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Abstract

Over the past years, distributed semantic representations have proved to be effective
and flexible keepers of prior knowledge to be integrated into downstream applications. This
survey focuses on the representation of meaning. We start from the theoretical background
behind word vector space models and highlight one of their major limitations: the meaning
conflation deficiency, which arises from representing a word with all its possible meanings as
a single vector. Then, we explain how this deficiency can be addressed through a transition
from the word level to the more fine-grained level of word senses (in its broader acceptation)
as a method for modelling unambiguous lexical meaning. We present a comprehensive
overview of the wide range of techniques in the two main branches of sense representation,
i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation
procedures and applications for this type of representation, and provides an analysis of
four of its important aspects: interpretability, sense granularity, adaptability to different
domains and compositionality.

1. Introduction

Recently, neural network based approaches which process massive amounts of textual data to
embed words’ semantics into low-dimensional vectors, the so-called word embeddings, have
garnered a lot of attention (Mikolov, Chen, Corrado, & Dean, 2013a; Pennington, Socher, &
Manning, 2014). Word embeddings have demonstrated their effectiveness in storing valuable
syntactic and semantic information (Mikolov, Yih, & Zweig, 2013d). In fact, they have
been shown to be beneficial to many Natural Language Processing (NLP) tasks, mainly
due to their generalization power (Goldberg, 2016). A wide range of applications have
reported improvements upon integrating word embeddings, including machine translation
(Zou, Socher, Cer, & Manning, 2013), syntactic parsing (Weiss, Alberti, Collins, & Petrov,
2015), text classification (Kim, 2014) and question answering (Bordes, Chopra, & Weston,
2014), to name a few.

However, despite their flexibility and success in capturing semantic properties of words,
the effectiveness of word embeddings is generally hampered by an important limitation
which we will refer to as meaning conflation deficiency: the inability to discriminate among
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different meanings of a word. A word can have one meaning (monosemous) or multiple
meanings (ambiguous). For instance, the noun nail can refer to two different meanings
depending on the context: a part of the finger or a metallic object. Hence, the noun nail
is said to be ambiguous!. Each individual meaning of an ambiguous word is called a word
sense and a lexical resource that lists different meanings (senses) of words is usually referred
to as a sense inventory.2 While most words in general sense inventories (e.g. WordNet) are
often monosemous?®, frequent words tend to have more senses, according to the Principle of
Economical Versatility of Words (Zipf, 1949). Therefore, accurately capturing the semantics
of ambiguous words plays a crucial role in the language understanding of NLP systems.

In order to deal with the meaning conflation deficiency, a number of approaches have
attempted to model individual word senses. In this survey we have tried to synthesize
the most relevant works on sense representation learning. The main distinction of these ap-
proaches is in how they model meaning and where they obtain it from. Unsupervised models
directly learn word senses from text corpora, while knowledge-based techniques exploit the
sense inventories of lexical resources as their main source for representing meanings. In this
survey we cover these two classes of techniques for learning distributed semantic representa-
tions of meaning, including evaluation procedures and an analysis of their main properties.
While the survey is intended to be as extensive as possible, given the breadth of the topics
reviewed, some areas may not have received a sufficient coverage to be totally self-contained.
However, for these cases we provide relevant pointers for readers interested in learning more
on the topic. Given the wide audience that this survey is intended to reach, we have tried
to make it as understandable as possible. Therefore, technical details might not have been
necessarily provided in full detail, but rather the intuition behind them.

The remainder of this survey is structured as follows. First, in Section 2 we provide a
theoretical background for word senses, what they are, why modeling them may be useful
and its main paradigms. Then, in Section 3 we describe unsupervised sense vector modeling
techniques which learn directly from text corpora, while in Section 4 the representations
linked to lexical resources are explained. Common evaluation procedures and benchmarks
are presented in Section 5 and the applications in downstream tasks in Section 6. Finally,
we present an analysis and comparison between unsupervised and knowledge-based repre-
sentations in Section 7 and the main conclusions and future challenges in Section 8.

2. Background

This section provides theoretical foundations which support the move from word level to the
more fine-grained level of word senses and concepts. First, we provide the background to
vector space models, particularly for word representation learning (Section 2.1). Then, we

1. Nail can also refer to a unit of cloth measurement (generally a sixteenth of a yard) or even be used as a
verb.

2. In order to obtain the list of possible word senses of a target word, lexicographers tend to first collect
occurrences of the words from corpora and then manually cluster them semantically and based on their
contexts, i.e., concordance (Kilgarriff, 1997). Given this procedure, Kilgarriff (1997) suggested that
word senses, as defined by sense inventories in NLP, should not be construed as objects but rather as
abstractions over clusters of word usages.

3. For instance, around 83% of the 155K words in WordNet 3.0 are listed as monosemous (see Section 4.1
for more information on lexical resources).
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explain some of the main deficiencies of word representations which led to the development
of sense modeling techniques (Section 2.2) and describe the main paradigms for representing
senses (Section 2.3). In Section 2.4 we present a brief historical background of the related
task of word sense disambiguation. Finally, we explain the notation followed throughout
the survey (Section 2.5).

2.1 Word Representation Learning

Word representation learning has been one of the main research areas in Semantics since the
beginnings of NLP. We first introduce the main theories behind word representation learning
based on vector space models (Section 2.1.1) and then move to the emerging theories for
learning word embeddings (Section 2.1.2).

2.1.1 VECTOR SPACE MODELS

One of the most prominent methodologies for word representation learning is based on Vec-
tor Space Models (VSM), which is supported by research in human cognition (Landauer
& Dumais, 1997; Gérdenfors, 2004). The earliest VSM applied in NLP considered a doc-
ument as a vector whose dimensions were the whole vocabulary (Salton, Wong, & Yang,
1975). Weights of individual dimensions were initially computed based on word frequencies
within the document. Different weight computation metrics have been explored, but mainly
based on frequencies or normalized frequencies (Salton & McGill, 1983). This methodology
has been successfully refined and applied to various NLP applications such as information
retrieval (Lee, Chuang, & Seamons, 1997), text classification (Soucy & Mineau, 2005), or
sentiment analysis (Turney, 2002), to name a few. Turney and Pantel (2010) provide a
comprehensive overview of VSM and their applications.

The document-based VSM has been also extended to other lexical items like words. In
this case a word is generally represented as a point in a vector space. A word-based vector
has been traditionally constructed based on the normalized frequencies of the co-occurring
words in a corpus (Lund & Burgess, 1996), by following the initial theories of Harris (1954).
The main idea behind word VSM is that words that share similar context should be close in
the vector space (therefore, have similar semantics). Figure 1 shows an example of a word
VSM where this underlying proximity axiom is clearly highlighted.

Vector-based representations have established their effectiveness in NLP tasks such as
information extraction (Laender, Ribeiro-Neto, da Silva, & Teixeira, 2002), semantic role
labeling (Erk, 2007), word similarity (Radinsky, Agichtein, Gabrilovich, & Markovitch,
2011), word sense disambiguation (Navigli, 2009) or spelling correction (Jones & Martin,
1997), inter alia. One of the main drawbacks of the conventional VSM approaches is the
high dimensionality of the produced vectors. Since the dimensions correspond to words
in the vocabulary, this number could easily reach hundreds of thousands or even millions,
depending on the underlying corpus. A common approach for dimensionality reduction
makes use of the Singular Value Decomposition (SVD), also known as Latent Semantic
Analysis (Hofmann, 2001; Landauer & Dooley, 2002, LSA). In addition, recent models also
leverage neural networks to directly learn low-dimensional word representations. These
models are introduced in the following section.
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Figure 1: Subset of a sample word vector space reduced to two dimensions using t-SNE
(Maaten & Hinton, 2008). In a semantic space, words with similar meanings tend
to appear in the proximity of each other, as highlighted by these word clusters
(delimited by the red dashed lines) associated with big cats, birds and plants.

2.1.2 WORD EMBEDDINGS

Learning low-dimensional vectors from text corpora can alternatively be achieved by ex-
ploiting neural networks. These models are commonly known as word embeddings and
have been shown to provide valuable prior knowledge thanks to their generalization power
(Goldberg, 2016). This property has proved to be decisive for achieving state-of-the-art
performance in many NLP tasks when integrated into a neural network architecture (Zou
et al., 2013; Kim, 2014; Bordes et al., 2014; Weiss et al., 2015).

This newer predictive branch, whose architecture is based on optimizing a certain ob-
jective (Bengio, Ducharme, Vincent, & Janvin, 2003; Collobert & Weston, 2008; Turian,
Ratinov, & Bengio, 2010; Collobert, Weston, Bottou, Karlen, Kavukcuoglu, & Kuksa, 2011),
was popularized through Word2vec (Mikolov et al., 2013a). Word2vec is based on a simple
but efficient architecture which provides interesting semantic properties (Mikolov et al.,
2013d). Two different but related Word2vec models were proposed: Continuous Bag-Of-
Words (CBOW) and Sikp-gram. The CBOW architecture is based on a feedforward neural
network language model (Bengio et al., 2003) and aims at predicting the current word using
its surrounding context, minimizing the following loss function:

E=- log(P(wt\Wt)) (1)

where wy is the target word and Wy = wy_p,, ..., wy, ..., Wy4y represents the sequence of words
in context. Figure 2 shows a simplification of the general architecture of the CBOW and
Skip-gram models of Word2vec. The architecture consists of input, hidden and output
layers. The input layer has the size of the word vocabulary and encodes the context as a
combination of one-hot vector representations of surrounding words of a given target word.
The output layer has the same size as the input layer and contains a one-hot vector of
the target word during the training phase. The Skip-gram model is similar to the CBOW
model but in this case the goal is to predict the words in the surrounding context given
the target word, rather than predicting the target word itself. Interestingly, Levy and
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Figure 2: Learning architecture of the CBOW and Skipgram models of Word2vec (Mikolov
et al., 2013a).

Goldberg (2014b) proved that Skip-gram can be in fact viewed as an implicit factorization
of a Point-Mutual Information (PMI) co-occurrence matrix.

Another prominent word embedding architecture is GloVe (Pennington et al., 2014),
which combines global matrix factorization and local context window methods through a
bilinear regression model. In recent years more complex approaches that attempt to im-
prove the quality of word embeddings have been proposed, including models exploiting
dependency parse-trees (Levy & Goldberg, 2014a) or symmetric patterns (Schwartz, Re-
ichart, & Rappoport, 2015), leveraging subword units (Wieting, Bansal, Gimpel, & Livescu,
2016; Bojanowski, Grave, Joulin, & Mikolov, 2017), representing words as probability distri-
butions (Vilnis & McCallum, 2015; Athiwaratkun & Wilson, 2017; Athiwaratkun, Wilson,
& Anandkumar, 2018), learning word embeddings in multilingual vector spaces (Conneau,
Lample, Ranzato, Denoyer, & Jégou, 2018; Artetxe, Labaka, & Agirre, 2018), or exploiting
knowledge resources (more details about this type in Section 4.2).*

2.2 Meaning Conflation Deficiency

The prevailing objective of representing each word type as a single point in the semantic
space has a major limitation: it ignores the fact that words can have multiple meanings
and conflates all these meanings into a single representation. The work of Schiitze (1998)
is one of the earliest to identify the meaning conflation deficiency of word vectors. Having
different (possibly unrelated) meanings conflated into a single representation can hamper
the semantic understanding of an NLP system that uses these at its core. In fact, word
embeddings have been shown to be unable in effectively capturing different meanings of a
word, even when these meanings occur in the underlying training corpus (Yaghoobzadeh &
Schiitze, 2016). The meaning conflation can have additional negative impacts on accurate
semantic modeling, e.g., semantically unrelated words that are similar to different senses of
a word are pulled towards each other in the semantic space (Neelakantan, Shankar, Passos,
& McCallum, 2014; Pilehvar & Collier, 2016). For example, the two semantically-unrelated
words rat and screen are pulled towards each other in the semantic space for their similarities

4. For a more comprehensive overview on word embeddings and their current challenges, please refer to the
survey of Ruder (2017).
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Figure 3: An illustration of the meaning conflation deficiency in a 2D semantic space around
the ambiguous word mouse. Having the word, with its different meanings, repre-
sented as a single point (vector) results in pulling together of semantically unre-
lated words, such as computer and rabbit.

to two different senses of mouse, i.e., rodent and computer input device. See Figure 3 for an
illustration.> Moreover, the conflation deficiency violates the triangle inequality of euclidean
spaces, which can reduce the effectiveness of word space models (Tversky & Gati, 1982).
In order to alleviate this deficiency, a new direction of research has emerged over the past
years, which tries to directly model individual meanings of words. In this survey we focus
on this new branch of research, which has some similarities and peculiarities with respect
to word representation learning.

2.3 Sense Representation

A solution to addressing the meaning conflation deficiency of word embeddings is to repre-
sent individual meanings of words, i.e., word senses, as independent representations. Such
representations are generally referred to as sense representations. Sense representation tech-
niques can be broadly classified depending on the way sense distinctions are made. The
optimal way of partitioning the meanings of words into multiple senses has long been the
point of argument (Erk, McCarthy, & Gaylord, 2009; Erk, 2012; McCarthy, Apidianaki, &
Erk, 2016). Traditionally, as in word sense disambiguation (see Section 2.4), computational
techniques have relied on fixed sense inventories produced by humans, such as WordNet
(Miller, 1995). A sense inventory® is a lexical resource, such as a dictionary or thesaurus,
that lists for each word the possible meanings it can take. Sense distinctions can also be
defined through word sense induction, i.e., automatic identification of a word’s senses by
analyzing the contexts in which it appears.

Generally, sense representations can be divided into two main paradigms depending on
how the sense distinctions are defined:

5. Dimensionality was reduced using PCA; visualized with http://projector.tensorflow.org/.
6. In Section 4.1 we provide an overview of few of the most popular sense inventories.
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e Unsupervised. In these representation models the sense distinctions are induced by
analyzing text corpora. This paradigm is very related to word sense induction.

e Knowledge-based. These techniques represent word senses as defined by an external
sense inventory, e.g., WordNet.” In this case, the most directly associated task is word
sense disambiguation.

In Sections 3 and 4, we will provide details of each paradigm and their variants.

2.4 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is a task which is closely related to the meaning confla-
tion deficiency. WSD has been a long-standing task in NLP and AI (Navigli, 2009), dating
back to the first half of the 20th century where it was viewed as a key intermediate task
for machine translation (Weaver, 1955). Given a word in context, the task of WSD consists
of associating the word with its most appropriate meaning as defined by a sense inventory.
For example, in the sentence “My mouse was broken, so I bought a new one yesterday.”,
mouse would be associated with its computer device meaning, assuming an existing entry
for such sense in the pre-defined sense inventory.

WSD has been catalogued as an Al-complete problem (Mallery, 1988; Navigli, 2009)
and its challenges (still present nowadays) are manifold: sense granularity, corpus domain
or the representation of word senses (topic addressed in this survey), to name a few. In
addition, the fact that WSD relies on knowledge resources poses additional challenges such
as the creation of such resources and the construction of sense-annotated corpora. All of
these represent a very expensive and time-consuming effort, which needs to be re-done
for different resources and languages, and updated over time. This causes the so-called
knowledge-acquisition bottleneck (Gale, Church, & Yarowsky, 1992).

The knowledge resources and sense inventories traditionally used in WSD have been
associated with entries on a standard dictionary, with WordNet (Miller, Leacock, Tengi, &
Bunker, 1993) being the de-facto sense inventory for WSD. Nevertheless, other machine-
readable structures can be (and are) considered in practice. For example, Wikipedia, which
is constantly being updated, can be viewed as a sense inventory where each entry corre-
sponds to a different concept or entity (Mihalcea & Csomai, 2007). Senses can even be
induced automatically from a corpus using unsupervised methods, a task known as word
sense induction or discrimination.

Methods to perform WSD can be roughly divided into two classes: supervised (Zhong
& Ng, 2010; Iacobacci, Pilehvar, & Navigli, 2016; Yuan, Richardson, Doherty, Evans, &
Altendorf, 2016; Raganato, Delli Bovi, & Navigli, 2017b; Luo, Liu, Xia, Chang, & Sui,
2018) and knowledge-based (Lesk, 1986; Banerjee & Pedersen, 2002; Agirre, de Lacalle,
& Soroa, 2014; Moro, Raganato, & Navigli, 2014; Tripodi & Pelillo, 2017; Chaplot &
Salakhutdinov, 2018). While supervised methods make use of sense-annotated corpora,
knowledge-based methods exploit the structure and content of the underlying knowledge
resource (e.g. definitions or a semantic network).® Currently, supervised methods clearly

7. In this survey we also cover representations directly linked to knowledge resources even if senses are not
explicitly listed (e.g., concepts and entities in Wikipedia), including knowledge base embeddings.

8. Some methods can also be categorized as hybrid, as they make use of both sense-annotated corpora and
knowledge resources, e.g., the gloss-augmented model of Luo et al. (2018).
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outperform knowledge-based systems (Raganato, Camacho-Collados, & Navigli, 2017a);
but, as mentioned earlier, they heavily rely on the availability of sense-annotated corpora,
which is generally scarce.

In this survey we will not go into further details of WSD. For a comprehensive historical
overview of WSD we would recommend the survey of Navigli (2009), and a more recent
analysis of current methods can be found in the empirical comparison of Raganato et al.
(2017a).

2.5 Notation

Throughout this survey we use the following notation. Words will be referred to as w while
senses will be written as s. Concepts, entities and relations will be referred to as ¢, e and
r, respectively. Following previous work (Navigli, 2009), we use the following interpretable
expression for senses as well: word? is the nt" sense of word with part of speech p. As
for synsets as represented in a sense inventory we will use 3. A semantic network will be
generally represented as N. In order to refer to vectors we will add the vector symbol on
the top of each item. For instance, @ and § will refer to the vectors of the word w and sense
s, respectively.

In general in this survey we may refer to sense representation as a general umbrella
term including all vector representations (including embeddings) of meaning beyond the
word level, or explicitly to the vector representation of a word associated with a specific
meaning!® (e.g., bank with its financial meaning), irrespective of whether it comes from a
pre-defined sense inventory or not, and whether it refers to a concept (e.g., banana) or an
entity (e.g., France).

3. Unsupervised Sense Representations

Unsupervised sense representations are constructed on the basis of information extracted
from text corpora only. Word sense induction, i.e., automatic identification of possible
meanings of words, lies at the core of these techniques. An unsupervised model induces
different senses of a word by analysing its contextual semantics in a text corpus and repre-
sents each sense based on the statistical knowledge derived from the corpus. Depending on
the type of text corpus used by the model, we can split unsupervised sense representations
into two broad categories: (1) techniques that exploit monolingual corpora only (Section
3.1) and (2) those exploiting multilingual corpora (Section 3.2).

3.1 Sense Representations Exploiting Monolingual Corpora

This section reviews sense representation models that use unlabeled monolingual corpora as
their main resource. These approaches can be divided into two main groups: (1) clustering-
based (or two-stage) models (Van de Cruys, Poibeau, & Korhonen, 2011; Erk & Padd,
2008; Liu, Qiu, & Huang, 2015a), which first induce senses and then learn representations
for these (Section 3.1.1), and (2) joint training (Li & Jurafsky, 2015; Qiu, Tu, & Yu, 2016),
which perform the induction and representation learning together (Section 3.1.2). Moreover,

9. See Section 4.1 for more information about the notions of these resource-related concepts.
10. In some works senses have also been referred to as lezemes (Rothe & Schiitze, 2015).
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Figure 4: Unsupervised sense representation techniques first induce different senses of a
given word (usually by means of clustering occurrences of that word in a text
corpus) and then compute representations for each induced sense.

in Section 3.1.3 we will briefly overview contextualized embeddings, an emerging branch
of unsupervised techniques which views sense representation from a different perspective.

3.1.1 TwWO-STAGE MODELS

The context-group discrimination of Schiitze (1998) is one of the pioneering works in sense
representation. The approach was an attempt to automatic word sense disambiguation in
order to address the knowledge-acquisition bottleneck for sense annotated data (Gale et al.,
1992) and reliance on external resources. The basic idea of context-group discrimination
is to automatically induce senses from contextual similarity, computed by clustering the
contexts in which an ambiguous word occurs. Specifically, each context C' of an ambigu-
ous word w is represented as a context vector U, computed as the centroid of its content
words’ vectors U, (¢ € C). Context vectors are computed for each word in a given corpus
and then clustered into a predetermined number of clusters (context groups) using the Ex-
pectation Maximization algorithm (Dempster, Laird, & Rubin, 1977, EM). Context groups
for the word are taken as representations for different senses of the word. Despite its sim-
plicity, the clustering-based approach of Schiitze (1998) constitutes the basis for many of
the subsequent techniques, which mainly differed in their representation of context or the
underlying clustering algorithm. Figure 4 depicts the general procedure followed by the
two-stage unsupervised sense representation techniques.

Given its requirement for computing independent representations for all individual con-
texts of a given word, the context-group discrimination approach is not easily scalable to
large corpora. Reisinger and Mooney (2010) addressed this by directly clustering the con-
texts, represented as feature vectors of unigrams, instead of modeling contexts as vectors.
The approach can be considered as the first new-generation sense representation technique,
which is often referred to as multi-prototype. In this specific work, contexts were clustered
using Mixtures of von Mises-Fisher distributions (movMF) algorithm. The algorithm is
similar to k-means but permits controlling the semantic breadth using a per-cluster con-
centration parameter which would better model skewed distributions of cluster sizes.
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Similarly, Huang, Socher, Manning, and Ng (2012) proposed a clustering-based sense
representation technique with three differences: (1) context vectors are obtained by a idf-
weighted averaging of their word vectors; (2) spherical k-means is used for clustering; and
(3) most importantly, occurrences of a word are labeled with their cluster and a second pass
is used to learn sense representations. The idea of two-pass learning has also been employed
by Vu and Parker (2016) for another sense representation modeling architecture.

Sense representations can also be obtained from semantic networks. For instance, Pelev-
ina, Arefyev, Biemann, and Panchenko (2016) constructed a semantic graph by connecting
each word to the set of its semantically similar words. Nodes in this network were clus-
tered using the Chinese Whispers algorithm (Biemann, 2006) and senses were induced as a
weighted average of words in each cluster. A similar sense induction technique was employed
by Sense-aware Semantic Analysis (Wu & Giles, 2015, SaSA). SaSA follows Explicit Seman-
tic Analysis (Gabrilovich & Markovitch, 2007, ESA) by representing a word using Wikipedia
concepts. Instead of constructing a nearest neighbour graph, a graph of Wikipedia arti-
cles is built by gathering all related articles to a word w and clustering them. The sense
induction step is then performed on the semantic space of Wikipedia articles.

3.1.2 JoINT MODELS

The clustering-based approach to sense representation suffers from the limitation that clus-
tering and sense representation are done independently from each other and, as a result,
the two stages do not take advantage from their inherent similarities. The introduction of
embedding models was one of the most revolutionary changes to vector space models of
word meaning. As a closely related field, sense representations did not remain unaffected.
Many researchers have proposed various extensions of the Skip-gram model (Mikolov et al.,
2013a) which would enable the capture of sense-specific distinctions. A major limitation
of the two-stage models is their computational expensiveness'!. Thanks to the efficiency
of embedding algorithms and their unified nature (as opposed to the two-phase nature of
more conventional techniques) these techniques are generally efficient. Hence, many of the
recent techniques have relied on embedding models as their base framework.

Neelakantan et al. (2014) was the first to propose a multi-prototype extension of the
Skip-gram model. Their model, called Multiple-Sense Skip-Gram (MSSG), is similar to
earlier work in that it represents the context of a word as the centroid of it words’ vectors
and clusters them to form the target word’s sense representation. Though, the fundamental
difference is that clustering and sense embedding learning are performed jointly. During
training, the intended sense for each word is dynamically selected as the closest sense to
the context and weights are updated only for that sense. In a concurrent work, Tian, Dai,
Bian, Gao, Zhang, Chen, and Liu (2014) proposed a Skip-gram based sense representation
technique that significantly reduced the number of parameters with respect to the model of
Huang et al. (2012). In this case, word embeddings in the Skip-gram model are replaced
with a finite mixture model in which each mixture corresponds to a prototype of the word.
The EM algorithm was adopted for the training of this multi-prototype Skip-gram model.

11. For instance, the model of Huang et al. (2012) took around one week to learn sense embeddings for a
6,000 subset of the 100,000 vocabulary on a corpus of one billion tokens (Neelakantan et al., 2014).
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# Senses 2 3 4 5 6 7 8 9 10 11 12 > 12
Nouns 2% 1% 14% 13% 9% ™% 4% 4% 3% 3% 1% 3%
Verbs 15% 16% 14% 13% 9% 7% 5% 4% 4% 3% 1% 9%

Adjectives  23% 19% 15% 12% 8% 5% 2% 3% 3% 1% 2% 6%

Table 1: Distribution of words per number of senses in the SemCor dataset (words with
frequency < 10 were pruned).

Liu, Liu, Chua, and Sun (2015b) argued that the above techniques are limited in that
they consider only the local context of a word for inducing its sense representations. To
address this limitation, they proposed Topical Word Embeddings (TWE) in which each word
is allowed to have different embeddings under different topics, where topics are computed
globally using latent topic modelling (Blei, Ng, & Jordan, 2003). Three variants of the
model were proposed: (1) TWE-1, which regards each topic as a pseudo word, and learns
topic embeddings and word embeddings separately; (2) TWE-2, which considers each word-
topic as a pseudo word, and learns topical word embeddings directly; and (3) TWE-3, which
assigns distinct embeddings for each word and each topic and builds the embedding of each
word-topic pair by concatenating the corresponding word and topic embeddings. Various
extensions of the TWE model have been proposed. The Neural Tensor Skip-gram (NTSG)
model (Liu et al., 2015a) applies the same idea of topic modeling for sense representation
but introduces a tensor to better learn the interactions between words and topics. Another
extension is MSWE (Nguyen, Nguyen, Modi, Thater, & Pinkal, 2017), which argues that
multiple senses might be triggered for a word in a given context and replaces the selection
of the most suitable sense in TWE by a mixture of weights that reflect different association
degrees of the word to multiple senses in the context.

These joint unsupervised models, however, suffer from two limitations. First, for ease of
implementation, most unsupervised sense representation techniques assume a fixed number
of senses per word. This assumption is far from being realistic. Words tend to have a highly
variant number of senses, from one (monosemous) to dozens. In a given sense inventory,
usually, most words are monosemous. For instance, around 80% of words in WordNet
3.0 are monosemous, with less than 5% having more than 3 senses. However, ambiguous
words tend to occur more frequently in a real text which slightly smooths the highly skewed
distribution of words across polysemy. Table 1 shows the distribution of word types by
their number of senses in SemCor (Miller et al., 1993), one of the largest available sense-
annotated datasets which comprises around 235,000 semantic annotations for thousands of
words. The skewed distribution clearly shows that word types tend to have varying number
of senses in a natural text, as also discussed in other studies (Piantadosi, 2014; Bennett,
Baldwin, Lau, McCarthy, & Bond, 2016; Pasini & Navigli, 2018).

Second, a common strand of most unsupervised models is that they extend the Skip-
gram model by replacing the conditioning of a word to its context (as in the original model)
with an additional conditioning on the intended senses. However, the context words in
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these models are not disambiguated. Hence, a sense embedding is conditioned on the word
embeddings of its context.

In the following we review some of the approaches that are directly targeted at addressing
these two limitations of the joint unsupervised models described above:

1. Dynamic polysemy. A direct solution to the varying polysemy problem of sense
representation models would be to set the number of senses of a word as defined by
an external sense inventory. The Skip-gram extension of Nieto Pifia and Johansson
(2015) follows this procedure. However, by taking external lexicons as groundtruth
the approach suffers from two main limitations. First, the model is unable to handle
words that are not defined in the lexicon. Second, the model assumes that the sense
distinctions defined by the underlying text match those specified by the lexicon, which
might not be necessarily true. In other words, not all senses of a word might have
occurred in the text or the lexicon might not cover all the different intended senses of
the word in the underlying text. A better solution would involve dynamic induction
of senses from the underlying text. Such a model was first implemented in the non-
parameteric MSSG (NP-MSSG) system of Neelakantan et al. (2014). The model
applies the online non-parametric clustering procedure of Meyerson (2001) to the
task by creating a new sense for a word type only if its similarity (as computed
using the current context) to existing senses for the word is less than a parameter A.
AdaGram (Bartunov, Kondrashkin, Osokin, & Vetrov, 2016) improves this dynamic
behaviour by a more principled nonparametric Bayesian approach. The model, which
similarly to previous works builds on Skip-gram, assumes that the polysemy of a word
is proportional to its frequency (more frequent words are probably more polysemous).

2. Pure sense-based models. Ideally, a model should model the dependency between
sense choices in order to address the ambiguity from context words. Qiu et al. (2016)
addressed this problem by proposing a pure sense-based model. The model also ex-
pands the disambiguation context from a small window (as done in the previous works)
to the whole sentence. MUSE (Lee & Chen, 2017) is another Skip-gram extension
that proposes pure sense representations using reinforcement learning. Thanks to a
linear-time sense sequence decoding module, the approach provides a more efficient
way of searching for sense combinations.

3.1.3 CONTEXTUALIZED WORD EMBEDDINGS

Given that unsupervised sense representations are often produced as a result of clustering,
their semantic distinctions are unclear and their mapping to well-defined concepts is not
straightforward. In fact, one of the main limitations of these models lies in their difficult
integration into downstream models (more details about this in Section 6.2). Recently, an
emerging branch of research has focused on directly integrating unsupervised embeddings
into downstream models. Word embeddings, such as Word2vec and GloVe, compute a sin-
gle representation for each word, which is used to represent words in downstream models
independently from the context in which they appear. In contrast, contextualized word
embeddings are sensitive to the context, i.e., their representation dynamically changes de-
pending on the context in which they appear.
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Figure 5: A general illustration of contextualized word embeddings and how they are in-
tegrated in NLP models (Main system in the figure). A language modelling
component is responsible for analyzing the context of the target word (cell in
the figure) and generating its dynamic embedding. Unlike (context-independent)
word embeddings, which have static representations, contextualized embeddings
have dynamic representations that are sensitive to their context.

The sequence tagger of Li and McCallum (2005) is one of the pioneering works that
employ contextualized representations. The model infers context sensitive latent variables
for each word based on a soft word clustering and integrates them, as additional features, to
a CRF sequence tagger. Since 2011, with the introduction of word embeddings (Collobert
et al., 2011; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013c) and the efficacy of neural
networks, and in the light of meaning conflation deficiency of word embeddings, context-
sensitive models have once again garnered research attention. Emerging solutions mainly
aim at addressing the application limitations of unsupervised techniques; hence, they are
generally characterized by their ease of integration into downstream applications. Con-
text2vec (Melamud, Goldberger, & Dagan, 2016) is one of the earliest and most prominent
proposals in the new branch of contextualized representations. The model represents the
context of a target word by extracting the output embedding of a multi-layer perceptron
built on top of a bi-directional LSTM language model. Context2vec constitutes the basis
for many of the subsequent works.

Figure 5 provides a high-level illustration of the integration of contextualized word
embeddings into an NLP model. At the training time, for each word (e.g., cell in the
figure) in a given input text, the language model unit is responsible for analyzing the context
(usually using recurrent neural networks) and adjusting the target word’s representation by
contextualising (adapting) it to the context. These context-sensitive embeddings are in fact
the internal states of a deep recurrent neural network, either in a monolingual language
modelling setting (Peters, Ammar, Bhagavatula, & Power, 2017; Peters, Neumann, Iyyer,
Gardner, Clark, Lee, & Zettlemoyer, 2018) or a bilingual translation configuration (McCann,
Bradbury, Xiong, & Socher, 2017). The training of contextualized embeddings is carried
out as a pre-training stage, independently from the main task on a large unlabeled or
differently-labeled text corpus. At the test time, a word’s contextualized embeddings is

usually concatenated with its static embedding and fed to the main model (Peters et al.,
2018).

755



CAMACHO-COLLADOS & PILEHVAR

The TagLM model of Peters et al. (2017) is a recent example of this branch which trains
a multi-layer bidirectional LSTM (Hochreiter & Schmidhuber, 1997) language model on
monolingual texts. The prominent ELMo (Embeddings from Language Models) technique
(Peters et al., 2018) is similar in principle with the exception that some weights are shared
between the two directions of the language modeling unit. The Context Vectors (CoVe)
model of McCann et al. (2017) similarly computes contextualized representations using a
two-layer bidirectional LSTM network, but in the machine translation setting. CoVe vectors
are pre-trained using an LSTM encoder from an attentional sequence-to-sequence machine
translation model.'?

3.2 Sense Representations Exploiting Multilingual Corpora

Sense distinctions defined by a sense inventory such as WordNet might not be optimal for
some downstream applications, such as Machine Translation (MT). Given that ambiguity
does not necessarily transfer across languages, sense distinctions for MT should ideally
be defined based on the translational differences across a specific language pair. The usual
approach to do this is to cluster possible translations of a source word in the target language,
with each cluster denoting a specific sense of the source word.

Such translation-specific sense inventories have been used extensively in MT literature
(Ide, Erjavec, & Tufis, 2002; Carpuat & Wu, 2007b; Bansal, Denero, & Lin, 2012; Liu, Lu,
& Neubig, 2018). The same inventory can be used for the creation of sense embeddings that
are suitable for MT. Guo, Che, Wang, and Liu (2014) induced a sense inventory in the same
manner by clustering words’ translations in parallel corpora. Words in the source language
were tagged with their corresponding senses and the automatically annotated data was used
to compute sense embeddings using standard word embedding techniques. Ettinger, Resnik,
and Carpuat (2016) followed the same sense induction procedure but used the retrofitting-
based sense representation of Jauhar, Dyer, and Hovy (2015)3, by replacing the standard
sense inventory used in the original model (WordNet) with a translation-specific inventory.

Similarly, Suster, Titov, and van Noord (2016) exploited translation distinctions as
supervisory signal in an autoencoder for inducing sense representations. At the encoding
stage, the discrete-state autoencoder assigns a sense to the target word and during decoding
recovers the context given the word and its sense. At training time, the encoder uses words
as well as their translations (from aligned corpora). This bilingual model was extended
by Upadhyay, Chang, Zou, Taddy, and Kalai (2017) to a multilingual setting, in order to
better benefit from multilingual distributional information.

4. Knowledge-Based Semantic Representations

In addition to unsupervised techniques which only learn from text corpora, there is another
branch of research which takes advantage of the knowledge available in external resources.
This section covers techniques that exploit knowledge resources for constructing sense and
concept representations. First, we will give an overview on currently used knowledge re-
sources (Section 4.1). Then, we will briefly describe some approaches which have made use

12. In general, the pre-training property of contextualized embeddings makes them closely related to transfer
learning (Pratt, 1993), which is out of the scope of this article.
13. See Section 4.3 for more details on this model.
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of knowledge resources for improving word vectors (Section 4.2). Finally, we will focus on
the construction of knowledge-based representations of senses (Section 4.3) and concepts or
entities (Section 4.4).

4.1 Knowledge Resources

Knowledge resources exist in many flavors. In this section we give an overview of knowl-
edge resources that are mostly used for sense and concept representation learning. The
nature of knowledge resources vary with respect to several factors. Knowledge resources can
be broadly split into two general categories: expert-made and collaboratively-constructed.
Each type has its own advantages and limitations. Expert-made resources (e.g., WordNet)
feature accurate lexicographic information such as textual definitions, examples and seman-
tic relations between concepts. On the other hand, collaboratively-constructed resources
(e.g., Wikipedia or Wiktionary) provide features such as encyclopedic information, wider
coverage, multilinguality and up-to-dateness.™

In the following we describe some of the most important resources in lexical semantics
that are used for representation learning, namely WordNet (Section 4.1.1), Wikipedia and
related efforts (Section 4.1.2), and mergers of different resources such as BabelNet and
ConceptNet (Section 4.1.3).

4.1.1 WoORDNET

A prominent example of expert-made resource is WordNet (Miller, 1995), which is one
of the most widely used resources in NLP and semantic representation learning. The ba-
sic constituents of WordNet are synsets. A synset represents a unique concept which may
be expressed through nouns, verbs, adjectives or adverbs and is composed of one or more
lexicalizations (i.e., synonyms that are used to express the concept). For example, the
synset of the concept defined as “the series of vertebrae forming the axis of the skeleton
and protecting the spinal cord” comprises six lexicalizations: spinal column, vertebral col-
umn, spine, backbone, back, and rachis. A word can belong to multiple synsets, denoting
different meanings it can take. Hence, WordNet can also be viewd as sense inventory. The
sense definitions in this inventory are widely used in the literature for sense representation
learning.

WordNet can alternatively be viewed as a semantic network in which nodes are synsets
and edges are lexical or semantic relations (such as hypernymy or meronymy) which connect
different synsets. The most recent version of WordNet version (3.1, released on 2012) covers
155,327 words and 117,979 synsets. In its way to becoming a multilingual resource, WordNet
has also been extended to languages other than English through the Open Multilingual
WordNet project (Bond & Foster, 2013) and related efforts.

14. In addition to these two types of resource, another recent branch is investigating the automatic con-
struction of knowledge resources (particularly WordNet-like) from scratch (Khodak, Risteski, Fellbaum,
& Arora, 2017; Ustalov, Panchenko, & Biemann, 2017). However, these output resources are not yet
used in practice, and they have been shown to generally lack recall (Neale, 2018).
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4.1.2 WIKIPEDIA, FREEBASE, WIKIDATA AND DBPEDIA

Collaboratively-constructed knowledge resources have had substantial contribution to the
research in a wide range of fields, including NLP. Wikipedia is one of the most prominent
examples of such resources. Wikipedia is the largest multilingual encyclopedia of world and
linguistic knowledge, with individual pages for millions of concepts and entities in over 250
languages. Its coverage is steadily growing, thanks to continuous updates by collaborators.
For instance, the English Wikipedia alone receives approximately 750 new articles per day.
Each Wikipedia article represents an unambiguous concept (e.g., Spring (device)) or entity
(e.g., Washington (state)), containing a great deal of information in the form of textual
information, tables, infoboxes, and various relations such as redirections, disambiguations,
and categories.

A similar collaborative effort was Freebase (Bollacker, Evans, Paritosh, Sturge, & Tay-
lor, 2008). Partly powered by Wikipedia, Freebase was a large collection of structured
data, in the form of a knowledge base. As of January 2014, Freebase contained around
over 40 million entities and 2 billion relations. Freebase was finally shut down in May 2016
but its information was partially transferred to Wikidata and served in the construction
of Google’s Knowledge Graph. Wikidata (Vrandecié¢, 2012) is a project operated directly
by the Wikimedia Foundation with the goal of turning Wikipedia into a fully structured
resource, thereby providing a common source of data that can be used by other Wiki-
media projects. It is designed as a document-oriented semantic database based on items,
each representing a topic and identified by a unique identifier. Knowledge is encoded with
statements in the form of property-value pairs, among which definitions (descriptions) are
also included. DBpedia (Bizer, Lehmann, Kobilarov, Auer, Becker, Cyganiak, & Hell-
mann, 2009) is a similar effort towards structuring the content of Wikipedia. In particular,
DBpedia exploits Wikipedia infoboxes, which constitutes its main source of information.

4.1.3 BABELNET AND CONCEPTNET

The types of knowledge available in the expert-based and collaboratively-constructed re-
sources make them often complementary. This has motivated researchers to combine various
lexical resources across the two categories (Niemann & Gurevych, 2011; McCrae, Aguado-
de Cea, Buitelaar, Cimiano, Declerck, Gémez-Pérez, Gracia, Hollink, Montiel-Ponsoda,
Spohr, et al., 2012; Pilehvar & Navigli, 2014). A prominent example is BabelNet(Navigli
& Ponzetto, 2012), which provides a merger of WordNet with a number of collaboratively-
constructed resources, including Wikipedia. The structure of BabelNet is similar to that
of WordNet. Synsets are the main linguistic units and are connected to other semantically
related synsets, whose lexicalizations are multilingual in this case. The relations between
synsets come from WordNet plus new semantic relations coming from other resources such
as Wikipedia hyperlinks and Wikidata. The combination of these resources make Babel-
Net a large multilingual semantic network, containing 15,780,364 synsets and 277,036,611
lexico-semantic relations for 284 languages in its 4.0 release version.

ConceptNet (Speer, Chin, & Havasi, 2017) is a similar resource that combines semantic
information from heterogeneous sources. In particular, ConceptNet includes relations from
resources like WordNet, Wiktionary and DBpedia, as well as common-sense knowledge from
crowdsourcing and games with a purpose. The main difference between ConceptNet and
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BabelNet lies in their main semantic units: ConceptNet models words whereas BabelNet
uses WordNet-style synsets.

4.2 Knowledge-Enhanced Word Representations

As explained in Section 2, word vector representations (e.g., word embeddings) are mainly
constructed by exploiting information from text corpora only. However, there is also a line
of research which tries to combine the information available in text corpora with the knowl-
edge encoded in lexical resources. This knowledge can be leveraged to include additional
information not available in text corpora in order to improve the semantic coherence or
coverage of existing word vector representations. Moreover, knowledge-enhanced word rep-
resentation techniques are closely related to knowledge-based sense representation learning
(see next section), as various models make use of similar techniques interchangeably.

The earlier attempts to improve word embeddings using lexical resources modified the
objective function of a neural language model for learning word embeddings (e.g., Skip-gram
of Word2vec) in order to integrate relations from lexical resources into the learning process
(Xu, Bai, Bian, Gao, Wang, Liu, & Liu, 2014; Yu & Dredze, 2014). A more recent class
of techniques, usually referred to as retrofitting (Faruqui, Dodge, Jauhar, Dyer, Hovy, &
Smith, 2015), attempts at improving pre-trained word embeddings with a post-processing
step. Given any pre-trained word embeddings, the main idea of retrofitting is to move
closer words which are connected via a relationship in a given semantic network!®. The
main objective function to minimize in the retrofitting model is the following:
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where |V| represents the size of the vocabulary, N is the input semantic network represented
as a set of word pairs, w; and wj; correspond to word embeddings in the pre-trained model,
a; and 3; ; are adjustable control values, and uxz; represents the output word embedding.

Building upon retrofitting, Speer and Lowry-Duda (2017) exploited the multilingual re-
lational information of ConceptNet for constructing embeddings on a multilingual space,
and Lengerich, Maas, and Potts (2017) generalized retrofitting methods by explicitly mod-
eling pairwise relations. Other similar approaches are those by Pilehvar and Collier (2017)
and Goikoetxea, Soroa, and Agirre (2015), which analyze the structure of semantic networks
via Personalized Page Rank (Haveliwala, 2002) for extending the coverage and quality of
pre-trained word embeddings, respectively. Finally, Bollegala, Alsuhaibani, Maehara, and
Kawarabayashi (2016) modified the loss function of a given word embedding model to learn
vector representations by simultaneously exploiting cues from both co-occurrences and se-
mantic networks.

Recently, a new branch that focuses on specializing word embeddings for specific ap-
plications has emerged. For instance, Kiela, Hill, and Clark (2015) investigated two vari-
ants of retrofitting to specialize word embeddings for similarity or relatedness, and Mrksic