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Abstract 

The stability of the wrinkling mode experienced by a compressed half-space of neo-

Hookean material is investigated using analytical and numerical methods to study the 

post-bifurcation behavior of periodic solutions.  It is shown that wrinkling is highly 

unstable due to the nonlinear interaction among the multiple modes associated with the 

critical compressive state.  Concomitantly, wrinkling is sensitive to exceedingly small 

initial imperfections that significantly reduce the compressive strain at which the 

instability occurs.  The study provides insight into the connection between wrinkling and 

an alternative surface mode, the finite amplitude crease, or sulcus.  The shape of the 

critical combination of wrinkling modes has the form of an incipient crease, and a tiny 

initial imperfection can trigger a wrinkling instability that collapses into a crease. 
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1. Introduction 

Surface instabilities are frequently observed when highly elastic soft materials are 

compressed (Gent & Cho 1999; Tanaka et al. 1987; Trujillo et al. 2008; Cai, Chen et al. 

2011) and their importance has grown along with the steady increase in applications of 

soft materials (Soft Matter, November 2010).  Biot (1963, 1965) appears to be the first to 

have demonstrated the existence of wrinkling instability modes at the surface of an 

incompressible neo-Hookean elastic half-space.  These modes occur as a bifurcation from 

a state of uniform compression with the unusual feature that their wavelength is 

undetermined—the scale of wrinkle undulations is arbitrary as long as it is short 

compared to any other geometric dimension of the solid.  Throughout this paper, the 

coordinate 1x  is aligned with the direction of in-plane compression, 2x  is aligned 

perpendicular to the free surface of the undeformed half-space, and 3x  is the out-of-plane 

coordinate (Fig.1).  The stretches in the uniform pre-bifurcation state are denoted by 1 , 

2  and 3 .  With 3  imposed and fixed, Biot found that bifurcation into in-plane 

wrinkling modes occurs when the in-plane compression attains 

1 2/ 0.2956     or    1 30.5437 /W       (1.1) 

The crease, or sulcus, surface mode, first analyzed by Hohlfeld (2008) and Hohlfeld 

& Mahadevan (2011), is doubly unusual in that, in addition to having arbitrary 

wavelength, or depth, it does not emerge as a bifurcation but rather exists as a local state 

involving a finite strain changes from the uniform compressive state.  By carrying out a 

finite element analysis of this state in a neo-Hookean half-space, Hong et al. (2009) have 

shown that for any fixed 3  a crease is energetically favorable for compression in the 

fundamental state exceeding 

 1 2/ 0.42     or   1 30.65 /C        (1.2) 

A crease will lower the energy of the solid when the compressive strain exceeds (1.2), but 

the deformation pathway leading to crease formation was not determined by these 

authors.  The mystery underlying these two modes is heightened by the fact that a crease 

can exist at smaller compressive (nominal) strain than that required for the onset of 

wrinkling, i.e., 
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 31 1 0.65 /C C        vs.  31 1 0.5437 /W W       

Hohlfeld and Mahadevan (2011) explored the closing and opening pathways of a finite 

amplitude crease under a cycle of applied compression by attaching a very thin film with 

bending stiffness to the surface whose purpose is to regularize the numerical model by 

fixing the wavelength. As these authors emphasize, the free surface of any soft elastic 

solid is susceptible to wrinkling and creasing under compression because the mode 

wavelengths can be arbitrarily small and locally a surface will be effectively flat. 

The present paper builds on the work cited above with a two-fold objective: to 

determine the stability of wrinkling by carrying out a nonlinear post-bifurcation analysis, 

and to account for the role of initial imperfections in the form of slight surface 

undulations on the stability of the wrinkles.  A clear pathway to crease formation 

emerges.  The paper is organized into sections as follows.  Section 2 develops the energy 

functional for the neo-Hookean half-space on which the analysis is based, and it briefly 

reviews Biot’s (1963, 1965) bifurcation results which form the starting point in the 

nonlinear analysis.  In Section 3, Koiter’s (1945, 2009) post-bifurcation approach is 

presented as relevant to wrinkling—the finite deformation of a nonlinear elastic solid 

with multiple modes associated with the critical bifurcation stress.  The detailed analysis 

of stability and imperfection-sensitivity is executed in Section 4.  The numerical analysis 

of the role of imperfections on the stability of wrinkling is presented in Section 5.  Two 

types of imperfections are considered: a sinusoidal surface undulation in the shape of one 

of the classical wrinkling modes similar to that considered in the analytic study, and an 

isolated slight surface depression.  The numerical analysis reveals connections between 

wrinkling and creasing which are summarized in the conclusions in Section 6. 

 

2.  Energy functional and the bifurcation solution 

Let , 1,3ix i   be Cartesian coordinates defined above labeling material points in 

the undeformed body (Fig.1).  These coordinates will be used throughout the analysis.  

All tensor components will be referred to these coordinates.  Let ( )iu x  be the 

displacements of the material points in the deformed state with the Lagrangian strain 

tensor, ij , defined  by , , , ,2 ( )ij i j j i k i k ju u u u    .  Denote the stretches in the 
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fundamental uniform state by i  subject to a constraint of incompressibility, 1 2 3 1     .  

The material points on the free surface are given by 2 0x   with a semi-infinite slab of 

neo-Hookean material below.  An arbitrary uniform stretch 3  is allowed but, once 

imposed, it is held fixed.  The non-uniform wrinkling deformations associated with 

bifurcation are restricted to satisfy plane strain conditions in the 1 2( , )x x  plane.  The 

applied load parameter is the stretch 1   associated with the uniform solution, i.e., the 

average stretch in the 1-direction,  , is imposed with 2 3 1/   .  Solutions which are 

periodic with wavelength, 2 /l k , with respect to the reference 1x  coordinate are 

sought, having wavelength l  in the deformed state. 

Let ( ) η  be the strain energy per unit volume of the strained material with   as 

the ground state shear modulus.  Let  

   0(0) (0)
1 20

( ) ( ) ( ) ( )
l

V

dV dx dx   


      η η η η     (2.1) 

be the energy change/wavelength (per unit depth of undeformed material) relative to the 

imposed uniform state having strain (0)η  associated with imposed   (and 3 ).  Let 

(0) ( 1)i i iu x   (no sum on i ) be the displacements associated with the uniform solution 

and denote the total displacements by 

(0)
1 2( ) ( , )i i iu u U x x         (2.2) 

where the additional displacements , 1, 2iU i   are restricted to have the periodicity noted 

above with zero average stretch in the 1-direction.  For a neo-Hookean material: 

   1(0) 2 2 2 2
1 1,1 2 2,2 1,1 2,2 1,2 2,12

( ) ( ) U U U U U U          η η  

The incompressibility condition is ( , ) 0C U   where 

 2 1,1 1 2,2 1,1 2,2 1,2 2,1( , )C U U U U U U U         

The modified energy functional, including a Lagrangian multiplier function, 

1 2( , )q x x , to enforce incompressibility, is 

   1 2 2 2 2
1 1,1 2 2,2 1,1 2,2 1,2 2,12

ˆ ( , )
V

U U U U U U q C U dV            (2.3) 
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To eliminate the terms linear in iU , let 1 2( , )q r Q x x   with 2 1/r    where 1 2( , )Q x x  

has the same periodicity as iU ; the linear terms in 2U  cancel.  By periodicity, the term 

linear in 1,1U   integrates to zero.  The modified functional becomes: 

  ˆ ( , , ) ( , , )
V

U Q I U Q dV     ,      (2.4) 

   
 

1 2 2 2 2
1,1 2,2 1,2 2,1 2 1,1 1 2,22

1,1 2,2 1,2 2,1

( , , )

( )

I U Q U U U U Q U U

r Q U U U U

       

  
  (2.5) 

At prescribed  , conditions of equilibrium and incompressibility are given by the 

requirement that the first variations of ̂  with respect to iU  and Q  vanish subject to 

periodicity and such that the overall stretch   is not altered by iU . 

The lowest order terms in the functional are quadratic in the unknowns ( , )U Q .  

The eigenvalue problem for the critical stretch, W , is the variational problem, ˆ 0   , 

based on the quadratic terms in (2.4) with ( , )U Q  and their variations restricted to have 

the periodicity noted earlier and to decay as 2x  .  This is the Biot wrinkling 

problem which is briefly outlined below.  The Euler equations for the problem are 

 1,11 1,22 1 ,1 0U U r Q         

 2,22 2,11 1 ,2 0U U Q          (2.6) 

 1,1 2,2 0rU U          

with boundary conditions on 2 0x  :  1,2 2,1 0U rU   and 1,1 12 0rU Q  .  This problem 

admits separated periodic solutions of the form 

  1 2 1 2 1 2 1 2 1( , , ) ( )sin , ( ) cos , ( ) cosU U Q f kx kx g kx kx kh kx kx    (2.7) 

The two characteristic solutions to (2.6),     2
2 2 2( ), ( ), ( ) , , ksxf kx g kx h kx F G H e , which 

decay to zero as 2x   have s r  and 1s  , with 1 2, ( 1)F G H Gr r     for s r  

and 1, 0F Gr H    for 1s  .  Satisfaction of the boundary conditions on 2 0x   gives 

the eigenvalue condition 

 3 2
2 13 1 0 / 3.3830r r r r              (2.8) 

and 
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 2 1 2( ) (1 ) (1 ) 2rf r r e re            

  2 1 2 2( ) (1 ) (1 ) 2rg r r e r e             (2.9) 

 1 2( ) (1 ) rh r r e            

where the normalization (0) 1g   has been enforced.  The solution holds for any wave 

number k  and prescribed 3  with W  given by (1.1). 

Multiple eigenmodes with the same periodicity exist associated with the critical 

stretch.  To define them, identify the thn  mode in the set using the notation ( )n
i iU u  and 

( )nQ q .  With 2 /k l , 

    ( ) ( ) ( )
1 2 1 2 1 2 1 2 1, , ( ) sin( ), ( ) cos( ), ( ) cos( )n n nu u q l f nkx nkx g nkx nkx nk h nkx nkx    (2.10) 

for 1,2,3,...n   .  Here, the period, l , which is the only length scale in the problem, is 

employed as a dimensional normalizing factor.  Attention has been restricted to modes 

that are symmetric about 1 0x  .  The normalization in (2.10) is such that on 2 0x   the 

modal displacement normal to the free surface is ( )
2 1cos( )nu l nkx . 

In the analysis which follows, the total displacement will be expanded in the form 

      0 0 ( ) ( )

1

( , ) ( ), ( ) , ,
N

n n
i i n i i i

n

u q u q u q u q  


        (2.11) 

with 0 ( )q r   and n  as the dimensionless amplitude of the thn  mode.  Higher order 

terms in the expansion are denoted by  ,i iu q  . 

 

3.  Koiter’s initial post-bifurcation analysis for wrinkling 

(a) The perfect system 

  In this section, a general result for the energy change in the vicinity of the 

bifurcation point will be derived using a compact notation.  A general relation is sought 

between the prescribed overall stretch,  , and the amplitudes of the bifurcation modes in 

the equilibrium post-bifurcation state which are denoted collectively by  .  In the general 

notation, this relation has the form 

  21 ...W a b             (3.1) 
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For wrinkling it turns out that 0a   and it will not be necessary to obtain b  because it 

will be seen that 0a   already implies that the bifurcation solution is highly unstable. 

With reference to the expansion (2.11), the bifurcation modes are represented collectively 

as 

  (1) ( ) ( )

1

,
N

n n
n i

n

U u q 


  

In the same compact notation, let 2 (2)U  denote all the terms that are quadratic in the 

amplitudes of the bifurcation modes.  In this compact notation, the initial post-bifurcation 

expansion takes the form 

 (1) 2 (2)
0 0( ) .... ( )U U U U U U               (3.2) 

 The modified energy functional (2.4) is denoted by ˆ ( , )U  .  Equilibrium in the 

bifurcated state and the constraint on volume change requires satisfaction of the 

variational equation 

 ,
,

ˆ ( , ) ( , , ) ( , , )ˆ 0i jV
i j

U I U Q I U Q
U U Q dV

U U Q

     
             




  

for all admissible ( , )iU U Q    satisfying periodicity with no average stretch.  Expand 

this condition about ( ,0C ), noting that 
0

ˆ ( , ) / 0
U

U U


     
   and 

2

0

ˆ ( , ) / 0
U

U U 


       
  , obtaining 

 

2 3
(1) 2 (2)

2 2

3
2(1) 2 (2)

3

ˆ ˆˆ ( ,0) ( ,0)( , )
... ....

ˆ ( ,0)1
.... ..... 0

2

W W
W

W

U
U a U U U

U U U

U U U
U

       


   

                  
        


  



 

with notation such as 2 2 2 2

0

ˆ ˆ( , ) / ( ,0) /W W
U

U U U 


         
   .  In increasing powers 

of , this becomes 
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2
(1)

2

2 3 3
2 (2) (1) (1)2

2 2 3

3

ˆˆ ( ,0)( , )

ˆ ˆ ˆ( ,0) ( ,0) ( ,0)1

2

0

W

W W W
W

U
U U U

U U

U U a U U U U
U U U

O

   

      




  
    

      
       
 


 

    (3.3) 

The eigenvalue problem governing bifurcation solved earlier is obtained by setting the 

terms of order   to zero for all admissible U , i.e., 

 
2

(1)
2

ˆ ( ,0)
0W U U

U

  


   

Each of the higher terms in the expansion, ( )mU , is admissible and, thus, 

 
2 2

(1) ( ) ( ) (1)
2 2

ˆ ˆ( ,0) ( ,0)
0 , 1,2,...m mW WU U U U m

U U

    
  

      (3.4) 

The variational problem for (2)U  is obtained from the terms of order 2 : 

 
2 3 3

(2) (1) (1)2
2 2 3

ˆ ˆ ˆ( ,0) ( ,0) ( ,0)1

2
W W W

WU U a U U U U
U U U

     


     
  

       

(Orthogonality conditions on (2)U  relative to (1)U  must also be imposed if one solves for 

(2)U , but this will not be necessary.)  With (1)U U   in the above equation and use of 

(3.1), one obtains the compact equation for the bifurcation coefficient, a : 

 
3 3

(1)2 (1)3
2 3

ˆ ˆ( ,0) ( ,0)1

2
W W

Wa U U
U U

 


   
 

         (3.5) 

For most problems, this condition gives 0a  , but for the wrinkle problem with multiple 

modes we will find 0a   and it is not necessary to proceed further.  Detailed information 

on mode coupling will also emerge. 

 The above results can be used to express the energy change, ˆ ( , )U  , from the 

fundamental state.  Because ˆ ( ,0) 0   and ˆ ( ,0) / 0U   , it also follows that 

 
2ˆ ˆ( ,0) ( ,0)

0, 0, .etc
U

 
 

  
 

   
 

Using expansions for   and U , making use of the above, one finds 
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2 3
2(1) 2 (2)

2 2

3 4
3(1) 2 (2)

3 3

ˆ ˆ( ,0) ( ,0)1ˆ ( , ) ( ) ... ....
2

ˆ ˆ( ,0) ( ,0)1
( ) ... .... ..... 0

6

W W
W

W W
W

U U U
U U

U U
U U

     


     


                   
                   

 

 

 

Accounting for the terms that vanish by virtue of the eigenvalue problem, gives  

 

3 3
2 (1)2 3 (1)3

2 3

4 3

ˆ ˆ( ,0) ( ,0)1 1ˆ ( , ) ( )
2 6

( , ( ) )

W W
W

W

U U U
U U

O

     


   

   
   

  
 

    (3.6) 

Equation (3.6) allows one identify the expression for 
3

3
3

ˆ ( ,0)1

6
W U

U

 



  as the cubic 

terms in U  from (2.4) and (2.5), i.e., 

 
3

3
33

1

ˆ ( ,0)1
( , , )

6
W

V

U I U Q dV
U

  


 


          (3.7) 

with 

    3 1 1,1 2,2 1,2 2,1( , , )I U Q Q U U U U     

Based on the quadratic terms in (2.4) and noting 2 / r      and 1/ 2 /r r     , it is 

also straightforward to obtain 

      
3

2
1 1,1 2,2 1,1 2,2 1,2 2,12

1

ˆ ( ,0)1
2

2
W

V

U Q rU U r U U U U dV
U

  
 

 
   

     (3.8) 

In (3.7) and (3.8), 1  and r  are evaluated at W . 

 

(b)  The imperfect system—lowest order contribution of a geometric imperfection 

A slight imperfection in the form of a periodic undulation of the surface of the 

undeformed half-space is assumed: 

 2 1 1
1

( ) cos( )
N

n
n

x x l nkx 


         (3.9) 

with n  as the amplitude of the imperfection in the thn  mode. 

 

The objective is to obtain asymptotic results for the effect of very small imperfections on 

behavior in the vicinity of the bifurcation point and, in particular, on the occurrence of 
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the wrinkling instability.  Only the lowest order influence of the imperfections is sought 

following an approach similar to that of Koiter (1945, 2009). 

For the initial undulation,   in (2.1) can be written as 

    10 ( )(0) (0)
1 2 1 20 0 0

( ) ( ) ( ) ( )
l l x
dx dx dx dx


   


       η η η η   (3.10) 

For very small 1( )x ,  

   1

2

( ) (0) (0)
2 1 00

( ) ( ) ( ) ( ) ( )
x

x
dx x


    


   η η η η , 

such that the lowest order contribution to ̂  due to the imperfection is 

    1

2

( ) (0) (0)
1 2 1 100 0 0

( ) ( ) ( ) ( ) ( )
l x l

x
dx dx x dx


    


      η η η η  (3.11) 

Then, note that 

    
2 2

2

(0)
(0) 0

0 0
0

( )
( ) ( ) ... ...ij ij ijx x

ij x

    
 



 
         

η
η η   (3.12) 

where, to lowest order in iU , 0 0
, , , , , ,2 ( )ij i j j i k i k j k j k iU U u U u U     , and 0 ( )ij   is the 

Piola-Kirchhoff stress in the fundamental state.  With 0 2
11 ( 1)r    , the lowest order 

contribution of the imperfection to ̂  is 

 2 ( )
1 1 1,1 1 10

1

( 1) ( ) ( ,0)
Nl n

n
n

l r x u x dx  


 
     

 
     (3.13) 

 

4.  The instability of wrinkling 

(a) Evaluation of the post-buckling coefficients 

In the notation of (2.10) and (3.2), we consider the first N modes: 

  (1) ( ) ( ) ( )
1 2 1

1

, ,
N

n n n
n

n

U u u q  


       (4.1) 

A direct evaluation of the integral in (3.8) gives 

 
3 2

2 (1)2 2
2

1

ˆ ( ,0)1
, 9.3438

2

N
W

n
nW

l A
U n A

U

  
  

 
 

       (4.2) 

while (3.7) gives 
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



3 2
3 (1)3 2 2

112 1 2 123 1 2 3 224 2 4 134 1 3 43

2
235 2 3 5 145 1 4 5 156 1 5 6 246 2 4 6 336 3 6

ˆ ( ,0)1

6
W

W

l A
U b b b b

U

b b b b b

           


             

 
   



    

 (4.3) 

with 

 112 224 336 123 246

134 235 145 156

/ 4 / 9 2.4792, / 4 9.6303,

13.882, 29.445, 17.886, 21.735

b b b b b

b b b b

    
   

 

Coefficients for 6N   are listed but some results below have been computed with N  as 

large as 10 .  The nonlinear coupling of modes 1 and 2 is illustrated by the cubic term, 

2
112 1 2b   , in (4.3).  It arises due to the fact that products of quadratic terms from mode 1, 

proportional to 2
1 1cos( ) (1 cos(2 )) / 2kx kx  , and linear terms from mode 2, proportional 

to 1cos(2 )kx , are not orthogonal.  On the other hand, the phasing of cubic terms 

proportional to 3
1 , 3

2  and 2
1 2   is such that they integrate to zero.   

The contribution (3.13) from the initial imperfection is 

2
2 2

1
1 1

17.8405 2
N N

n n W n n
n nW

l A
l n c n

     
 

        (4.4) 

with 0.95467c  . 

 

(b) The post-bifurcation equations 

The modified energy functional in (3.6) plus the contribution due to the imperfection 

is (illustrated for 6N  ) 

2 2 2 2
112 1 2 123 1 2 3 224 2 42

1 1

2
134 1 3 4 235 2 3 5 145 1 4 5 156 1 5 6 246 2 4 6 336 3 6

4 2 2

ˆ ( , , )
( ) 2

/

( , , )

N N

W n W n n
i iW

U
n c n b b b

l A

b b b b b b

O

              
 

                

   

 


     

     



 
  (4.5)    

This result holds for any prescribed value of 3 , with W  given by (1.1).  Equilibrium 

requires ˆ / 0i    for 1,i N .  For 6N  , the equations are: 

2
1 112 1 2 123 2 3 134 3 4 145 4 5 156 5 6 12( ) 2 2W Wb b b b b c                      

2 2
2 112 1 123 1 3 224 2 4 235 3 5 246 4 6 24( ) 2 4W Wb b b b b c                     

2
3 123 1 2 134 1 4 235 2 5 336 3 6 36( ) 2 6W Wb b b b c                             (4.6) 
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2 2
4 224 2 134 1 3 145 1 5 246 2 6 48( ) 8W Wb b b b c                  

2
5 235 2 3 145 1 4 156 1 6 510( ) 10W Wb b b c                

2 2
6 156 1 5 246 2 4 336 3 612( ) 12W Wb b b c               

These relations are asymptotically valid in the vicinity of the bifurcation point for 

sufficiently small imperfections. 

 

(c) Post-bifurcation solutions—the perfect system 

The two-mode approximation: Setting all the mode amplitudes to zero in (4.6) except 

for the first two modes and their imperfections, one has 

 
 
 

2
1 112 1 2 1

2 2
2 112 1 2/ 4

W W

W W

b c

b c

      

     

  

  
      (4.7) 

For the perfect system ( 1 2 0   ), the solutions of interest are 

 1 1122 ( ) /W b     ,   2 112/W b     ,   with 0W     (4.8) 

In what follows it will be evident why the solutions of interest are those associated with 

overall compressive strains less than the bifurcation value (i.e., 0W    or, 

equivalently, 0W    with 1    as the compressive strain).  The solutions are 

shown in Fig. 2.  The existence of the non-zero cubic term, 2
112 1 2b   , implies that 

wrinkling bifurcation is unstable at W   because the energy change on the equilibrium 

path relative to the bifurcation state, 

 32
112 1 22

ˆ ( , )
0.651

/
W

W
W

U
b

l A

    
 


    ,      

is negative.  The shape of surface wrinkle for the combined two-mode approximation,  

  2 1 1 1
112

( )
( ,0) 2cos(2 / ) cos(4 / )W l

u x x l x l
b

   
  , 

is plotted in Fig.3.  The wrinkle displays a deep-pronged penetration of the free surface 

into the material with relatively flat broad crests on either side. 

N-mode approximations:  By including the 3rd mode in (4.6), one sees that the 2-

mode solution is indeed only an approximation—the term 123 1 2b    in the 3rd equation 
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requires non-zero 3 . A finite number of modes can only generate an approximate 

solution to the order considered because the modes in the infinite set are all coupled 

through the quadratic terms in the equilibrium equations.   

For a given N , the solution to the system (4.6) has the form ( )n n W      for 

1,n N  and, thus, the normalized surface undulation, 2 1( ,0) / [( ) ]Wu x l   in Fig. 3 is 

independent of ( )W   to the order considered in this paper.  While any shape is 

possible according to the bifurcation solution, the post-bifurcation analysis identifies a 

definite shape, assuming periodicity.  The normalized shape of the wrinkle at the surface 

in Fig. 3 has been determined by a sequence of calculations, each with N  modes, for N  

ranging from 2 to 10.  A standard numerical iterative algorithm for solving systems of 

coupled nonlinear algebraic equations was used to generate the n .  The solution for the 

system of 1N   equations was employed as the initial guess in the iteration for the 

solution for the system with N  equations, thereby leading to the regular progression of 

shape approximations shown.1  The sequence is trending towards an incipient crease-like 

shape as more and more terms in the approximation are considered, although the shape 

for 10N   does not yet appear to have converged.   

 

(d)  Post-bifurcation solutions—the imperfect system 

The 2-mode approximation: Explicit results for the reduction of the compressive 

strain at which wrinkling becomes unstable are now given for an imperfection in the first 

mode ( 1 0  , 2 0  ).  The second of (4.7) gives 2
2 112 1 / [4( )]Wb      .  Substituting 

this into the first of (4.7), one finds  2 3 2
1 112 1 1( ) / [4( )]W W Wb c           , which 

provides the relation between   and 1 .  Denote the minimum of   (i.e., the maximum 

compressive strain in the presence of the imperfection) by * ; it is associated with 

1/ 0d d    (see Fig. 2).  Solving for *
W  , one finds 

                                                 
1 The nonlinear algebraic equations for the perfect system (4.6) admit other solutions.  For example, period 
doubling can be illustrated by taking modes 2 and 4 as dominant and allowing for bifurcation in mode 1 or 
by including a small imperfection in mode 1. 
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112 1*

1

3 3
1.7534

4W W W

b c 
            (4.9) 

The stretch *  for the imperfect system corresponds to the maximum compressive 

overall strain on the equilibrium path.  The solution at *  is unstable in the sense that it 

would snap dynamically and undergo a finite deformation into another configuration—

almost certainly to a fully developed crease as will be seen later.  

The effect of very small imperfections in lowering the compressive strain at which 

wrinkling becomes unstable is dramatic due to the fact it is proportional to 1 , as seen 

in Figs. 2 and 4.  The type of nonlinear coupling among simultaneous modes in wrinkling 

is rare but it is similar to that in two structural problems that also have multiple buckling 

modes and are notoriously imperfection-sensitive—the elastic buckling of cylindrical 

shells under axial compression (Koiter 1945, 2009) and spherical shells under external 

pressure (Hutchinson 1967). 

N-mode approximations: Consider again the half-space with an initial imperfection 

in the 1st mode , 1 0  , with 0n   for 1n  .  As in the perfect case, a sequence of 

calculations has been made with an increasing number of modes in the approximation.  

For any N , the solution to (4.6) at the point of the maximum overall compressive strain 

has the form * *
1W Wc      and 1n nc  .  The coefficient *c  is given in Table 1, 

and the results for the reduction in the compressive stretch, *
W  , at which wrinkling 

becomes unstable is plotted as a function of the imperfection amplitude in Fig. 4 for N  

ranging from 2 to 6.  The results appear to be converging to a curve slightly above that 

for 6N  .  The formula (4.9) based on the 2-mode approximation underestimates the 

reduction in the compressive strain at the wrinkling instability by about 35%. 

 

    Modes in approximation  2N    3N    4N    5N     6N   

*c :  (i) max overall strain 1.754 2.077 2.226 2.305 2.358 

*c  : (ii) A W   2.133 2.227 2.336 2.379 2.408 

 

Table 1.  Imperfection-sensitivity coefficient based on two criteria. 
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With ( )n n W       for 1,n N  as the N -mode solution for the perfect system in 

(4.6), consider an imperfection in the shape of the solution for the perfect system, i.e., 

n n    for 1,n N , with   as the single imperfection amplitude.  With n n    for 

1,n N , it is straightforward to show that each of N  equilibrium equations (4.6) reduces 

to the same equation:  2 2( )W Wc        .  The maximum compressive strain that 

can be imposed prior to instability is given by 

* 2 1.9541W W Wc              (4.10) 

The imperfection-sensitivity implied by this result is similar to that predicted for an 

imperfection in the shape of the 1st mode. 

An alternative instability condition for the imperfect half-space will be discussed in 

connection with the numerical solutions presented in the next section. 

 

5.  Plane strain finite element simulations of a half-space with initial imperfections 

Two types of initial surface imperfections have been considered in the numerical 

simulations; a sinusoidal imperfection, 1 1 1( ) cos(2 / )x l x l   , and a periodic array of 

non-interacting initial exponential depressions of the surface specified by 

 
2

1( / )
1( ) 4 x lx l e            (5.1) 

A finite element mesh conforming to the initial surface undulation was created on a 

rectangular region in the 1 2( , )x x  plane of width L  and depth 10D L  for the sinusoidal 

imperfection.  The surface is traction-free, while the shear traction and 2u  are taken to be 

zero on the bottom surface. The depth is sufficient to ensure that the boundary conditions 

on the bottom have no influence on the wrinkling behavior.  For the sinusoidal 

imperfection, periodic boundary condition are imposed on the vertical sides of the region 

and L  is taken to be l .  For the exponential imperfection (5.1), periodic boundary 

conditions on the sides are also assumed for computational convenience. The 

imperfection is located within the center of the region and L  is chosen to be 20l  with 

10D l  so as to ensure that there is essentially no interaction between neighboring 
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imperfections or the bottom—the results for this case can be regarded as that of an 

isolated imperfection of the form (5.1).   

Plane strain ( 3 1  ) finite element simulations are performed via the commercial 

software, ABAQUS (2008). Considering that the instability and the wrinkling-creasing 

transition occur at the central region of the upper surface, a very fine mesh is used in this 

region with a ratio of  l  to the element size taken to be approximately 2000.  In the finite 

element simulations, the incompressible neo-Hookean material model is employed 

(ABAQUS, 2008).  The hybrid element (CPE6MH) suitable for simulations of 

incompressible materials is adopted. To introduce the initial surface imperfections, finite 

element simulations are first run by specifying the boundary conditions 

( 2 1 1 1cos(2 / ), 0u l x l u   ) on the upper surface for the sinusoidal imperfection and 

(
2

1( / )
2 14 , 0x lu l e u    ) for the exponential imperfection.  The function 

*IMPERFECTION in ABAQUS (2008) converts the displacements from this step to an 

initial stress-free geometric imperfection. This procedure is equivalent to directly 

meshing a block of stress-free material with the initial surface undulation.  Simulations 

are performed to track the occurrence of the local instability and the formation of a crease, 

as reported below. Self-contact interaction is defined for the upper surface of the block. 

When a local wrinkling instability occurs, the global matrix of the system may be 

singular and the Riks method, the commonly-used numerical method for dealing with 

limit points, will fail. In the present simulations, the pseudo-dynamic method has been 

adopted. A brief description of the key idea behind this nonlinear solution method is 

outlined as follows. 

The nonlinear equations solved in a finite element analysis can be written as 

  0 u           (5.2) 

where   is a nonlinear function of u , symbolizing the displacements of the nodes, and 

 u  and   denote internal forces and applied loads at the nodes, respectively. The 

pseudo-dynamic method regularizes the unstable problem by adding volume-proportional 

damping to the model such that equation (5.2) becomes 

  0vu F            (5.3) 



17 
 

where  

vF Mv c          (5.4) 

Here, M  is an artificial mass matrix calculated with unity density, c is a damping factor, 

t  v u  is the vector of nodal velocities, and t  is the increment of time. When the 

model is stable (quasi-static), viscous forces and viscous energy dissipation are very 

small such that the artificial damping does not perturb the solution significantly. When 

the structure goes dynamically unstable, however, nodal velocities increase and, 

consequently, part of the strain energy released is dissipated by the damping.  In 

simulations of the wrinkling problem, pseudo-dynamic regularization, which is now a 

standard feature in ABAQUS (2008), allows solutions to be generated under prescribed 

overall compressive strain when the wrinkle becomes unstable and develops into a 

crease.  The role played by the damping factor c here is similar to that of the 

regularization factor in the Tikhonov regularization method (Tikhonov & Arsenin 1977) 

which is widely used to deal with ill-posed inverse problems. 

 

(a)  Wrinkling instability for sinusoidal imperfections 

Fig. 5 presents the overall compressive strain at the point of wrinkling instability, 

* *1   , as a function of the imperfection amplitude, 1 .  Included in this figure is the 

local compressive strain parallel to the surface at the deepest point of the wrinkle, 

1A A   .  As will be discussed in more detail below, the imperfect half-space becomes 

unstable with the local strain at the deepest point attains the Biot wrinkling strain, i.e., 

A W  .  The simulations presented in Fig. 5 again reveal the extraordinarily strong 

imperfection-sensitivity of the overall compressive strain at instability, * .   Moreover, 

the numerical results confirm the accuracy of asymptotic result,  * *
1W Wc     , 

which has been included in Fig. 5, for reductions in overall strains larger than 0.1.  In 

particular, imperfections larger than about 1 0.008   reduce the overall strain at 

instability to below the level needed to sustain a crease in the perfect system, i.e. *
C  .  

This is a tiny initial undulation with an amplitude less than 1% of its wavelength.  The 
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crease that forms at this low value of *  is localized within the region of strain 

concentration at the bottom of the larger scale wrinkle. 

Further details of the evolution of the instability are illustrated in Figs. 6 and 7 for 

the case 1 0.005  .  The difference in height between the highest and deepest points on 

the surface, 2u , increases monotonically as the instability develops.  Fig. 6 displays the 

local compressive strain at the deepest point, A , and the overall strain,  , as functions of  

2 /u l  up to the onset of instability.  At the onset, A W  , as already noted, and the 

overall compressive strain attains its maximum, * .  Upon attaining the onset condition at 

A, a small scale wrinkle forms within a narrow region on either side of A (Fig. 7).  This 

smaller-scale wrinkle evolves into a fully developed crease under conditions in which the 

overall strain remains essentially unchanged at * .  The wavelength of the small scale 

wrinkle is comparable to the size of the finite elements, but once the crease develops, the 

crease depth is large compared to element size, as seen in Fig. 7b.  The crease relaxes the 

compressive strain in its vicinity as seen from the plot of the compressive strain at the 

surface as a function of horizontal distance from the crease in the deformed body in Fig. 

8.  For horizontal distances from the center-line of the crease less than about 2.3 Cl , the 

surface strain has been reduced below the creasing strain, 0.35C  , and at greater 

distances the strain does not exceed the wrinkling strain 0.456W  .  The numerical 

simulations indicate that the characteristic point on the surface at which the strain attains 

C  is nearly coincident with the inflection point corresponding to the transition of the 

surface from being convex to concave.  No attempt has been made to simulate behavior at 

overall compressive strains beyond *  which would drive the crease even deeper than 

that shown in Figs. 7 and 8 and possibly nucleate new wrinkles and creases.  Such 

calculations have recently been performed and compared with experimental observations 

by Cai, Chen et al. (2011).   

In connection with Fig. 6 it was noted that the onset of wrinkling instability is 

associated with (almost) simultaneous satisfaction of two conditions: (i) attainment of an 

maximum in the overall compressive strain, and (ii) A W  .  The analytical modeling of 

wrinkling instability in Section 4d is based on condition (i).  Motivated by the numerical 
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findings related to the role of condition (ii), the analytical approach in Section 4d has 

been used to compute the overall stretch *  at which the local wrinkling condition, 

A W  , is met at the deepest point of the wrinkle on the surface at 1 / 2x l .  The details 

of this calculation will not be given because they involve only a minor extension of the 

analysis in Section 3.  The result has precisely the same functional form,  

* *
1W Wc     , as in the case of condition (i), where, as before, the coefficient *c  

depends on the number of modes, N , in the approximation.  The coefficient is presented 

in Table 1 along with that computed earlier based on condition (i).  According to the 

analytical approximation, the local wrinkling condition (ii) is attained slightly before the 

maximum overall strain is reached.  However, the difference between the overall critical 

stretch *  from two conditions is nearly negligible when 6 modes are used in the 

calculation (see Table 1).  Thus, both the analytical and numerical predictions indicate 

that the two conditions, (i) and (ii), are attained nearly simultaneously at the onset of 

wrinkling instability and crease formation. 

 

(b)  Wrinkle instability for exponential imperfections 

Simulations with the exponential imperfection (5.1) have also been carried out with 

results presented in Fig. 9.  Wrinkling instability and the formation of a crease again 

occurs when the local strain at the deepest point of the surface wrinkle attains W .  A 

slight local depression on the surface of the half-space reduces the overall strain at the 

wrinkling instability to levels similar to that seen for the sinusoidal imperfection, based 

on comparable values of the normalized imperfection amplitudes that have been defined. 

 

6.  Conclusions 

The post-bifurcation analysis of Biot’s wrinkling problem reveals that wrinkling is 

extremely unstable and highly imperfection-sensitive.  Wrinkling is also seen to be one 

pathway to the finite amplitude creasing mode.  Wrinkling is so unstable and 

imperfection-sensitive that well developed wrinkles are not likely to be observed—a 

slight wrinkle will become dynamically unstable and trigger the formation of a crease.  In 

this sense, the crease can be regarded as the collapse state of a wrinkle.  The 



20 
 

wrinkle/crease connection has an analog in the elastic buckling of cylindrical shells under 

axial compression and spherical shells under external pressure which, like wrinkling, are 

characterized by multiple bifurcation modes associated with the critical stress.  Buckling 

of these shell structures is also so unstable and imperfection-sensitive (Koiter 2009; 

Hutchinson 1967) that their short wavelength bifurcation modes are almost never 

observed because they become unstable at very small amplitudes and snap dynamically 

into a collapse state.  Buckling modes observed in the collapsed state of the shell 

typically have much larger wavelengths than those of the bifurcation modes.  A few 

experiments have employed high speed cameras to captured the bifurcation modes right 

after they are triggered (Brush & Almorth 1975) or have used a mandrel to arrest the 

buckles immediately after they have formed (Carlsson et al. 1967).   

In addition, these shell structure/loading combinations are so imperfection-sensitive 

that, of the large number of shells tested over many years, none has reached a buckling 

load greater than about 1/2 of the buckling load of the perfect shell when the radius to 

thickness ratios exceeds 1000.  In this respect, as well, there may be a close analog to 

wrinkling/creasing, i.e., the imperfection-sensitivity of wrinkling may be so strong that 

the maximum compressive strain of any actual realization of an elastomer layer will 

always lie well below Biot’s wrinkling strain (1.1) due to inevitable surface 

imperfections.  

There is one important respect in which wrinkling of a uniform half-space differs 

from cylindrical and spherical shell buckling—the wrinkling wavelength is undetermined 

and can be arbitrarily small.  In principle, a perfectly flat surface should reach the Biot 

wrinkling strain but in practice, as noted above, it seems reasonable to assume that 

imperfections will always be present at some scale to trigger creases at strains just above 

the creasing strain.  As Hohlfeld and Mahadevan (2011) have noted, wrinkles and creases 

are always lurking to destabilize a smooth surface of a compressed elastomer because 

their scale can be arbitrarily small.  Examples have been presented in this paper for both 

sinusoidal and isolated imperfections wherein small scale wrinkles form in the vicinity of 

the point on the surface of maximum compression—wrinkles within wrinkles—and then 

spontaneously collapse into a local crease.   An open question concerns the lower limit on 

the size of these instabilities.  A continuum representation such as the neo-Hookean 
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material, with the elastomer represented by a constitutive model having no material 

length dependence, provides no lower limit on the scale of the instabilities.  Surface 

effects such as a stiff thin layer of oxidized material would provide a limit.  Strain 

gradient strengthening associated with deformation gradients that become comparable to 

scale of the polymeric microstructure would also place a lower limit on the size of the 

instabilities, but such effects have not yet been quantified for elastomers. 

Finally, we note that the unstable wrinkling behavior of the uniform neo-Hookean 

half-space is in sharp contrast to the highly stable wrinkling behavior of a system 

comprised of a thin stiff film bonded to compliant half-space substrate.  The 

film/substrate system buckles into wrinkling modes at very small compressive strains 

(Allen 1969).  These systems can be compressed well beyond the critical bifurcation 

strain with the buckled state remaining stable (Cai, Bried et al. 2011).  It is not at all 

unusual for experimental systems to display stable wrinkling behavior at an overall 

compressive strain ten times the bifurcation strain.  Imperfections play a secondary role 

in the behavior of these systems.  It remains for future work to explore the full parameter 

space of film/substrate systems to uncover the range of parameters in which a transition 

occurs from the highly stable buckling behavior associated with very stiff films to the 

highly unstable behavior associated with wrinkling of the uniform half-space. 
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Figures 

 

Fig. 1  Coordinates 1 2 3( , , )x x x identify locations of material points in the undeformed 

body.  The pre-bifurcation deformation is characterized by uniform stretches 1 2 3( , , )    

with 1 2 3 1    .  The bifurcation and post-bifurcation problems involve increments of 

displacement in the 1 2( , )x x  plane with the out-of-plane stretch 3  held fixed. 

 

 

 

Fig. 2  Two-mode approximation for the post-bifurcation behavior of wrinkling for the 
perfect half-space ( 1 2 0   ) and for a half space with slight initial surface undulation 

( 1 1 1 2( ) cos(2 / ), 0x l x l      with 2
1 0.0005C    ).   For the imperfect system the 

maximum compressive strain that can be imposed prior to the wrinkle becoming unstable 
is * *1   . 
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Fig. 3  The surface shape of the wrinkle mode of the perfect half-space as determined by 
the post-bifurcation analysis for a sequence of approximations with 2,10N  . 
 

 
 
Fig. 4  Imperfection-sensitivity of wrinkling for sinusoidal imperfections.  The maximum 
compressive strain that can be imposed given the normalized imperfection amplitude, 1 , 

is associated with the stretch * .  Applicable for all 3  with W  given by (1.1). 
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Fig. 5  Imperfection-sensitivity for the sinusoidal imperfection as predicted by the 
numerical simulations compared with the asymptotic analytical results.  Finite element 
results in plane strain for the overall compressive strain at which the wrinkle becomes 
unstable, * , and for the corresponding local compressive strain at the deepest point of 
the wrinkle, A .  Two important observations can be noted.  Very small initial 

imperfections dramatically reduce the overall strain at instability so much so that an 
imperfection with amplitude less than one hundredth of its wavelength reduces the strain 
at instability to below the creasing strain (1.2).  Secondly, instability is associated with 
the local compressive strain at A attaining the wrinkling strain, 0.456W  . 
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Fig. 6  The overall compressive strain,  , and the local compressive strain, A , at the 

deepest point on the surface as a function of the normalized surface height difference for 
the sinusoidal imperfection with 1 0.005  .  Both A W    and attainment of a 

maximum of the overall compressive strain occur at the point of instability, to a high 
approximation. 
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Fig. 7  Details of the development of the wrinkle and the formation of the crease for a 
sinusoidal imperfection with 1 0.005  .  The onset of instability (A) occurs when small 

scale wrinkling occurs at the minimum point on the surface at the overall strain, * .  
With overall strain held constant, the crease develops in (B).  The wrinkle becomes 
dynamically unstable when the overall strain attains *  and would collapse dynamically 
into the crease.  The pseudo-dynamic algorithm used in the numerical simulations enable 
the transition to occur in a controlled manner.  In the inserts, (A) and (B), X  denotes the 
horizontal distance measured in the deformed state. 
 



28 
 

 
 
Fig. 8   Compressive strain distribution at the surface in the vicinity of the crease for a 
half-space with a sinusoidal imperfection with amplitude 0.005   for two crease 
depths.  X  denotes the horizontal distance measured in the deformed state.  A 
characteristic point on the surface, 2.3 CX l , is noted where the strain equals the crease 

strain, C .  At this point, to a good approximation, the surface curvature switches from 

concave to convex.  At distances 2.3 CX l  the strain at the surface is less than C . 
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Fig. 9  Local and overall compressive strains at the wrinkling instability in plane strain 
for the exponential imperfection.  The imperfection-sensitivity for this imperfection is 
similar to that for the sinusoidal imperfection. 
 
 


