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Abstract

We present the Word Mover’s Distance (WMD),

a novel distance function between text docu-

ments. Our work is based on recent results in

word embeddings that learn semantically mean-

ingful representations for words from local co-

occurrences in sentences. The WMD distance

measures the dissimilarity between two text doc-

uments as the minimum amount of distance that

the embedded words of one document need to

“travel” to reach the embedded words of another

document. We show that this distance metric can

be cast as an instance of the Earth Mover’s Dis-

tance, a well studied transportation problem for

which several highly efficient solvers have been

developed. Our metric has no hyperparameters

and is straight-forward to implement. Further, we

demonstrate on eight real world document classi-

fication data sets, in comparison with seven state-

of-the-art baselines, that the WMD metric leads

to unprecedented low k-nearest neighbor docu-

ment classification error rates.

1. Introduction

Accurately representing the distance between two docu-

ments has far-reaching applications in document retrieval

(Salton & Buckley, 1988), news categorization and cluster-

ing (Ontrup & Ritter, 2001; Greene & Cunningham, 2006),

song identification (Brochu & Freitas, 2002), and multi-

lingual document matching (Quadrianto et al., 2009).

The two most common ways documents are represented

is via a bag of words (BOW) or by their term frequency-

inverse document frequency (TF-IDF). However, these fea-

tures are often not suitable for document distances due to
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Figure 1. An illustration of the word mover’s distance. All

non-stop words (bold) of both documents are embedded into a

word2vec space. The distance between the two documents is the

minimum cumulative distance that all words in document 1 need

to travel to exactly match document 2. (Best viewed in color.)

their frequent near-orthogonality (Schölkopf et al., 2002;

Greene & Cunningham, 2006). Another significant draw-

back of these representations are that they do not capture

the distance between individual words. Take for example

the two sentences in different documents: Obama speaks

to the media in Illinois and: The President greets the press

in Chicago. While these sentences have no words in com-

mon, they convey nearly the same information, a fact that

cannot be represented by the BOW model. In this case, the

closeness of the word pairs: (Obama, President); (speaks,

greets); (media, press); and (Illinois, Chicago) is not fac-

tored into the BOW-based distance.

There have been numerous methods that attempt to circum-

vent this problem by learning a latent low-dimensional rep-

resentation of documents. Latent Semantic Indexing (LSI)

(Deerwester et al., 1990) eigendecomposes the BOW fea-

ture space, and Latent Dirichlet Allocation (LDA) (Blei

et al., 2003) probabilistically groups similar words into top-

ics and represents documents as distribution over these top-

ics. At the same time, there are many competing vari-

ants of BOW/TF-IDF (Salton & Buckley, 1988; Robert-

son & Walker, 1994). While these approaches produce a

more coherent document representation than BOW, they

often do not improve the empirical performance of BOW

on distance-based tasks (e.g., nearest-neighbor classifiers)

(Petterson et al., 2010; Mikolov et al., 2013c).
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In this paper we introduce a new metric for the distance be-

tween text documents. Our approach leverages recent re-

sults by Mikolov et al. (2013b) whose celebrated word2vec

model generates word embeddings of unprecedented qual-

ity and scales naturally to very large data sets (e.g., we use

a freely-available model trained on approximately 100 bil-

lion words). The authors demonstrate that semantic rela-

tionships are often preserved in vector operations on word

vectors, e.g., vec(Berlin) - vec(Germany) + vec(France)

is close to vec(Paris). This suggests that distances and

between embedded word vectors are to some degree se-

mantically meaningful. Our metric, which we call the

Word Mover’s Distance (WMD), utilizes this property of

word2vec embeddings. We represent text documents as a

weighted point cloud of embedded words. The distance be-

tween two text documents A and B is the minimum cumu-

lative distance that words from document A need to travel

to match exactly the point cloud of document B. Figure 1

shows a schematic illustration of our new metric.

The optimization problem underlying WMD reduces to

a special case of the well-studied Earth Mover’s Dis-

tance (Rubner et al., 1998) transportation problem and

we can leverage existing literature on fast specialized

solvers (Pele & Werman, 2009). We also compare several

lower bounds and show that these can be used as approxi-

mations or to prune away documents that are provably not

amongst the k-nearest neighbors of a query.

The WMD distance has several intriguing properties: 1.

it is hyper-parameter free and straight-forward to under-

stand and use; 2. it is highly interpretable as the dis-

tance between two documents can be broken down and

explained as the sparse distances between few individual

words; 3. it naturally incorporates the knowledge encoded

in the word2vec space and leads to high retrieval accu-

racy—it outperforms all 7 state-of-the-art alternative doc-

ument distances in 6 of 8 real world classification tasks.

2. Related Work

Constructing a distance between documents is closely tied

with learning new document representations. One of the

first works to systematically study different combinations

of term frequency-based weightings, normalization terms,

and corpus-based statistics is Salton & Buckley (1988).

Another variation is the Okapi BM25 function (Robertson

& Walker, 1994) which describes a score for each (word,

document) pair and is designed for ranking applications.

Aslam & Frost (2003) derive an information-theoretic sim-

ilarity score between two documents, based on probability

of word occurrence in a document corpus. Croft & Lafferty

(2003) use a language model to describe the probability of

generating a word from a document, similar to LDA (Blei

et al., 2003). Most similar to our method is that of Wan

(2007) which first decomposes each document into a set of

subtopic units via TextTiling (Hearst, 1994), and then mea-

sures the effort required to transform a subtopic set into

another via the EMD (Monge, 1781; Rubner et al., 1998).

New approaches for learning document representations

include Stacked Denoising Autoencoders (SDA) (Glorot

et al., 2011), and the faster mSDA (Chen et al., 2012),

which learn word correlations via dropout noise in stacked

neural networks. Recently, the Componential Counting

Grid (Perina et al., 2013) merges LDA (Blei et al., 2003)

and Counting Grid (Jojic & Perina, 2011) models, allow-

ing ‘topics’ to be mixtures of word distributions. As well,

Le & Mikolov (2014) learn a dense representation for doc-

uments using a simplified neural language model, inspired

by the word2vec model (Mikolov et al., 2013a).

The use of the EMD has been pioneered in the computer vi-

sion literature (Rubner et al., 1998; Ren et al., 2011). Sev-

eral publications investigate approximations of the EMD

for image retrieval applications (Grauman & Darrell, 2004;

Shirdhonkar & Jacobs, 2008; Levina & Bickel, 2001). As

word embeddings improve in quality, document retrieval

enters an analogous setup, where each word is associated

with a highly informative feature vector. To our knowledge,

our work is the first to make the connection between high

quality word embeddings and EMD retrieval algorithms.

Cuturi (2013) introduces an entropy penalty to the EMD

objective, which allows the resulting approximation to be

solved with very efficient iterative matrix updates. Further,

the vectorization enables parallel computation via GPGPUs

However, their approach assumes that the number of di-

mensions per document is not too high, which in our set-

ting is extremely large (all possible words). This removes

the main benefit (parallelization on GPGPUs) of their ap-

proach and so we develop a new EMD approximation that

appears to be very effective for our problem domain.

3. Word2Vec Embedding

Recently Mikolov et al. (2013a;b) introduced word2vec, a

novel word-embedding procedure. Their model learns a

vector representation for each word using a (shallow) neu-

ral network language model. Specifically, they propose a

neural network architecture (the skip-gram model) that con-

sists of an input layer, a projection layer, and an output

layer to predict nearby words. Each word vector is trained

to maximize the log probability of neighboring words in a

corpus, i.e., given a sequence of words w1, . . . , wT ,

1

T

T
∑

t=1

∑

j∈nb(t)

log p(wj |wt)

where nb(t) is the set of neighboring words of word wt and

p(wj |wt) is the hierarchical softmax of the associated word
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vectors vwj
and vwt

(see Mikolov et al. (2013a) for more

details). Due to its surprisingly simple architecture and the

use of the hierarchical softmax, the skip-gram model can

be trained on a single machine on billions of words per

hour using a conventional desktop computer. The ability

to train on very large data sets allows the model to learn

complex word relationships such as vec(Japan) - vec(sushi)

+ vec(Germany) ≈ vec(bratwurst) and vec(Einstein) -

vec(scientist) + vec(Picasso) ≈ vec(painter) (Mikolov

et al., 2013a;b). Learning the word embedding is entirely

unsupervised and it can be computed on the text corpus of

interest or be pre-computed in advance. Although we use

word2vec as our preferred embedding throughout, other

embeddings are also plausible (Collobert & Weston, 2008;

Mnih & Hinton, 2009; Turian et al., 2010).

4. Word Mover’s Distance

Assume we are provided with a word2vec embedding ma-

trix X∈R
d×n for a finite size vocabulary of n words. The

ith column, xi ∈Rd, represents the embedding of the ith

word in d-dimensional space. We assume text documents

are represented as normalized bag-of-words (nBOW) vec-

tors, d ∈Rn. To be precise, if word i appears ci times in

the document, we denote di = ci
P

n
j=1

cj
. An nBOW vector

d is naturally very sparse as most words will not appear in

any given document. (We remove stop words, which are

generally category independent.)

nBOW representation. We can think of the vector d as

a point on the n−1 dimensional simplex of word distribu-

tions. Two documents with different unique words will lie

in different regions of this simplex. However, these doc-

uments may still be semantically close. Recall the earlier

example of two similar, but word-different sentences in one

document: “Obama speaks to the media in Illinois” and in

another: “The President greets the press in Chicago”. After

stop-word removal, the two corresponding nBOW vectors

d and d
′ have no common non-zero dimensions and there-

fore have close to maximum simplex distance, although

their true distance is small.

Word travel cost. Our goal is to incorporate the seman-

tic similarity between individual word pairs (e.g. Presi-

dent and Obama) into the document distance metric. One

such measure of word dissimilarity is naturally provided by

their Euclidean distance in the word2vec embedding space.

More precisely, the distance between word i and word j be-

comes c(i, j) = ‖xi − xj‖2. To avoid confusion between

word and document distances, we will refer to c(i, j) as the

cost associated with “traveling” from one word to another.

Document distance. The “travel cost” between two words

is a natural building block to create a distance between two

documents. Let d and d
′ be the nBOW representation of

The President greets the press in Chicago.

Obama speaks in Illinois.

1.30

D1

D2

D3

D0

D0 The President greets the press in Chicago.

Obama speaks to the media in Illinois.

The band gave a concert in Japan.
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Figure 2. (Top:) The components of the WMD metric between a

query D0 and two sentences D1, D2 (with equal BOW distance).

The arrows represent flow between two words and are labeled

with their distance contribution. (Bottom:) The flow between two

sentences D3 and D0 with different numbers of words. This mis-

match causes the WMD to move words to multiple similar words.

two text documents in the (n − 1)-simplex. First, we al-

low each word i in d to be transformed into any word in

d
′ in total or in parts. Let T ∈ Rn×n be a (sparse) flow

matrix where Tij ≥ 0 denotes how much of word i in d

travels to word j in d
′. To transform d entirely into d

′ we

ensure that the entire outgoing flow from word i equals di,

i.e.
∑

j Tij = di. Further, the amount of incoming flow

to word j must match d′j , i.e.
∑

i Tij = d′j . Finally, we

can define the distance between the two documents as the

minimum (weighted) cumulative cost required to move all

words from d to d
′, i.e.

∑

i,j Tijc(i, j).

Transportation problem. Formally, the minimum cumu-

lative cost of moving d to d
′ given the constraints is pro-

vided by the solution to the following linear program,

min
T≥0

n
∑

i,j=1

Tijc(i, j)

subject to:

n
∑

j=1

Tij = di ∀i ∈ {1, . . . , n} (1)

n
∑

i=1

Tij = d′j ∀j ∈ {1, . . . , n}.

The above optimization is a special case of the earth

mover’s distance metric (EMD) (Monge, 1781; Rubner

et al., 1998; Nemhauser & Wolsey, 1988), a well studied

transportation problem for which specialized solvers have

been developed (Ling & Okada, 2007; Pele & Werman,

2009). To highlight this connection we refer to the resulting

metric as the word mover’s distance (WMD). As the cost

c(i, j) is a metric, it can readily be shown that the WMD is

also a metric (Rubner et al., 1998).

Visualization. Figure 2 illustrates the WMD metric on

two sentences D1 and D2 which we would like to compare
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to the query sentence D0. First, stop-words are removed,

leaving President, greets, press, Chicago in D0 each with

di = 0.25. The arrows from each word i in sentences D1

and D2 to word j in D0 are labeled with their contribution

to the distance Tijc(i, j). We note that the WMD agrees

with our intuition, and “moves” words to semantically sim-

ilar words. Transforming Illinois into Chicago is much

cheaper than is Japan into Chicago. This is because the

word2vec embedding places the vector vec(Illinois) closer

to vec(Chicago) than vec(Japan). Consequently, the dis-

tance from D0 to D1 (1.07) is significantly smaller than to

D2 (1.63). Importantly however, both sentences D1 and

D2 have the same bag-of-words/TF-IDF distance from D0,

as neither shares any words in common with D0. An addi-

tional example D3 highlights the flow when the number of

words does not match. D3 has term weights dj =0.33 and

excess flow is sent to other similar words. This increases

the distance, although the effect might be artificially magni-

fied due to the short document lengths as longer documents

may contain several similar words.

4.1. Fast Distance Computation

The best average time complexity of solving the WMD op-

timization problem scales O(p3 log p), where p denotes the

number of unique words in the documents (Pele & Wer-

man, 2009). For datasets with many unique words (i.e.,

high-dimensional) and/or a large number of documents,

solving the WMD optimal transport problem can become

prohibitive. We can however introduce several cheap lower

bounds of the WMD transportation problem that allows us

to prune away the majority of the documents without ever

computing the exact WMD distance.

Word centroid distance. Following the work of Rubner

et al. (1998) it is straight-forward to show (via the triangle

inequality) that the ‘centroid’ distance ‖Xd−Xd
′‖2 must

lower bound the WMD between documents d,d′,

n
∑

i,j=1

Tijc(i, j) =

n
∑

i,j=1

Tij‖xi − x
′
j‖2

=

n
∑

i,j=1

‖Tij(xi − x
′
j)‖2 ≥

∥

∥

∥

n
∑

i,j=1

Tij(xi − x
′
j)

∥

∥

∥

2

=
∥

∥

∥

n
∑

i=1

(

n
∑

j=1

Tij

)

xi −

n
∑

j=1

(

n
∑

i=1

Tij

)

x
′
j

∥

∥

∥

2

=
∥

∥

∥

n
∑

i=1

dixi −

n
∑

j=1

d′jx
′
j

∥

∥

∥

2
= ‖Xd − Xd

′‖2.

We refer to this distance as the Word Centroid Distance

(WCD) as each document is represented by its weighted

average word vector. It is very fast to compute via a few

matrix operations and scales O(dp). For nearest-neighbor

applications we can use this centroid-distance to inform

our nearest neighbor search about promising candidates,

which allows us to speed up the exact WMD search sig-

nificantly. We can also use WCD to limit our k-nearest

neighbor search to a small subset of most promising candi-

dates, resulting in an even faster approximate solution.

Relaxed word moving distance. Although the WCD is

fast to compute, it is not very tight (see section 5). We

can obtain much tighter bounds by relaxing the WMD opti-

mization problem and removing one of the two constraints

respectively (removing both constraints results in the triv-

ial lower bound T = 0.) If just the second constraint is

removed, the optimization becomes,

min
T≥0

n
∑

i,j=1

Tijc(i, j)

subject to:

n
∑

j=1

Tij = di ∀i ∈ {1, . . . , n}.

This relaxed problem must yield a lower-bound to the

WMD distance, which is evident from the fact that every

WMD solution (satisfying both constraints) must remain a

feasible solution if one constraint is removed.

The optimal solution is for each word in d to move all its

probability mass to the most similar word in d
′. Precisely,

an optimal T∗ matrix is defined as

T
∗
ij =

{

di if j = argminj c(i, j)

0 otherwise.
(2)

The optimality of this solution is straight-forward to show.

Let T be any feasible matrix for the relaxed problem, the

contribution to the objective value for any word i, with

closest word j∗ = argminj c(i, j), cannot be smaller:

∑

j

Tijc(i, j) ≥
∑

j

Tijc(i, j
∗) = c(i, j∗)

∑

j

Tij

= c(i, j∗)di =
∑

j

T
∗
ijc(i, j).

Therefore, T
∗ must yield a minimum objective value.

Computing this solution requires only the identification of

j∗ = argmini c(i, j), which is a nearest neighbor search

in the Euclidean word2vec space. For each word vec-

tor xi in document D we need to find the most simi-

lar word vector xj in document D′. The second setting,

when the first constraint is removed, is almost identical

except that the nearest neighbor search is reversed. Both

lower bounds ultimately rely on pairwise distance compu-

tations between word vectors. These computations can be

combined and reused to obtain both bounds jointly at lit-

tle additional overhead. Let the two relaxed solutions be

ℓ1(d,d′) and ℓ2(d,d′) respectively. We can obtain an
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even tighter bound by taking the maximum of the two,

ℓr(d,d′) = max (ℓ1(d,d′), ℓ2(d,d′)), which we refer to

as the Relaxed WMD (RWMD). This bound is significantly

tighter than WCD. The nearest neighbor search has a time

complexity of O(p2), and it can be sped up further by lever-

aging out-of-the-box tools for fast (approximate or exact)

nearest neighbor retrieval (Garcia et al., 2008; Yianilos,

1993; Andoni & Indyk, 2006).

Prefetch and prune. We can use the two lower bounds to

drastically reduce the amount of WMD distance computa-

tions we need to make in order to find the k nearest neigh-

bors of a query document. We first sort all documents in in-

creasing order of their (extremely cheap) WCD distance to

the query document and compute the exact WMD distance

to the first k of these documents. Subsequently, we tra-

verse the remaining documents. For each we first check if

the RWMD lower bound exceeds the distance of the current

kth closest document, if so we can prune it. If not, we com-

pute the WMD distance and update the k nearest neighbors

if necessary. As the RWMD approximation is very tight,

it allows us to prune up to 95% of all documents on some

data sets. If the exact k nearest neighbors are not required,

an additional speedup can be obtained if this traversal is

limited to m<n documents. We refer to this algorithm as

prefetch and prune. If m=k, this is equivalent to returning

the k nearest neighbors of the WCD distance. If m=n it is

exact as only provably non-neighbors are pruned.

5. Results

We evaluate the word mover’s distance in the context

of kNN classification on eight benchmark document cat-

egorization tasks. We first describe each dataset and

a set of classic and state-of-the-art document represen-

tations and distances. We then compare the nearest-

neighbor performance of WMD and the competing meth-

ods on these datasets. Finally, we examine how the fast

lower bound distances can speedup nearest neighbor com-

putation by prefetching and pruning neighbors. Mat-

lab code for the WMD metric is available at http://

matthewkusner.com

5.1. Dataset Description and Setup

We evaluate all approaches on 8 supervised document

datasets: BBCSPORT: BBC sports articles between 2004-

2005, TWITTER: a set of tweets labeled with sentiments

‘positive’, ‘negative’, or ‘neutral’ (Sanders, 2011) (the

set is reduced due to the unavailability of some tweets),

RECIPE: a set of recipe procedure descriptions labeled by

their region of origin, OHSUMED: a collection of medi-

cal abstracts categorized by different cardiovascular dis-

ease groups (for computational efficiency we subsample

the dataset, using the first 10 classes), CLASSIC: sets of sen-

Table 1. Dataset characteristics, used in evaluation.
BOW UNIQUE

NAME n DIM. WORDS (AVG) |Y|
BBCSPORT 517 13243 117 5

TWITTER 2176 6344 9.9 3

RECIPE 3059 5708 48.5 15

OHSUMED 3999 31789 59.2 10

CLASSIC 4965 24277 38.6 4

REUTERS 5485 22425 37.1 8

AMAZON 5600 42063 45.0 4

20NEWS 11293 29671 72 20

tences from academic papers, labeled by publisher name,

REUTERS: a classic news dataset labeled by news topics

(we use the 8-class version with train/test split as described

in Cardoso-Cachopo (2007)), AMAZON: a set of Amazon

reviews which are labeled by category product in {books,

dvd, electronics, kitchen} (as opposed to by sentiment),

and 20NEWS: news articles classified into 20 different

categories (we use the “bydate” train/test split1 Cardoso-

Cachopo (2007)). We preprocess all datasets by removing

all words in the SMART stop word list (Salton & Buckley,

1971). For 20NEWS, we additionally remove all words that

appear less than 5 times across all documents. Finally, to

speed up the computation of WMD (and its lower bounds)

we limit all 20NEWS documents to the most common 500

words (in each document) for WMD-based methods.

We split each dataset into training and testing subsets (if not

already done so). Table 1 shows relevant statistics for each

of these training datasets including the number of inputs

n, the bag-of-words dimensionality, the average number

of unique words per document, and the number of classes

|Y|. The word embedding used in our WMD implemen-

tation is the freely-available word2vec word embedding2

which has an embedding for 3 million words/phrases (from

Google News), trained using the approach in Mikolov et al.

(2013b). Words that are not present in the pre-computed

word2vec model are dropped for the WMD metric (and its

lower bounds), but kept for all baselines (thus giving the

baselines a slight competitive advantage).

We compare against 7 document representation baselines:

bag-of-words (BOW). A vector of word counts of dimen-

sionality d, the size of the dictionary.

TFIDF term frequency-inverse document frequency

(Salton & Buckley, 1988): the bag-of-words representa-

tion divided by each word’s document frequency.

BM25 Okapi: (Robertson et al., 1995) a ranking function

that extends TF-IDF for each word w in a document D:

BM25(w, D) = IDF (w)TF (w,D)(k1+1)

TF (w,D)+k1(1−b+b
|D|

Davg
)

where IDF (w) is the inverse document frequency of word

1http://qwone.com/˜jason/20Newsgroups/
2https://code.google.com/p/word2vec/

http://matthewkusner.com
http://matthewkusner.com
http://qwone.com/~jason/20Newsgroups/
https://code.google.com/p/word2vec/
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Figure 3. The kNN test error results on 8 document classification data sets, compared to canonical and state-of-the-art baselines methods.
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Figure 4. The kNN test errors of various document metrics aver-

aged over all eight datasets, relative to kNN with BOW.

w, TF (w, D) is its term frequency in document D, |D| is

the number of words in the document, Davg is the average

size of a document, and k1 and b are free parameters.

LSI Latent Semantic Indexing (Deerwester et al., 1990):

uses singular value decomposition on the BOW representa-

tion to arrive at a semantic feature space.

LDA Latent Dirichlet Allocation (Blei et al., 2003): a

celebrated generative model for text documents that learns

representations for documents as distributions over word

topics. We use the Matlab Topic Modeling Toolbox

Steyvers & Griffiths (2007) and allow 100 iterations for

burn-in and run the chain for 1000 iterations afterwards.

Importantly, for each dataset we train LDA transductively,

i.e. we train on the union of the training and holdout sets.

mSDA Marginalized Stacked Denoising Autoencoder

(Chen et al., 2012): a representation learned from stacked

denoting autoencoders (SDAs), marginalized for fast train-

ing. In general, SDAs have been shown to have state-of-

the-art performance for document sentiment analysis tasks

(Glorot et al., 2011). For high-dimensional datasets (i.e.,

all except BBCSPORT, TWITTER, and RECIPE) we use ei-

ther the high-dimensional version of mSDA (Chen et al.,

2012) or limit the features to the top 20% of the words (or-

dered by occurence), whichever performs better.

CCG Componential Counting Grid (Perina et al.,

Table 2. Test error percentage and standard deviation for different

text embeddings. NIPS, AMZ, News are word2vec (w2v) models

trained on different data sets whereas HLBL and Collo were also

obtained with other embedding algorithms.

DOCUMENT k-NEAREST NEIGHBOR RESULTS

DATASET HLBL CW NIPS AMZ NEWS

(W2V) (W2V) (W2V)

BBCSPORT 4.5 8.2 9.5 4.1 5.0

TWITTER 33.3 33.7 29.3 28.1 28.3

RECIPE 47.0 51.6 52.7 47.4 45.1

OHSUMED 52.0 56.2 55.6 50.4 44.5

CLASSIC 5.3 5.5 4.0 3.8 3.0

REUTERS 4.2 4.6 7.1 9.1 3.5

AMAZON 12.3 13.3 13.9 7.8 7.2

2013): a generative model that directly generalizes the

Counting Grid (Jojic & Perina, 2011), which models doc-

uments as a mixture of word distributions, and LDA (Blei

et al., 2003). We use the grid location admixture probabil-

ity of each document as the new representation.

For each baseline we use the Euclidean distance for kNN

classification. All free hyperparameters were set with

Bayesian optimization for all algorithms (Snoek et al.,

2012). We use the open source MATLAB implementation

“bayesopt.m” from Gardner et al. (2014).3

5.2. Document classification

Document similarities are particularly useful for classifica-

tion given a supervised training dataset, via the kNN de-

cision rule (Cover & Hart, 1967). Different from other

classification techniques, kNN provides an interpretable

certificate (i.e., in the form of nearest neighbors) that al-

low practitioners the ability to verify the prediction result.

Moreover, such similarities can be used for ranking and

recommendation. To assess the performance of our met-

ric on classification, we compare the kNN results of the

WMD with each of the aforementioned document repre-

sentations/distances. For all algorithms we split the train-

3http://tinyurl.com/bayesopt

http://tinyurl.com/bayesopt
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Figure 5. (Left:) The average distances of lower bounds as a ratio

w.r.t WMD. (Right:) kNN test error results on 8 datasets, com-

pared to canonical and state-of-the-art baseline methods.

ing set into a 80/20 train/validation for hyper-parameter

tuning. It is worth emphasizing that BOW, TF-IDF, BM25

and WMD have no hyperparameters and thus we only op-

timize the neighborhood size (k ∈ {1, . . . , 19}) of kNN.

Figure 3 shows the kNN test error of the 8 aforementioned

algorithms on the 8 document classification datasets. For

datasets without predefined train/test splits (BBCSPORT,

TWITTER, RECIPE, CLASSIC, AMAZON) we averaged over

5 train/test splits and we report means and standard errors.

We order the methods by their average performance. Per-

haps surprisingly, LSI and LDA outperform the more re-

cent approaches CCG and mSDA. For LDA this is likely

because it is trained transductively. One explanation for

why LSI performs so well may be the power of Bayesian

Optimization to tune the single LSI hyperparameter: the

number of basis vectors to use in the representation. Fine-

tuning the number of latent vectors may allow LSI to create

a very accurate representation. On all datasets except two

(BBCSPORT, OHSUMED), WMD achieves the lowest test

error. Notably, WMD achieves almost a 10% reduction in

(relative) error over the second best method on TWITTER

(LSI). It even reaches error levels as low as 2.8% error on

classic and 3.5% error on REUTERS, even outperforming

transductive LDA, which has direct access to the features

of the test set. One possible explanation for the WMD per-

formance on OHSUMED is that many of these documents

contain technical medical terms which may not have a word

embedding in our model. These words must be discarded,

possibly harming the accuracy of the metric.

Figure 4 shows the average improvement of each method,

relative to BOW, across all datasets. On average, WMD

results in only 0.42 of the BOW test-error and outperforms

all other metrics that we compared against.

5.3. Word embeddings.

As our technique is naturally dependent on a word em-

bedding, we examine how different word embeddings af-

fect the quality of k-nearest neighbor classification with

the WMD. Apart from the aforementioned freely-available

Google News word2vec model, we trained two other

word2vec models on a papers corpus (NIPS) and a product

review corpus (AMZ). Specifically, we extracted text from
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Figure 6. The WCD, RWMD, and WMD distances (sorted by

WMD) for a random test query document.

all NIPS conference papers within the years 2004-2013 and

trained a Skip-gram model on the dataset as per Mikolov

et al. (2013b). We also used the 340, 000 Amazon re-

view dataset of Blitzer et al. (2006) (a superset of the ama-

zon classification dataset used above) to train the review-

based word2vec model. Prior to training we removed stop

words for both models, resulting in 36,425,259 words for

the NIPS dataset (50-dimensional) and 90,005,609 words

for the Reviews dataset (100-dimensional) (compared to

the 100 billion word dataset of Google News (NEWS)).

Additionally, we experimented with the pre-trained em-

beddings of the hierarchical log-bilinear model (HLBL)

(Mnih & Hinton, 2009) and the model of Collobert & We-

ston (2008) (CW)4. The HLBL model contains 246, 122
unique 50-dimensional word embeddings and the Collobert

model has 268, 810 unique word embeddings (also 50-

dimensional). Table 2 shows classification results on all

data sets except 20NEWS (which we dropped due to run-

ning time constraints). On the five larger data sets, the 3

million word Google NEWS model performs superior to

the smaller models. This result is in line with those of

Mikolov et al. (2013a), that in general more data (as op-

posed to simply relevant data) creates better embeddings.

Additionally, the three word2vec (w2v) models outperform

the HLBL and Collobert models on all datasets. The clas-

sification error deteriorates when the underlying model is

trained on very different vocabulary (e.g. NIPS papers vs

cooking recipes), although the performance of the Google

NEWS corpus is surprisingly competitive throughout.

5.4. Lower Bounds and Pruning

Although WMD yields by far the most accurate classifica-

tion results, it is fair to say that it is also the slowest met-

ric to compute. We can therefore use the lower bounds

from section 4 to speed up the distance computations. Fig-

ure 6 shows the WMD distance of all training inputs to two

randomly chosen test queries from TWITTER and AMAZON

in increasing order. The graph also depicts the WCD and

RWMD lower bounds. The RWMD is typically very close

to the exact WMD distance, whereas the cheaper WCD

4Both available at http://metaoptimize.com/

projects/wordreprs/

http://metaoptimize.com/projects/wordreprs/
http://metaoptimize.com/projects/wordreprs/
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approximation is rather loose. The tightness of RWMD

makes it valuable to prune documents that are provably not

amongst the k nearest neighbors. Although the WCD is

too loose for pruning, its distances increase with the exact

WMD distance, which makes it a useful heuristic to iden-

tify promising nearest neighbor candidates.

The tightness of each lower bound can be seen in the

left image in Figure 5 (averaged across all test points).

RWMDC1, RWMDC2 correspond to WMD with only con-

straints #1 and #2 respectively, which result in comparable

tightness. WCD is by far the loosest and RWMD the tight-

est bound. Interestingly, this tightness does not directly

translate into retrieval accuracy. The right image shows

the average kNN errors (relative to the BOW kNN error)

if the lower bounds are used directly for nearest neighbor

retrieval. The two most left columns represent the two in-

dividual lower bounds of the RWMD approximation. Both

perform poorly (worse than WCD), however their maxi-

mum (RWMD) is surprisingly accurate and yields kNN er-

rors that are only a little bit less accurate than the exact

WMD. In fact, we would like to emphasize that the aver-

age kNN error with RWMD (0.45 relative to BOW) still

outperforms all other baselines (see Figure 4).

Finally, we evaluate the speedup and accuracy of the exact

and approximate versions of the prefetch and prune algo-

rithm from Section 4 under various values of m (Figure 7).

When m = k we use the WCD metric for classification

(and drop all WMD computations which are unnecessary).

For all other results we prefetch m instances via WCD, use

RWMD to check if a document can be pruned and only

if not compute the exact WMD distance. The last bar for

each dataset shows the test error obtained with the RWMD

metric (omitting all WMD computations). All speedups

are reported relative to the time required for the exhaustive

WMD metric (very top of the figure) and were run in par-

alell on 4 cores (8 cores for 20NEWS) of an Intel L5520

CPU with 2.27Ghz clock frequency.

First, we notice in all cases the increase in error through

prefetching is relatively minor whereas the speedup can be

substantial. The exact method (m = n) typically results in

a speedup between 2× and 5× which appears pronounced

with increasing document lengths (e.g. 20NEWS). It is

interesting to observe, that the error drops most between

m = k and m = 2k, which might yield a sweet spot be-

tween accuracy and retrieval time for time-sensitive appli-

cations. As noted before, using RWMD directly leads to

impressively low error rates and average retrieval times be-

low 1s on all data sets. We believe the actual timing could

be improved substantially with more sophisticated imple-

mentations (our code is in MATLAB) and parallelization.

6. Discussion and Conclusion

It is worthwhile considering why the WMD metric leads to

such low error rates across all data sets. We attribute this

to its ability to utilize the high quality of the word2vec em-

bedding. Trained on billions of words, the word2vec em-

bedding captures knowledge about text documents in the

English language that may not be obtainable from the train-

ing set alone. As pointed out by Mikolov et al. (2013a),

other algorithms (such as LDA or LSI) do not scale nat-

urally to data sets of such scale without special approxi-

mations which often counteract the benefit of large-scale

data (although it is a worthy area of future work). Sur-

prisingly, this “latent” supervision benefits tasks that are

different from the data used to learn the word embedding.

One attractive feature of the WMD, that we would like

to explore in the future, is its interpretability. Document

distances can be dissected into sparse distances between

words, which can be visualized and explained to humans.

Another interesting direction will be to incorporate docu-

ment structure into the distances between words by adding

penalty terms if two words occur in different sections of

similarly structured documents. If for example the WMD

metric is used to measure the distance between academic

papers, it might make sense to penalize word movements

between the introduction and method section more than

word movements from one introduction to another.
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