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Abstract

In modern society, work stress is highly prevalent. Problematically, work stress can
cause disease. To help understand the causal relationship between work stress and
disease, we present a computational model of this relationship. That is, drawing from
allostatic load theory, we captured the link between work stress and disease in a set of
mathematical formulas. With simulation studies, we then examined our model’s ability
to reproduce key findings from previous empirical research. Specifically, results from
Study 1 suggested that our model could accurately reproduce established findings on
daily fluctuations in cortisol levels (both on the group level and the individual level).
Results from Study 2 suggested that our model could accurately reproduce established
findings on the relationship between work stress and cardiovascular disease. Finally,
results from Study 3 yielded new predictions about the relationship between workweek
configurations (i.e., how working hours are distributed over days) and the subsequent
development of disease. Together, our studies suggest a new, computational approach to
studying the causal link between work stress and disease. We suggest that this approach
is fruitful, as it aids the development of falsifiable theory, and as it opens up new ways
of generating predictions about why and when work stress is (un)healthy.

Introduction 1

Work stress has been estimated to cost between $221 to $187 billion annually [1]. 2

Considering these high societal costs, it is not surprising that scientists have thoroughly 3

studied the origins, the nature, and the consequences of work stress. Broadly, work 4

psychologists have examined how and when work stressors shape well-being and 5

performance; biological psychologists have examined the nature of the physiological 6

stress response; and, epidemiologists have examined how and when work stress may 7

cause disease on the long run. Yet, despite the maturity of the science of work stress, 8

this important area has a clear shortcoming: it does not yet have computational models 9

that explain how work stress may cause disease. 10

Computational models can advance scientific knowledge in various ways. For 11

example, they contribute to the transparency and falsifiability of theory, they facilitate 12

the understanding of potential causal mechanisms, and they help generate new 13

predictions [2–4]. In what follows, drawing from allostatic load theory [5], we propose a 14

computational model of the putative causal effect of work stress on disease. In turn, we 15

test whether our model can explain core findings from several previous empirical studies. 16

Finally, we use our model to generate new predictions about the relationship between 17

workweek configurations (i.e., how work hours are distributed over the working week) 18

and the development of disease. Together, our research uses computational modelling to 19
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address a central problem in the domain of occupational health: how does work stress 20

affect people’s health? 21

A brief introduction to computational models 22

This section is intended for readers who are new to computational models. Readers who 23

are familiar with computational modeling may skip this section. 24

We will start explaining what computational models are, by comparing them to 25

verbal theories (with theory synonymous for model). By verbal theories, we refer to 26

theories not described through mathematical equations (nor through some other 27

structure of formal logic). Most theories in the social sciences are verbal theories. An 28

example of a well-known verbal theory is cognitive dissonance theory [6]. Cognitive 29

dissonance theory predicts that attitude change takes place when people’s 30

previously-held attitudes are inconsistent with their behavior. Another well-known 31

verbal theory in social sciences is social facilitation theory [7, 8], which predicts that, 32

when in presence of others, people perform better on well-learned and simple tasks, but 33

worse on new and complex tasks [9]. What these theories have in common is that they 34

are provided in words, not in mathematical equations. As a result, they lack specificity. 35

Little is clear about, say, the dynamics of how attitude change develops over time. Is 36

the speed of change constant? Or does it increase first and then plateau? Or, how 37

about the relationship between the presence of other people and performance? Is this 38

relationship linear? What conditions are required for this relationship to hold? In order 39

to perform any quantitative test of a verbal theory, e.g., using statistical analyses, 40

researchers always need to make an interpretation of the theory first, leaving room for 41

flexibility. Tests of verbal theory thus do not strictly test the theory—rather, they test 42

the researcher’s interpretation of the theory. 43

In physics and engineering, most (if not all) theories are computational. An example 44

of a computational theory is Newton’s theory of universal gravitation. This theory 45

explains the force that works between two masses with the equation F = G(m1m2)/r
2 , 46

in which m1 and m2 are the two masses, r the distance between the two masses, G the 47

universal gravitation constant, and F the resulting force. Each combination of values 48

that are inserted for the parameters in the right side of the equation result in a single, 49

exact, resulting force. More generally, for researchers to test a computational theory, 50

they do not need to make any additional interpretations. 51

Benefits of computational modeling 52

First, more so than verbal models, computational models are falsifiable. As mentioned, 53

the limited specificity of verbal theory leaves room for various ways in which to define 54

relationships between parameters. This flexibility makes it difficult to falsify verbal 55

theories [10, 11], thus limiting what can be learned from a study that attempts to 56

empirically validate a verbal theory. In contrast, computational models are fully specific. 57

The model provides transparency about the included parameters and the assumed 58

relationships between them, thus limiting interpretational freedom, facilitating 59

falsifiability [3, 12, 13]. 60

Second, computational models can help the understanding of underlying causal 61

mechanisms of the relationship that is being studied. Rather than attempting to create 62

a model that exactly mimics reality, the goal of modeling is to provide a model that can 63

satisfyingly approximate empirical observations, while maintaining simplicity as much 64

as possible [2, 14]. As such, modeling can give insight in the dynamics that govern the 65

process under investigation. Computational models may also increase understanding 66

through analogies. In particular, processes that seem unrelated can have models that 67

are computationally the same (e.g., the same model may explain the behavior of both 68
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arteries in the body, and the behavior of rubber bands that hold objects together). This 69

way, researchers can borrow principles from well-developed theories from other scientific 70

areas, accelerating scientific progress [2]. 71

Third, computational models can be used to perform simulations, which has several 72

important advantages. Through simulations, researchers can explore mechanisms that 73

can explain empirical findings, e.g., [15, 16]; clarify inconsistencies among previous 74

findings, e.g., [17–19] ; examine a model’s robustness, i.e., examine the parameter ranges 75

under which a model explains existing empirical data [2]; and scrutinize the logic of 76

intuitive reasoning behind a theory, which is sometimes flawed [20]. In other words, 77

simulations can examine whether a theory is viable to begin with. Furthermore, 78

simulations of computational models can also generate novel predictions of behavior 79

that may be observed in real populations [2]. In some cases, intuitive interpretation of a 80

theory does not lead to clear predictions. To provide an example from the present 81

research: Does taking free days on Wednesdays and Sundays—instead of Saturdays and 82

Sundays—influence the risk of developing disease in the long run? While it is not easy 83

to use verbal models to formulate hypotheses about particular situations such as these, 84

simulations of computational models can be used for this purpose. 85

The present research 86

With this research, we aim to meet three goals. Our first goal is to develop a first 87

computational model of the work stress–disease relationship. Rather than providing a 88

detailed model, including many possible parameters involved in the process of becoming 89

diseased, we aim to create a simple and compact model that focuses on the most 90

important candidate mechanisms. We chose to prioritize parsimony as we believe that it 91

will benefit interpretability of the model, and as it will limit the number of arbitrary 92

assumptions that we will need to make. Rather than formulating a new theory from 93

scratch, we will be using knowledge from leading, existing verbal theory (i.e., allostatic 94

load theory) to develop our model. 95

Our second goal is to investigate our model’s ability to reproduce 96

previously-reported data, by using Monte Carlo simulations (i.e. simulations in which 97

the value of a sample is determined by its previous value and random sampling from a 98

distribution). For these simulations, we will simulate individuals for whom we will verify 99

that their collective behavior is comparable to the behavior that is described in 100

large-scale empirical studies. This investigation will provide us with feedback about the 101

credibility of the model that has been developed. 102

Our third goal is to formulate new predictions, again by using MCMC simulations. 103

Specifically, we aim to formulate predictions about the impact of how working hours are 104

distributed over the working week. When future research tests our novel predictions, 105

this would provide a transparent means to verify or falsify our model—and, 106

subsequently, to improve—our model. 107

In the next sections, we will lay out our research. In Study 1, we will perform 108

simulations based on our model, to verify that our model can produce cortisol time 109

courses similar to those reported in the literature. In Study 2, we will describe the 110

relationship between cortisol levels and disease, completing our computational model. 111

In both Studies 1 and 2, through simulations, we will examine if our simulated people 112

exhibit the same relationship between stressors and disease, as was reported in previous 113

large-scale studies. In Study 3, we will use the model to make novel predictions. 114
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Study 1: From stress to cortisol 115

Allostatic Load Theory 116

We base our computational model, summarized in Fig 1, on allostatic load theory [5]. 117

This influential theory describes the physiological processes that mediate the causal 118

relationship between stress and disease. Allostatic load theory starts out from the 119

assumption that stressful situations disrupt the stable resting state (homeostasis) of 120

physiological systems, causing an alternative equilibrium (allostasis) in which 121

physiological systems adaptively respond to deal with the stressful situation. Generally, 122

allostasis involves increased activity of the sympathetic nervous system and the 123

hypothalamus–pituitary–adrenal axis (HPA axis). These activations generally cause an 124

increase in heart rate, a release of nutrients into the bloodstream, a suppression of 125

digestion, as well as a number of other changes [21] (for an accessible introduction, 126

see [22]). 127

Fig 1. Schematic illustration of our computational model. In essence, the
model explains how activation of the HPA axis, due to work stress and circadian inputs,
elevates circulating cortisol levels. In turn, the cortisol response burdens the
physiological system, in a fully reversible way (allostatic strain). Sustained allostatic
strain, in turn, causes permanent damage (allostatic load), which ultimately causes
disease. This chain of events is described in detail in the main text. HPA axis =
Hypothalamus Pituitary Adrenal-axis.

Although the ability to transition into allostasis is usually considered to be a healthy 128

adaptation—i.e., it helps people to effectively deal with stressors—allostasis does put a 129

burden on physiological systems. In many cases, this impact is fully reversible; it causes 130

no permanent damage. For example, an artery under high pressure may readily return 131

to its normal, resting state. However, when allostasis occurs too frequently (Type I), 132

when allostasis is maintained for too long (Type II), or when physiological adaptation to 133

allostasis is inadequate (Type III), lasting damage may occur. In this paper, we refer to 134

allostasis’ reversible burden on physiological systems as allostatic strain, and allostasis’ 135

lasting damage as allostatic load. As allostatic load accumulates, disease may emerge. 136

To develop a parsimonious computational model based on allostatic load theory, we 137

have applied a simplification: we will consider only allostatic load due to allostasis 138

occurring too frequently (i.e., Type I). To be able to test our computational model 139

against previous empirical data, we needed to make an additional assumption: we 140

assume that the concentration of the hormone cortisol—which is, indeed, frequently 141

used as a direct measure of the human stress response [23, 24]—provides an index of the 142
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current physiological response that is recruited to achieve allostasis. 143

Daily fluctuations in cortisol levels 144

The HPA axis regulates a chain of bodily events that leads to the production of 145

cortisol [21]. The HPA axis consists of three hormonal glands: the hypothalamus and 146

the pituitary gland (both located deep in the brain) and the adrenal glands (located on 147

the kidneys). These glands produce corticotropin-releasing hormone (CTH), 148

adrenocorticotropic hormone (ACTH) and cortisol, respectively. These glands operate in 149

a cascading manner. That is, neural impulses into the hypothalamus (e.g., due to 150

stressors) cause the hypothalamus to release CTH, which causes the pituitary gland to 151

release ACTH, which in turn causes the adrenal glands to release cortisol. However, all 152

three glands have receptors for their own and each other’s hormonal output. Thus, they 153

together form an intricate dynamic system, which also involves the liver, which removes 154

cortisol from the bloodstream, and then decomposes it [25]. 155

Bloodstream cortisol concentrations follow a characteristic circadian pattern. 156

Generally, blood cortisol steeply rises during the last few hours of the night, peaks about 157

half an hour after awakening (we will refer to this peak as the morning peak), and then 158

gradually decreases during the day [26]. Importantly, though, individual cortisol levels 159

are very heterogeneous [27]. One key source of variation is the strength of the response 160

to neural impulses into the HPA axis, which differs from person to person [23]. Also, 161

people substantially differ in the rate with which the liver decomposes cortisol: cortisol 162

half-life varies between 60 and 90 minutes [27, 28]. Bloodstream cortisol concentrations 163

also respond to acute stressors. After people encounter a stressor, the cortisol level 164

peaks after about 30 minutes, after which cortisol levels decrease again [23,29]. 165

It is likely that the amplitude of the morning peak and strength of cortisol responses 166

to acute stressors (during the day), are related. In particular, the morning peak may 167

reflect the anticipation of physiological and psychological demands for that day [30,31]. 168

In support of this idea, research shows that people show higher morning peaks on 169

weekdays, as compared to weekend days [32, 33]. Similarly, a study among competitive 170

dancers showed that dancers had a larger morning peak on competition days, as 171

compared to training days [34]. So, it is plausible that the morning peak reflects the 172

anticipation of upcoming events, at least in part, causing a correlation between (a) the 173

amplitude of the morning peak and (b) the strength of cortisol responses to acute 174

stressors. In our simulations, we will consider this possibility. That is, we will run 175

separate simulations assuming vs. not assuming this correlation. 176

In a computational model 177

In this part of the model we describe the relationship between neural impulses to the 178

HPA axis, I, and the change in cortisol concentration, dC/dt. We assume that all 179

activity of the HPA axis is the result of neural impulses to the HPA axis, which may 180

either be the result of a circadian process taking place during the night (we will further 181

refer to these impulses as night impulses), or the result of work stressors (for 182

consistency, further referred to as work impulses). We assume that each impulse has a 183

binary intensity: impulses are either happening or not happening. Due to this 184

assumption, impulses to the HPA axis, at any specific time point, can be described as 185

countable number,
∑

It . Thus, a higher number of impulses at the same time can be 186

interpreted as a stronger impulse. 187

We simplify the dynamics of the HPA axis by assuming that it can be described by 188

the following equation: 189
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dC

dt
= −pCCt + κHPA

∑

(It − τ) (1)

In this equation, a rise in the cortisol concentration that is proportional, by κHPA, 190

to the neural impulses,
∑

It, delayed by τ . The decay of cortisol is described by a linear 191

relation between the current cortisol concentration, Ct, and a decay constant, ρC . 192

Simulations 193

To examine the ability of the model to reproduce the cortisol patterns that were 194

previously reported (specifically in [25, 35,36], we performed MCMC simulations with 195

the model, with parameters as defined in Table 1 (code available in S1 Script). As input 196

to the model, a population of 10,000 people was simulated. Each simulated person was 197

characterized by an individual cortisol half-life value. Specifically, for each person, a 198

random draw from a normal distribution of cortisol half-life values determined this 199

person’s cortisol half-life, with a mean and standard deviation chosen such to reflect the 200

variation of half-life values reported in previous literature [27, 28]. 201

Table 1. Parameter settings for simulating cortisol time courses in Study 1.

Parameter Value

Sampling frequency 2
People simulated 10,000
Days simulated per person 200
Night impulses, quantity X ∼ Γ(k = 3, θ = 14)a

Night impulses, moment X ∼ Twake − EXP (λ = 1)a

Work impulses, quantity X ∼ Γ(k = 3, θ = 6)a

Work impulses, moment X ∼ U(a = Tws, b = Twe)
Cortisol decay constant (ρC) X ∼ N (µ = .52, σ2 = .052)
HPA axis scaling constant (κHPA) 2.20
Cortisol response delay, τ 30 min
Wake time, Twake 7:00AM
Work start, Tws 8:30AM
Work end, Twe 4:30PM
Working days Mon-Fri

aParameter values were determined through visual calibration on cortisol time courses
published in [36](see Fig 5a). Specifically, we adjusted these parameter values until
simulations yielded a cortisol time course similar to the one reported in [36].

To mirror the time course of a cortisol response to an acute stressor as described in 202

literature [23,29], impulses always lasted 30 minutes. Each simulated person was given a 203

unique average number of daily night impulses and work impulses. 204

For night impulses, this unique average number of daily impulses was randomly 205

drawn from a Gamma distribution (i.e. a continuous probability distribution for values 206

that can only be positive, such as frequency values [37], see S1 Appendix). In turn, this 207

average number was used to randomly assign a number of impulses to each day. In 208

particular, the number of night impulses that a person received on a particular day, was 209

determined from a Poisson distribution (i.e., the discrete frequency distribution) with as 210

expected frequency λ, the average number of daily night impulses for that person. For 211

work impulses, we followed the same procedure. 212

In our simulation, we assumed work that impulses could occur at any moment 213

within the working hours. Thus, work impulses were determined through random draws 214
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from a uniform distribution, ranging from work start to work end. Weekends were free 215

of work impulses. We further assumed that night impulses should become exponentially 216

more likely towards the end of the night, with the maximum probability at awakening. 217

Thus, night impulses were randomly drawn from a negative exponential distribution 218

(see S1 Appendix for a plot of this exponential distribution). 219

To illustrate the simulation procedures laid out above, Figs 2 and 3 describe the 220

outcomes of the procedures for four representative, simulated people. Figure 2 shows 221

frequency distributions of night impulses and work impulses. Fig 3 shows how impulses 222

were distributed over time during a single day. As introduced above, we ran separate 223

simulations in which we assumed no correlation between night impulses and work 224

impulses (Scenario I), and in which we assumed a correlation between night impulses 225

and work impulses (Scenario II [30]). In Scenario I, we drew average night impulses and 226

average work impulses independently from a Gamma distribution. In Scenario II, we 227

first drew the average number of work impulses from a Gamma distribution. Then, to 228

define the average number of night impulses, we summed the average number of work 229

impulses with a random value from a gamma distribution with shape parameter k = 1 230

and scale parameter θ = 8. This procedure ensured (a) that the distribution for the 231

average number of night impulses was visually similar across Scenarios I and II, and 232

that (b) there was a correlation between average night impulses and average work 233

impulses only in Scenario II (illustrated in Fig 5a). 234

Person 20 Person 40 Person 55 Person 8

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

20

40

60

80

Impulses/Day

C
o
u
n
t

Type Night Impulses Work Impulses

Fig 2. The count of days (y-axis) that a simulated person received a
specific number of impulses (x-axis). Four random, representative, simulated
people are shown. Note: the total amount of simulated days is 200.

Simulation results 235

Figs 5-7 show comparisons of cortisol time courses from the simulations with cortisol 236

time courses from findings from the published literature. For each person, only the first 237

day of the simulation was used to create these plots. Figs 5 and 6 only show results only 238

for Scenario I, as results for Scenario II were extremely similar (see S1 Appendix). 239

First, we examined our model’s ability to reproduce group-level cortisol time courses 240

during waking time. To this end, we used data from a meta-dataset from [36] as a 241

starting point. This meta-dataset combined 15 previous field studies (total n ≈ 19,000), 242

in order to obtain reference ranges for salivary cortisol levels in humans. Data from this 243

previous study are replotted in Fig 5a; results from our simulations are plotted in Fig5b. 244

Second, we examined our model’s ability to reproduce group-level cortisol time 245

courses in the hours around waking. To this end, we used data from a dataset 246

from [35](data presented in [38]), who took blood samples from 15 participants every 15 247
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Fig 3. Distribution of all impulses over two consecutive days (48 hours).
Two representative days are shown for each of four random, representative, simulated
people. The plots illustrate that the number of impulses varies from day to day. This is
because the number of impulses in a given day results from a random draw from a
Poisson distribution, based on the person’s overall mean (see main text).

Scenario I, Uncorrelated Scenario II, Correlated

0 25 50 75 100 0 25 50 75 100

0

10

20

30

Night Impulses

W
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 I
m
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e
s

Fig 4. Correlations between average daily work impulses and average daily
night impulses. Scenario I, uncorrelated and Scenario II, correlated.

minutes during the night and the morning, which they then assayed for cortisol. Data 248

from this previous study are replotted in Fig 6a; results from our simulations are 249

plotted in Fig Fig 6b. 250

Third, we examined our model’s ability to simulate individual-level cortisol time 251

courses that are similar to empirical observations. To this end, we used data from a 252

dataset from [27](shared for public use by [25]). [27] took blood samples from people 253

with depression (n = 12) and healthy controls (n = 17) every 10 minutes for 24 hours, 254

starting at midnight. Data from five random, representative healthy control participants 255

from this previous study are plotted in Fig 7a; representative results from our 256

simulations are plotted in Fig 7b and 7c. 257

Discussion 258

In sum, the model simulations suggest that our model is able to reproduce three key 259

sets of empirical findings [25, 36,38]. In particular, by applying our model, we could 260

successfully reproduce empirically-observed cortisol concentrations, both during the 261

night and during the day, both on the group and the individual level. Thus, at this 262
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Fig 5. Empirical vs. simulated aggregated day-time cortisol time courses.
a) Empirical data. Cortisol time courses based on data from 19,000 people, replotted
with permission from [36]. b) Simulation results. Note: in both panels, data are shown
until 16 hours after awakening.
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Fig 6. Empirical vs. simulated aggregated night-time cortisol time courses.
a) Empirical data. Night-time cortisol time courses (n = 15; error bars reflect 95%
confidence interval around the mean), replotted from [38] with permission . b)
Simulation results. Note: in (b), the 95% confidence interval around the average is too
small to be discernable.

stage, our model passes the bar to move on to the next step—that is, we conclude that 263

we can build on this model to examine if we can predict the occurrence of disease from 264

work stress. 265

Nevertheless, we found two slight differences between the empirical data and the 266

simulation results. First, whereas empirical data suggest that cortisol levels never truly 267

approach zero, this does happen in the simulation results (see Fig 5a vs. 5b; 6a vs. 6b; 268

7a vs. 7b and 7c). Perhaps, this discrepancy stems from the way we simulated work 269

impulses. In particular, for all simulated people, work always ended 9.5 hours after 270

awakening; we modelled no work impulses after that. By contrast, in life, many people 271
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(c) Simulated II

Fig 7. Empirical vs. simulated 24-hour individual cortisol time courses. a)
Empirical data. 24-Hour cortisol time courses of five random, representative healthy
individuals from [25], replotted with permission. b) Simulation results, showing five
random, representative individuals based on Scenario I. c) Simulation results, showing
five random, representative individuals based on Scenario II.

remain active well beyond 9.5 hours after awakening, which may expose them to 272

stressors (which may or may not be related to work). Such evening- and night-time 273

activity can explain why measured cortisol levels, at least on the group level, stay above 274

zero throughout the night. Alternatively, it may be the case that some homeostatic 275

mechanism blocks the degradation of cortisol, after cortisol concentrations fall below 276

some threshold. We are not aware of the existence of such a homeostatic 277

mechanism—but if it exists, it may explain the slight discrepancy between the data and 278

the model simulations. 279

Second, when we examine the group-level cortisol time courses in the hours around 280

waking [38], it seems that our simulation results (Fig 6b) suggest a somewhat steeper 281

rise and fall than the empirical data (Fig 6a). However, the simulated time course does 282

seem to fall within the 95% confidence interval of the empirical data (Fig 6a). On a 283

macroscopic level, the two plots are similar. 284

Study 2: From cortisol to disease 285

Study 2 explains how cortisol dynamics can lead to disease. Like in Study 1, we 286

compare our model simulations to previously-reported empirical data. Finally, we test 287

the robustness of the predictions for variation in parameter values. 288
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Background 289

High cortisol concentrations can cause disease via several routes. That is, each organ 290

system is affected in its own way, and even within each organ system, there are often 291

multiple ways in which cortisol can cause damage. A detailed review of all of these 292

routes is beyond the scope of this article; however, in what follows, we will discuss three 293

well-established core pathways. Then, we capture the essence of these pathways in our 294

computational model. 295

First, cortisol can cause disease through its actions on the cardiovascular system. 296

Cortisol triggers a rise in blood pressure, heart rate, and cardiac output [21, 39,40]. 297

These cardiovascular changes help people deal with stressors and they are fully reversible 298

(allostatic strain). Yet, when they are prolonged, these cardiovascular changes increase 299

the risk of vascular lesions, which in turn promote the buildup of arterial plaque at the 300

lesion sites (allostatic load [41]). These plaques harden and clog the arteries, which 301

leads to a disease state called atherosclerosis [41–43]. Atherosclerosis causes symptoms 302

depending on the location of the artery that is affected. For example, potential 303

symptoms include shortness of breath, trouble speaking, dizziness, pain, and nausea [44]. 304

Moreover, plaques can get loose, after which they can get stuck in narrower arteries, 305

where they block blood supply to the distal tissue [45]. This process is potentially lethal, 306

especially when it takes place in the heart (myocardial infarction) or the brain (stroke). 307

Second, cortisol can cause disease through its actions on the immune system. As a 308

part of the acute stress response, the body’s capacity to initiate inflammation and fever 309

rapidly increases (e.g., through the cytokine interleukin 6 [46]). Under normal 310

circumstances, cortisol plays a role in suppressing this rapid inflammatory response, 311

preventing it from overshooting [21]. This suppressive effect of cortisol is adaptive and 312

fully reversible (allostatic strain). Yet, when cortisol levels are high for a longer period 313

of time, the immune system becomes less sensitive to cortisol; that is, prolonged high 314

cortisol causes glucocorticoid receptor resistance [47–49]. People who have glucocorticoid 315

receptor resistance, in turn, are more vulnerable to nonresolving inflammation, a 316

condition that may progress into many disease states, including arthritis, asthma, and 317

cancer [50, 51]. 318

Third, cortisol can cause disease through its actions on the metabolic system. 319

Cortisol increases circulating glucose, which helps people to sustain their ongoing 320

attempts to deal with stressors [21]. This process is adaptive and fully reversible 321

(allostatic strain). However, when cortisol levels stay high, a cascade of physiological 322

processes takes off, and these processes can together cause damage. Perhaps most 323

notably, although the interaction between cortisol and insulin is complex, it is fair to 324

say that cortisol has the potential to disrupt insulin functioning [52]. Under normal 325

circumstances, insulin prompts cells to take up glucose, so that the glucose can be used 326

for glycolysis, the process that energizes cells. Yet, when cortisol levels continue to be 327

high, maintaining the high levels of circulating glucose, more and more insulin is 328

required to achieve the same results as before; that is, high cortisol can cause insulin 329

resistance [53]. Moreover, sustained high levels of cortisol, facilitate the accumulation of 330

abdominal fat [54, 55]. These two processes—the development of insulin resistance and 331

the accumulation of abdominal fat (allostatic load)—can together progress into diabetes 332

type 2 [52]. This is a disease state characterized by symptoms such as thirst, hunger 333

(also after eating), unexplained weight loss, fatigue, and headaches. 334

As we aimed to develop a parsimonious model, we attempted to capture only the 335

essence of these cortisol-to-disease mechanisms in our model’s formulas. In particular, 336

we modelled the link between cortisol and disease as follows: (a) the cortisol response 337

puts a burden on the body that is, in principle, fully reversible (allostatic strain); (b) 338

however, when this burden is sustained, lasting tissue damage occurs (allostatic load); 339

(c) such lasting tissue damage can lead to disease (see Fig 1). 340
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To further illustrate how we modelled the cortisol-to-disease pathway, we note that 341

our approach is similar to the so-called rubber band analogy (e.g., [56–58] . The rubber 342

band analogy holds that the pathway from stress to disease is analogous to how rubber 343

bands can get damaged when they are stretched. Also in this domain, three stages can 344

be distinguished: (a) the rubber stretches, but it can regain its original shape (this is 345

called elastic deformation); (b) the rubber stretches further, and it can no longer return 346

to its original shape (this is called plastic deformation); (c) the rubber tears (this is 347

called failure). These three stages are akin to allostatic strain, allostatic load, and 348

disease, respectively. That is, in our model, the pathway from stress to disease is 349

analogous to how a rubber band, when stretched, subsequently undergoes elastic 350

deformation, plastic deformation, and failure. 351

We will evaluate our model by examining its ability to reproduce the relationship 352

between work stressors and disease, which is well-supported by previous empirical work. 353

Specifically, the highest level of evidence is available for the relationship between job 354

strain (the combination of high job demand and low job control) and cardiovascular 355

disease [59–62]. That is, a meta-analysis [59], which included over 600,000 participants 356

from 27 cohort studies, revealed a positive relationship between work strain and 357

cardiovascular disease with a cumulative effect size of 1.33 (95% confidence interval: 358

1.19, 1.49). As job strain can be seen as a close proxy for the prevalence of work 359

stressors, we will use this previously-observed, positive relationship as a benchmark for 360

our model predictions. 361

In a computational model 362

We refer to the current burden on physiological systems as allostatic strain, S. Like 363

rubber bands, physiological systems usually return to their original state. In line with 364

this principle, we describe change in allostatic strain, dS

dt
, as follows: 365

dS

dt
= −ρRSt + Ct (2)

In Equation 2, St represents allostatic strain at a given time point; ρR is the 366

recovery coefficient, which determines the speed of recovery; and, Ct is the current force 367

exerted on the physiological system (represented by cortisol in our model). 368

When allostatic strain exceeds beyond a threshold, we assume that lasting damage 369

occurs. We refer to lasting damage as allostatic load, L. The allostatic threshold, εL, is 370

the point where allostatic load starts to form. We can write: 371

dL

dt
=

{

0, St < εL
St − εL, St ≥ εL

(3)

Equation 3 states that allostatic load does not change if the current allostatic strain, 372

St, is lower than εL. However, when the current allostatic strain exceeds the allostatic 373

threshold, allostatic load increases by the excess, St − εL. 374

When physiological systems are repeatedly stretched beyond the allostatic threshold, 375

this will cause allostatic load to accumulate. We assume that when allostatic load 376

passes the disease threshold, εD, people become diseased. We refer to people’s disease 377

state as D. We can write: 378

Dt =

{

False, Lt < εD
True, Lt ≥ εD

(4)
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Equation 44 states that the disease state, Dt, is False (i.e., the person is not 379

diseased) if allostatic load, Lt, is below the disease threshold εD. Conversely, Dt is True 380

(i.e., the person is diseased) if Lt exceeds εD. 381

Together, equations 2-4 describe how cortisol can cause disease. Fig 8 illustrates 382

what variation of allostatic strain, allostatic load and disease can be expected in our 383

model simulations. The reader should note that because choices of ρR, εL and εD are 384

arbitrary, the absolute time until disease in our model is meaningless. Rather, the 385

relative time until disease between simulated individuals is what is of interest in our 386

simulations. 387
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Fig 8. Illustration of variation of model parameters. Sample of seven days
showing variation on all model variables from five random simulated people.
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Simulations 388

We performed simulations based on our model, as defined in Equations 1-4, using 389

several values for the parameters ρR, εL and εD (code available in S3 Script). 390

Specifically, we used three values for each parameter, yielding 27 combinations of 391

parameter values. As the model is not scaled to resemble real-life observations (e.g., 392

there is no clear-cut measure for allostatic strain and allostatic load), the selected 393

parameter values were arbitrary. We selected these parameter values after exploration, 394

such that, in each simulation, at least some people would become diseased and at least 395

some people would not. Apart from this restriction, we selected parameter values over 396

the full possible range. 397

As model input, cortisol time courses were created exactly as described in Study 1 398

(Table 1), apart from two minor variations. First, we aimed to increase the precision of 399

detecting differences that exist in the simulated population, without needing to increase 400

the number of simulated people. Thus, instead of simulating a population with a 401

variation in work impulses that is described by a Gamma distribution, we simulated 402

individual variation in work impulses from a uniform distribution over the same range of 403

work impulses. In other words, instead of creating a population with a variation in work 404

impulses that may resemble real-life populations, we now simulated a population with 405

work impulses that are evenly distributed. Apart from increasing the precision of 406

detecting effects, this variation does not otherwise influence the outcome of the 407

simulations. Second, to save computational time, we simulated 5,000 instead of 10,000 408

people per parameter combination. Like before, for each parameter combination, we 409

simulated both a scenario where night impulses and work impulses were uncorrelated 410

(Scenario I), as well as a scenario where they were correlated (Scenario II). 411

Simulation results 412

Fig 9 shows the results of the simulations. The figure shows the simulated relative risk 413

of people becoming diseased, as a function of the number of work impulses. S1 414

Appendix includes a plot of accumulated allostatic load against the average amount of 415

daily work stressors. 416

Results indicate that, in case of Scenario II, where work and night impulses are 417

correlated, the model was robust to variation of the parameters ρR, εL and εD. 418

Irrespective of the variation in the parameter values, we found a positive relationship 419

between the frequency of work impulses and the simulated risk of becoming diseased 420

(note that, because choices of ρR, εL and εD are arbitrary, the absolute effect sizes are 421

meaningless). Also, we observed little variation in the predicted effect sizes, regardless 422

of the specific parameter values (Fig 9b). These results are in line with the 423

well-established empirical relationship between work stressors and disease [59], which we 424

aimed to reproduce. 425

We did not observe this same robustness when we examined Scenario I. Although we 426

did observe a positive relationship between work impulses and the simulated risk of 427

disease for a number of parameter combinations, this relationship did not emerge in all 428

cases (Fig 9a). Also, further exploratory analyses revealed that the cases where a 429

positive relationship was observed for Scenario I, an unrealistically high proportion of 430

simulated people had become diseased (see S1 Appendix). 431

Discussion 432

At least when we assume that work and night impulses are correlated (Scenario II), 433

which we would expect if people anticipate the events of the following workday [63,64], 434

the model successfully produced a positive correlation between work impulses and 435
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Fig 9. Simulation results of relative risk of becoming diseased at various
time points in the simulation. Scenario I (a; no correlation between work and night
impulses) Scenario II (b; correlation between work and night impulses). The odds ratios
are calculated from the standardized averages of work impulses (i.e., the effect sizes
represent one SD difference in the average number work impulses). Odd ratios greater
than 100 are presented as 100.

disease. This relationship, which is in line with the relationship between work stress and 436

disease that is often observed in empirical literature [59], holds for a wide range of 437

values of the parameters ρR, εL and εD, supporting the robustness of the model. 438

However, we did not find a robust relationship between work impulses and disease if 439

work and night impulses were uncorrelated (Scenario I). 440

With caution, this set of findings raises the possibility that acute responses to work 441

stressors may play only a limited role in the development of disease. Rather, it appears 442

that, in comparison to the response to acute work stressors (the work impulses in our 443

model), the contribution of the night impulses is so pronounced, that the cortisol spikes 444

from the acute stressors during the working day contribute relatively little to the 445

accumulation of allostatic load. In line with this observation, exploration of individual 446

time courses of allostatic load show that the increase in allostatic load is mainly seen at 447

the time point of the morning peak (for an illustration, see Fig 8). 448

Study 3: New predictions for variations in workweek 449

configurations 450

To recap, so far, we developed a computational model of work stress and disease. We 451

compared the predictions from model simulations against empirical data. We found 452

that, if we assume that night impulses (i.e., activity of the HPA axis during the night) 453

and work impulses work impulses (i.e., activity of the HPA axis due to work stressors) 454

are correlated, our model can reproduce results from empirical research. Based on this 455
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finding, we conclude that our model is an appropriate model of the relationship between 456

work stress and disease. 457

We will now proceed with generating new predictions, based on our model. In 458

particular, we examine the effect of how working hours are distributed over the week. 459

We examine the consequences of several workweek configurations on the development of 460

disease. 461

Simulations 462

In all simulations, we used a standard working week (Monday to Friday, 8 hours per 463

day), like we used in all previous sections (Table 1), as a benchmark. Table 2 presents 464

all workweek configurations that we examined with separate simulations; Table 3 465

describes the parameter values that were identical across all simulations. Note that 466

these values are identical to the values that we used previously, except that we used 467

only one combination of the parameters ρR, εL and εD (simulations for other parameter 468

combinations are reported in S1 Appendix). Also, based on our previous findings (see 469

Study 2), in all simulations that follow, we assumed a correlation between night and 470

work impulses. 471

Table 2. Workweek configurations that we explored with simulations.

Configuration Working days
Days worked
(per week)

Hours worked (per day)
30h/week 40h/week 50h/week

#1 Mon–Fri 5 6h 8ha 10h
#2 Mon–Tue and Thu–Sat 5 6h 8h 10h
#3 Mon–Tue and Thu–Fri 3 7h30m 10h 12h30m
#4 Mon–Tue and Thu 4 10h 13h20m 16h40m
#5 Mon–Sat 6 5h 6h40m 8h20m
#6 Mon–Sun 7 4h17m 5h43m 7h09m

aBenchmark for all other configurations.

Table 3. Parameter settings that were held constant between the
simulations of varying worktime configurations.

Parameter Value

Sampling frequency 2
People simulated 5,000
Days simulated per person 200
Night impulses, quantity X ∼ Γ(k = 3, θ = 14)
Night impulses, moment X ∼ Twake − EXP (λ = 1)
Work impulses, quantity X ∼ U(a = 1, b = 50)
Work impulses, moment X ∼ U(a = Tws, b = Twe)
Cortisol decay constant (ρC) X ∼ N (µ = .52, σ2 = .052)
HPA axis scaling constant (κHPA) 2.20
Cortisol response delay, τ 30 min
Wake time, Twake 7:00AM
Work start, Tws 8:30AM
Elasticity constant, ρR 0.6
Allostatic threshold, εL 20
Disease threshold, εD 400
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Simulation results and discussion 472

Fig 10 provides an overview of all simulation results, showing the predicted effects of all 473

workweek configurations in Table 2 on the development of disease. The results show a 474

clear pattern. Specifically, we found an increase in predicted disease risk for 475

configurations #3 and #4, in which working hours are concentrated in a limited number 476

of days (a so-called compressed working week [65]. In contrast, the results show a 477

decrease in disease risk in configurations #5 and #6, in which working hours are spread 478

out over the week. We found no effect of configuration #2, in which work-free days are 479

distributed throughout the week, not chunked together in a weekend. These effects were 480

independent of the total number of hours (30, 40, or 50) that simulated people worked 481

in a week. In sum, our model predicts that spreading out working hours over more days, 482

rather than concentrating working hours in less days, helps prevent the development of 483

disease. 484
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Fig 10. New predictions based on our model. The plot represents the relative
risk of developing disease, as a function of different workweek configurations. All
predictions are relative to a standard working week (i.e., configuration #1: 5 working
days of 8 hours, Monday to Friday). See Table 2 for an explanation of all workweek
configurations that we examined.

We note another, related regularity from these simulation results (Fig 10). That is, 485

independently of the number of working hours per week, there is a clear, positive 486

relation between the number of working hours per day and the predicted disease risk. In 487

line with this regularity, our simulations suggest that 50-hour working weeks can be 488

relatively healthy—i.e., healthier than the standard 40-hour/5-day working week—as 489

long as these 50 hours are distributed over 7 short days (7.09 hours per day). Similarly, 490

our simulations suggest that 30-hour working weeks can be relatively unhealthy, when 491

these 30 hours are cramped into 3 long days (10 hours per day). In sum, although the 492

total number of weekly working hours does matter (on average, disease risk is higher 493

when people work more hours per week), our predictions suggests that the total number 494
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of daily working hours plays a more dominant role. 495

These simulation results speak to a recent set of trials conducted in Sweden, where 496

employees were allowed to work 30-hour/5-day working weeks (instead of 40-hour/5-day 497

working weeks; no pay cut applied). Although results of these trials were reported 498

informally—to our knowledge, mainly in media publications (e.g. [66, 67])—our 499

simulation results can be used to make new predictions about whether such trials are 500

likely to support employees’ long-term health. Specifically, we predict that the Swedish 501

30-hour configuration (i.e., configuration #1; 30-hour/5-day) is indeed healthier than its 502

40-hour counterpart (i.e., configuration #1; 40-hour/5-day), but that there may be even 503

healthier ways to distribute 30 hours over a working week (i.e., configuration #5, 504

30-hour/6-day; and configuration #6, 30-hour/7-day). 505

General discussion 506

In this research we aimed to explain how work stress can cause disease, by developing a 507

new computational model. In Study 1, we found that a model that defines cortisol 508

dynamics in two linear relationships (i.e., release of cortisol is proportional to the 509

number of stressors; decay of cortisol is proportional to the current cortisol level), can 510

reproduce the characteristic shape of the cortisol day curve very well [27, 35, 36]. In 511

Study 2, we found that we could reproduce the previously-reported relationship between 512

work stress and disease [59], by formalizing the central predictions from allostatic load 513

theory. In Study 3, based on our model, we formulated several novel predictions about 514

the relationship between work stress and disease. 515

Implications 516

Our research makes several contributions to the literature on the link between work 517

stress and disease. First, we provide a first formalization of the core theoretical ideas in 518

this domain, which previously existed only in the form of verbal theory. Thus, our 519

computational model contributes to the falsifiability of these existing core ideas. Indeed, 520

in our model, there are no implicit assumptions and there is no flexibility in 521

interpretation of how parameters interact. As a result, going beyond previous theories, 522

we can be explicit as to what observations would be needed to falsify our model: any 523

pattern of data that is inconsistent with our predictions (Fig 10), would falsify our 524

model. In that case, our model would need to be improved or replaced by an alternative 525

model. 526

Second, by developing our model, we gained new insights about the mechanisms that 527

together form the causal chain between work stress and disease. For example, we 528

learned that the key logic of allostatic load theory holds when its predictions are 529

scrutinized using a computational model, suggesting that allostatic load theory provides, 530

in principle, a set of premises that is useful to understand how work stress can cause 531

disease. Perhaps more importantly, we found that to show a robust link between work 532

stress and disease, we need to assume that night impulses into the HPA axis are 533

correlated with work impulses to the HPA axis. This finding is consistent with the idea 534

that the morning peak, at least in part, stems from the anticipation of upcoming 535

stressors [30, 64]. Our findings suggest that the acute cortisol response to work stressors 536

by themselves, does not strongly contribute to the development of disease. Instead, 537

work stressors may cause disease as their anticipation (e.g., during the night before) 538

augments the morning peak. Interestingly, in line with the latter idea, several studies 539

show that cardiovascular incidents are indeed most frequent in the first hours after 540

awakening (e.g. [68, 69]). 541
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Third, through simulations, we made several new predictions about the relationship 542

between working hours and the development of disease. In essence, our model predicts 543

that spreading out working hours over more days, rather than concentrating working 544

hours in less days, prevents the development of disease. Related to this, our model 545

predicts that the number of working hours per day (more so than the number of 546

working hours per week) strongly predicts the development of disease. In the following 547

paragraphs, we will discuss these predictions against the background of existing 548

literature. 549

The compressed working week 550

Our predictions are related to previous research on the concept of the compressed 551

working week. The compressed working week is defined as a working week in which the 552

weekly number of working hours is completed in fewer than five working days [65]. 553

Generally, researchers hypothesized that the compressed working week should benefit 554

employees’ well-being via the restorative effects of having longer weekends. In 555

particular, longer weekends should enable employees to pursue more leisure activities; to 556

invest more time in social relationships [65, 70,71]; and to detach and recover more 557

strongly from work [72]. However, findings are mixed: some studies show that 558

compressed working weeks increase well-being (or job satisfaction [65,70]), but other 559

studies show negative effects [71]. 560

How to reconcile these mixed findings with our prediction that compressed working 561

weeks can cause disease on the long run? We should point out that it is questionable 562

whether these previous studies are relevant to our prediction at all. After all, they do 563

not directly speak to employees’ long-term physical health. Nevertheless, if we sidestep 564

this important issue, these mixed findings are inconsistent with our predictions. This 565

apparent inconsistency may be explained by one specific assumption in our model 566

simulations, i.e., the assumption that the number of daily work stressors is linearly 567

related to the number of working hours. In other words, we assumed to longer work 568

days cause proportionally more impulses into the HPA axis. It is possible, though, that 569

employees experience longer working days (in compressed working weeks) as an 570

expression of control over their working hours, mitigating the negative effect from work 571

stress. Indeed, the perception of control over working hours is a powerful mechanism to 572

increase the impact of stressors [73]. In future research, our model (and our simulation 573

approach) can be used to further explore this issue. 574

Independent of this assumption regarding longer work days, we should note that our 575

simulations still do not suggest a special health benefit from having longer weekends. In 576

particular, in our simulations, increases in allostatic load happened on each individual 577

workday, rather than that increases in allostatic load gradually developed throughout 578

the working week. So, our simulations suggest that it does not matter whether two (or 579

more) work-free days are chunked together in a weekend. If research proves 580

otherwise—i.e., if data would convincingly show that, all else being equal, longer 581

weekends protect long-term health—this would falsify our model, and an improvement 582

to our model would be necessary (e.g., we would need to add a parameter). 583

Chronic stress and the cortisol morning peak 584

Our simulations suggest a relationship between the cortisol morning peak and the 585

development of disease. A larger morning peak, so we predict, can cause disease in the 586

long run. We assume that the morning peak stems from night impulses into the HPA 587

axis, which are in part due to the anticipation of the upcoming day. 588

Interestingly, previous research suggests that the amplitude of the morning peak 589

changes when people chronically experience stress [74]. In particular, some studies 590
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report that chronic stress leads to reduced responsiveness of the HPA axis, causing 591

hypocortisolism, of which a lower morning peak is a key symptom [63]. Hypocortisolism 592

has been reported in people who have previously experienced sustained or intense stress, 593

such as people with post-traumatic stress disorder [34] and perhaps people with severe 594

burnout [75]. Speculatively, stress-induced hypocortisolism may function to protect 595

people from further physical damage [63]. After all, lower cortisol levels lead to less 596

sustained burden on the cardiovascular, metabolic, and immune systems, potentially 597

preventing disease. 598

In sum, (a) morning peaks may contribute to disease, but (b) the central nervous 599

system may suppress morning peaks after exposure to sustained stress, and (c) such 600

suppression, which happens in people with burnout, may protect people from further 601

damage. Connecting these three ideas, it is possible to formulate a novel perspective on 602

the nature of burnout. In particular, burnout is traditionally conceptualized as a highly 603

aversive syndrome that emerges from known work-related conditions [76], that can be 604

best treated in a way that is tailored to the client (e.g., [77]), making use of established 605

treatments for depression [78]. We suggest that burnout can also be seen as an adaptive 606

state that shields people from developing potentially lethal conditions, such as 607

myocardial infarctions. This alternative conceptualization (burnout as a protective 608

mode of functioning) is not necessarily better than the original (burnout as a 609

work-related syndrome related to depression), but we suggest that it is potentially 610

productive to consider both conceptualizations together in future research. 611

Limitations and future directions 612

As we strived to develop a minimal model, with only few parameters, we have simplified 613

reality in several ways. Each of these simplifications constitutes a potential limitation of 614

our model, as they may cause our model to have one or more blind spots. 615

First, perhaps reflecting the most rigorous simplification of reality in our study (for 616

a discussion, see [79]), we used cortisol as the only indicator of allostasis. However, 617

allostasis is thought to involve a host of regulatory systems, including not just the HPA 618

axis, but also the sympathetic branch of the autonomic nervous system [5,64]. We chose 619

to focus only on cortisol, because the role of cortisol in stress is very well-studied, which 620

allowed us to calibrate our model to large samples [36]. Moreover, cortisol affects several 621

regulatory systems, including the sympathetic nervous system. Still, our reductionistic 622

approach constitutes a departure from previous, broader attempts to operationalize 623

allostasis and allostatic load [80], and future research is needed to examine whether this 624

simplification can be justified. 625

Second, our model only considers variation in the frequency of work stressors, not 626

their duration. In fact, we assumed that all impulses into the HPA axis have the same 627

duration. Importantly, despite this limitation, our model was well able to reproduce 628

core characteristics of the cortisol day curve (Fig 5-7 ). So, on first sight, it seems that 629

adding variation in the duration of stressors would not lead to a big improvement in our 630

model. Nevertheless, real-life stressors vary in their duration, and stressors may differ in 631

the duration in the physiological response that they trigger (e.g., stressors may have a 632

sustained impact if they lead to perseverative cognition, [31]). More broadly, at least in 633

its current form, our model cannot be used to make predictions about the impact of 634

between-stressor differences (e.g., whether stressors stem from work vs. from other 635

sources; whether stressors are short vs. long). We acknowledge that these differences 636

exist, and that they may matter. 637

Third, in our simulations, we assumed the same values for all simulated individuals 638

for the parameters ρR (recovery coefficient), εL (allostatic load threshold) and εD 639

(disease threshold). As some of our parameters were already unscaled (i.e., they were 640

not directly linked to quantities measured in real life, e.g., this was the case for S, 641
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allostatic strain, and L, allostatic load), we chose not to vary values for ρR, εL and εD 642

in order to avoid adding additional arbitrary assumptions of inter-individual variability. 643

However, it unlikely that this simplification is realistic; in fact, it is plausible that 644

inter-individual variation in health and healthy lifestyle are represented in these 645

parameters. Future research is needed to examine the impact of such variation. 646

Fourth, we should note that the fact that we included unscaled parameters 647

prevented us from estimating precise effect sizes and time-to-disease values. However, 648

we should note that our model does allow for making relative comparisons, to determine 649

which scenario has a higher risk of leading to disease. If researchers succeed in 650

determining meaningful values for some of the parameters (e.g., S and L), it will be 651

possible to estimate effect sizes of different workweek configurations and to estimate 652

time-to-disease values, which we think would present a valuable and meaningful 653

addition to the current model. Although this was not the aim of this study, we do feel 654

this constitutes an interesting direction for future research. 655

Fifth, other mechanisms than the one modeled in our computational model, can 656

potentially explain the relation between work stress and disease. Perhaps most 657

importantly, our model does not consider the possibility that stress may lead to disease 658

through poor health decisions (e.g., unhealthy eating [81], smoking [82], alcohol 659

use [83]). Moreover, some research suggests that gradual changes in the circadian 660

cortisol profile after a long period of chronic stress (specifically, a flattened profile with 661

blunted morning cortisol peaks and elevated cortisol levels during the rest of the day) 662

contributes to stress related disease (e.g., [84]). Our computational model models 663

neither of these mechanisms. However, as we mentioned in the introduction, rather than 664

to provide a comprehensive model, we aimed to create and test a parsimonious and 665

straightforward model of the stress–disease relationship. This being said, we do envision 666

that modelling these alternative mechanisms will lead to interesting insights. In 667

particular, a model that includes the health behavior route may lead to interesting, 668

counter-intuitive predictions, as such a model is likely to involve complex dynamics. 669

Taken together, we see several avenues for future research. Most importantly, the 670

first next step should be to collect empirical data (or to re-use existing empirical data) 671

to critically test our model’s predictions. This would help examine whether our model’s 672

development is on the right track, or whether large changes are needed. However, even 673

in its current form, our model can already be used to generate predictions about specific 674

configurations of working weeks, beyond those covered in this paper. Finally, our model 675

can be adapted or refined, e.g., by adding and/or removing parameters, to make new 676

predictions about the role of job characteristics (e.g., worktime control, job control, 677

social support, emotional and physical demands of work, task variety), and perhaps, to 678

examine the long-term health implications of other aspects of working life (e.g., whether 679

people can recover well at home; whether people encounter stressors for 680

non-work-related reasons). 681

Conclusion 682

The consequences of work stress are costly to individuals, organizations, and society at 683

large. By formalizing the central assumptions of allostatic load theory, we were able to 684

derive new hypotheses (about the effects of workweek configurations), which would have 685

been difficult to derive through intuitive reasoning. At the same time, we contributed to 686

the science of work stress by providing a model that is directly falsifiable. Reflecting on 687

these results, we strongly feel that computational modeling is a fruitful approach not 688

just for science, technology, and engineering—but that this approach can also help to 689

make progress in the domain of occupational health. We hope this research may serve 690

as a blueprint for making further progress in this important area. 691
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Supporting information 692

S1 Appendix. Supplement figures and tables. 693

S1 Script. Cortisol simulation script. Runnable R source code to simulate 694

cortisol data. 695

S2 Script. Cortisol visualization script. Runnable R Markdown source code to 696

create figures from the cortisol data from script S1. 697

S3 Script. Full simulation script. R source code for all simulations as discussed 698

in the paper. 699

S4 Script. Full visualization script. R Markdown source code to create all figures 700

from script S3. 701
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Theoretical conceptualization, current empirical knowledge, and research agenda.
Scandinavian Journal of Work, Environment and Health. 2012;38(4):291–297.
doi:10.5271/sjweh.3308.

74. Miller GE, Chen E, Zhou ES. If it goes up, must it come down? Chronic stress
and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological
Bulletin. 2007;133(1):25–45. doi:10.1037/0033-2909.133.1.25.
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