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Abstract

This article describes a developmental system based on information theory
implemented on a real robot that learns a model of its own sensory and
actuator apparatus. There is no innate knowledge regarding the modal-
ities or representation of the sensory input and the actuators, and the
system relies on generic properties of the robot’s world such as piecewise
smooth effects of movement on sensory changes. The robot develops the
model of its sensorimotor system by first performing random movements
to create an informational map of the sensors. Using this map the robot
then learns what effects the different possible actions have on the sensors.
After this developmental process the robot can perform basic visually
guided movement.
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1 Introduction

All animals display amazing capabilities and control over their own bodies.
They are also often able to predict the way in which certain actions affect the
environment around them. In order to achieve this, many animals go through
a number of developmental stages, whereby the nervous system develops and
the animal learns to control its own body and the relations between sensors and
actions. In the process of learning a sense of bodily self in human infants, sys-
tematic exploration of the sensory and perceptual consequences of their actions
plays a major role (Rochat, 1998). For example, young infants perform the
same actions over and over again (Piaget, 1953), and it has been observed that
newborn infants spend up to 20% of their time while awake touching their face
with their hands (Korner and Kraemer, 1972). This phenomenon, in analogy
with the vocal babbling in the early process of language learning, is also called
body babbling (Meltzoff and Moore, 1997). It has also been found in experiments



with kittens that visually guided behaviour only develops when changes in vi-
sual stimulation are related to self-initiated movements performed by the kitten
itself (Held and Hein, 1963). Thus, it seems important to ground actions in
sensorimotor perceptions.

How to ground actions in sensorimotor perceptions in robots is studied in
the areas of autonomous mental development (Weng et al., 2001) and develop-
mental robotics, see (Lungarella et al., 2004) for a review. These fields have two
major driving forces. One is to build more adaptable, autonomous, and sociable
robots by drawing inspiration from developmental psychology and neuroscience.
The other major driving force is to use robots as embodied tools to help the
investigation of the development of neural systems and cognitive abilities. In
the present article the main focus is on the former, even though the latter will
also be touched upon. Methods based on information theory are presented that
enable a robotic system to develop from no knowledge of its sensor modalities
and arrangements, as well as actuators, to sensory-guided movement by learning
relations between actions and their effect on its sensors.

The first question one needs to ask is why it is interesting desirable to let a
robot learn by itself about its sensors and actuators? Traditionally, the possible
actions and sensorimotor relations of robots are specified and built in to the
robot by the human designer. But, as experienced in many robotic projects, it
is extremely hard to design a robotic system to use its sensors in an efficient
manner in challenging realistic and changing environments — even more so with
more complex robots. It is also very hard as a human designer to understand
the environment in which the robot is acting in from the robot’s perspective.
Thus, if the robot learns by itself its possible actions and their effect on its
sensors, anthropomorphic bias is avoided since the actions are acquired by self-
experienced sensorimotor percepts (Blank et al., 2005) in its own Umwelt (von
Uexkiill, 1956) — the sensory world of the agent. Also, a robot that acquires the
skills necessary to act in the world by itself can adapt to changing conditions and
embodiment since the learning of relations between actuators and sensors, the
sensorimotor laws, can adapt over time. By developing autonomous ontogeny
by grounding the actions in sensorimotor laws, the robot’s repertoire is more
open-ended since it is not learning a specific task, and can continue to adapt
to changes and new tasks. Finally, studying how autonomous development
of sensorimotor skills operates in robots can help validate or extend existing
theories in human and animal development.

Building a robot capable of open-ended autonomous development is of course
a complex problem and in the present article we present a unified approach to
tackling a number of aspects of autonomous development. More specifically,
the goal of the presented system is to develop from no knowledge of its sensors
and actuators and their relations to performing structured movement guided
by the discovery of informational structure in the sensorimotor system. After
learning the informational structure of the sensors, the effects certain settings
of the actuators have on the sensors are learned. This can be seen as learning
a forward model (Jordan and Rumelhart, 1992) of the sensors and actuators,
but via general means based on informational relations. Given a certain setting



of the actuators (which constitute an action), what effect will this action have
on the sensors? For example, if the head is moved down, there will be a mo-
tion flow moving upwards in the visual sensors. This kind of learning is done
autonomously by the robot, using the equivalent of body babbling in animals,
here called motor babbling.

Motor babbling has been investigated by a number of researchers to ex-
plore the possible sensorimotor space of a specific embodiment. For example,
Berthouze et al. (1998) developed a system performing basic visuo-motor be-
haviors which were categorized by a neural network. In Kuniyoshi et al. (2003)
body babbling was used to develop a system capable of forms of imitation.
Berthouze and Kuniyoshi (1998) also developed a system capable of performing
unsupervised learning of visual sensorimotor patterns, where the classification
used Kohonen maps. The resulting self-organized Kohonen maps showed four
different categories of movement: vertical, ‘in-depth motions’, horizontal, and
a fourth, not clearly defined, intermediate category between the horizontal and
‘in-depth motions’ categories. Related work by Kuperstein studied adaptive
hand-eye coordination for reaching (Kuperstein, 1988). Here a neural network
model was developed that learnt to reach a cylinder arbitrarily placed in space.
Self-produced motor signals were used to explore many different arm positions
with the cylinder in the hand and topographic sensory information stored in
maps. These topographic mappings allowed the system to learn to reach only
from sensory receptors and motor feedback, without a priori knowledge about
object features. Learning of associations between vision and arm movements
has also been studied by Andry et al. (2004). This work is similar to Kuper-
stein’s in many respects via its use of visuo-motor maps and neural network
control, but also raised the idea of co-development between sensorimotor and
imitative capabilities. Stronger and Stone (2006) developed a method where a
robot learns by trying different actuator settings the relationships between a
sensor’s values and the current state of the world, and also the relationships
between the actuator settings and the rate of change of the sensor’s readings.

One common feature of the methods just presented is that they all assume
that the agent knows about the structure of its sensors, and that all the sensors
are visual sensors or have similar properties of continuity to visual sensors. In
the methods presented in the present article the focus is different since it is the
agent itself that must learn the informational structure of its sensors before it
can develop sensory-guided movement.

Central to the concept of discovering the informational structure and flow
in sensors are the informational relationships between sensors and the statistics
of the signals in the sensors. The structure of the incoming sensory signals
depends on the embodiment and actions of the agent and the environment.
Research into the structure of natural signals is still at an early and exploratory
phase, but there are indications that signals of different sensory modalities such
as acoustic waveforms, odour concentrations, and visual contrast share some
statistical properties (Rieke et al., 1999). For example, in general the local
contrast in natural images has the same exponential form of the probability
distribution as sound pressure in musical pieces (Rieke et al., 1999). Another



commonality between signals of different modalities is coherence over time and,
in many cases, spatial coherence. It was also found in Coppola et al. (1998) that
man-made environments as well as natural environments have more vertical and
horizontal contours than oblique angled contours.

These results all suggest that taking the statistical structure of natural sig-
nals into account can be exploited by both biological organisms as well as ma-
chines. In the early 1960s H. B. Barlow suggested (Barlow, 1961) that the visual
system of animals “knows” about the structure of natural signals and uses this
knowledge to represent visual signals. Laughlin (1981) showed how the con-
trast sensitive neurons in the fly’s retina maximizes information transmission
by adapting to the statistics of its input. How this kind of adaptation of sensoric
input can be of use in robotics is presented in section 2.2.

Lungarella et al. (2005) presented a number of information theoretic and
other similarity measures to compute relations between sensors. Experiments
showed how particular actions of the agent can have an impact on the nature
and statistical structure of the robot’s sensoric input, where the saliency guided
movement decreased the entropy of the input while increasing the statistical
dependencies between the sensors.

The present work is also inspired by the more philosophical ideas described
by O’Regan and Noe (2001), where the authors propose a new theory that tries
to answer the major question of what visual experience is and where it occurs.
Many traditional theories rest on the idea that the brain somehow produces an
internal image of the world. Instead, O’Regan and Noe (2001) propose that
seeing is a way of acting to explore the world mediated by the agent’s mastery
of the laws of sensorimotor contingencies, which are a set of rules of interdepen-
dence between movement and stimulation of the sensors. Some of these ideas
have been translated into algorithms by Philipona et al. (2003) and extended in
Philipona et al. (2004). There the authors consider the question of whether it
is possible for a robot with an unknown body to learn that its body is located
in a three dimensional world. They are able to give this question a positive
answer by presenting an algorithm that can deduce the dimensionality of the
world by analyzing the laws that link motor outputs to sensor inputs. Results
from simulation show how a robot with multimodal sensors discovers Euclidean
space structure implicit in the equations describing the physical world of the
simulation. This is different from the present framework in that the present
work does not require continuity for the individual sensors, and, moreover, has
also been validated on a real physical robot.

The present article surveys and extends work by Pierce and Kuipers (1997)
which was developed further by considering the informational relationships of
the sensors in (Olsson et al., 2004b), as will be detailed below. Pierce and
Kuipers developed an approach, here called the sensory reconstruction method,
to create sensoritopic maps from raw and uninterpreted sensors. ‘Raw’ and
‘uninterpreted’ here mean that no knowledge of the sensors’ or motors’ modality,
positions, or data representation is given in advance, with all sensor readings
normalized between zero and one. A sensoritopic map shows the informational
relationships between sensors, where sensors that are informationally related are



close to each other in the maps. In examples, the sensoritopic maps turn out to
also reflect the real physical relations and positions of sensors. These maps can
then be used by the robot to help it to learn about its sensors and actuators,
and to bootstrap learning of motor primitives and control laws. For example,
Kuipers et al. (2006) showed how an agent, once relationships between actuators
and sensors have been found, can bootstrap learning of homing, path-following,
and recognition of places.

Among other steps, Pierce and Kuipers (1997) measured the distances of
the temporal signatures of all pairs of sensors. They then projected the sensors
into a two-dimensional space in such a way that the projection of sensors match
as closely as possible the pairwise distances between their signatures. In their
approach a simple one-norm distance measure was used, the average absolute
values of difference in sensor values over time.! This works well in some cases,
but crucially pre-supposes orderedness and continuity in the sensory input. In
Olsson et al. (2004b) their work was extended by using the information met-
ric (Crutchfield, 1990), which will be reviewed in section 2.1, to compute the
pairwise distances between sensors. Using information theory has several advan-
tages. First of all, it is a well-studied and -understood mathematical framework
(Cover and Thomas, 1991). It also removes any assumptions about the ordering
or continuity of sensor values, placing sensors together if they are information-
ally correlated, no matter how far their temporal signatures are in Euclidean
space. It also has the advantage of finding both linear and general correlations
between sensors, which can be of advantage in, for example, sensor integration
(Olsson et al., 2006).

Given a sensory map of the visual field the robot can now explore the rela-
tions between its sensors and (so far) unknown actuators by performing motor
babbling. While Olsson et al. (2005b) explored this by transforming the continu-
ous two-dimensional map of visual sensors to a discrete array to perform motion
flow computations, the assumption of a rectangular sensor field is dropped here.
Instead the dimensionality of the sensors is derived and motion flow can be
computed for visual fields even if the visual sensors have been discovered to be
arranged in non-rectangular layouts, e.g., a circle or a cross. This method is new
and can be used to discover and compute information flow in sensors of different
modalities. Once motion can be computed, motor babbling can be performed
during which the robot develops a repertoire of sensorimotor laws, which are
rules capturing what effect changes in certain actuator settings will have on its
sensory field. Using the sensorimotor laws the robot can then perform basic
visually guided movement.

The main aim of the present article is not to design a high performance
visual motion tracking system (which the present system is not). It is rather
about establishing principles and the use of information theoretic models for
autonomous and adaptive sensorimotor development in robotics and to derive
a number of phenomena from information theory, for example motion flow.

IThis is the normalized Manhattan distance between the vectors of sensor values, or,
equivalently, the average one-dimensional Euclidean (or Manhattan) distance between sensor
readings.



The conceptual power of information-theoretic methods has sometimes been
said to be marred by the difficulties they seem to offer to practically relevant
implementations, e.g., on robotic systems. Here we present a real physical
robotic system that uses information theory to develop sensorimotor control.

The rest of the this article is structured as follows. Section 2 presents the
sensory reconstruction method and introduces information theory, entropy max-
imization of sensor data, creation of sensoritopic maps, and discovery of motion
flow in groups of sensors. The next section, section 3, describes the idea of
sensorimotor laws and how these can be discovered starting from no knowledge
of the structure of sensors or actuators. In section 4 the performed experiments
to validate the informational approach to development are presented along with
the results. Finally, section 5 concludes the article and presents some ideas for
future work.

2 Sensory Reconstruction Method

This section presents the sensory reconstruction method, first introduced in
Pierce and Kuipers (1997) and extended by using the information metric (Crutch-
field, 1990) in (Olsson et al., 2004b). First a brief introduction is given to in-
formation theory in general and the information metric in particular. Then the
methods for construction of sensoritopic maps, the grouping of sensors, and the
discovery of motion flow in groups of sensors are presented.

2.1 Information Metric

Let X be the alphabet of values of a discrete random variable (information
source) X, where X in the present article will represent a sensor or actuator.
The probability that the random variable X assumes a value z € & is denoted
P(X = z) or, by simplifying the notation, p(z). Then the entropy, or uncer-
tainty associated with X is

H(X):= =) p(x)log, p(x) (1)
reX

which specifies in bits the information necessary to specify the value assumed
by X. The conditional entropy,

HY|X) = > pa)H(Y|X =) (2)
rxeX
= =Y pa) > pylz)log, plylz) (3)
rzeX yey

is the uncertainty associated with the discrete random variable Y if the value
of X is known. In other words, how much more information one needs to fully
determine Y once X is known. The mutual information is the information
shared between the two random variables X and Y and is defined as

I(X;Y) = H(X) — HX|Y) = H(Y) — HY|X). (4)



To measure the dissimilarity in the information between two sources the
information metric (Crutchfield, 1990) can be used. The information metric is
the sum of two conditional entropies, or formally

d(X,Y) = H(X|Y)+ HY|X). (5)

Note that X and Y in the system are information sources whose H(Y|X) and
H(X|Y) are estimated from time series data from each sensor using equation 2
— see also section 2.2.

To better understand the relation between mutual information and the infor-
mation metric, consider figure 1. Here it is shown that the information metric

Figure 1: Venn diagram showing the relations between mutual information,
I(X;Y), entropy, H(X), and conditional entropy, H(X|Y). The information
metric is the sum of H(X|Y) and H(Y|X).

is complementary to mutual information; while mutual information measures
what two random variables have in common, the information distance metric
measures what they do not have in common.

Many other distance measures exist, e.g, the one-dimensional Euclidean dis-
tance used by Pierce and Kuipers (1997), the correlation coefficient, Kullback-
Leibler divergence (Cover and Thomas, 1991), Hellinger distance (Basu et al.,
1997), and Jensen-Shannon divergence (Lin, 1991), so why the information met-
ric? As discussed in (Olsson et al., 2006), the information metric has a number
of interesting and useful properties. First of all is it a proper metric in the
mathematical sense.? If a space of information sources is metric, it is possible
to use some of the tools and terminology of geometry. It is also often useful to

2Formally, a metric requires (1) d(X,Y) = d(Y; X), (2) d(X,Y) =0 ifand onlyif Y =
X, and (3) d(X,Y) +d(Y,Z) > d(X,Z). If (2) fails but (1) and (3) hold, then it is a
pseudo-metric, from which one canonically obtains a metric by identifying points at distance
zero from each other. In the case of the information metric this occurs when X and Y are
recoding equivalent, which means that one can map the values of X into Y to determine them
completely and vice versa. Intuitively speaking, recoding equivalent sources provide the same
information. This identification is adopted here and in (Crutchfield, 1990).



be able to talk about sensors in terms of spatial relationships, harnessing spatial
intuition. This might be of special importance if the computations are used to
actually discover some physical structure or spatial relationships of the sensors,
e.g., as in Olsson et al. (2004b), where the spatial layout of visual sensors as
well as some physical symmetry of a robot was found by these information the-
oretic means. This is possible for the visual sensors since physically close visual
sensors on average convey similar information and thus have a small informa-
tion distance. The greater the physical distance is between two visual sensors,
the less information they share and hence the information distance is greater.
For natural images this shared information between pixels seems to scale as a
power-law in the separation distance (Ruderman, 1994).

It is worth noting that the framework of information theory, in this par-
ticular case the information metric, provides general methods for quantifying
functional relationships between sensors, while many other methods only find
linear relationships. For example, a correlation coefficient approaching zero does
not imply that two variables actually are independent (Steuer et al., 2002).

2.2 Estimation of Probabilities and Entropy Maximiza-
tion of Sensor Data

In the work presented here each sensor or actuator variable is as mentioned
above modeled as a discrete random variable X that can assume values from a
finite alphabet X'. The sensor X is a compressed representation of a particular
quantity in the world, measured as the value of a sensory variable X,,,,, that
the sensor registers. Thus, a sensor can be viewed as a mapping from a larger
alphabet X,.qw, where |X| < |X,qw|, to the smaller alphabet X, where the
number of elements in X' is N = |X|. Perhaps the most common method to do
this is by uniform binning, where the all possible values of X4, are divided in
to the bins B;, X, = B1 U---U By, where each bin (approximately) contains
the same number of values from X,..,,. That is, Vi, |B;| =~ %|me|. Now let
each bin B; correspond to one symbol in the alphabet X and the probability
mass function p(z) can then be estimated from the frequency distribution of the
bins.

Even though this method is commonly used is it associated with a number of
problems. One example is that the size and placement of the bins might affect
whether an important feature of the data is captured or not, and, for example,
Lungarella et al. (2005) presents alternative kernel based estimators. In the
present article the probabilities are still estimated using a normal frequency
count method, but instead of uniform binning adaptive binning is used, also
known as entropy mazimization or sampling equalization. Adaptive binning is
most easily explained using an example.

Consider the grey-scale image depicting Claude Shannon in figure 2(a) taken
from (Olsson et al., 2005¢), where each pixel can have a value between 0 and
255, meaning that X4, = {0,1,...,255}. How can this image be compressed
to only 5 different pixel values, X = {0,1,...,4}? Figure 2(b) shows the image
compressed using uniform binning and, as seen in figure 2(e), the distribu-
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Figure 2: Figure 2(a) shows a 50 by 50 pixels grey-scale image of the founder
of information theory, Claude Shannon, and figure 2(d) the corresponding his-
togram of pixels between 0 and 255. Figure 2(b) shows the same picture where
the pixel data (0-255) is binned into only 5 different pixel values using uniform
binning and figure 2(e) the frequency of pixel values. Finally, figure 2(c) shows
the same picture with the pixel data binned into 5 bins using adaptive binning
and figure 2(f) the corresponding histogram [after (Olsson et al., 2005¢)].

tion of grey-scales in figure 2(a) is not uniform, with most pixels in the range
{100,101, ...,200}. The entropy of the encoded image is approximately 1.97
bits, which is less than the maximal theoretical entropy of log, 5 ~ 2.32 bits.
From an information theoretical point of view this means that this encoding is
non-optimal since the entropy of the encoded image is less than the maximal
possible entropy of the image. Now, consider figure 2(c¢) which also uses 5 bins,
where (at least if studied from a distance) the image subjectively seems to con-
vey more detail about the original image. Here the original values have been
binned in such a way that each bin contains approximately the same number of
pixels, which means that the entropy of the image is close to the maximum of
log, 5 ~ 2.32 bits. This can also be considered as adding more resolution where



most of the data is located.

Similarly, in nature it has been found that the contrast encoding in the visual
system of the fly is adapted to the specific statistics of it environment (Laughlin,
1981), such that, just as in the image of Claude Shannon above, the entropy
of the graded response is maximized. More formally, given a raw sensor X,qu,
the aim is to find a partitioning of the data into the N bins of the alphabet
Xraw = B1 U---U By such that each bin B; is equally likely given a certain set

of data. That is,

1
P(X,aw € Bi) = N (6)

which is equivalent to the entropy of which bin data falls into being maximized.
Another way to view this is to make the distribution as close as possible to
equidistribution, given a particular set of data. It is important to note that
while entropy maximization changes the entropy of individual sensors, it still
maintains correlation between sensors. This was shown in Olsson et al. (2005¢)
where adaptive binning was applied to integration of visual sensors of different
modalities.

The experiments performed by Brenner et al. (Brenner et al., 2000) also
indicate that this kind of entropy maximization constantly is happening in the
motion sensitive neurons of the fly. This can be implemented by estimating the
probability distribution of the most recent 1" time steps and changing the trans-
fer function accordingly. In the experiments performed in the present article
this algorithm is implemented using frequency distribution estimators to esti-
mate the probability distributions. Since multiple instances of the same value
of X,qw are added to the same bin, the distribution need not be completely
uniform, as in figure 2(f). The sliding window in the present implementation
does not use decay, which means that more recent values do not affect the
distribution more than older ones within the window.

2.3 Creating Sensoritopic Maps

In the sensory reconstruction method (Pierce and Kuipers, 1997; Olsson et al.,
2004b), sensoritopic maps are created that show the informational relationships
between sensorimotor variables, where sensors that are informationally related
are close to each other in the maps. In an appropriate environment, the sen-
soritopic maps are likely to also reflect the real physical relations and positions
of sensors. For example, if each pixel of a camera is considered a sensor, is it
possible to reconstruct the organization of these sensors even though nothing
about their positions is known. Sensoritopic maps are often depicted as two-
dimensional for visualization reasons, but it is possible to find more appropriate
dimensions of the sensors, see section 2.4, and also to create maps of higher di-
mensions. Figure 3 shows an example of a sensoritopic map for a SONY AIBO
robot.

To create a sensoritopic map the information distance is first computed be-
tween all pairs of sensors as described above in section 2.1. The resulting dis-
tance matrix specifies the informational distance between all pairs of sensors.
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Figure 3: A sensoritopic map created by the sensory reconstruction method
using the information metric. In this example there are 150 sensors, including
100 image sensors that are labeled 1-100 to the right in the map. The distance
unit is bits [after (Olsson et al., 2004b)].

To create a sensoritopic map from the distance matrix the N sensors are pro-
jected to a plane. In general, a perfect mapping given a N by N distance
matrix requires N — 1 dimensions, but often a lower dimensionality is the most
appropriate to reflect the nature of the sensors and the data. For example, a
rectangular visual field is best represented in two dimensions, and that this is
the case can actually be shown algorithmically using only the sensor data — see
section 2.4 and figure 6 in the experimental section.

To project the sensors of the distance matrix to a lower dimension is a
constraint-solving problem that can be solved by a number of different methods
such as metric-scaling (Krzanowski, 1988), Sammon mapping and elastic nets
(Goodhill et al., 1995), as well as self-organizing maps (Kohonen, 2001; Polani,
2002). Here it was decided after some experimentation to use the relaxation
method presented in (Pierce and Kuipers, 1997), primarily because of its speed
and qualitatively better results found by visual inspection of reconstruction of
known visual layouts.

In the relaxation method each sensor S;,1 < ¢ < N, is assigned a random
position p; on a plane. The force f; on each point p; is

=y (P = pyll — X0 X)) (0 — ), -

o Py — pill



Each point p; is moved according to the force fj acting on that point:

f.
Pi = Pi + Nl (8)
The algorithm is iterated for a number of time steps moving each point according
to equation 8 until only very small or no movements occur, which usually takes
between 2000 to 3000 iterations for 100 sensors.

2.4 Grouping of Sensors and Dimensionality

Now sensors that are close can be grouped together. Two sensors, z; and x;,
are similar according to Pierce and Kuipers (1997), if

T XX iff d(mi,xj) < min{ei,Ej}7 (9)

where the ¢; is calculated from the minimum distance, ¢; = 2 min;{d(z;, z;)}, to
any of neighbours. To form equivalence classes, (Pierce and Kuipers, 1997) use
the related-to relation which is the transitive closure of the similarity relation ~
This is computed recursively via

i~ it im iV Ik (i~ k) A (R~ ). (10)

Given such an equivalence class its dimension can be computed. Let o2 (m)
be the variance accounted for by dimension m. Then the right number of di-
mensions can be found by maximizing o(m)—o?(m+1). For example, for a set
of visual sensors arranged in a two-dimensional grid m = 2. To compute o2(m),
metric-scaling (Krzanowski, 1988) can be used, where the eigenvalues produced
in the calculation for each dimension provide a measure of the variance — see
section 4.1 for an example.

2.5 Discovering Motion Flow

It is often the case that a robot is in an environment where movement has a
piecewise smooth effect on the sensory data produced by some of the sensors.
For example, most real world scenarios have this effect on visual sensors unless
there is complete darkness or the visual input is random. The same is also
true for, e.g., infra-red sensors that measure the distance to the closest obstacle,
and in some cases, for tactile sensors. This effect can be exploited by a robot
to perform sensory-guided movement by computing motion flow in the sensors
which can tell the robot about the velocity and direction of movement, caused
by the robot itself or movement of objects in the environment.

Traditional motion flow techniques, e.g., optical flow analysis (Lucas and
Kanade, 1981), are based on the idea that for most points in the image, neigh-
bouring points have approximately the same brightness. In other words, the
world is made up of continuous objects over which brightness varies smoothly.
In Olsson et al. (2005a), this condition was relaxed and generalized by assum-
ing that neighbouring sensors are more highly informationally correlated, which



does not necessarily entail that they have similar values. This can, e.g., be the
case in a visual field where some sensors represent the red channel, while other
sensors in other positions represent the green or the blue channel. In (Olsson
et al., 2005a) the motion flow in a certain sensor S¥ was computed by time-
shifting the sensors around that sensor comparing the informational distance
between Sf and other sensors, S} ,,, in different positions and times. Given
that a sensor with a certain time-shift is found to be closely or completely cor-
related with the sensor for which the motion flow is to be computed, the speed
and direction of the flow can be computed from the sensoritopic map.

This method has several drawbacks. One is under-sampling. While ordi-
nary optical flow computation can be done using only two frames of data, much
more data is needed for this information theoretical method. It is also com-
putationally expensive to compute the entropies for a large number of sensors
with different time-shifts. One advantage, though, is the fact this method does
not assume a discrete and rectangular visual field, something that is often taken
for granted in normal optical flow algorithms. It should also be noted that this
method does not attempt to outperform other methods. Instead, as mentioned
before, the aim is to guide development and derive generalized phenomena from
information theory.

PR
L "

6t ) A2

A RR2 A2 A2 R A3

R33
R4 R¢
_| R R73  RE3 R24 u

RS
hosRe R4 s RIS

R16
_ | ResRes R75 R  R26
i

Rg6 R76 R

a7 R67 s Rig R38
R
68 A5 R49

o
i
3 2 El 0 1 2 3 4 u

(a) Circular Visual Field (b) Image for optical
flow calculation

Figure 4: Figure 4(a) shows the reconstructed visual field and 4(b) the corre-
sponding image used in the optical flow calculation.

In the present article sensor fields can be of any shape, not just rectangular
and two-dimensional grids, which makes this last property of the information
theoretic motion flow method attractive. Thus, it was decided to use traditional
optical flow calculations but combined with the idea that the visual field not
have to be of a rectangular shape. This is implemented as follows. Consider
that the sensory reconstruction method has found that the visual field of a robot
is two-dimensional and that the sensors are placed in a circle in the sensoritopic
map, see figure 4(a). For each frame of data an image is created which is initially



of uniform colour, e.g., all white. By discretizing the continuous coordinates of
the sensors in the sensoritopic map of 4(a), the value of each particular sensor
can placed in its corresponding position in the image, resulting in an image such
as figure 4(b). Now the optical flow can be computed between two images® and
the motion vectors in the pixels corresponding to sensors can be saved.

How can the optical flow technique be applied to sensor fields with sensors
of different modalities, e.g., the red, green, and blue channels of camera pixels?
Instead of the actual values varying smoothly over the sensors, just the correlat-
edness between the sensors will vary smoothly, and the closer two sensors are in
the visual field, the smaller the informational distance will be. This may result
in a lack of smooth change in sensory values as one moves over the sensoritopic
map of the visual field. How to handle this effectively is an open problem with
a number of possible candidate solutions. One possible solution may be to find
a relabeling of the sensor data where the sensor values vary smoothly, while
keeping the same information distance between all pairs of sensors as before.
Another possibility is to partition the sensors based on value similarity and
calculate the optical flow separately for each partition.

3 From Motor-babbling to Structured Movement

In this section it is described how learning via motor babbling can be performed
once the structure of the sensors has developed. First sampling of actuator space
is discussed in section 3.1, before how to learn sensorimotor laws in section 3.2,
and how to use the learned laws to perform actions in section 3.3.

3.1 Sampling Actuator Space

The goal of motor babbling is to sample the space of possible actuator settings
in an as exhaustive way as possible and learn how to associate actions with
sensory perceptions. While the methods presented in section 2 of the sensory
reconstruction method were general and not dependent on a particular embodi-
ment, sampling of actuator space is more dependent on the hardware used. For
example, some actuator settings might physically harm the robot, or cause legs
to get entangled in each other. Thus, some constraints might be necessary when
sampling the possible settings of a robot’s actuators.

In general, the aim is to sample, in as much detail as possible, the set of
possible actuator settings, to understand how all the different actuator settings
affect the sensors. As a simple example, consider a robot with two actuators,
a1 and ag, where a1, a2 € {—1,0,1}. This means that the whole actuator space
consists of only 9 possible settings. In most robots this space is much larger,
with more actuators, and more possible values (maybe continuous) for each
actuator. There might also be a many-to-one mapping between the actuator

3This is implemented by the authors using the Lucas-Kanade algorithm (Lucas and
Kanade, 1981) implemented in OpenCV:
http://www.intel.com /research/mrl/research/opencv/



vectors and the actual values sent to the motor, which means that more than
one actuator vector might give the same effect in the motors.

Also, for more robust learning each movement needs to be performed sev-
eral times, resulting in a number of samples of sensor data for each possible
movement. This is necessary since many sensors are sensitive to noise and the
structure of the environment. There might also be moving objects in front of the
robot, something that will seriously affect for example motion flow calculations.

3.2 Learning Sensorimotor Laws

The result from motor babbling as described above is a collection of sensor
data associated with each possible actuator setting. This data can be used
to compute the sensorimotor laws. Here a sensorimotor law is defined as the
average effect a certain actuator setting will have on a set of sensors.

Let the sensor S,, at position (z,y) in the two-dimensional visual field of
section 2.5 be associated with its average effect for a certain actuator setting
a as (Upy.aq). The average effect is defined as the average optical flow in this
sensor calculated as described in section 2.5 using the Lucas-Kanade optical
flow algorithm (Lucas and Kanade, 1981) over all frames of data T for that
particular setting a, is

T -
(B 0) = Tt Tt 1)
T
where Uy 4 4.+ is the optical flow in ¥, 4 o between time ¢ and ¢ + 1.
A sensorimotor law for actuator setting a, SM,, is defined as a matrix
consisting of the average motion flow vectors for all the sensors in the two-
dimensional grid with width w and height h:

<171,1,a> <62,1,a> e <17w,1,a>
<171,2,a> <62,2,a> e <17w,2,a>

SMa - . . . . (12)
<61,h,a> <172,h,a> e <6w,h,a>

Since the actual field of the robot might not be rectangular, see section 2.5,
some motion vectors will be of zero length since they are not associated with
a sensor. This is not a problem since the layout of the visual field is the same
for all sensorimotor laws SM. It might be the case that different actuator
settings will have the same, or very close to the same, effect on the sensors of
the robot, even though they are different for an external observer. These two
actuator settings should still be combined into one sensorimotor law as the only
information the robot has about itself and its environment is its own sensors.
For many movements if a rectangular visual field is used, e.g., pan and tilt
motions, the vectors of the vector field will be of more or less uniform magnitude.
If all possible actuator settings are of this kind in a certain experiment, sensori-
motor laws can be simplified by computing the average over the whole matrix,



excluding positions not corresponding to any sensor, and let the sensorimotor
SM, be equal to the average of all motion vectors ¥ y 4.

3.3 Sensory-Guided Movement

The set of sensorimotor laws can now be used to perform actions where a specific
effect on the sensors is desired. For example, if the robot perceives a motion the
motion can be tracked by performing any action from the set of sensorimotor
laws that has as similar as possible an effect on the sensors as the observed
motion.

To track a particular motion, the robot needs to find the sensorimotor law
with effect closest to the perceived movement P, represented as an optical flow
matrix like the sensorimotor law, equation 12. Given a set of learned sensori-
motor laws, a law closest to the perceived visual movement can be found by
minimizing some measure D(SM, P) between the perceived flow P and senso-
rimotor law SM. Perhaps the most natural is the one-norm:

D(SM,P) =" |SMy,, — P, | (13)
x,Y

If the perceived motion is caused by a moving object much smaller than the
visual field, many of the vectors in P will be zero. Thus, vectors that are of
zero magnitude in P are not compared. An alternative to the one-norm is
presented by Lee and Seung (2001), which is computed separately for the x and
y component of the flow matrix. This distance is defined as

c

SM
D(SMe|[P?) =" (SM;y log, — Y SMS, + P;y) , (14)

c
T,y z,y

where c is either the z or y component of the flow. This distance measure reduces
to the Kullback-Leibler divergence if >, SMy, =3, Py =1 and is not
symmetric, but it can be made symmetric by D(SM¢, P¢) = D(SM¢€||P¢) +
D(P¢||SM¢).* Finally to compute the measured difference between the two
matrices P and SM the distances of the two components = and y are added
together. The methods of this section generalize in the obviously manner from
sensory fields of two-dimensions to n-dimensional ones.

4 Experiments

In the experiments presented below to validate the framework, a SONY AIBO?
robotic dog was used. The experiments were performed in a laboratory with no
windows that could seriously affect light conditions. The robot was placed in a
sitting position overlooking two desks, see figure 5.

41t should be noted that strictly speaking, this is not a metric since the triangle inequality
does not hold for the Kullback-Leibler divergence (Cover and Thomas, 1991).
5AIBO is a registered trademark of SONY Corporation.



Figure 5: The experimental setup with the robot sitting in the lab.

The AIBO has many degrees of freedom and to simplify the experiments we
decided to only use the pan (horizontal movement) and tilt (vertical) motors of
the head of the AIBO. To put less strain on the neck of the AIBO (which is the
component that most often breaks down), we let the maximum pan and tilt be
0.5 and the minimum —0.5, where the possible values of the neck are in the range
[—0.6,0.6]. To move the neck the desired position of the pan and tilt motor were
set 100 times per second, adding the value of the corresponding actuator setting
each time step, until the maximum or minimum value of the pan or tilt had
been reached. In our experiments the possible desired speed, s, for each of the
two actuators was limited to three different values, s € {—0.02,0.0,0.02}.

The 88 by 72 pixel visual image from the AIBO was downsampled to a 10
by 10 image by averaging 20 times per second. Each pixel had a resolution of
eight bits per channel (red, green, blue), in the range {0,1,...,255}. For the
initial experiments described in section 4.1 and 4.2, 10 runs each collecting 6000
frames of data were performed. In these runs the robot moved its head in one of
the eight possible directions until the limit for either the tilt or pan was reached,
then another one of the possible movements from that position was chosen at
random. To compute the information metric of section 2.1 10 bins were used
and the window size of the adaptive binning — see section 2.2, was 100.

4.1 Reconstruction of Visual Fields

In previous work (Olsson et al., 2004b, 2005b,a) it has always been assumed
that the visual field is a square array. Here results are presented for different
subsets of the whole visual field, showing the reconstruction of visual fields of
the different shapes shown in figure 7(a), 7(b), and 7(c). Also a one-dimensional
row of vision sensors was used as a sensor field. The input to the robot was the
sensor data from the red sensors of the visual field without any knowledge of
the sensors’ positions. All the 10 sets of 6000 frames of data were used in each
case and they all produced similar results, and the results presented here are



typical examples.

The first problem is what dimensionality the sensor field should be repre-
sented in. This problem is solved using the method of section 2.4, where the
eigenvalues from metric-scaling are used to find the cut-off dimension which
contributes the most variation in the sensor data.

Eigen-values from metric-scaling
3 T T T T T T

Circle

Eigen-value

Dimension

Figure 6: Figure shows the eigenvalues, which correspond to the variance, per
dimension from metric-scaling. The eigenvalues are normalized by dividing by
the number of sensors for each layout. For the one-dimensional row of sensors,
the biggest difference in variance is between dimension 1 and 2, which means
that these sensors are best represented in one dimension — see section 2.4. In
the variance for the cross, circular, and square layouts, the biggest difference is
between the second and third dimension, meaning that two dimensions is the
most appropriate.

Figure 6 show the eigenvalues for the AIBO data from the three layouts
in 7(a), 7(b), 7(c), and also for a visual field consisting of one row of 10 vi-
sual sensors. The figure shows how the biggest variance difference for the one-
dimensional row of sensors is between dimension one and two, meaning that
the data correctly should be one-dimensional. For the cross, circle, and square,
on the other hand, the biggest variance is between dimension two and three,
correctly indicating that this data is from a two-dimensional visual field.

Given the dimensionality, the sensory reconstruction method can now be
used to reconstruct the visual field. Figure 7 shows the resulting reconstructed
visual fields for the cross, circular, and square layouts. It is important to note
that the method used to project the sensors in two dimensions, the relaxation
algorithm, initially places each sensor in a random position. Thus, each time
a map is created it will look different. But, since the method does not aim at
recreating the actual physical positions, but rather the spatial and informational
relations between the sensors, this is not an issue. It is also the case that the
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Figure 7: Layout of the sensors, figure 7(a) to 7(c), and the reconstructured
visual fields represented as sensoritopic maps, figure 7(d) to 7(f).

real orientation of the field can not be found without higher level visual process-
ing. Consider, for example, figure 7(d), where the field is roughly 245 degrees
rotated and also the mirror image of the layout of figure 7(a). None of this
matters from the developing agent’s perspective, as it can use the constructed
sensoritopic map for motor learning regardless of an external observer’s notion
of “real orientation”.

One can also look at how the sensoritopic maps develop over time as more
statistical structure is found. Figure 8 shows how the square visual field devel-
oped from 10 to 1000 frames of data for a particular run. After only 10 frames of
data there is not much structure. With more frames of data the sensors located
closer to each other in the visual field decrease their informational distance, and
the sensoritopic map more closely resemble the real visual field. The examples
shown in this paper use a small visual field of 10 by 10 sensors for visual clarity
in the figures but the authors have experimented with visual fields up to fifty
by fifty sensors without qualitatively different results. It should also be noted
that this sensoritopic reconstruction can be done in real time.



10 50 100 200

f " m ’ R s Agg A ’ 1 iR
il A9 R o 4 R%za R
f R m . o 3 "ggg R5W§§9§3ﬁ7%€ Moy BB rongr oy B8 o gl e R%kbn Hbeso gy
e . s RE Rogo A% R49 n?e“a SRR N Rh%@ VT ) " s Paie poy P2 o P
P67 A s Rt ol Fopis A% 0
° Ay A RIZ 7 RIS Aig2 K 7 2t Aol
- u R @‘& RASRS R RS2 71
g T Pg:x 2T rss Res F@;RSS [ = Rﬁs A6 66 | AR Rﬁmsﬁ n«m ms e Fé@‘
2122 RS R mg% BT M R, L RE LA Raw7E! Ao He A2 as CIS
. ° R s A
. " Rﬁg;n REg g1 ”ﬂps s Rl [T P %50 peo ] ﬁfgﬁms% Resiy R RS 4| Al
Y ST PRI P e 2 m&;ﬂ Rl et T T L N L e i
s R RIS Aoy T S0 IR0 pave Rsppe; T RS0 Rt pg ATS e, e o
2 R 2 P g Eﬁff B ! T e ! 7%7@3 77“%1*96 -
1w ps R v el gy, R . R8T 3510 on2 i
e L LI T R B S L I
30 500 70 1000
76D 750 7 - 0 N
7 Roll? ey At Rt
BSBF A6 RS1 W;g?;ﬂ'm o RoaRFTE sy B0 % Rag, Rt R oo N A0 RI1 A2 gy o 8 pg
° Rw@i?} 2t A1 e g T T er i 7 E P f“ (R RR Ry RS B0
R32 ~1  RORET R RS0 R4t R32 3 R R
B I fm& Ass A6 R R2s RIE ol meo PO B2 R R R 1 Ry, Ra; F2 R gy, R Thigh
Ao L I e 1 R R R Re R RS gifl ROy L R e
TR Ro R RM R Rigy RoReshTS nes T ROT g s e PO p RIZAR T 0 51 Rs2 s R s PO Ry Re9
Rt 8 Ry o
L e L g wy FEFOR Rgvﬁa‘m o w PO | ol 2 P R nszw il
RBY frp pep B3 PO [ 2 A pgt RS o T Ry
6 pss mugnss R 16 R T s Res R2 A% 65 a7 Relggfir2 A6t R
T ReeRTE ™ R, ) R i G RS o 7{ R8RS Ry €5 RBs R67 pognco
a AR - iy b A6 B o o
N R TR g ey oGRS of i R R et Rt o0 Wl s g Fipsl, mia oot TS oo RTRVBATS
! RoRORTEy gg?‘%ﬁ TR ey Rt s g oo R ki B By o “ﬁs i % hus pay P g B Hs
o s TP R0 pg0 A5 i Ro5 i A7
T 3 ¢ 1 3 3 T 5§ 1 & % L T2 T 5 1§ 3

Figure 8: Development of sensoritopic map of visual field over time from 10 to
1000 time steps.
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Figure 9: Normalized information distances between all pairs of sensors for the
square visual field of 7(c) with 0 and 1 visualized as white and black, respectively.
The distance between a sensor and itself is always zero, hence the white diagonal
line. The further away two sensors are the less are they correlated and the
greater is the information distance.

How is it that the relative positions of physical sensors can be found just by
computing the informational distances between the sensors? The key is that the
closer two sensors are in the physical visual field, the smaller the informational
distance is between the two sensors. Figure 9 shows the distance matrix for
all sensors from the square visual field of figure 7(c). The distance between a



sensor and itself is zero and the 10 by 10 squares in the matrix indicate that the
visual field is 10 by 10 sensors. Looking closer at the data one finds that the
information distance between the sensors scales as a power-law with regards to
the physical distances between the sensors. This is in line with the statistics of
natural images found by, for example, Ruderman (1994), where it was shown
how the mutual information between pixels scales as a power-law with regards to
the physical distance between the pixels in images from natural environments.

Up until now the term “reconstructed” has been used in an informal way,
where a visual field is reconstructed if the sensoritopic map and the real layout
of the sensors look similar, see, e.g., figure 7. One way this similarity can
be formally quantified is by computing the relative distances between pairs of
sensors in the reconstructed visual field and the real layout of the sensors. Let
r;,; be the Euclidean distance between two sensors ¢ and j in the reconstructed
map, and ¢; ; the distance between the same two sensors in the real layout,
where the x and y coordinates in both cases have been normalized into the
range [0.0,1.0]. Now the average distance between all pairs of sensors can be
compared,

1
d(?‘7 E) = m Z |’f‘i)j - fi7j|, (15)
.7

where N is the number of sensors. This compares the relative positions of the
sensors and not the physical positions, and d(r, £) will have a value in the range
[0.0,1.0]. A distance of zero means that the relative positions are exactly the
same, and sensors placed at completely random positions will have an average
distance of approximately 0.52.

For each of the three layouts in figure 7, the distance was computed between
the real layout and 1000 reconstructed sensoritopic maps created for each layout.
For the square layout the average was 0.051 (st.d. 0.012) and for the cross layout
0.075 (st.d. 0.016), and for the circle layout 0.057 (st.d. 0.013). This should
be compared with randomly generated maps, where the average distance is
significantly different at approximately 0.52 (st.d 0.002). This measure cannot
tell in absolute terms whether a sensoritopic map really is a reconstruction of
the real visual layout, but values of the average distance close to zero definitely
means that much of the structure in the real layout has been captured.

4.2 Reconstruction of Visual Fields of Different Modali-
ties

Now imagine a visual field consisting of sensors of different modalities such as
in figure 10(a), where some sensors report the red channel, others green, or the
blue channel of a pixel. This layout is unknown to the robot and just as before
the input is 100 streams of the data and the problem is to reconstruct the visual
field, even though the sensors are of different visual modalities.

Using the same visual AIBO data as before, sensoritopic maps were created
for all 10 sets of data. Reconstruction was successful for all 10 sets, with an
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Figure 10: Sensory reconstruction with sensors of different modalities. Figure
10(a) shows the layout of the red, green, and blue sensors in a separated visual
field and figure 10(c) the reconstructed visual field. Figure 10(b) shows the
layout of an integrated visual field with a total of 300 sensors with one red, one
green, and one blue sensor in each position. Figure 10(d) shows the integrated
reconstructed visual field.

average distance between the real layout and the sensoritopic maps — see equa-
tion 15 in section 4.1 — of 0.061 (st.d. 0.008). Figure 10(c) shows an example



of the reconstructed visual field. Since the red, blue, and green sensors may
have different ranges of data, the information metric together with the entropy
maximization technique make this possible — see section 2.2.

A related problem is to consider each pixel as having three sensors, one for
the red channel, one for the green channel, and one for the blue channel, giving
a total of 300 sensors. This was first studied in (Olsson et al., 2005c), where
the problem was to find what sensors that correspond to the same location in
the image, even though they are of different modalities. Figure 10(d) shows
the reconstructed map from the same AIBO data as used above applied to this
problem. All 10 data sets resulted in similar reconstructions. This result is due
to the fact that the information metric finds nonlinear correlations, see (Olsson
et al., 2006). In this case the average distance (equation 15) between all 300
sensors for all 1000 sensoritopic maps created for each of the 10 data sets was
0.092 (st.d. 0.019).

This is an example of autonomous sensory fusion where sensors of different
modalities are combined. A well-studied example of this in neuroscience is the
optic tectum of the rattlesnake, where nerves from heat-sensitive organs are
combined with nerves from the eyes (Newman and Hartline, 1981).

4.3 From Unstructured Sensors and Actuators to Visually
Guided Movement

The aim of this next experiment was to have the robot develop from no knowl-
edge of its sensors and actuators to basic visually guided movement. As de-
scribed above, 100 visual sensors were used and the robot had two actuators,
pan and tilt.

Once the visual field has been reconstructed as shown in section 4.1 is it
possible to compute the optical flow in the sensors as described in section 2.5.
Given that the robot has developed a sensoritopic map of its visual field so
that it can compute optical flow, it is possible to start to experiment with how
different settings of the actuators affect the sensors. As described in section
3.1, this body babbling is performed by sampling the space of possible actuator
settings. As mentioned above this particular experiment only used three possible
settings per actuator, giving a total of eight possible non-zero settings. Each
possible setting was executed 50 times, giving a total of roughly 500 frames of
data per setting.

Given this data the sensorimotor laws were computed as per section 3.2.
Figure 11 shows the computed sensorimotor laws. As can be seen the directions
of the motions’ vectors do not correspond exactly to an external observer’s
notion of direction of the movement. This is due to the reconstructed field being
angled with respect to the x and y axes, which is unavoidable since the robot
cannot know anything about the real locations of the sensors, and grounds all
actions and knowledge about its sensors and actuators in its own sensorimotor
perceptions.

To verify that the method computed similar sensorimotor laws each time
the experiment was performed 10 times with each movement being executed
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Figure 11: The discovered sensorimotor laws corresponding to motion of the
head where 0 degrees is moving the head up, 180 degrees moving the head
down, and 90 degrees to the right.

50 times as described above. Then the two distances functions of section 3.3
were used to compute the distance between the sensorimotor law computed for
each time. The results showed that the learned laws were very similar, with an
average distance of 1.2% for the one-norm distance and 0.9% for equation 14
averaged over all eight actuator settings and the 10 experiments.

When the sensorimotor laws have been learned, the robot can now use these
laws to perform movement guided by its sensors. To verify this step two ex-
periments were performed. In both experiments the AIBO was placed in front
of a wall of uniform colour with a video projector displaying images on the
wall. In the experiments the whole image on the wall moved in different direc-
tions. This was implemented by having an image, shown in figure 12, larger
than the screen and only displaying a part of the image at any given time.
The speed of the moving image was adjusted to be similar to the speed of the
moving AIBO head. When the image moved the robot used two or 10 frames
of data to compute the optical flow to find the sensorimotor law most similar
to the experienced movement. In the case of ten frames the optical flow was
averaged as in equation 3.2. The motion closest to the perceived motion could
then be compared with the actual movement of the image on the wall. Table
1 shows a comparison of the different distance measures and the performance
of the motion detection for 200 examples of each movement. As expected the
averaged motion flow over 10 frames was more often correctly classified. The
one-norm and Kullback-Leibler distance measures performed similarly, with a
slightly higher average performance for the latter, equation 14, for the optical
flow computation between only two frames.



Figure 12: Image displayed on wall in front of robot.

. D(SM, P) 0.2 0. 10 K. 2 K. 10
Action

0 degrees 75.5% | 90.1% | 79.2% | 91.9%
45 degrees 77.0% | 92.8% | 78.7% | 92.4%
90 degrees 76.6% | 91.2% | 79.7% | 94.4%
135 degrees 75.1% | 93.0% | 77.7% | 93.2%
180 degrees 74.8% | 91.5% | 75.3% | 92.6%
225 degrees 77.1% | 93.3% | 77.2% | 93.8%
270 degrees 76.1% | 93.2% | 78.8% | 92.5%
315 degrees 74.8% | 91.4% | 76.6% | 93.0%

Table 1: Percentage of correctly detected motion flows using the (o)ne-norm
and (K)ullback-Leibler measure for 2 and 10 frames for the different directions
out of eight possible flows.

5 Conclusions

The present article has presented methods that allow a robot to develop from no
knowledge about its sensors and actuators to performing basic visually guided
movement. Central to the method is the information metric (Crutchfield, 1990),
which measures the informational distance between two sensors. This enables
the robot to find correlations in sensors which are not linear. Information theory
is often viewed as having a strong conceptual power but also having numerical
and statistical requirements that makes it problematic to use information the-
ory in practical implementations of, for example, robotic control systems. The
methods presented here can all be used in online learning systems executing in
real-time.

To develop from unknown sensors and actuators the robot starts by perform-
ing random movements. As the robot performs the movements the informational



relations of the sensors unfold (see figure 8). Given a set of sensors their di-
mensionality can be computed and a sensoritopic map can be created using the
sensory reconstruction method. The sensoritopic map reflects the informational
geometry of the sensors, where sensors that are highly correlated are close in
the map. Such proximity need not respect sensory modality, as occurs, e.g.,
in the optic tectum of rattlesnakes, where bimodal neurons receive input from
the retina as well as infrared-sensing pit organs, and the neurons cross-modally
integrate sensory information (Newman and Hartline, 1981). Given this map a
method was presented for computing optical flow in reconstructed visual fields
that are not rectangular. It was also shown how this method can be extended to
compute motion flow in a visual field consisting of sensors of different modalities,
for example a mix of red, green, and blue sensors. When optical flow can be
computed the average effect of different actuators settings can be learned. The
method of sensory field reconstruction and sensorimotor learning could also be
applied to sensory fields other than two dimensional visual ones — for example
tactile sensing over the skin or pressure changes in volume in which sensors are
distributed. This enables the robot by motor babbling to build a library of sen-
sorimotor laws which specify how its possible actions affect its sensors. Using
these laws the robot can see motion flows in its visual field and then perform a
movement which will have a similar effect. This can be used for basic imitation
or motion tracking.

The underlying principle of the presented work is to guide development by
informational means. Apart from the advantage of finding nonlinear relations
between sensors, information theory also has the advantage of being modality
and dimension independent. This is something that will be explored in future
work where the same methods will be applied to infrared sensors configured in
a three dimensional space. The presented method can also be used to investi-
gate what a robot in principle can know about its environment, given a certain
set of sensors. It is also important to point out that the environment also to
some extent determines what a robot can learn about its own sensors. This
was for example examined in Olsson et al. (2004a) where a robot developed its
visual field in an impoverished environment with only vertical contours. Sen-
soritopic maps of the visual sensors showed how all sensors of the the same
column were clustered together, meaning that they were completely correlated.
Thus, the robot could not know, even in principle, whether these sensors were
located in the same physical position or not. This work was inspired by the
classical experiments by Hubel and Wiesel where kittens were reared with their
visual field restricted to contours of a certain orientation (Wiesel, 1982). Their
results showed how the kittens developed more neurons selective for the par-
ticular angles of contours they were restricted to while their brain developed
during infancy. Unlike the kittens, the robot was able to unfold and adapt its
sensoritopic map after exposure to a more “normal” environment (Olsson et al.,
2004a).

The statistical structure of an agent’s sensorimotor world determines not
just what it can know about its world, but also how effective a certain sensor
configuration is. Many changes in neuronal connections and signaling proper-



ties are due to spatial and temporal properties of incoming neuronal signals
(Laughlin and Sejnowski, 2003). This has been studied in flies (Laughlin, 1981;
Brenner et al., 2000) where it was shown how the encoding in contrast and mo-
tion neurons adapts to its input, similar to the entropy maximization method
presented in section 2.2. In future work analysis of the statistical structure of a
robot’s sensory experience will be studied to understand how it can be used to
optimize the sensoric system for particular environments and activities.
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