrease in the threshold for generation of self-sustaining epileptiform Reeves et al. (199 ght drop 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 ght drop 15 weeks post-TBI In vivo In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 ght drop 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 ght drop 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200		24 h after TBI			~
3 months post-TBI Hippocampal - entorhinal Decrease in the threshold for generation of self-sustaining epileptiform Santhakumar et a activity to high-frequency stimulation in CAI ight drop 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 gyrus ight drop 15 weeks post-TBI In vivo In vivo Golarai et al. (200 gyrus ight drop 15 weeks post-TBI In vivo Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 gyrus	LFP	I5 days post-TBI	In vivo	Increased inhibition in dentate gyrus	Reeves et al. (1997)
slice activity to high-frequency stimulation in CA1 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 gyrus 15 weeks post-TBI In vivo Bilateral hyperexcitability to PTZ-induced seizures Golarai et al. (200 Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate golarai et al. (200	LFP	3 months post-TBI	Hippocampal - entorhinal	Decrease in the threshold for generation of self-sustaining epileptiform	Santhakumar et al. (2001)
 3 weeks post-TBI Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 gyrus 15 weeks post-TBI In vivo Increased susceptibility to PTZ-induced seizures Golarai et al. (200 gyrus Bilateral hyperexcitability of the granule cell and molecular layers of dentate Golarai et al. (200 gyrus 			slice	activity to high-frequency stimulation in CAI	
gyrus 15 weeks post-TBI In vivo Increased susceptibility to PTZ-induced seizures Golarai et al. (200 Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate gyrus	Weight drop	3 weeks post-TBI	Hippocampal slice	Bilateral hyperexcitability of the granule cell and molecular layers of dentate	Golarai et al. (2001)
15 weeks post-TBI In vivo Increased susceptibility to PTZ-induced seizures Golarai et al. (200 Hippocampal slice Bilateral hyperexcitability of the granule cell and molecular layers of dentate gyrus				gyrus	
Bilateral hyperexcitability of the granule cell and molecular layers of dentate gyrus	Weight drop	I 5 weeks post-TBI	Invivo	Increased susceptibility to PTZ-induced seizures	Golarai et al. (2001)
			Hippocampal slice	Bilateral hyperexcitability of the granule cell and molecular layers of dentate	
Continued				gyrus	
					Continued

From TBI to Posttraumatic Epilepsy

A. Pitkänen et al.

			Table 2. Continued	
Injury type	Postinjury assessment	Preparation	Change in excitability	Reference
LFP LFP rpFPI LFP LFP LFP CCI (P16-18)	 8–10 weeks post-TBI 2–16 weeks post-TBI Up to 7 months post-TBI Up to 1 year post-TBI 30 days post-TBI Up to 1 year post-TBI 2 weeks post-TBI (P60–63) 6 weeks post-TBI (P60–63) 	Cortical slice In vivo In vivo In vivo Hippocampal slice In vivo In vivo	Cortical hyperexcitability Spontaneous seizures originating in the frontoparietal cortex Spontaneous hippocampal seizures in addition to cortical seizures Up to 50% of rats have electrographic seizures clonic seizures Dentate gyrus hyperexcitability ipsilaterally but not contralaterally Epileptiform electrographic interictal spiking in 80% of rats No change in limbic, hindbrain or forebrain seizure threshold Decreased forebrain (minimal clonic seizure) threshold	D'Ambrosio et al. (2004) D'Ambrosio et al. (2004) D'Ambrosio et al. (2005) Kharatishvili et al. (2006) Tran et al. (2006) Kharatishvili et al. (2007) Statler et al. (2008)
CCI, controlled	d cortical impact; CFP, central flu ; rpFPI, rostral parasagittal fluid-pe	id-percussion traumatic b ercussion injury. All exper	CCI, controlled cortical impact; CFP, central fluid-percussion traumatic brain injury (TBI); GABA, y-amino butyric acid; LFP, lateral fluid-percussion TBI; P, postnatal day; PTZ, pentylenetetrazol; rpFPI, rostral parasagittal fluid-percussion injury. All experiments were performed in rats unless otherwise indicated.	TBI; P, postnatal day; PTZ,

Table 3. Comparison of epilepsy phenotypes in	
posttraumatic and post–status epilepticus models	
SE	

SE			
	TBI	Amygdala	
	Lateral fluid-percussion	stimulation	
	Kharatishvili	Nissinen	
Epilepsy phenotype	et al. (2006)	et al. (2000)	
Epileptogenesis			
Duration of latency	Several months	Days–I month	
% of rats with seizures	50%	80-100%	
Epilepsy			
Mean seizure frequency	0.3/day	8/day	
Maximal seizure frequency	Up to I/day	Up to 30/day	
Mean seizure duration	104 s	49 s	
Day–night cycle	44% lights on	57% lights on	
Response to AEDs	No data	Yes	
Comorbidities			
Memory impairment	Yes	Yes	
Sensorimotor impairment	Yes	No data	
Drug-refractoriness	No data	Yes	
AED, antiepileptic drug;	SE, status epilepticus;	TBI, traumatic	
brain injury.			

corpus callosum. Whether it has an effect on seizure spread at later stages remains to be studied.

A survey of conventional animal models in the trauma field indicates that late spontaneous seizures or epilepsy have consistently been reported only in the rat fluid-percussion TBI model, which is the most commonly used model of human closed head TBI (D'Ambrosio et al., 2004, 2005; Kharatishvili et al., 2006). Interestingly, as compared to the most commonly used epileptogenesis models that are induced by status epilepticus (SE), in PTE induced by LFP injury the epileptogenesis phase is longer, seizure frequency is substantially lower, and most of the seizures are secondarily generalized rather than partial (Table 3; Nissinen et al., 2000; Kharatishvili et al., 2006). In the rat weight-drop model the threshold for pentylenetetrazol (PTZ)-induced seizures is reduced but no spontaneous seizures have been reported (Golarai et al., 2001). Recently, Statler et al. (2008) reported lowered minimal clonic seizure threshold in the mouse controlled cortical impact (CCI) model. Although reports about the occurrence of spontaneous seizures have been sparse, which may partly relate to low seizure frequency, observations available from in vitro slice studies support the idea that cortical and hippocampal excitability are chronically increased in a variety of TBI models (Table 2).

There are several caveats to consider when interpreting the experimental data available. A large majority of the studies characterizing post-TBI changes in excitability have investigated rats with focal or mixed type TBI, that is, models in which white matter damage is not the dominant pathologic feature. This may impose limitations on data interpretation, in particular when assessing the association of type of damage with risk of epileptogenesis (e.g., focal gray matter damage vs. DAI). In addition, little information is available about the development of epilepsy in mice with TBI, although such information would be valuable in guiding the use of genetically modified mice in search of risk genes for PTE. Furthermore, very little information is available about the excitability change after TBI in immature animals, even though childhood PTE is not uncommon (Statler, 2006). Moreover, combining TBI with other factors such as hypoxia, hyperthermia, intracerebral bleeding, infection, or SE that compromise the outcome in the clinical setting could provide useful information about the mechanisms and conditions that increase the risk of PTE. We will focus next on the fluidpercussion TBI model, the only model, so far, where the occurrence of spontaneous seizures has been consistently demonstrated.

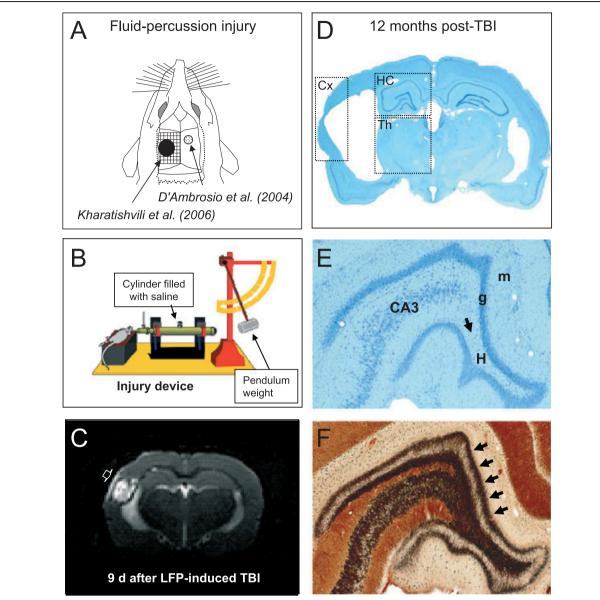
EPILEPTOGENESIS VERSUS RECOVERY

LFP injury causes both primary and secondary damage to the brain. The primary damage is caused by the impact itself, and it initiates ionic, molecular, and cellular alterations within seconds. This is followed by secondary damage that is composed of neurodegeneration, neurogenesis, astrocytosis, microgliosis, axonal and myelin injury, axonal sprouting, vascular damage, and angiogenesis (see Reilly, 2001; Thompson et al., 2005; Pitkänen & McIntosh, 2006). Previous histologic analyses of the LFP injury model demonstrated that these alterations can happen in the injured cortex, perifocal area, underlying hippocampus, and/or thalamus (Thompson et al., 2005). Most of the data concerning the progression of damage have been collected during the first 1-2 months postinjury, which corresponds also to the time period when most of the electrophysiologic alterations implying increased excitability of injured tissue have been performed (Thompson et al., 2005). Very few studies have addressed the dynamics of molecular and cellular alterations at the later stages when the spontaneous seizures appear (Kharatishvili et al., 2006). The application of MRI in the analysis of cellular and pathway alterations will likely provide useful information about the association of cellular pathology with epileptogenesis, and help to understand why epileptogenesis is seen only in a subpopulation of animals (Kharatishvili et al., 2007).

Well-documented functional consequences of LFPinduced injury include somatomotor and cognitive impairment (Thompson et al., 2005). Interestingly, somatomotor impairment is partly recoverable within the few weeks or months postinjury. This is associated with regenerative cellular processes in the brain such as axonal sprouting and revascularization. It is important to bear in mind that epileptogenesis is underway in parallel to the physical recovery of animals, at least in subpopulations of animals (Fig. 2).

PRECLINICAL TRIALS IN EXPERIMENTAL MODELS OF TBI-DO THEY PAVE THE WAY FOR FINDING ANTIEPILEPTOGENIC OR DISEASE-MODIFYING TREATMENTS FOR PTE?

A large number of different treatments have been tested to enhance posttraumatic recovery. Pharmacologic approaches include use of compounds reducing excitotoxicity, calcium channel blockage, free radical scavengers, antiinflammatory agents, neurotrophic factors, caspase inhibitors, calpain inhibitors, hormonal treatments, augmentation of various neurotransmitter systems, anticoagulants, poly (ADP-ribose) polymerase (PARP) inhibitors, and antiepileptic drugs (AEDs) (for a comprehensive review, see Marklund et al., 2006). More recently, cell transplantation including genetically manipulated cell types have been tested as a recoveryenhancing treatment option (see Pitkänen et al., 2006).


Both in pharmacologic and cell therapy studies, outcome measures have included the effects of treatments on the edema development, volume of cortical lesions, severity and extent of hippocampal neurodegeneration, axonal injury, somatomotor function, and learning and memory. Although positive effects have been obtained in several experimental trials, treatments have not yet been translated to clinical practice. From the epileptogenesis point of view it is, however, conspicuous that the development of late spontaneous seizures has never been an outcome measure in preclinical TBI trials. This creates a question: whether some of these treatments were actually antiepileptogenic or disease-modifying, if epilepsy would have been analyzed as an outcome measure.

USE OF AEDS AT EARLY POSTINJURY PHASE—ANY HARM?

As discussed by Temkin (see the present volume), there is no evidence that any of the AEDs, when administered after TBI, would have any antiepileptogenic or diseasemodifying effects on the development of PTE in humans. Conversely: do AEDs compromise the postinjury recovery?

Table 4 summarizes the effects of AEDs on posttraumatic recovery in animal models. So far, remacemide, topiramate, talampanel, lacosamide, and carisbamate have been investigated. No major harmful or beneficial effects have been reported. However, studies in which AEDs had been administered for a longer period after TBI and in which outcome measures had been assessed months later are not available.

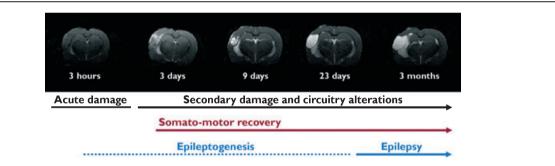

A. Pitkänen et al.

Figure I.

(A) Location of craniectomy in a model of fluid-percussion (FP) traumatic brain injury (TBI) in the two laboratories that have shown the development of epilepsy in this model of TBI. (B) Injury device that is used for induction of FP injury. The strength of the injury is adjusted by pendulum height. After release, the pendulum hits the cork piston, sealing one end of the saline-filled cylinder that transmits the liquid pulse to the epidural space. (C) The injury develops gradually (see also Fig. 2). Here the location and extent of injury is shown in a T₂-weighted image (open arrow) at 9 days after lateral FP injury. (D) A thionin-stained coronal section from the brain of a rat subjected to lateral FP (LFP) brain injury. The animal had been followed for 12 months postinjury and had a total of 11 seizures during seven video-EEG (electroencephalography) monitoring sessions (63 recording days). The first spontaneous seizure was recorded 3 months after injury. Seventy-one percent of seizures were secondarily generalized. In addition to the injury site in the cortex, structural alterations are clear ipsilaterally in the hippocampus (HC) and thalamus (Th). (E) Higher magnification photomicrograph from a thionin-stained hippocampus from a rat with LFP injury–induced posttraumatic epilepsy (PTE). Note the loss of hilar cells (indicated with an arrow). (F) Timm-stained hippocampal section from the rat with PTE demonstrating mossy fiber sprouting in the inner molecular layer (arrows). CA3, CA3 pyramidal cell layer of the hippocampus; g, granule cell layer; f, the dentate gyrus; H, hilus; m, molecular layer. *Epilepsia* © ILAE

AED	Beginning and duration of treatment	Outcome measures (time of analysis)	Effect	Reference
Remacemide	15 min postinjury	Cortical lesion (48 h postinjury)	Û	Smith et al. (1997b)
	Rx single dose	Learning and memory (48 h postinjury)	\Leftrightarrow	
Topiramate	30 min postinjury	Edema (48 h postinjury)	\Leftrightarrow	Hoover et al. (2004)
	Rx for 32 h	Neurodegeneration (48 h postinjury)	\Leftrightarrow	
		Memory (48 h postinjury)	\Leftrightarrow	
		Learning (4 weeks postinjury)	Û	
		Motor recovery (4 weeks postinjury)	仓	
		Rotating pole (4 weeks postinjury)	仓	
Talampanel	30 min postinjury	Cortical lesion (7 days postinjury)	Û	Belayev et al. (2001)
-	Rx for 3 day	CAI degeneration (7 days postinjury)	Û	
Lacosamide	30 min postinjury	Lesion severity (2 weeks postinjury)	\Leftrightarrow	Nissinen et al. (2006
	Rx for 3 day	Motor function (2 weeks postinjury)	\Leftrightarrow	
	-	Learning and memory (2 weeks postinjury)	\Leftrightarrow	
Carisbamate (RWJ-333369)	15 min postinjury	Edema (48 h postinjury)	\Leftrightarrow	Keck et al. (2007)
	Rx for I day	Lesion size (4 week postinjury)	\Leftrightarrow	
	,	Motor function (up to 4 week postinjury)	\Leftrightarrow	
		Learning (4 week postinjury)	\Leftrightarrow	

Figure 2.

The brain faces many challenges after traumatic brain injury (TBI). Acute damage related to the primary impact is followed by a myriad of secondary molecular and cellular changes, including delayed neurodegeneration, neurogenesis, axonal injury, axonal sprouting, gliosis, and angiogenesis. Many of these alterations are apparently needed for successful recovery that occurs over the weeks and months postinjury. In parallel to the recovery process, a subpopulation of animals undergo epileptogenesis, culminating in the occurrence of spontaneous seizures. The great challenge is to differentiate those mechanisms that lead to favorable and unfavorable recovery. *Epilepsia* © ILAE

FUTURE CHALLENGES

We already have plenty of information on postinjury neurogenesis, synaptogenesis, and revascularization, which presumably contribute to the repair process. This raises a question: Is epilepsy a concomitant of an effective recovery process, a by-product of aberrant recovery, or a complication that hampers good clinical outcome? Furthermore, would the best recovery enhancements also modify the epileptogenic process? To find the answers it will be necessary to differentiate the molecular mechanisms that lead to favorable recovery from those that compromise it. Data available also show that modeling of PTE is laborious. Therefore, there is an urgent need for development of bio/surrogate markers that would predict epileptogenesis after different types of brain injuries and could be used for selection of animals for studies aimed at understanding the mechanisms of posttraumatic epileptogenesis, preclinical trials testing novel treatments, and also for the follow-up of treatment efficacy.

ACKNOWLEDGMENTS

This study was supported by the Academy of Finland, the Sigrid Juselius Foundation, CURE, and the Finnish Technological Fund. We thank Nick Hayward, M.Sc., for checking the English language.

Disclosure: None of the authors have any conflicts of interest to disclose.

REFERENCES

- Akasu T, Muraoka N, Hasuo H. (2002) Hyperexcitability of hippocampal CA1 neurons after fluid percussion injury of the rat cerebral cortex. *Neurosci Lett* 329:305–308.
- Baker AJ, Phan N, Moulton RJ, Fehlings MG, Yucel Y, Zhao M, Liu E, Tian GF. (2002) Attenuation of the electrophysiological function of the corpus callosum after fluid percussion injury in the rat. *J Neurotrauma* 19:587–599.
- Belayev L, Alonso OF, Liu Y, Chappell AS, Zhao W, Ginsberg MD, Busto R. (2001) Talampanel, a novel noncompetitive AMPA antagonist, is neuroprotective after traumatic brain injury in rats. *J Neurotrauma* 18:1031–1038.

Cernak I. (2005) Animal models of head trauma. NeuroRx 2:410-422.

- Coulter DA, Rafiq A, Shumate M, Gong QZ, DeLorenz RJ, Lyeth BG. (1996) Brain injury-induced enhanced limbic epileptogenesis: anatomical and physiological parallels to an animal model of temporal lobe epilepsy. *Epilepsy Res* 26:81–91.
- D'Ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW. (2004) Post-traumatic epilepsy following fluid percussion injury in the rat. *Brain* 127:304–314.
- D'Ambrosio R, Fender JS, Fairbanks JP, Simon EA, Born DE, Doyle DL, Miller JW. (2005) Progression from frontal-parietal to mesial-temporal epilepsy after fluid percussion injury in the rat. *Brain* 128:174– 188.
- Frey LC. (2003) Epidemiology of posttraumatic epilepsy: a critical review. *Epilepsia* 44(Suppl. 10):11–17.
- Gennarelli TA, Adams JH, Graham DI. (1981) Acceleration induced head injury in the monkey. I. The model, its mechanical and physiological correlates. *Acta Neuropathol Suppl* 7:23–25.
- Gennarelli TA, Graham DI. (2005) Neuropathology. In Silver JM, McAllister TW, Yudofsky SC (Eds) *Textbook of traumatic brain injury*. American Psychiatric Publishing, Inc., Washington, DC, pp. 27–50.
- Golarai G, Greenwood AC, Feeney DM, Connor JA. (2001) Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 21:8523–8537.
- Griesemer D, Mautes AM. (2007) Closed head injury causes hyperexcitability in rat hippocampal CA1 but not in CA3 pyramidal cells. J Neurotrauma 24:1823–1832.
- Hamm RJ, Pike BR, Temple MD, O'Dell DM, Lyeth BG. (1995) The effect of postinjury kindled seizures on cognitive performance of traumatically brain-injured rats. *Exp Neurol* 136:143–148.
- Hoover RC, Motta M, Davis J, Saatman KE, Fujimoto ST, Thompson HJ, Stover JF, Dichter MA, Twyman R, White HS, McIntosh TK. (2004) Differential effects of the anticonvulsant topiramate on neurobehavioral and histological outcomes following traumatic brain injury in rats. J Neurotrauma 21:501–512.
- Keck CA, Thompson HJ, Pitkanen A, LeBold DG, Morales DM, Plevy JB, Puri R, Zhao B, Dichter M, McIntosh TK. (2007) The novel antiepileptic agent RWJ-333369-A, but not its analog RWJ-333369, reduces regional cerebral edema without affecting neurobehavioral outcome or cell death following experimental traumatic brain injury. *Restor Neurol Neurosci* 25:77–90.
- Kharatishvili I, Nissinen JP, McIntosh TK, Pitkanen A. (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. *Neuroscience* 140:685–697.
- Kharatishvili I, Immonen R, Grohn O, Pitkanen A. (2007) Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. *Brain* 130:3155–3168.
- Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. *J Neurosci* 12:4846– 4853.
- Marklund N, Bakshi A, Castelbuono DJ, Conte V, McIntosh TK. (2006) Evaluation of pharmacological treatment strategies in traumatic brain injury. *Curr Pharm Des* 12:1645–1680.
- Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, Laurer H, Maegele M, Neugebauer E, Graham

DI, Stocchetti N, McIntosh TK. (2005) Experimental models of traumatic brain injury: do we really need to build a better mousetrap? *Neuroscience* 136:971–989.

- Nilsson P, Ronne-Engstrom E, Flink R, Ungerstedt U, Carlson H, Hillered L. (1994) Epileptic seizure activity in the acute phase following cortical impact trauma in rat. *Brain Res* 637:227–232.
- Nissinen J, Halonen T, Koivisto E, Pitkänen A. (2000) A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. *Epilepsy Res* 38:177–205.
- Nissinen J, Immonen R, Stöhr T, Gröhn O, Pitkänen A. (2006) Effect of lacosamide on structural and functional recovery after traumatic brain injury in rats. In Kälviäinen R (Ed) *Proceedings from the 7th European Congress on Epileptology*, Blackwell, Publishing, Oxford, pp. 87.
- Pitkänen A, McIntosh TK. (2006) Animal models of post-traumatic epilepsy. J Neurotrauma 23:241–261.
- Pitkänen A, Longhi L, Marklund N, Morales D, McIntosh TK. (2006) Mechanisms of neuronal death and neuroprotective strategies after traumatic brain injury. *Drug Discov Today* 2:409–418.
- Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F. (2009) Epilepsy following cortical injury: Cellular and molecular mechanisms as targets for potential prophylaxis. *Epilepsia* 50(Suppl. 2): 30–40.
- Reeves TM, Lyeth BG, Phillips LL, Hamm RJ, Povlishock JT. (1997) The effects of traumatic brain injury on inhibition in the hippocampus and dentate gyrus. *Brain Res* 757:119–132.
- Reeves TM, Kao CQ, Phillips LL, Bullock MR, Povlishock JT. (2000) Presynaptic excitability changes following traumatic brain injury in the rat. J Neurosci Res 60:370–379.
- Reilly PL. (2001) Brain injury: the pathophysiology of the first hours. 'Talk and Die revisited'. J Clin Neurosci 8:398–403.
- Roncati Zanier E, Lee SM, Vespa PM, Giza CC, Hovda DA. (2003) Increased hippocampal CA3 vulnerability to low-level kainic acid following lateral fluid percussion injury. J Neurotrauma 20:409–420.
- Ross ST, Soltesz I. (2000) Selective depolarization of interneurons in the early posttraumatic dentate gyrus: involvement of the Na(+)/K(+)-ATPase. *J Neurophysiol* 83:2916–2930.
- Santhakumar V, Bender R, Frotscher M, Ross ST, Hollrigel GS, Toth Z, Soltesz I. (2000) Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. J Physiol 524:117–134.
- Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I. (2001) Long-term hyperexcitability in the hippocampus after experimental head trauma. *Ann Neurol* 50:708–717.
- Smith DH, Chen XH, Xu BN, McIntosh TK, Gennarelli TA, Meaney DF. (1997a) Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56:822–834.
- Smith DH, Perri BR, Raghupathi R, Saatman KE, McIntosh TK. (1997b) Remacemide hydrochloride reduces cortical lesion volume following brain trauma in the rat. *Neurosci Lett* 231:135–138.
- Statler KD. (2006) Pediatric posttraumatic seizures: epidemiology, putative mechanisms of epileptogenesis and promising investigational progress. *Dev Neurosci* 28:354–363.
- Statler KD, Swank S, Abildskov T, Bigler ED, White HS. (2008) Traumatic brain injury during development reduces minimal clonic seizure thresholds at maturity. *Epilepsy Res* 80:163–170.
- Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK. (2005) Lateral fluid percussion brain injury: a 15year review and evaluation. *J Neurotrauma* 22:42–75.
- Toth Z, Hollrigel GS, Gorcs T, Soltesz I. (1997) Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J Neurosci 17:8106–8117.
- Tran LD, Lifshitz J, Witgen BM, Schwarzbach E, Cohen AS, Grady MS. (2006) Response of the contralateral hippocampus to lateral fluid percussion brain injury. *J Neurotrauma* 23:1330–1342.
- Williams AJ, Hartings JA, Lu XC, Rolli ML, Dave JR, Tortella FC. (2005) Characterization of a new rat model of penetrating ballistic brain injury. *J Neurotrauma* 22:313–331.
- Williams AJ, Hartings JA, Lu XC, Rolli ML, Tortella FC. (2006) Penetrating ballistic-like brain injury in the rat: differential time courses of

From TBI to Posttraumatic Epilepsy

hemorrhage, cell death, inflammation, and remote degeneration. *J Neurotrauma* 23:1828–1846.

- Willmore LJ, Sypert GW, Munson JV, Hurd RW. (1978) Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. *Science* 200(4349):501–1503.
- Witgen BM, Lifshitz J, Smith ML, Schwarzbach E, Liang SL, Grady MS, Cohen AS. (2005) Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation. *Neuroscience* 133:1–15.