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SUMMARY

A large number of animal models of traumatic

brain injury (TBI) are already available for studies

on mechanisms and experimental treatments of

TBI. Immediate and early seizures have been

described in many of these models with focal or

mixed type (both gray and white matter damage)

injury. Recent long-term video-electroencepha-

lography (EEG) monitoring studies have

demonstrated that TBI produced by lateral

fluid-percussion injury in rats results in the devel-

opment of late seizures, that is, epilepsy. These

animals develop hippocampal alterations that are

well described in status epilepticus–induced spon-

taneous seizure models and human posttraumatic

epilepsy (PTE). In addition, these rats have dam-

age ipsilaterally in the cortical injury site and thala-

mus. Although studies in the trauma field provide

a large amount of information about the molecu-

lar and cellular alterations corresponding to the

immediate and early phases of PTE, chronic stud-

ies relevant to the epileptogenesis phase are

sparse. Moreover, despite the multiple preclinical

pharmacologic and cell therapy trials, there is no

information available describing whether these

therapeutic approaches aimed at improving post-

traumatic recovery would also affect the develop-

ment of lowered seizure threshold and epilepsy.

To make progress, there is an obvious need for

information exchange between the trauma and

epilepsy fields. In addition, the inclusion of epilepsy

as an outcome measure in preclinical trials aiming

at improving somatomotor and cognitive recov-

ery after TBI would provide valuable information

about possible new avenues for antiepileptogenic

interventions and disease modification after TBI.

KEY WORDS: Antiepileptic drug, Epileptogene-

sis, Fluid-percussion injury, Recovery, Surrogate

marker.

Heterogeneity of TBI in

Humans—A Challenge for

Animal Model Development

Traumatic brain injury (TBI) in humans is a heteroge-
neous disorder that can differ in the type of injury, distri-
bution of damage, or mechanisms of damage (Gennarelli
& Graham, 2005). Regarding the type of injury, TBI can
be classified into those injuries that result from a direct

mechanical force to the head occurring at the time of
injury (primary TBI, Table 1), or those that result from
nonmechanically induced secondary complications that
were or were not initiated by the primary damage (second-
ary TBI, Table 1). The extent and distribution of damage
can vary from focal to diffuse, comprising a variety of dif-
ferent types of lesions (Table 1). Mechanisms of damage
can vary from the direct impact to the skull/brain (e.g., a
fall) to the acceleration/deceleration type of injury (e.g.,
rapid head rotation in a car accident) (Table 1). This vari-
ability challenges not only modelers of TBI, but in particu-
lar those who wish to develop models for posttraumatic
epilepsy (PTE). This relates to the fact that information
about the risk factors for PTE originates mostly from ret-
rospective epidemiologic studies rather than prospective
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studies that would have carefully characterized the details
of injury type, distribution, or the mechanisms of damage
associated with subsequent epileptogenesis using novel
imaging and other methodologies (see Pitk�nen &
McIntosh, 2006).

Currently available TBI models can be divided into
focal models of TBI, diffuse brain injury models, mixed
models of focal and diffuse brain injury, combined injury
models, experimental models of coma, and models of
repetitive concussive injury (Cernak, 2005; Morales et al.,
2005). Most of these models are performed in rodents and
utilize a direct impact on the epidural space or the brain
tissue (Cernak, 2005). Acceleration models resulting in
widespread white matter damage (diffuse axonal injury,
DAI) have been successfully applied in primates and mini-
ature swine that have a larger amount of white matter than
rodents (Gennarelli et al., 1981; Smith et al., 1997a).

Although none of the TBI models recapitulates fully the
human syndrome, it is well acknowledged that these mod-
els are useful for understanding the molecular mecha-
nisms of TBI and testing the efficacy of novel treatments
for TBI (Cernak, 2005; Morales et al., 2005). Therefore,
there are plenty of possibilities when planning to use TBI
models as a starting point for modeling PTE.

Using TBI Models for

Modeling PTE

A PubMed search in April 2008 for the term ‘‘TBI
model’’ yielded approximately 900 references, whereas
the search for the term ‘‘post-traumatic epilepsy model’’
resulted in only around 40 references. In most of these
models, PTE has been triggered by iron injection to the
cortex or the amygdala, or by cortical undercut (Willmore
et al., 1978; see Prince et al., 2009). Only recently, models
developed in the trauma field to investigate human TBI
have been used to assess the development of lowered sei-
zure threshold and epilepsy (Table 2). The large majority
of these studies have used lateral fluid-percussion (LFP)
or central fluid-percussion (CFP) TBI models that produce
both gray matter and white matter damage (Fig. 1). Other
models used include weight drop, controlled cortical
impact, or penetrating ballistic injury models (see Table 2).
All of these models belong to mixed type or focal models
of TBI (Morales et al., 2005).

In Table 2, we have divided the observations made
about the posttraumatic brain excitability into immedi-
ate (within 24 h postinjury), early (between 24 h and
1 week postinjury), and late changes (>1 week postin-
jury) (Frey, 2003). At the immediate phase, a subpop-
ulation of animals that experienced either weight drop
or LFP-induced TBI were reported to experience spon-
taneous postinjury seizures (Nilsson et al., 1994;
Kharatishvili et al., 2006). In addition, seizure thresh-
old for induced seizures was reduced (Roncati Zanier
et al., 2003) and in vitro studies demonstrated hype-
rexcitability in the CA1 subfield of the hippocampus
(Reeves et al., 2000; Griesemer & Mautes, 2007). In
addition, during the first week after TBI (early phase,
between 24 h and 1 week postinjury), spontaneous,
presumably injury-related seizures can still occur as
reported by Williams and coworkers in the new pene-
trating ballistic-like injury (Williams et al., 2005,
2006). At this later phase, most of the in vitro electro-
physiologic studies have demonstrated increased excit-
ability not only in the CA1 (Reeves et al., 1997;
Akasu et al., 2002) but also in the dentate gyrus
(Lowenstein et al., 1992; Coulter et al., 1996; Reeves
et al., 1997; Toth et al., 1997; Santhakumar et al.,
2001; Witgen et al., 2005; Tran et al., 2006). In addi-
tion to changes in local excitability, Baker et al.
(2002) reported an axonal conductance defect in the

Table 1. Classification of traumatic brain injury,

type of damage, and mechanisms of damage

according to Gennarelli and Graham (2005)

Traumatic brain injury

Primary

Injury to scalp

Skull fracture

Surface contusion/laceration

Intracranial hematoma

Diffuse axonal injury

Diffuse vascular injury

Injury to cranial nerves and pituitary stalk

Secondary

Hypoxia–ischemia

Swelling/edema

Raised intracranial pressure and associated vascular changes

Meningitis/abscess

Damage after brain injury

Focal

Injury to scalp

Skull fracture

Surface contusion/laceration

Intracranial hematoma

Raised intracranial pressure and associated vascular changes

Diffuse (multifocal)

Diffuse axonal injury

Hypoxic–ischemic damage

Meningitis

Vascular injury

Mechanisms of damage

Contact

Injury to scalp

Fracture of skull with or without an associated extradural hematoma

Surface contusions and lacerations and associated intracerebral

hematomas

Acceleration/deceleration

Tearing of bridging veins with formation of subdural hematoma

Diffuse axonal injury, tissue tears, and associated intracerebral

hematomas

Diffuse vascular injury

22
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corpus callosum. Whether it has an effect on seizure
spread at later stages remains to be studied.

A survey of conventional animal models in the trauma
field indicates that late spontaneous seizures or epilepsy
have consistently been reported only in the rat fluid-per-
cussion TBI model, which is the most commonly used
model of human closed head TBI (D’Ambrosio et al.,
2004, 2005; Kharatishvili et al., 2006). Interestingly, as
compared to the most commonly used epileptogenesis
models that are induced by status epilepticus (SE), in PTE
induced by LFP injury the epileptogenesis phase is longer,
seizure frequency is substantially lower, and most of the
seizures are secondarily generalized rather than partial
(Table 3; Nissinen et al., 2000; Kharatishvili et al., 2006).
In the rat weight-drop model the threshold for pentylene-
tetrazol (PTZ)–induced seizures is reduced but no sponta-
neous seizures have been reported (Golarai et al., 2001).
Recently, Statler et al. (2008) reported lowered minimal
clonic seizure threshold in the mouse controlled cortical
impact (CCI) model. Although reports about the occur-
rence of spontaneous seizures have been sparse, which
may partly relate to low seizure frequency, observations
available from in vitro slice studies support the idea that
cortical and hippocampal excitability are chronically
increased in a variety of TBI models (Table 2).

There are several caveats to consider when interpreting
the experimental data available. A large majority of the
studies characterizing post-TBI changes in excitability
have investigated rats with focal or mixed type TBI, that
is, models in which white matter damage is not the domi-
nant pathologic feature. This may impose limitations on
data interpretation, in particular when assessing the
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Table 3. Comparison of epilepsy phenotypes in

posttraumatic and post–status epilepticus models

Epilepsy phenotype

TBI

Lateral fluid-percussion

Kharatishvili

et al. (2006)

SE

Amygdala

stimulation

Nissinen

et al. (2000)

Epileptogenesis

Duration of latency Several months Days–1 month

% of rats with seizures 50% 80–100%

Epilepsy

Mean seizure frequency 0.3/day 8/day

Maximal seizure frequency Up to 1/day Up to 30/day

Mean seizure duration 104 s 49 s

Day–night cycle 44% lights on 57% lights on

Response to AEDs No data Yes

Comorbidities

Memory impairment Yes Yes

Sensorimotor impairment Yes No data

Drug-refractoriness No data Yes

AED, antiepileptic drug; SE, status epilepticus; TBI, traumatic

brain injury.

24

A. Pitkänen et al.

Epilepsia, 50(Suppl. 2):21–29, 2009
doi: 10.1111/j.1528-1167.2008.02007.x



association of type of damage with risk of epileptogenesis
(e.g., focal gray matter damage vs. DAI). In addition, little
information is available about the development of epi-
lepsy in mice with TBI, although such information would
be valuable in guiding the use of genetically modified
mice in search of risk genes for PTE. Furthermore, very
little information is available about the excitability change
after TBI in immature animals, even though childhood
PTE is not uncommon (Statler, 2006). Moreover, combin-
ing TBI with other factors such as hypoxia, hyperthermia,
intracerebral bleeding, infection, or SE that compromise
the outcome in the clinical setting could provide useful
information about the mechanisms and conditions that
increase the risk of PTE. We will focus next on the fluid-
percussion TBI model, the only model, so far, where the
occurrence of spontaneous seizures has been consistently
demonstrated.

Epileptogenesis versus

Recovery

LFP injury causes both primary and secondary damage
to the brain. The primary damage is caused by the impact
itself, and it initiates ionic, molecular, and cellular altera-
tions within seconds. This is followed by secondary dam-
age that is composed of neurodegeneration, neurogenesis,
astrocytosis, microgliosis, axonal and myelin injury, axo-
nal sprouting, vascular damage, and angiogenesis (see Re-
illy, 2001; Thompson et al., 2005; Pitk�nen & McIntosh,
2006). Previous histologic analyses of the LFP injury
model demonstrated that these alterations can happen in
the injured cortex, perifocal area, underlying hippocam-
pus, and/or thalamus (Thompson et al., 2005). Most of the
data concerning the progression of damage have been col-
lected during the first 1–2 months postinjury, which corre-
sponds also to the time period when most of the
electrophysiologic alterations implying increased excit-
ability of injured tissue have been performed (Thompson
et al., 2005). Very few studies have addressed the dynam-
ics of molecular and cellular alterations at the later stages
when the spontaneous seizures appear (Kharatishvili
et al., 2006). The application of MRI in the analysis of cel-
lular and pathway alterations will likely provide useful
information about the association of cellular pathology
with epileptogenesis, and help to understand why epile-
ptogenesis is seen only in a subpopulation of animals
(Kharatishvili et al., 2007).

Well-documented functional consequences of LFP-
induced injury include somatomotor and cognitive impair-
ment (Thompson et al., 2005). Interestingly, somatomotor
impairment is partly recoverable within the few weeks or
months postinjury. This is associated with regenerative
cellular processes in the brain such as axonal sprouting
and revascularization. It is important to bear in mind that
epileptogenesis is underway in parallel to the physical

recovery of animals, at least in subpopulations of animals
(Fig. 2).

Preclinical Trials in

Experimental Models of TBI—
Do They Pave the Way for

Finding Antiepileptogenic or

Disease-Modifying Treatments

for PTE?

A large number of different treatments have been
tested to enhance posttraumatic recovery. Pharmacologic
approaches include use of compounds reducing excito-
toxicity, calcium channel blockage, free radical scaveng-
ers, antiinflammatory agents, neurotrophic factors,
caspase inhibitors, calpain inhibitors, hormonal treat-
ments, augmentation of various neurotransmitter systems,
anticoagulants, poly (ADP-ribose) polymerase (PARP)
inhibitors, and antiepileptic drugs (AEDs) (for a compre-
hensive review, see Marklund et al., 2006). More
recently, cell transplantation including genetically
manipulated cell types have been tested as a recovery-
enhancing treatment option (see Pitk�nen et al., 2006).

Both in pharmacologic and cell therapy studies, out-
come measures have included the effects of treatments on
the edema development, volume of cortical lesions, sever-
ity and extent of hippocampal neurodegeneration, axonal
injury, somatomotor function, and learning and memory.
Although positive effects have been obtained in several
experimental trials, treatments have not yet been trans-
lated to clinical practice. From the epileptogenesis point
of view it is, however, conspicuous that the development
of late spontaneous seizures has never been an outcome
measure in preclinical TBI trials. This creates a question:
whether some of these treatments were actually antiepi-
leptogenic or disease-modifying, if epilepsy would have
been analyzed as an outcome measure.

Use of AEDs at Early Postinjury

Phase—Any Harm?

As discussed by Temkin (see the present volume), there
is no evidence that any of the AEDs, when administered
after TBI, would have any antiepileptogenic or disease-
modifying effects on the development of PTE in humans.
Conversely: do AEDs compromise the postinjury recovery?

Table 4 summarizes the effects of AEDs on post-
traumatic recovery in animal models. So far, remacemide,
topiramate, talampanel, lacosamide, and carisbamate have
been investigated. No major harmful or beneficial effects
have been reported. However, studies in which AEDs had
been administered for a longer period after TBI and in
which outcome measures had been assessed months later
are not available.
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Figure 1.

(A) Location of craniectomy in a model of fluid-percussion (FP) traumatic brain injury (TBI) in the two laboratories

that have shown the development of epilepsy in this model of TBI. (B) Injury device that is used for induction of FP

injury. The strength of the injury is adjusted by pendulum height. After release, the pendulum hits the cork piston,

sealing one end of the saline-filled cylinder that transmits the liquid pulse to the epidural space. (C) The injury devel-

ops gradually (see also Fig. 2). Here the location and extent of injury is shown in a T2-weighted image (open arrow) at

9 days after lateral FP injury. (D) A thionin-stained coronal section from the brain of a rat subjected to lateral FP

(LFP) brain injury. The animal had been followed for 12 months postinjury and had a total of 11 seizures during seven

video-EEG (electroencephalography) monitoring sessions (63 recording days). The first spontaneous seizure was

recorded 3 months after injury. Seventy-one percent of seizures were secondarily generalized. In addition to the

injury site in the cortex, structural alterations are clear ipsilaterally in the hippocampus (HC) and thalamus (Th). (E)

Higher magnification photomicrograph from a thionin-stained hippocampus from a rat with LFP injury–induced post-

traumatic epilepsy (PTE). Note the loss of hilar cells (indicated with an arrow). (F) Timm-stained hippocampal sec-

tion from the rat with PTE demonstrating mossy fiber sprouting in the inner molecular layer (arrows). CA3, CA3

pyramidal cell layer of the hippocampus; g, granule cell layer; f, the dentate gyrus; H, hilus; m, molecular layer.
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Future Challenges

We already have plenty of information on postinjury
neurogenesis, synaptogenesis, and revascularization,
which presumably contribute to the repair process. This
raises a question: Is epilepsy a concomitant of an effective
recovery process, a by-product of aberrant recovery, or a
complication that hampers good clinical outcome? Fur-
thermore, would the best recovery enhancements also
modify the epileptogenic process? To find the answers it
will be necessary to differentiate the molecular mecha-
nisms that lead to favorable recovery from those that com-
promise it. Data available also show that modeling of PTE
is laborious. Therefore, there is an urgent need for devel-

opment of bio/surrogate markers that would predict epile-
ptogenesis after different types of brain injuries and could
be used for selection of animals for studies aimed at under-
standing the mechanisms of posttraumatic epileptogene-
sis, preclinical trials testing novel treatments, and also for
the follow-up of treatment efficacy.
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Table 4. Effects of administration of antiepileptic drugs on posttraumatic recovery in experimental models

AED

Beginning and duration

of treatment Outcome measures (time of analysis) Effect Reference

Remacemide 15 min postinjury

Rx single dose

Cortical lesion (48 h postinjury)

Learning and memory (48 h postinjury)

�
�

Smith et al. (1997b)

Topiramate 30 min postinjury

Rx for 32 h

Edema (48 h postinjury)

Neurodegeneration (48 h postinjury)

Memory (48 h postinjury)

Learning (4 weeks postinjury)

Motor recovery (4 weeks postinjury)

Rotating pole (4 weeks postinjury)

�
�
�
�
æ
æ

Hoover et al. (2004)

Talampanel 30 min postinjury

Rx for 3 day

Cortical lesion (7 days postinjury)

CA1 degeneration (7 days postinjury)

�
�

Belayev et al. (2001)

Lacosamide 30 min postinjury

Rx for 3 day

Lesion severity (2 weeks postinjury)

Motor function (2 weeks postinjury)

Learning and memory (2 weeks postinjury)

�
�
�

Nissinen et al. (2006)

Carisbamate (RWJ-333369) 15 min postinjury

Rx for 1 day

Edema (48 h postinjury)

Lesion size (4 week postinjury)

Motor function (up to 4 week postinjury)

Learning (4 week postinjury)

�
�
�
�

Keck et al. (2007)

AED, antiepileptic drug.

Figure 2.

The brain faces many challenges after traumatic brain injury (TBI). Acute damage related to the primary impact is fol-

lowed by a myriad of secondary molecular and cellular changes, including delayed neurodegeneration, neurogenesis,

axonal injury, axonal sprouting, gliosis, and angiogenesis. Many of these alterations are apparently needed for suc-

cessful recovery that occurs over the weeks and months postinjury. In parallel to the recovery process, a subpopula-

tion of animals undergo epileptogenesis, culminating in the occurrence of spontaneous seizures. The great challenge

is to differentiate those mechanisms that lead to favorable and unfavorable recovery.
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