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The growing number of chemicals in the current consumer and industrial markets
presents a major challenge for regulatory programs faced with the need to assess
the potential risks they pose to human and ecological health. The increasing
demand for hazard and risk assessment of chemicals currently exceeds the
capacity to produce the toxicity data necessary for regulatory decision making,
and the applied data is commonly generated using traditional approaches with
animal models that have limited context in terms of human relevance. This scenario
provides the opportunity to implement novel, more efficient strategies for risk
assessment purposes. This study aims to increase confidence in the implementation
of new approachmethods in a risk assessment context by using a parallel analysis to
identify data gaps in current experimental designs, reveal the limitations of common
approaches deriving transcriptomic points of departure, and demonstrate the
strengths in using high-throughput transcriptomics (HTTr) to derive practical
endpoints. A uniform workflow was applied across six curated gene expression
datasets from concentration-response studies containing 117 diverse chemicals,
three cell types, and a range of exposure durations, to determine tPODs based on
gene expression profiles. After benchmark concentration modeling, a range of
approaches was used to determine consistent and reliable tPODs. High-throughput
toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant
administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most
chemicals had AEDs that were lower (i.e., more conservative) than apical PODs
in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be
protective of potential effects on human health. An assessment of multiple data
points for single chemicals revealed that longer exposure duration and varied cell
culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated
increased chemical potency. Seven chemicals were flagged as outliers when
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comparing the ratio of tPOD to traditional POD, thus indicating they require further
assessment to better understand their hazard potential. Our findings build
confidence in the use of tPODs but also reveal data gaps that must be addressed
prior to their adoption to support risk assessment applications.

KEYWORDS

new approachmethods, NAMs, transcriptomics, benchmark dose (BMD) modeling, in vitro
to in vivo extrapolation (IVIVE), chemical safety

1 Introduction

Every year, new substances are introduced into the global
marketplace with limited toxicity information, while presently
registered chemicals that are existing on the market are
continually used and re-purposed into a myriad of products
available to consumers. Thus, higher-throughput techniques are
required to effectively contextualize and predict the hazard potential
posed by chemicals to facilitate risk assessment activities. A large
number of substances, including but not limited to, those on
Canada’s Domestic Substances List, present a challenge for
chemicals management programs, particularly when inadequate
data are available. Historically, data-driven assessments used
animal (principally rodent) models from traditional standardized
protocols designed to address acute (immediate effects from single
dose), as well as sub-chronic and chronic (longer-term effects from
repeated dose) toxicological assessments (Collins et al., 2008; Barile,
2013). Regulatory agencies, including those within Canada, are
taking steps to implement new approach methods (NAMs) and
evolving scientific approaches to address the limitations of
traditional methods (e.g., hindrance on data generation as a
result of time, cost, and labour-intensive practices) as well as
ethical concerns of animal use, as part of the paradigm shift to
next-generation risk assessment strategies (Bhuller et al., 2021).

Transcriptomics provides a high-throughput means of producing
large datasets covering a broad range of molecular responses to
potentially hazardous substances. Transcriptomic technologies have
been in use for over two decades in molecular biology and recent
innovations have enhanced their specificity and dynamic range to
enable implementation in risk assessment activities. Application of
transcriptomics for understanding toxicology (toxicogenomics)
includes the analysis and interpretation of changes in gene
expression caused by exposure to potentially hazardous substances
to explain their prospective adverse effects (Chepelev et al., 2015;Moffat
et al., 2015; Farmahin et al., 2017; Johnson et al., 2020; Krewski et al.,
2020). High-throughput transcriptomics (HTTr) enables rapid
evaluation of global changes in gene expression profiles in cell
culture models to identify potential chemical toxicities (Harrill et al.,
2021). Efficient use of HTTr is supported by the availability of
computational pipelines that process large transcriptomic datasets
and can be uniformly applied across numerous chemicals and
exposure levels (Mezencev and Subramaniam, 2019; Verheijen et al.,
2022). Benchmark dose (BMD) modeling has been applied to derive
transcriptomic points of departure (tPODs) in a manner, that is,
analogous to the production and application of apical PODs using
traditional approaches (Thomas et al., 2013;Moffat et al., 2015;Webster
et al., 2015; Farmahin et al., 2017). Given the involvement of gene
expression pathways in cellular regulation, transcriptomic changes may

provide opportunities for inference to a variety of contexts related to risk
assessment. This includes quantifying potency, informing mode of
action/mechanistic information, and characterizing adverse effects
that support weight of evidence approaches to evaluate chemicals
(North and Vulpe, 2010; Bourdon-Lacombe et al., 2015).

Recently, a logic framework was proposed to examine the
potential to develop and apply transcriptomic methods to refine,
or even replace, the current risk assessment paradigm that relies on
traditional apical PODs (Johnson et al., 2022). This framework
supports the current shift away from the identification of specific
critical effect endpoints in animal models toward establishing
conservative tPODs that are sufficiently protective to meet the
contemporary needs of regulatory agencies (Stucki et al., 2022).
This logic framework aligns with current efforts to facilitate efficient
chemical screening using in vitro HTTr.

The aim of the current work was to demonstrate the capability of
HTTr to derive protective tPODs by applying a uniform analysis
across a diverse chemical space, building on the foundation of
approaches from previous works deriving tPODs using various
experimental designs (Farmahin et al., 2017; Pagé-Larivière et al.,
2019; Ramaiahgari et al., 2019; Thomas, 2019; Ewald et al., 2022).
This study was conducted for the purpose of building confidence in
the application of these technologies by revealing the associated
uncertainty and potential variability that corresponds to in vitro
POD derivation using transcriptomic data. To achieve this, in vitro
tPODs were compared to apical endpoints by employing in vitro to
in vivo extrapolation (IVIVE) to generate an administered
equivalent dose (AED). More specifically, we used high-
throughput toxicokinetic (httk) modeling to translate tPODs
(µM) to AEDs (mg/kg-bw/day). The AED provides a valuable
endpoint to determine the human relevance of tPODs for the
purpose of chemical prioritization and/or screening level risk
assessment. They also provide insight into the applicability of
these, and similar NAM-based approaches, as potential endpoints
for human health risk assessment. This work supports regulatory
initiatives in the efforts to establish best practices and scientific
confidence in the use of NAMs to produce protective human health
relevant thresholds further inspiring the shift toward the reduction
and replacement of animals for toxicity testing (van der Zalm et al.,
2022).

2 Materials and methods

2.1 Study design

This investigation used data from multiple studies that were
selected based on availability (i.e., published studies using multiple,
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TABLE 1 List of chemicals with available in vitro datasets.

Dataset Chemical Name Abbreviated Name CASRN Model(s) Exposure (Days)

OECD 2022 2-(4-hydroxyphenyl)sulfonylphenol 2,4-BPS 5397-34-2 MCF-7 2

OECD 2022 2-[(4-Hydroxyphenyl)methyl]phenol 2,4-BPF 2467-03-0 MCF-7 2

OECD 2022 2-[4-(Benzyloxy)benzene-1-sulfonyl]phenol BPS-MPE 63134-33-8 MCF-7 2

OECD 2022 4-(4-hydroxyphenyl)sulfonylphenol 4,4-BPS 80-09-1 MCF-7 2

OECD 2022 4-[(4-hydroxyphenyl)methyl]phenol 4,4-BPF 620-92-8 MCF-7 2

OECD 2022 4-((4-Isopropoxyphenyl)sulfonyl)phenol D8 95235-30-6 MCF-7 2

OECD 2022 4,4’-Bis(p-tolylsulfonylureido)diphenylmethane BTUM 151882-81-4 MCF-7 2

OECD 2022 4,4’-Sulfonylbis[2-(prop-2-en-1-yl)phenol] TGSA 41481-66-7 MCF-7 2

OECD 2022 4-{4-[(Prop-1-en-2-yl)oxy]benzene-1-sulfonyl}phenol BPS-MAE 97042-18-7 MCF-7 2

OECD 2022 Bis (4-chorophenyl) Sulfone Bis4CPS 80-07-9 MCF-7 2

OECD 2022 Bisphenol A BPA 80-05-7 MCF-7 2

OECD 2022 Bisphenol A diglycidyl ether BADGE 1675-54-3 MCF-7 2

OECD 2022 Bisphenol AF BPAF 1478-61-1 MCF-7 2

OECD 2022 Bisphenol AP BPAP 1571-75-1 MCF-7 2

OECD 2022 Bisphenol C BPC 14868-03-2 MCF-7 2

OECD 2022 Dexamethasone Dex 50-02-2 MCF-7 2

OECD 2022 B-Estradiol Estradiol 50-28-2 MCF-7 2

OECD 2022 Pergafast 201 Perg201 232938-43-1 MCF-7 2

Harrill et al. 3,5,3’-Triiodothyronine Triiodothyronine 6893-02-3 MCF-7 0.25

Harrill et al. 4-Cumylphenol 599-64-4 MCF-7 0.25

Harrill et al. 4-Hydroxytamoxifen 68392-35-8 MCF-7 0.25

Harrill et al. 4-Nonylphenol (branched) 4-Nonylphenol 84852-15-3 MCF-7 0.25

Harrill et al. Amiodarone hydrochloride Amiodarone HCl 19774-82-4 MCF-7 0.25

Harrill et al. Atrazine 1912-24-9 MCF-7 0.25

Harrill et al. Bifenthrin 82657-04-3 MCF-7 0.25

Harrill et al. Bisphenol A BPA 80-05-7 MCF-7 0.25

Harrill et al. Bisphenol B BPB 77-40-7 MCF-7 0.25

Harrill et al. Butafenacil 134605-64-4 MCF-7 0.25

Harrill et al. Cladribine 4291-63-8 MCF-7 0.25

Harrill et al. Clofibrate 637-07-0 MCF-7 0.25

Harrill et al. Clomiphene citrate (1:1) Clomiphene Cit 50-41-9 MCF-7 0.25

Harrill et al. Cyanazine 21725-46-2 MCF-7 0.25

Harrill et al. Cycloheximide 66-81-9 MCF-7 0.25

Harrill et al. Cypermethrin 52315-07-8 MCF-7 0.25

Harrill et al. Cyproconazole 94361-06-5 MCF-7 0.25

Harrill et al. Cyproterone acetate Cyproterone Ace 427-51-0 MCF-7 0.25

Harrill et al. Farglitazar 196808-45-4 MCF-7 0.25

Harrill et al. Fenofibrate 49562-28-9 MCF-7 0.25

(Continued on following page)
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TABLE 1 (Continued) List of chemicals with available in vitro datasets.

Dataset Chemical Name Abbreviated Name CASRN Model(s) Exposure (Days)

Harrill et al. Fenpyroximate (Z,E) 111812-58-9 MCF-7 0.25

Harrill et al. Flutamide 13311-84-7 MCF-7 0.25

Harrill et al. Fomesafen 72178-02-0 MCF-7 0.25

Harrill et al. Fulvestrant 129453-61-8 MCF-7 0.25

Harrill et al. Genistein 446-72-0 MCF-7 0.25

Harrill et al. Imazalil 35554-44-0 MCF-7 0.25

Harrill et al. Lactofen 77501-63-4 MCF-7 0.25

Harrill et al. Lovastatin 75330-75-5 MCF-7 0.25

Harrill et al. Maneb 12427-38-2 MCF-7 0.25

Harrill et al. Nilutamide 63612-50-0 MCF-7 0.25

Harrill et al. Perfluorooctanesulfonic acid PFOS 1763-23-1 MCF-7 0.25

Harrill et al. Perfluorooctanoic acid PFOA 335-67-1 MCF-7 0.25

Harrill et al. Prochloraz 67747-09-5 MCF-7 0.25

Harrill et al. Propiconazole 60207-90-1 MCF-7 0.25

Harrill et al. Pyraclostrobin 175013-18-0 MCF-7 0.25

Harrill et al. Reserpine 50-55-5 MCF-7 0.25

Harrill et al. Rotenone 83-79-4 MCF-7 0.25

Harrill et al. Simazine 122-34-9 MCF-7 0.25

Harrill et al. Simvastatin 79902-63-9 MCF-7 0.25

Harrill et al. Sirolimus 53123-88-9 MCF-7 0.25

Harrill et al. Tetrac 67-30-1 MCF-7 0.25

Harrill et al. Thiram 137-26-8 MCF-7 0.25

Harrill et al. Trichostatin A 58880-19-6 MCF-7 0.25

Harrill et al. Trifloxystrobin 141517-21-7 MCF-7 0.25

Harrill et al. Troglitazone 97322-87-7 MCF-7 0.25

Harrill et al. Vinclozolin 50471-44-8 MCF-7 0.25

Harrill et al. Ziram 137-30-4 MCF-7 0.25

Ramaiahgari et al. Acetaminophen APAP 103-90-2 HepaRG 4

Ramaiahgari et al. Aflatoxin B1 AFB1 1162-65-8 HepaRG 4

Ramaiahgari et al. Aspirin 50-78-2 HepaRG 4

Ramaiahgari et al. Benzo(a)pyrene B[a]P 50-32-8 HepaRG 4

Ramaiahgari et al. Caffeine 58-08-2 HepaRG 4

Ramaiahgari et al. Chenodeoxycholic acid CDCA 474-25-9 HepaRG 4

Ramaiahgari et al. Chlorpromazine CPZ 50-53-3 HepaRG 4

Ramaiahgari et al. Cyclophosphamide monohydrate Cyclophosphamide 6055-19-2 HepaRG 4

Ramaiahgari et al. Diphenhydramine hydrochloride Diphenhydramine 147-24-0 HepaRG 4

Ramaiahgari et al. Fenofibric acid FFA 42017-89-0 HepaRG 4

Ramaiahgari et al. Levofloxacin hydrate Levofloxacin 138199-71-0 HepaRG 4

(Continued on following page)
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TABLE 1 (Continued) List of chemicals with available in vitro datasets.

Dataset Chemical Name Abbreviated Name CASRN Model(s) Exposure (Days)

Ramaiahgari et al. Menadione 58-27-5 HepaRG 4

Ramaiahgari et al. N-Nitrosodimethylamine DMN 62-75-9 HepaRG 4

Ramaiahgari et al. Omeprazole OMP 73590-58-6 HepaRG 4

Ramaiahgari et al. Potassium chloride KCl 7447-40-7 HepaRG 4

Ramaiahgari et al. Rifampicin RIF 13292-46-1 HepaRG 4

Ramaiahgari et al. Ritonavir 155213-67-5 HepaRG 4

Ramaiahgari et al. Rosiglitazone 122320-73-4 HepaRG 4

Ramaiahgari et al. Sucrose 57-50-1 HepaRG 4

Ramaiahgari et al. Tamoxifen 10540-29-1 HepaRG 4

Ramaiahgari et al. Troglitazone 97322-87-7 HepaRG 4

Ramaiahgari et al. Trovafloxacin mesylate Trovafloxacin 147059-75-4 HepaRG 4

Ramaiahgari et al. Valproic acid VPA 99-66-1 HepaRG 4

Ramaiahgari et al. Phenobarbital sodium PB 57-30-7 HepaRG 4

PFAS 2H,2H,3H,3H-Perfluorooctanoic acid 5:3 Acid 914637-49-3 Spheroids 1, 10

PFAS 4:2 Fluorotelomer sulfonic acid 4:2 FtS 757124-72-4 Spheroids 1, 10

PFAS 6:2 Fluorotelomer alcohol 6:2 FtOH 647-42-7 Spheroids 1, 10

PFAS 6:2 Fluorotelomer phosphate monoester 6:2 monoPAP 57678-01-0 Spheroids 1, 10

PFAS 6:2 Fluorotelomer sulfonic acid 6:2 FtS 27619-97-2 Spheroids 1, 10

PFAS 8:2 Fluorotelomer alcohol 8:2 FtOH 678-39-7 Spheroids 1, 10

PFAS 8:2 Fluorotelomer phosphate monoester 8:2 monoPAP 57678-03-2 Spheroids 1, 10

PFAS 8:2 Fluorotelomer sulfonic acid 8:2 FtS 39108-34-4 Spheroids 1, 10

PFAS Perfluorobutanesulfonic acid PFBS 375-73-5 Spheroids 1, 4, 10, 14

PFAS Perfluorobutanoic acid PFBA 375-22-4 Spheroids 1, 10

PFAS Perfluorodecanesulfonic acid PFDS 335-77-3 Spheroids 1, 4, 10, 14

PFAS Perfluorodecanoic acid PFDA 335-76-2 Spheroids 1, 10

PFAS Perfluoroheptanesulfonic acid PFHpS 375-92-8 Spheroids 1, 10

PFAS Perfluoroheptanoic acid PFHpA 375-85-9 Spheroids 1, 10

PFAS Perfluorohexanesulfonic acid PFHxS 355-46-4 Spheroids 1, 10

PFAS Perfluorohexanoic acid PFHxA 307-24-4 Spheroids 1, 10

PFAS Perfluorononanoic acid PFNA 375-95-1 Spheroids 1, 10

PFAS Perfluorooctanoic acid PFOA 335-67-1 Spheroids 1, 4, 10, 14

PFAS Perfluorooctanesulfonic acid PFOS 1763-23-1 Spheroids 1, 4, 10, 14

PFAS Perfluorooctanesulfonamide PFOSA 754-91-6 Spheroids 1, 10

PFAS Perfluoropentanoic acid PFPeA 2706-90-3 Spheroids 1, 10

PFAS Perfluorotetradecanoic acid PFTeDA 376-06-7 Spheroids 1, 10

PFAS Perfluoroundecanoic acid PFUnA 2058-94-8 Spheroids 1, 10

Buick et al. 2-Deoxy-D-glucose 2DD-Glucose 154-17-6 HepaRG 2

Buick et al. Aflatoxin B1 AFB1 1162-65-8 HepaRG 2

(Continued on following page)
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publicly available transcriptomic datasets), specifically in vitroHTTr
data analyzed using the TempO-Seq™ platform (BioSpyder
Technologies, Inc., Carlsbad, CA), and refined using a
bioinformatic pipeline. Study selection resulted in data for a total
of 179 concentration-response experiments of various experimental
designs, spanning 117 chemicals. An overview of these datasets is

presented in Table 1 and a detailed list of chemicals and experiments
is available in the Supplementary Appendix S1. Further details on
chemical preparation, working solutions, cell cultures and exposure,
details on TempO-Seq library building, and an overview of QA/QC
protocols with removal of designated outliers are available in the
original publications (Ramaiahgari et al., 2019; Buick et al., 2021;

TABLE 1 (Continued) List of chemicals with available in vitro datasets.

Dataset Chemical Name Abbreviated Name CASRN Model(s) Exposure (Days)

Buick et al. Benzo(a)pyrene B[a]P 50-32-8 HepaRG 2

Buick et al. Cisplatin 15663-27-1 HepaRG 2

Buick et al. Cyclophosphamide monohydrate Cyclophosphamide 6055-19-2 HepaRG 2

Buick et al. Cytosine arabinoside Cyt arabinoside 147-94-4 HepaRG 2

Buick et al. Eugenol 97-53-0 HepaRG 2

Buick et al. Methyl methanesulfonate M-mSulfonate 66-27-3 HepaRG 2

Buick et al. N-Nitroso-N-ethylurea N-Nitrosourea 759-73-9 HepaRG 2

Buick et al. Propyl gallate 121-79-9 HepaRG 2

Buick et al. Urea 57-13-6 HepaRG 2

Buick et al. Zidovudine (azidothymidine) 30516-87-1 HepaRG 2

OECD 2022—Listing of Bisphenols from Health Canada OECD Case-study, Harrill et al.—Listing of chemicals from published dataset in Harrill et al. (2021), Ramaiahgari et al.—Listing of

chemicals from published dataset in Ramaiahgari et al. (2019), PFAS–Listing of chemicals from published datasets in Reardon et al. (2021) and Rowan-Carroll et al. (2021), Buick et al.—Listing

of chemicals from published dataset in Buick et al. (2021).

FIGURE 1
Overview of the workflow used to compile available datasets and derive in vitro points of departure for comparison with in vivo apical points of
departure from curated databases.
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Harrill et al., 2021; Reardon et al., 2021; Rowan-Carroll et al., 2021;
Matteo et al., 2022). tPODs were derived using a variety of
approaches as described below. The tPODs were subject to
IVIVE using a widely available program (httk R-package, v2.2.1)
to account for the large scope of chemicals (Pearce et al., 2017)
before comparison with high quality data extracted from commonly
used regulatory databases (i.e., data from previous assessments using
traditionally-derived PODs). An overview of the steps from
collection of raw/processed data to the final comparison of AEDs
and apical PODs is detailed below and depicted in a schematic
workflow (Figure 1).

2.2 Datasets and exposure conditions

Six datasets were identified and selected for evaluation from
previously published works as well as a published OECD case study
on integrated approaches to testing and assessment (IATA) conducted
by Health Canada (listed in Table 1). Within each dataset it was
indicated when studies used human whole transcriptome
(~20,000 probes) kits, or reduced coverage using a subset of genes
with the S1500+ panel (~3,000 probes). Recent work evaluated the
robustness of the S1500+ platform and demonstrated that this template
is an acceptable surrogate for the whole transcriptome (Lee et al., 2021).
A brief overview of the experimental designs (by cell model) has been
provided below but readers are referred to the respective published
studies for more detailed descriptions. The results herein were
interpreted in the same manner regardless of the platform used.

Human breast cancer cells (Michigan Cancer Foundation-7;
MCF-7) were depleted of estrogen for 48 h prior to exposure for
2 days to 16 bisphenols and bisphenol alternatives at ten
concentrations ranging from 0.0005 to 100 µM alongside
dimethyl sulfoxide (DMSO) solvent controls. The experiment
included a positive control (17β-estradiol, range 0.0001–10 nM)
and a non-estrogenic control (dexamethasone, range
0.0001–1 µM) (Matteo et al., 2022; OECD. Series on Testing and
Assessment 373, 2022). A second dataset was produced with MCF-7
cells that were treated for 6 hours (0.25 days) with 44 different
substances at concentrations between 0.03 and 100 µM (and DMSO
solvent controls) alongside three chemicals (genistein, sirolimus,
and trichostatin A) at a single concentration. These three chemicals
were included for reference purposes but since a single
concentration was used for each of them, we were not able to
use them for concentration-response modeling (Harrill et al., 2021).
Both experiments used human whole transcriptome TempO-Seq™
profiling.

Human HepaRG™ cells in differentiated (Hepa-D) and non-
differentiated (proliferated, Hepa-P) states were exposed to
25 chemicals for 4 days (at 10 concentrations with half-log
spacing) and assessed using the S1500+ platform (Ramaiahgari
et al., 2019). A second set of human HepaRG™ cells were
exposed to 12 potentially genotoxic (i.e., DNA damage inducing)
chemicals for 2 days over a range of concentrations specific to each
chemical and assessed using the S1500+ platform (Buick et al., 2021)
and time-matched to solvent controls.

Primary human liver cell spheroids (3D spheroids; from
10 different human liver donors) were exposed to 4 PFAS (PFBS,
PFOS, PFDS, and PFOA), including exposures of 1, 4, 10, and

14 days over a range of concentrations from 0.02 to 100 µM using
the S1500+ platform alongside time-matched DMSO solvent
controls (Rowan-Carroll et al., 2021). The 3D spheroid data was
expanded to 23 per- and polyfluoroalkyl substances (PFAS) but
limited to 1 and 10 day exposures based on previous work
demonstrating optimal exposure of these chemicals assessed
using the S1500+ platform (Reardon et al., 2021).

2.3 Data processing and handling

All included data were obtained in the form of count tables (read
counts for each probe in each sample) generated using the
Templated Oligo detection assay (TempO-Seq™, from Biospyder)
that were processed and subjected to QA/QC analysis as outlined in
the original publications. Previous analysis of TempO-Seq™ data
from a variety of publicly available datasets had found that choice of
aligners and normalization methods used to process data did not
significantly influence expression outcomes, demonstrating the
robust nature of results produced using this target RNA-seq
platform (Everett et al., 2022). Thus, our meta-analysis of
multiple transcriptomic datasets used the original pre-processed
data that were produced from independent bioinformatic pipelines.
In several of the studies (Buick et al., 2021; Matteo et al., 2022), a
general bioinformatics pipeline designed to process transcriptomic
data for regulatory applications was used for data pre-processing,
known as the Omics Data Analysis Framework for Regulatory
Application (https://github.com/R-ODAF/) (Verheijen et al.,
2022). Other studies used the US EPA pilot pipeline (https://
github.com/USEPA/httrpl_pilot) (Ramaiahgari et al., 2019; Harrill
et al., 2021), or other custom analysis pipelines (i.e., TempO-SeqR,
v3.0, provided by BioSpyder for aligning TempO-Seq data, alongside
custom data pre-processing steps in R) (Reardon et al., 2021;
Rowan-Carroll et al., 2021; OECD. Series on Testing and
Assessment 373, 2022).

All the datasets in this study used a similar strategy to process
data, starting with FASTQ files generated from the sequencing
results of a TempO-Seq™ workflow, and ending with a tabular
matrix. In this tabular matrix, the genes are represented in rows and
samples are represented in columns, and the values in the matrix are
the output (i.e., counts) from the alignment step. The steps in
handling the data from these experiments include: 1) data quality
assessment, 2) study-wide alignment quality controls; and 3)
downstream applications to derive a tPOD. The first step, pre-
processing, deals primarily with assessing the quality of the high-
throughput sequencing data used in the study and creating the initial
count matrix. Study-wide QC strategies were based largely on those
described in Harrill et al., 2021, which aim to eliminate low-quality
samples based on alignment to reference sequences and the distribution
of gene counts in individual samples compared to all treatment-related
samples in the dataset (i.e., calculating quality metrics such as alignment
rates, panel coverage in terms of the number of active probes, etc., from
the count matrix). Finally, downstream applications include calculating
gene-level, pathway-level, or signature-level BMCs and subsequently
deriving a tPOD, the results of which are filtered based on several
statistical rules (e.g., R-ODAF criteria) at the per-gene or per-probe level.
In this meta-analysis, we reanalyzed the datasets under consideration to
compare methods for tPOD derivation.
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2.4 Derivation of in vitro points of departure
using transcriptomic concentration-
response data

tPODs were derived from in vitro concentration response data
using BMC modeling prior to conversion to AEDs. The workflow
below describes the steps in the methodology developed to derive
AEDs from original processed data. Prior to importing into
BMDExpress software (v2.3) for analysis, the count matrix was
imported to a DESeq2 object, and the size factor was normalized to
log2 counts per million (CPM) as a separate function for each sample
concentration (Yang et al., 2007; Phillips et al., 2019). A single
project file (.bm2) was created using a consolidated listing of
chemicals that was inclusive of all experimental conditions for
analysis within BMDExpress. It is important to note that
concentration data (generally with a minimum of three
concentrations and solvent controls) are required to identify the
BMC of responsive genes within the data. Here, a minimum of five
concentrations were included along with a solvent control. The
BMC modeling was performed separately for each experimental
model for each test chemical and only used those samples
(i.e., replicate concentrations) that passed all QC filters as defined
by the criteria within their respective studies. Williams Trend tests
(Williams, 1971) were applied to filter out probes that did not show a
concentration-response (i.e., probes passing filters had
p-values <0.05). Additional filtering was also applied to remove
probes that did not achieve a fold-change (FC) of at least 1.5 in at
least one concentration. To calculate BMC values for probes, the
best-fit curve was selected from a series of possible models including
Power, Linear, Polynomial 2, and Exponential 2, 3, 4, and 5 models.
Best-fit models for probes were selected based on a nested chi-square
test cut-off of 0.05 to select among the linear and polynomial models
that was followed by the lowest Akaike Information Criterion that
estimates the quality of each model relative to the other models. A
full description of the modeling parameters is available in the
BMDExpress2 published online documentation (US EPA
BMDExpress2, n.d.; Phillips et al., 2019). Additional parameters
applied for modeling included: restrict power equal or greater than
one; maximum iterations of 250; confidence interval of 0.95, and
benchmark response factor of one standard deviation (i.e., BMR of
1 SD). Post-filtering criteria included removing BMCs with a
goodness-of-fit test p-value less than 0.1, a ratio of BMC upper
bound (BMCU) divided by the BMC lower bound (BMCL) greater
than 40; and removing BMCs that were greater than the highest
exposure concentration. Probe IDs representing select genes passing
all filtering criteria were converted to their corresponding Entrez
Identifiers and were carried forward to be used for tPOD derivation.

We evaluated seven approaches to calculate tPODs falling under
two separate tracks, using concentration-response modeling
performed with log2 CPM data using BMDExpress. The first
track used the distribution of genes (e.g., percentiles, numbered
rank, and mode), while the second used the median gene BMC value
of the lowest (i.e., most sensitive) gene set from a selection of
available, open-source, curated, and peer-reviewed pathway
databases. All of the included methods from both tracks are
described in more detail below and density plots for each
chemical meeting the minimum criteria to derive selected tPODs
are provided in Supplementary Appendix S2.

2.4.1 The fifth percentile
The fifth percentile gene was calculated using the BMC of the

gene closest to the fifth percentile value of the BMC distribution. It
represents the lower bound fifth percentile of all filtered gene BMCs
commonly employed in previous work using the US EPA Toxicity
Forecasting database (Paul Friedman et al., 2019) to derive in vitro
PODs and has been employed within previous studies (Reardon
et al., 2021; Rowan-Carroll et al., 2021) to derive tPODs
[i.e., represented mathematically as floor (0.05 x # BMCs)]. The
fifth percentile is a conservative metric value for the tPOD that
targets the most responsive genes that may contribute to the
toxicological response.

2.4.2 The first mode
Several previous studies used genes from the first mode of the

BMD frequency distributions (Qutob et al., 2018; Farmahin et al.,
2019; Pagé-Larivière et al., 2019; Alcaraz et al., 2021). In the current
study, density estimation was used with forward, backward, and
centered differencing to estimate the first and second derivatives.
The first mode was defined as the first point at which the first
derivative changes from positive to negative with a negative second
derivative (second derivative test).

2.4.3 The 25th lowest ranked gene BMC
All genes with BMCs were ranked from lowest to highest. The

25th rank-ordered gene was set as the threshold and the BMC of this
gene was used to indicate the concentration where a defined change
in the transcriptome has occurred (Reardon et al., 2021; Matteo
et al., 2022). Those chemicals that were unable to produce a
representative value for this tPOD (i.e., did not have at least
25 responsive genes with BMCs) were identified as “inactive”
based on this approach and alternatives methods were considered
for tPOD derivation.

2.4.4 The LCRD
The lowest consistent response dose (LCRD) was performed as

described in Crizer et al. (2021). The LCRD is identified as the lowest
BMC in a rank order of gene BMCs where all subsequent ratio values
from adjacently ranked BMCs are within 1.66 (thereby eliminating
unrealistically low gene BMCs that may be biological noise). BMCs
in the ranked group are declared the consistent response group of
BMCs (CRGB) as defined by Crizer et al. (2021), because all
sequential BMCs in this group have at least one BMC, that is,
within 1/4 log difference in value. The lowest BMC in the CRGB is
then identified as the LCRD. It has been recognized that this method
may be sensitive to a few exceptionally low BMCs (i.e., deriving an
estimate that is overly conservative), particularly for an extrapolated
BMC below the lowest dose. Here, a modification of the LCRD is
presented where the BMCs were grouped as stated above except the
LCRD was the lowest dose from the largest CRGB. This eliminates
the issue of small groups (n = 2 or 3) of genes with low BMCs being
defined as the LCRD.

2.4.5 The lowest gene set
This approach to tPOD derivation was defined by the

United States National Toxicology Program (now the Division of
Translational Toxicology: DTT) (National Toxicology Program,
2018). In the current study, to capture the most sensitive gene
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set, genes and their associated BMC values were matched to their
corresponding gene sets using three well-known public databases: 1)
Gene Ontology (GO) Biological Process (Harris et al., 2008); 2)
Reactome Pathways (Fabregat et al., 2017); and 3) Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2017). Gene sets that contained at least three genes with a BMC
representing at least 5% of the gene set (based on total annotated
genes) were selected. The lowest gene set approach was established
to extract tPODs using genomic dose-response modeling, that is,
linked to meaningful biological change while reducing the influence
of background (i.e., noise) as the gene sets define biological
functions/processes (National Toxicology Program, 2018).
However, it should be noted that the function of the selected
gene set is not considered when interpreting the data.

2.5 Conversion of transcriptomic points of
departure to administered equivalent doses

IVIVE was used to convert derived tPODs (μM) to AEDs
(mg/kg-bw/day), a more aligned metric for comparison with
apical PODs from in vivo data. Each derived tPOD was
converted to an AED using reverse dosimetry and available data
within httk. The AED is the theoretical dose required to reach a
given steady-state plasma concentration (Css; Wetmore et al., 2015).
In brief, the httk package version 2.2.1 (Pearce et al., 2017) in R (R
Core Team: R Foundation for Statistical Computing, 2020) was used
for IVIVE. To predict the Css in the current study, the three-
compartment steady-state toxicokinetic model
(“3compartmentss”) (modified from Wetmore et al., 2012; 2015)
was used. The parameters required for this model are intrinsic
hepatic clearance and plasma protein binding. Full absorption by gut
is assumed when data on the fraction of compound absorbed by the
gut was not available (Wetmore et al., 2012). The httk package also
provides tools to perform Monte Carlo sampling that represents the
inter-individual variability within the population (Ring et al., 2017).
A similar approach to Paul Friedman et al. (2019) was used within
the current work, wherein the Csswas calculated using the “calc_mc_
oral_equivalent” function in httk with the default parameters and
output using the value depicted by the 95th quantile.

Then, the resultant Css was used to calculate the AED (mg/kg-
bw/day) using Eq. 1:

AED

mg
kg

day
( ) � bioactivity concentration µM( ) ×

1 mg
kg

day

Css µM( ) (1)

2.6 Comparison of administered equivalent
dose to corresponding in vivo data

For the purpose of the current study, in vivo data was collected
from available databases for comparison with in vitro derived
endpoints (e.g., AEDs). Data was extracted from the EPA
CompTox (CompTox Chemicals Dashboard (epa.gov), as well as
databases from the publicly available ECHA REACH dossier
(Understanding REACH - ECHA (europa.eu), the OECD QSAR
Toolbox (The OECD QSAR Toolbox - OECD), and dossiers

available through Health Canada (Chemical substances - Canada.
ca). The lowest value available from oral repeat dose (sub-chronic
and chronic), developmental toxicology and reproductive toxicology
studies was selected as the apical POD (Table 2). An expanded list
was considered in cases of chemicals with an available lowest apical
POD from multiple study types (Supplementary Appendix S3). The
lowest apical POD from in vivo data was selected from available
endpoints, including the no-observed–adverse-effect-level
(NOAEL); lowest-observed-adverse–affect-level (LOAEL); no-
observed-effect-level (NOEL); no-effect-level (NEL); lowest-
observed-effect-level (LOEL); or the lowest-effect-level (LEL).

Under circumstances where a designated NOAEL or LOAEL
was not available for select chemicals, an alternative value was
selected to represent the in vivo endpoint. For aflatoxin B1
(AFB1), the lowest outcome available was the lower-bound BMD
(BMDL). For cyclophosphamide, only endpoints from studies of
carcinogenicity were available, resulting in a designated “cancer
unit” used to represent the apical POD. For eugenol, the highest no
effect level (HNEL) was established as the lowest apical POD for
comparison. A concerted effort was made to capture the largest
number of chemicals by collecting data using commonly available
regulatory databases.

3 Results and discussion

3.1 A transcriptomic workflow for a diverse
chemical space

Transcriptomic technologies provide information on gene
expression and the initiation of molecular changes that occur
prior to the development of apical effects. Mounting evidence
supports that these alterations can be used to establish
molecular-based PODs that are human health-protective in the
absence of predicting a specific hazard (Johnson et al., 2022).
Such a transcriptomic effect level would ideally identify exposure
concentrations equal to or below those causing critical effects
associated with adverse outcome pathways (Ankley et al., 2010).
Previous studies using short-term animal exposure data have
demonstrated that the use of both in vitro and in vivo derived
tPODs are comparable or even more sensitive than apical PODs
derived using regulatory guideline studies (Bhat et al., 2013; Thomas
et al., 2013; Johnson et al., 2020; LaRocca et al., 2020). To accelerate
the adoption of NAMs, frameworks to increase confidence for
application in the regulatory decision-making process have been
proposed that include the key elements of “fitness for purpose,
human biological relevance, technical characterization, data
integrity and transparency, and independent review” (van der
Zalm et al., 2022). The meta-analysis described herein applies
these concepts to increase scientific confidence in the use of
tPODs, and their corresponding AEDs derived from in vitro data
to further demonstrate support that this approach results in equal or
greater protection of human health.

The workflow includes datasets that have previously undergone
data processing which allows for the derivation of tPODs from a
range of approaches (Figure 1). The recently published R-ODAF
pipeline has been used for previous datasets generated at Health
Canada. Although this pipeline is proposed as a “baseline reference”
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TABLE 2 List of chemicals with available in vivo datasets.

Name CASRN Animal Study Type Method Effect Level
(mg/kg-bw/day)

E
P
A

T
ox
V
al

4-Cumylphenol 599-64-4 Rat Repeat Dose NOAEL 50

AFB1 1162-65-8 Human Repeat Dose BMDL01 0.000078

Atrazine 1912-24-9 Mouse Reproductive NOEL 0.001

Bifenthrin 82657-04-3 Rat Developmental NOAEL 1

Bis4CPS 620-92-8 Rat Repeat Dose LOEL 20

BPA 80-05-07 Rat Developmental NOAEL 0.015

Cyanazine 21725-46-2 Rat Repeat Dose NOAEL 0.005

Cyclophosphamide 6055-19-2 Repeat Dose Cancer 0.57

Cyproterone ace 427-51-0 Mouse Repeat Dose NOAEL 125

Eugenol 97-53-0 Rat Repeat Dose NOAEL 57

Fenofibrate 49562-28-9 Mouse Developmental LEL 11.7

Flutamide 13311-84-7 Rat Repeat Dose NOAEL 10

Genistein 446-72-0 Rat Developmental NEL 20

Lovastatin 75330-75-5 Mouse Repeat Dose NOAEL 30

PFHxA 307-24-4 Rat Repeat Dose NOAEL 200

PFOA 335-67-1 Mouse Reproductive LOEL 0.02

Prochloraz 67747-09-5 Dog Repeat Dose NOAEL 2.5

Propiconazole 60207-90-1 Mouse Repeat Dose NOAEL 2.7

Pyraclostrobin 175013-18-0 Rat Repeat Dose NOAEL 3.4

Reserpine 50-55-5 Mouse Repeat Dose NOAEL 0.12

Rotenone 83-79-4 Rat Developmental LOAEL 0.75

Simazine 122-34-9 Mouse Reproductive NOEL 0.005

Trifloxystrobin 141517-21-7 Rabbit Developmental NOAEL 10

Troglitazone 97322-87-7 Mouse Repeat Dose NOAEL 1200

Vinclozolin 50471-44-8 mouse Reproductive LOEL 1

Zidovudine 30516-87-1 Mouse Repeat Dose LEL 100

R
E
A
C
H

2DD-Glucose 66-13-6 rat Reproductive NOAEL 20

BPAF 1478-61-1 Rat Repeat Dose NOAEL 3.5

BPS 80-09-01 Rat Reproductive / Developmental NOAEL 10

Cyproconazole 94361-06-5 Rat Reproductive NOAEL 1

Estradiol 50-28-2 Rabbit Developmental NOEL 0.0003

Lactofen 77501-63-4 Rat Reproductive NOEL 2.5

TGSA 41481-66-7 Rat Repeat Dose NOEL 15

Thiram 137-26-8 Dog Repeat Dose NOEL 0.84

Urea 57-13-6 Developmental NOAEL 500

O
E
C
D

B[a]P 50-32-8 Repeat Dose LOEL 0.05

Fenpyroximate 111812-58-9 Reproductive LOEL 8.45

Imazalil 35554-44-0 Reproductive NOAEL 5

PFOS 1763-23-1 Reproductive NOAEL 0.03

H
C

Propyl gallate 121-79-9 Repeat Dose NOAEL 135
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for data processing prior to BMC modeling (Verheijen et al., 2022),
it is acknowledged that best practices have yet to be developed for
analyses in the field of toxicogenomics, particularly for application
in risk assessment frameworks. It has been argued that flexibility is
required because methods and approaches should ideally be fit-for-
purpose (Buesen et al., 2017). Practically, it is unlikely that a
universal tPOD would be considered sufficient across all
potential outcomes, or as a single best practice, and a range of
approaches across diverse in vitro datasets should be considered.
Integration of new methods into regulatory decision-making
requires best practices and interpretation procedures to establish
alignment and consistency of use for human health risk assessment.
To work toward this goal, a subset of tPODs was identified based on
data-distribution (e.g., percentiles, modes, and ranked genes), data-
driven (e.g., LCRD), and/or pathway-related (e.g., gene set)
approaches. Furthermore, applying a “baseline reference”
approach such as the R-ODAF to as many datasets as possible
alleviates some of the difficulty involved in comparing studies
undertaken at various times and/or under different conditions.
The current work used HTTr datasets with a defined workflow to
investigate a variety of tPOD derivation methods that identify a
point of concerted molecular change from exposure to a diverse set
of environmental chemicals.

3.2 A general comparison of approaches

When examining all of the included approaches to tPOD
derivation, bisphenols and bisphenol alternatives were the most
potent chemicals but had the tPODs with the highest variability
across all datasets (Figure 2); a comprehensive list of all tPODs for all
chemicals within their defined datasets is provided in
Supplementary Appendix S4. The overall median log10 value for
all tPODs within the bisphenols group of exposed MCF-7 cells
was −0.33 µM (Figure 2A), compared to values of 0.90, 0.91, 0.99,
and 1.74 µM from investigations of PFAS (Figure 2B), or data from
Ramaiahgari et al., (Figure 2D), Harrill et al., (Figure 2E), and Buick
et al., (Figure 2C), respectively. The degree of concordance between
tPODs was evaluated by calculating the difference between the lowest
(minimum) and highest (maximum) tPOD for each chemical (i.e., the
higher the value of difference the lower the agreement between tPODs).
Comparing between datasets, the median log10 difference from least to
most agreement was 1.87 > 1.67 > 1.26 > 1.07 > 0.84 µM for the
bisphenols case study, Ramaiahgari et al., HC PFAS studies, Harrill
et al., and Buick et al., respectively (Figure 2). Thus, the bisphenols
dataset had the largest median log difference across tPODs spanning
multiple orders of magnitude (Figure 2A). Concordance between
different tPODs on the same chemical within the Ramaiahgari et al.
dataset was also quite low, but unlike bisphenols this was attributed to
only a few outlier chemicals with individual tPODs derived using the
fifth percentile that were orders ofmagnitude lower than tPODs derived
using other approaches (Figure 2D). In contrast, other datasets such as
the PFAS studies and those chemicals evaluated from Buick et al.,
yielded concordant and consistent tPODs regardless of the metric used
(Figures 2B, C). This small range between tPODs of PFAS and those
from Buick et al. is likely a consequence of the study design. Specifically,
the use of a limited range of exposure concentrations that results in
tighter groupings of derived tPODs. Overall, the data revealed the fifth

percentile to be lower, in some cases by more than an order of
magnitude, than the median of all tPODs for select chemicals,
including Bis4CPS (Figure 2A); PFPeA (Figure 2B); aspirin, DMN,
CPZ, sucrose, cyclophosphamide, PB, levofloxacin (Figure 2D), and
fulvestrant (Figure 2E). Except for select bisphenol alternatives, the
general agreement for themajority of observed tPODs across datasets of
diverse chemicals reinforces the robustness and pursuit for the practical
application of transcriptomic data for chemical potency ranking,
grouping and risk assessment.

Although numerous approaches may be considered to derive
tPODs for chemicals across a diverse space, specific approaches may
over- or underestimate chemical potency. It was observed that
tPODs derived using the fifth percentile produced high potency
rankings for sucrose and other chemicals used as low hazard
reference chemicals that have been rarely associated with liver
toxicity (caffeine, levofloxacin, and aspirin) (Ramaiahgari et al.,
2019). Furthermore, we note that percentile gene BMCs and the
extent of transcriptional change (e.g., the total number of responsive
genes) may be influenced by the top dose/concentration. For
example, the fifth percentile tPOD for cyclophosphamide was
0.013 µM (derived from 14 genes fitting BMC models) in the
Ramaiahgari et al., dataset using HepaRG cells that were exposed
up to a top concentration of 300 μM. In contrast, the tPOD for this
same chemical was 804.3 µM from the Buick et al. dataset using the
same cell type where exposure ranges were up to 10,000 μM, thereby
producing a more bioactive response (394 genes fitting BMCs).
Although previously found to be effective when deriving a tPOD
from a wealth of assays using ToxCast (Paul Friedman et al., 2019),
deriving a tPOD at the single gene level (such as the fifth percentile)
with transcriptomic data may produce inaccurate results
(i.e., significant over- or underestimations), and should be
interpreted with caution.

Alternatives to the fifth percentile include approaches with
requirements and filters to reduce the potential for
mischaracterizing chemical potency that includes, but is not
limited to, the BMC distribution requiring at least 25 genes, or a
gene set with a minimum of three genes and/or 5% of a pathway. The
25th ranked gene tPOD requires a minimum amount of biological
activity as described by 25 concentration-responsive genes for tPOD
derivation, decreasing the likelihood of chemicals with low bioactivity
being identified as having the potential for toxicity. Although
interpreted as an arbitrary value, the 25th ranked gene BMC in
previous work provided consistent potency rankings of PFAS along
with representing a toxicological response in approximately 0.1% of
genes in the genome (Reardon et al., 2021). The LCRD tPOD “identifies
the most sensitive non-outlier feature, that is, the plausibly
representative lowest dose level where a consistent response in
biological features is observed”, to identify a point of toxicological
relevance (Crizer et al., 2021). Here, although there are a few exceptions,
as an alternative approach to the fifth percentile the LCRDwas generally
the lowest and most conservative tPOD based on the distribution of
BMCs across all chemicals, making it a promising candidate for deriving
protective tPODs. In contrast to this, the first mode was predominantly
the least conservative estimate in our study, consisting of the lowest
proportion of tPODs. This approach requires the presence of a mode
and, thus, a sufficient extent of biological activity. Previous work
examining responses to 1060 chemicals across a battery of
815 in vitro assay endpoints suggested that the first mode generally
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corresponded to a disruption of specific biomolecular targets or
pathways (e.g., receptors or enzymes) and generalized disruption of
cellular machinery (Judson et al., 2016). However, observed effects at
higher concentrations (i.e., higher modes) are often characterized by a
larger number of affected pathways compared to the first mode, and

represent dysregulation of cellularmachinery that leads to cell stress and
cytotoxicity. Thus, selecting the first mode as a tPOD provides an
estimate at which initial molecular events are triggered.

As highlighted, there are multiple options when considering a
means of obtaining a tPOD and the general agreement observed among

FIGURE 2
All tPODs of chemicals from the bisphenol case study group from Health Canada data in human MCF7 cells (A), PFAS data from Reardon et al. and
Rowan-Carroll et al. in human liver spheroids (B), Buick et al., from exposed human liver HepaRG cells (C), Ramaiahgari et al. from exposed human liver
HepaRG cells (D) and Harrill et al. in human MCF7 cells (E).
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chemicals for most datasets underscores the robust nature of gene
expression data. For ease of comparison, the results, advantages, and
disadvantages of all of the aforementioned approaches have been
tabulated (Table 3). In summary, deriving tPODs using percentiles
(e.g., the fifth) could lead to mischaracterization of a chemicals potency
when interpreting the results; whereas other approaches such as the
25th ranked gene, the LCRD, the first mode, and the lowest gene set
(further described below) provide viable alternatives to derive relevant
and protective tPODs to facilitate risk assessment activities.

3.3 Conversion to human relevant exposure
values

The integration of IVIVE within the workflow allowed for
determination of a dose that converts the tPOD (µM) to an
estimate of the surrogate bioactivity POD (i.e., the AED in
mg/kg-bw/day). Chemicals with AEDs (mg/kg-bw/day) were

ranked by relative potency (Figure 3). The list was reduced from
the 117 chemicals with tPODs (Figure 2) to 54 chemicals that could
be modeled in the httk R-package (Figure 3). The bisphenols and
alternatives group (specifically BPA and BPAF) that were previously
ranked as some of the highest and most potent chemicals based on
derived tPODs were no longer among the most highly potent and
instead were within the middle of the relative chemical potency
ranking. Furthermore, the PFAS group that was not particularly
potent based on tPODs (Figure 2) included 7 of the top 12 most
potent chemicals when ranked by their AEDs (Figure 3). Other
select chemicals (2DD-glucose, TGSA, Bis4CPS, and urea) had
apical PODs from animal data but AEDs from BMC
distributions or gene set approaches could not be produced.
These chemicals were subsequently excluded from further analysis.

The conversion of tPODs to AEDs had two primary impacts on
the results and interpretation. First, it reduced the number of
chemicals that could be analyzed because of a lack of data
availability for IVIVE. Second, AED derivation altered the

TABLE 3 Summary table of advantages, disadvantages, and results of evaluated approaches for derivation of transcriptomic points of departure.

Result Advantages Disadvantages

T
he

5t
h
pe
rc
en
ti
le

The 5th percentile is a conservative value for tPOD
derivation that targets the lowest andmost responsive
genes.
Produces the highest potency ranking for select
substances, even for chemicals identified as ‘non-
toxic’ reference chemicals.
Not considered as a reliable approach to derive
tPODs using gene expression data.

Simplified calculation of estimate that uses the 5th
percentile gene from the full distribution of genes
with modeled BMCs.
No additional models or calculations are required
beyond BMD modeling software.

Subject to influence from the experimental design
(e.g., the top dose/concentration).
Subject to influence by the extent of transcriptional
change (i.e., total number of genes with BMCs).

1s
t
M
od

ea

The 1st mode uses those genes from the identified
first mode based on the frequency of distribution of
genes with BMCs.
Considered the least conservative but is a consistent
and simple approach to derive tPODs using
distributions.

Consistently low (i.e., conservative) estimate across
majority of listed chemicals.
Corresponds with disrupted biomolecular targets and
pathways, and provides an estimate of the initiation of
molecular events Judson et al. (2016)

Requires sufficient biological activity (i.e., genes with
BMCs) for identification and calculation of modes.

25
th

R
an
ke
d
G
en
ea The 25th ranked gene is set as a threshold that is

identified from a relative potency ranking of the
lowest to highest genes with BMCs.
Considered a simple approach deriving tPODs using
the BMC distribution that represents approximately
0.1 % of the genome.

Simplified calculation using the 25th ranked gene by
potency based on the distribution of genes with
modeled BMCs.
No additional models or calculations are required
beyond BMD modeling software.

Requires a minimal amount of biological activity (e.g.,
25 concentration-responsive genes).
Excludes select chemicals with insufficient biological
activity (e.g., either non-liver toxic, or highly cytotoxic
chemicals that do not meet a minimum required
concentration-responsive genes).

LC
R
D

a

The LCRD is the value of the lowest of rank-ordered
BMCs using consistent response groups of BMCs
Crizer et al. (2021).
Represents the primary approach to derive
conservative tPODs for most of the listed chemicals
that were carried forward for comparison with apical
PODs.

Uses a calculated derivation for tPOD derivation that
represents a point of toxicological relevance that is
considered a consistent response of all biological
features.
Predominantly the lowest and most conservative
tPOD of all approaches based on the distribution of
BMCs across all chemicals, and suggested as a
promising candidate for deriving protective and
conservative tPODs.

Requires more complex modeling to obtain a relevant
tPOD based on the literature.

Lo
w
es
t
G
en
e
Se
ta

The lowest and most sensitive gene set is widely
accepted as a means of obtaining a tPOD as outlined
in a guidance document National Toxicology
Program (2018).
Reliable approach in scenarios with sufficient
biological activity to derive tPODs using the median
value of the lowest and most potent (i.e., sensitive)
gene set.
tPODs primarily defined using annotations from the
largest and most comprehensive database (e.g., GO).

Established and reliable approach to derive tPODs
using dose-response models that reflect meaningful
changes in biology while reducing the influence of
background.
Option to choose frommultiple available databases to
represent annotations used to define gene sets (e.g.,
GO, KEGG or REACTOME).

Requires more complex modeling and additional
parameters and filtering to obtain a relevant tPOD
based gene sets.
Requires sufficient biological activity (i.e., genes with
BMCs) to define subsets of genes related to gene sets
and pathways.

aApproaches that were considered to be alternatives to be applied in lieu of approaches using percentiles (e.g., 5th) to derive a transcriptomic point of departure.
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relative potency ranking of chemicals. In silico models are currently
being employed to predict the parameters needed to broaden the
application of NAM-based PODs toward “characterisation,
validation and reporting of Physiologically Based Kinetic (PBK)
models for regulatory purposes” under the OECD (OECD, 2021).
These models allow for the determination of a CSS and are a critical
step in creating relevant exposure estimates from in vitro data that
could be applied in the context of human health risk assessment.
Here, the AED was employed as a quantitative estimate to serve as a
protective human-relevant effect level that was anticipated to be
lower than potential apical adverse outcomes. This process has been
previously employed to determine protective estimates for
potentially hazardous chemicals using data derived from the US
EPA toxicological forecast (ToxCast) database (Paul Friedman et al.,
2019; Health Canada, 2021). The primary advantage of combining

IVIVE with human cell models or tissues is that a correction factor
for sources of uncertainty related to interspecies differences from
animal-derived data may not be necessary for developing regulatory
values (Bos et al., 2020). Furthermore, although it is beyond the
intent of the current work, the httk platform also has the potential to
accommodate input of parameters from in silico predictions such as
for the fraction of chemical not bound to protein and intrinsic
hepatic clearance, to model the Css for chemicals not listed within
the httk chemical library.

The implementation of IVIVE using in silico models and
corresponding model assumptions also have potential limitations.
In our study, a lack of available data on the parameters necessary for
IVIVE reduced the overall sample size (i.e., number of chemicals
included in our study); this is particularly problematic when
evaluating “data-poor” chemicals that are also outside the

FIGURE 3
All case study chemicals with available data for conversion using IVIVE ranked by median potency of AEDs.
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applicability domain of models used to provide predicted input
parameters. The AEDs produced using the PFAS data were
influenced by IVIVE resulting in their increased potency ranking.
The generalized parameters and assumptions of IVIVE models may
not have adequately captured their toxicokinetic properties and
disposition, resulting in overestimation of their chemical potency
(e.g., prolonged half-life) (Fenton et al., 2021). Thus, although there
is some inherent uncertainty associated with httk models due to the
(conservative) assumptions necessary to allow for minimal data
input and high-throughput data processing, it has been demonstrated to
be a useful approach to provide protectiveAEDs from in vitro data.Here,
httk was used to convert tPODs to AEDs to determine practical, human-
relevant effect levels that would allow risk assessors to make informed
decisions, even when traditional animal data was not available. Ongoing
efforts at Health Canada, as part of international collaborations, are
working to characterize the impact of different IVIVEmodels for reverse
dosimetry, in vitro disposition models, as well as parameterization of
models using various data streams, on the refinement to the AED
estimate. Such work will increase confidence in the use of IVIVE
approaches and provide guidance on when higher tier models should
be considered based on chemical space and context of use.

The estimate from the lowest and most conservative approach
for each individual chemical was identified for both the BMC
distribution (blue markers, Figure 3) and gene set level (magenta
markers, Figure 3) approaches were carried forward to evaluate the
extent of correlation between different tracks (Figure 4). Overall,
there was a degree of agreement (within one order of magnitude of
perfect agreement) for the majority of chemicals (~90%), even
considering differences in experimental design including exposure
time, model type and approach used to derive tPOD [Pearson
correlation, r = 0.98 (p < 0.0001)]. Of these chemicals, select data
points (from BPA, PFOA, fenpyroximate, cyanazine, 4-
hydroxytamoxifen, and amiodarone hydrochloride) were more
than an order of magnitude outside the range of agreement
(labeled in Figure 4), and fulvestrant was significantly (greater
than two orders of magnitude) outside the range of agreement.
For BMC distribution level values, over the chemical space, the
lowest AED for the majority of substances was the LCRD (45 of
54), followed by the fifth percentile (6 of 54), and the remaining
three represented by the first mode and 25th ranked gene. Thus,
the AEDs of over 90% of concentration-response experiments
were based on the LCRD and only a small number of chemicals
were represented by the fifth percentile (atrazine, BPA, caffeine,
fulvestrant, PFDA, and vincolozolin). As previously discussed,
the fifth percentile is subject to bias from the concentration
exposure range; this may explain fulvestrant being
significantly outside the range of agreement.

Overall, the results demonstrate a high degree of concordance
between BMC distribution and gene set level AEDs produced using a
diverse set of approaches. The application of httk generated human
relevant AEDs from in vitro derived tPODs to produce practical
estimates for potentially hazardous and data-poor chemicals.

3.4 Comparing in vitro to in vivo derived data

The AED for each chemical was selected from the lowest value of
either the BMC distribution (Figure 5A) or lowest gene set

(Figure 5B) for comparison with apical PODs derived using in
vivo data from regulatory databases (Table 2). The AEDs (black)
were generally lower than apical PODs from developmental (red),
reproductive (green) and repeat dose (blue) studies (Figure 5). Using
the BMC distribution, the lowest AEDs were derived using the
LCRD, fifth percentile, first mode, or 25th ranked gene approaches
for 45, 6, 2, and 1 of 54 substances, respectively, wherein for most
(47 chemicals), there was an observed pattern of lower tPOD-based
AEDs than apical PODs (Figure 5A). Another commonly employed
method of tPOD derivation uses the median value of the lowest/
most-sensitive gene set as a measure of potency (National
Toxicology Program, 2018). AEDs derived from the lowest gene
set found that most of the observed AEDs (45 of 50) followed the
same pattern and were also lower than apical PODs (Figure 5B).
Most AEDs from the lowest/most sensitive gene set were derived
from tPODs using the gene ontology (GO) database (33 of 50),
followed by REACTOME (14 of 50), and KEGG (3 of 50)
(Figure 5B). A general pattern of lower/more conservative AEDs
was observed, suggesting that for the majority of chemicals, NAM-
based AEDs using either distribution or gene set based approaches
are at least equal to, or more conservative than conventional apical
endpoint PODs selected for risk assessment purposes.

The LCRD was the most consistent approach from the BMC
distribution and GO was the consistent data source for the lowest
median gene set level approach amongst the multiple methods of
tPOD derivation examined. As previously discussed, the LCRD is a
recently developed data-driven approach to derive PODs using
transcriptomic data. Our results indicate this approach to be
well-suited to derive conservative tPODs across a diverse
chemical space. Previous work using functional enrichment and
predictive modeling to identify lowest median genes sets showed
that results differed when assessing equivalent pathways from
different databases; thus, database choice is a significant factor
when using pathway-centric approaches (Mubeen et al., 2019).
The size of the gene set database may also be a significant factor,
as the number of pathways present will influence results (Mubeen
et al., 2022). Our finding that the GO database produced the highest
proportion of gene set AEDs was likely attributed to its size, with a
larger number of available human annotations compared to
REACTOME and KEGG. An optimal database for gene sets has
yet to be established. Thus, at present we recommend including
multiple databases to ensure that a broad biological space is queried
and that a conservative AED is derived.

AEDs may be used to provide a protective dose below which
toxicity is not expected to occur in support of chemical screening.
Previously, AEDs derived using the fifth percentile of values from
a large set of in vitro assays using available ToxCast data were
compared with apical PODs from in vivo data to derive a practical
risk-based metric for prioritization and assessment activities;
namely, the bioactivity exposure ratio (BER) (Paul Friedman
et al., 2019; Health Canada, 2021). During a formal risk
assessment, the most appropriate critical effect level from
animal studies is typically selected after a thorough review
that includes a study quality evaluation, wherein the lowest
value recorded as the apical POD may not always be the most
fitting estimate for comparison with estimates of exposure. The
rationale for exclusion may be based on limitations in the study
design, the quality of the data or reporting, or may not consider a
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particular sub-population that represents the exposure scenario
of interest. For example, the NOAEL from a developmental or
reproductive toxicity study may be most suitable when evaluating
the risk for women during pregnancy and their developing
children but in some cases may also be generalized to include
women of childbearing age or men. Here, a comparative
assessment indicated that transcriptomic based AEDs were
equally or more protective than the majority of apical PODs,
regardless of the study type considered (e.g., repeated dose,
reproductive, or developmental toxicity). Such AEDs may be
applied in the same manner to create human relevant BERs,
reinforcing the effectiveness of NAM-based approaches to create
protective, human relevant PODs for consideration in risk
assessment.

Additional chemicals had a sufficient number of modeled
genes to derive BMCs from distribution level approaches (53, 62,
and 100 total genes with BMCs for cyproconazole, atrazine, and
simazine, respectively, Figure 5A) but not gene set level
approaches (Figure 5B). There is likely an insufficient number
of these genes with BMCs that could be mapped to a gene set in
each of the KEGG, GO, or REACTOME databases after
application of parameters and filters. Thus, although our study
had a somewhat limited sample size because of data availability,
the results included both focused datasets with numerous
chemicals from a single class (e.g., PFAS and bisphenol
alternatives) as well as datasets with substances from broader
classes (e.g., Ramaiahgari et al., and Harrill et al.). These findings

support observations that transcriptomic AEDs derived from a
variety of approaches provide a conservative endpoint for
evaluating chemical potencies and emphasize the importance
of including multiple databases when mapping genes for AED
derivations that use gene sets.

3.5 Identifying outliers using ratios

A Log10Ratio was used to compare AEDs from in vitro data
with apical PODs from traditional data (adapted from Paul
Friedman et al., 2019). The ratio was produced using the log10
(mg/kg-bw/day) units and calculated by the difference between
NAM-based AEDs and traditional PODs with the following
equation (Eq. 2).

Log 10Ratio � Log 10PODTraditional − Log 10AEDNAM (2)

The majority of values for the Log10Ratio were > 0, with
NAM-based AEDs being more conservative than traditional
PODs (Figure 6). Using BMC distribution approaches, 28 of
35 chemicals (corresponding to 60 of 72 included data points, or
83% of the dataset) had a median Log10Ratio > 0 indicating that
these AEDs were lower than apical PODs (Figure 6A). Using gene
set level approaches, 27 of 32 chemicals (corresponding to 56 of
66 included data points, or 85% of the dataset) had AEDs lower
than apical PODs (Figure 6B).

FIGURE 4
Correlation plot of the relationship between the lowest derived AED from using the BMC distribution level and gene set level approaches. The solid
line represents perfect agreement between data on the x-axis with data on the y-axis, with a range of one (+/−1 log10, grey dashed line) or two
(+/−2 log10, black dashed line) orders of magnitude.
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In contrast, those chemicals that were flagged as outliers (with a
Log10Ratio < 0) included three chemicals identified as triazine
herbicides (simazine, atrazine, and cyanazine), as well as B[a]P,
eugenol, cyclophosphamide, and AFB1 (Figure 6). A detailed
description for each of these chemicals, including the in vitro
AED, the comparative apical POD, and a rationale to define
those chemicals as outliers is detailed in the supplementary
information (Annex A). In brief, atrazine, cyanazine, and
simazine were included in previous work as triazine herbicides
for their capacity to inhibit photosystem-II that were not
intended to be active within the cell model of interest (MCF-7)
and, as a result, were outside of the applicability domain for the
target cell culture system resulting in non-conservative tPODs
(Harrill et al., 2021). B[a]P has numerous routes of exposure for
humans that results in developmental, reproductive, and

immunological toxicity in vivo (US EPA, 2017) that may not be
captured within the current in vitro model (HepaRG). The higher
in vitro POD for eugenol than apical PODs may also be attributed to
the limited applicability domain of the in vitromodels used to derive
the tPOD and subsequent AED for this chemical.
Cyclophosphamide requires metabolic activation, primarily
through the liver, in order to induce varying degrees of toxicity
(Ayash et al., 1992; Moghe et al., 2015; Groehler et al., 2016).
AFB1 also requires bioactivation in order to enact
hepatocarcinogenesis resulting in AED estimates that were higher
(i.e., less conservative) than epidemiological PODs from incidences
of human liver cancer (EFSA, 2007). Although the HepaRG cell
models used within the in vitro studies are considered to be more
metabolically active than more simple in vitro human hepatocyte
models (Lübberstedt et al., 2011), they likely do not maintain a high

FIGURE 5
Relative potency ranking of points of departure for each chemical selected from the lowest value derived using BMCdistribution (A) and gene-set (B)
level AEDs, compared to in vivo apical points of departure.
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enough metabolic capacity in conventional 2D static culture models
to induce the level of toxicity observed with cyclophosphamide or
AFB1 in vivo. This limitation could be resolved by using a more
sophisticated model such as a liver spheroid or microtissue, or via
the addition of a metabolic component (e.g., an S9 fraction) to
provide a more accurate in vitro tPOD and corresponding AED.

The Log10Ratio provides an efficient means for evaluating the
effectiveness of in vitro PODs to derive conservative estimates for
numerous substances across a broad chemical space. Overall, we
found that the lowest and most conservative value from the range of
derived AEDs was lower (i.e., protective) than available in vivo
derived apical PODs for the same chemicals with a few exceptions
(e.g., outlier chemicals). Within this context, the workflow could be
applied in a tiered framework to highlight or flag potentially
hazardous or problematic chemicals for further research, data
generation or risk assessment.

3.6 Examining design considerations and
uncertainty when applying transcriptomic
data for risk assessment

3.6.1 Study design
Multiple HTTr data sets could be used to examine the effect of study

design parameters on tPODs and AEDs. Specifically, increasing the
duration of exposure and/or model complexity generally corresponded
to increased chemical potency (Figure 7). PFAS represented themajority
of chemicals with varied data points (e.g., multiple time points and cell
models), including carboxylates (PFHxA, PFHpA, PFOA, PFNA, PFDA,
and PFUnA), sulfonates (PFBS, PFHxS, and PFOS), and a longer-chain
perfluorosulfonamide (PFOSA). With a few exceptions, the PFAS
showed agreement (within one order of magnitude) between multiple
AEDs produced from experiments using these different designs. Outside
of PFAS, AFB1, B[a]P, BPA, cyclophosphamide, and troglitazone from

FIGURE 6
The ratio of in vitro derived AEDs to apical PODs ranked using BMC distribution level (A) and gene set level (B) approaches. Chemicals highlighted in
red represent outliers based on ratio less than 0.
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independent experiments produced multiple AEDs that, with the
exception of B[a]P, were different by orders of magnitude.
Considering all of these chemicals, there was a trend of increasing
potency (i.e., a decreased AED) with increased exposure duration. For
specific chemicals with available data, AEDs derived using more
complex 3D liver spheroid models (e.g., PFOS) or HepaRG cells (e.g.,
troglitazone) were lower than AED from MCF-7 cell models. These
outcomes suggest a need to consider uncertainty relating to the study
design used, such as the exposure duration and model when applying
these values in risk assessment applications.

3.6.2 Uncertainty relating to apical endpoints
Prior to discussion of the uncertainties related to in vitro tPOD

and AED derivation, it is important to consider the main sources of
uncertainty related to traditional approaches and conventional
animal testing. Currently, PODs for health effects are derived
using modeled apical measures such as NOAELs, LOAELs, and
BMDs from relevant studies. Uncertainty factors are commonly
applied to PODs to compensate for limitations, knowledge
deficiencies, and uncertainties in the data. Such limitations have
been previously discussed (Kimmel and Gaylor, 1988; Leisenring

and Ryan, 1992; Haber et al., 2018). Sources of uncertainty include
dose selection and dose spacing that are identified when defining a
NOAEL or LOAEL using a limited range of doses within the
experimental design. Moreover, the dose–response is not
accounted for in NOAEL or LOAEL derivation as these estimates
are derived based on the effect observed at a single dose. Among
different studies the observed experimental response in animal
models may vary, making inter-study comparisons challenging
(Kimmel and Gaylor, 1988; Leisenring and Ryan, 1992; Haber
et al., 2018). Recent work has attempted to quantify inherent
biological and protocol variability of inter-laboratory results
using curated reference data for acute oral rat LD50 that resulted
in values that varied by approximately ±0.24 log10 units (mg/kg)
(Karmaus et al., 2022). Pham et al., performed a statical evaluation
and estimated a variance of 0.5–0.6 log10 units (mg/kg/day) for LEL
and/or LOAEL values using critical effect level outcomes (e.g., target
organ, clinical chemistry, or in-life observation) from in vivo studies
within the publicly available EPA Toxicity Reference Database
(Pham et al., 2019; 2021). Herein, the use of apical PODs
provided a reference point to compare and contrast the NAM-
based effect levels; specifically, the results suggest that in vitro

FIGURE 7
Plot of substances with multiple endpoints demonstrating the influence of time (by colour; range 0.25–14 days) and model (shape) on
transcriptomic AEDs derived from in vitro data using BMC distribution level (A) and gene set level (B) approaches.
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derived tPODs and AEDs are generally more conservative than
apical PODs. Given the range of AEDs observed based on multiple
studies within the current work, it is also important to recognize that
similar ranges, and uncertainties exist for apical PODs and strategies
are used to account for these within decision-making frameworks.
The identification and quantitation of uncertainty are currently
being investigated as part of on-going efforts to implement
in vitro derived data into current and future risk assessment
strategies.

3.6.3 Uncertainty relating to in vitro models to
derive AEDs

Aspects of the design, including the in vitro experimental model
used, as well as the selection of the dose range and spacing of the
exposure are subject to uncertainty. Thus, aspects of the design may
influence the magnitude of AEDs from derived tPODs that reflect the
observed chemical potency. There are numerous factors that should be
considered in order to provide a practical fit-for-purpose molecular-
based dose estimate. One primary factor is the selection of an
appropriate and representative in vitro model. For example,
immortalized cancer derived cell lines are frequently used in
toxicology experiments because they are widely available, easily
cultured and facilitate reproducibility (i.e., the same cells can be used
for all experiments). However, these cell lines may not reflect the
response of non-cancer tissues. Primary cells directly derived from
humans retain tissue-specific characteristics but have low proliferative
potential and are typically only used in a limited number of experiments
(Liu et al., 2020). Immortalized cancer cell lines typically lack the
capacity to metabolically activate chemicals to produce an accurate
AED. The use of model mixtures including spheroids and microtissues
consisting of primary cells derived from multiple donors may provide
an effective means to capture more human-relevant responses. These
complex, multi-donor models reduce any donor-specific biases in the
data output. Furthermore, immortalized cell lines are generally
maintained in vitro in a monolayer or in suspension, whereas
microtissues using 3D models containing multiple cell types better
reflect in vivo characteristics (Proctor et al., 2017; Reardon et al., 2021;
Rowan-Carroll et al., 2021). Although complex spheroidmodelsmay be
more suitable, they have limitations related to donor heterogeneity
(i.e., sampled from a limited number of individuals), cost-efficiency, and
availability (Fraczek et al., 2013; Zeilinger et al., 2016; Ruoß et al., 2020).
Spheroidmodels were observed to bemore sensitive for PFASs, but data
within these more complex models was not available for the identified
outlier chemicals that are known to requiremetabolic activation, such as
cyclophosphamide, AFB1, and B[a]P.

In our study, the emphasis was on the derivation of protective
tPODs that did not dive into the underlying mechanistic data to
predict mode-of-action. However, it is acknowledged that the
mechanism of toxicity can be an important consideration as
specific tested cell lines and cell types have shown cell-dependent
differential sensitivity to specific chemicals (Lawal and Ellis, 2010;
Robert et al., 2014). Further to this, immortalized and transformed
cell lines that have abnormal/unstable karyotypes may not produce
the transcriptomic responses that are consistent with expected
responses in normal human tissues (Kleensang et al., 2016). Cell
monocultures do not reflect the complexity of organisms or
represent the heterogeneity of the human population. As
mentioned previously, metabolism (biotransformation) of

chemicals in vivo may be different from that observed in exposed
cell lines (Wilk-Zasadna et al., 2015). Metabolic pathways and
resultant active by-products or metabolites are often difficult to
fully predict but are also important considerations for method
development and integration that would be required in the
context of the paradigm shift to non-animal testing and
assessment approaches. Overall, there are a variety of potential
uncertainties that must be brought to bear relating to the in vitro
cell models used. These aspects of non-animal models are being
widely studied in parallel to improve the understanding related to
impact for use in the derivation of effect levels and to develop
methods that will address the inherent challenges of in vitromodels.
Increasingly in vivo-relevant models will inevitably lead to increased
confidence in NAM-based approaches in the future. In the interim
and to advance this area, there is a continued need to evaluate the fit-
for-purpose use of the NAM in the context of the information gap
being addressed. In parallel, the way in which apical effects from
animal studies are used for regulatory decision making in light of
their respective uncertainties must be reflected upon.

Along with cell system and model, the selection of dose-range
and dose-spacing were identified as sources of potential uncertainty.
The range and spacing of exposure concentrations of chemicals
within the design can influence the potency of chemicals represented
by derived tPODs and subsequent conversion to AEDs. Inaccurate
selection of concentrations compromises the ability of in vitro
models to reproduce the initiated changes as a result of
exposures that are representative of in vivo biology, influencing
the biological activity and initiation of a given mode of action. This
consideration goes beyond the aim of the current work to produce
conservative and protective estimates and may influence the
outcomes of a predictive toxicology analysis aimed at providing a
biological basis for the selection of tPODs.

4 Conclusion

Overall, this meta-analysis provides evidence that in vitro tPODs
and AEDs, in the majority of cases, are equal to or more protective
estimates when compared to those derived using traditional animal
toxicity tests. The results support that there is a high level of
correlation between the different approaches evaluated to derive
tPODs. However, we caution the use of the fifth percentile for
in vitro transcriptomics, because of the considerable influence from
the top concentrations within these studies on these tPODs. The
diversity of chemicals and experimental conditions within the
dataset analyzed revealed sources of uncertainties for
consideration when shifting to the use of NAM-based data in
regulatory applications. Nonetheless, the workflow used here
produced multiple AEDs that could be used in screening and
prioritization to flag chemicals of greater potential concern for
further assessment. Our findings support the current movement
transitioning to the use of non-animal test methods in chemical risk
assessment, and align with global initiatives that include, but are not
limited to, the inter-governmental accelerating the pace of chemical
risk assessment (APCRA) collaboration, numerous omics-based
initiatives within the OECD, and speciality NAM-based working
groups within the Health and Environmental Sciences Institute
(HESI). It was demonstrated that transcriptomics reliably
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detected perturbations in gene expression as a result of chemical
exposure within in vitro models, outcomes that support the first
principle in the proposed logic framework to incorporate omics-
based data into the regulatory chemical testing and assessment
paradigm (Johnson et al., 2022).
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