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Front and back instability of a liquid film on a slightly inclined plate

Uwe Thiele and Edgar Knobloch

Department of Physics, University of California, Berkeley CA 94720

Abstract

We study the transverse instability of a liquid ridge on horizontal and inclined substrates using a film

evolution equation based on a long wave approximation. The equation incorporates an additional pres-

sure term – the disjoining pressure – accounting for the effective interaction of the film with the substrate.

On a horizontal substrate the dominant instability mode is varicose, but may turn into a zigzag mode on

a slightly inclined substrate depending on the inclination angle and the ridge volume. For larger angles

or volumes the instabilities at the front and back decouple. The linear stability properties of a one-

dimensional ridge-like state are studied in detail, and an energy analysis is used to demonstrate that the

disjoining pressure provides the dominant instability mechanism at both the front and the back, while the

body force is responsible for the main differences between these two instabilities. An amplitude equa-

tion for the time evolution of perturbations with small transverse wavenumbers is derived that predicts

correctly the linear crossing of the most dangerous eigenvalues at zero wavenumber in the inclined case,

in contrast to the situation on a horizontal substrate.

Keywords: Thin films, Interfacial instabilities, Instabilities/fingeringof interfacial flows, Stability/dynamics of thin

films

1



I. INTRODUCTION

When a fluid sheet flows down an inclined plane the leading front may be unstable to

slight perturbations that initiate a fingering instability that develops into an array of straight or

wedge-shaped fingers advancing faster than the original front1. This instability has been the

subject of numerous investigations2–13. Linear stability analysis shows that the front is unstable

for a band of wavenumbers between zero and a finite limiting value, and that the dispersion

relation has a maximum at a finite wavenumber5. This qualitative result is independent of the

details of the model used for the contact line motion, i.e., of the model of the contact line slip at

the substrate, and remains valid if a precursor film is assumed to be present instead. Hydrostatic

pressure tends to stabilize the film, and is responsible for the existence of a threshold inclination

angle for the onset of the instability7.

Related transverse (or spanwise) instabilities occur on a liquid front that advances as a re-

sult of a Marangoni flow induced by a longitudinal (i.e., streamwise) temperature gradient14–18,

and on a spreading drop of surfactant on a prewetted plane19–23. In all three cases a capillary

ridge forms at the advancing front, and the general belief is that the observed instabilities are due

to differences in the mobility of the thinner and thicker parts of this ridge. Since this ridge tends

to be suppressed by hydrostatic pressure the inclusion of this pressure stabilizes the advancing

front with respect to transverse perturbations in this case also. However, no studies exist of the

corresponding phenomena at a receding front under the influence of a body force. This may be

due to the general assumption that such fronts are stable because they are not associated with

the presence of a capillary ridge.

In addition to the studies of individual advancing fronts mentioned above HOCKING and

MIKSIS studied transverse liquid ridges, i.e., liquid sheets of finite streamwise width, slid-

ing down an inclined plane24,25 using a slip contact line model with a linear dependence of

the dynamic contact angles on the velocity of the contact lines. In models of this type per-

turbations with a nonzero transverse wavenumber lead to transverse instabilities that involve

both the advancing and the receding contact lines25. When the ridge is assumed to be quasi-

stationary linear theory predicts that the largest growth rate occurs for perturbations with van-

ishing wavenumber (i.e., perturbations on the scale of the system size)24,25 but once the quasi-

stationarity assumption is relaxed the fastest growth occurs at a finite wavenumber25. When

such a ridge loses stability instability is observed at both the front and the back of the ridge
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simultaneously. Inspection of the figures in Ref. 25 shows that the instabilities are coupled and

correspond to an asymmetric varicose mode, i.e., where the front bulges forwards the back

bulges backwards but to a lesser degree.

It is of interest to note that in contrast to a semi-infinite liquid sheet on a a horizontal sub-

strate a liquid ridge on such a substrate is unstable to transverse perturbations26–28. In particular,

for ridges of small height with negligible gravitational effects DAVIS26 calculated sufficient sta-

bility conditions for ridges with (i) fixed contact lines, (ii) fixed contact angles, and (iii) contact

angles that vary smoothly with contact line speed, allowing for slip at the substrate in cases

(ii,iii), using an energy-like integral form of the linearized hydrodynamic equations. Refs. 27

and 28 employ similar assumptions but consider more general geometries as well. Both arti-

cles examine the second variation of an energy functional to predict the minimum wavelength

for the transverse instability, but the former is restricted to small contact angles. Liquid ridges

are found to be always transversely unstable but the instability becomes weaker and weaker as

the ridge becomes larger and larger. The unstable eigenmode is a varicose mode that extends

thicker regions at the expense of thinner ones27, much as the Rayleigh instability in a liquid

jet29,30. The varicose mode and the first stable mode – the zigzag mode – are intrinsically re-

lated to the neutral modes corresponding to the continuous symmetries of the one-dimensional

problem, namely, the invariance with respect to change in liquid volume and invariance under

translations in the longitudinal direction.

A general difficulty arising in all problems involving moving contact lines such as spread-

ing drops or liquid sheets or ridges on an inclined plate is that the classical no-slip boundary

condition at the liquid-solid interface has to be relaxed to permit movement of the contact line.

This can be done by introducing a very thin precursor film, or by allowing for slip near the

contact line, or introducing an effective molecular interaction between the substrate and liquid

into the hydrodynamic model31–35. With the exception of Refs. 10,13 all of the work cited

above on moving liquid sheets and ridges uses one of the first two options. Both prescriptions

avoid divergence problems at the contact line, but at the expense of introducing ad hoc parame-

ters into the theory. These parameters, namely the slip length or the precursor film thickness,

influence the base state profile and hence the growth rate and wavenumber of the fastest grow-

ing transverse instability5,7,15,25. Moreover, the equilibrium and dynamic contact angles have to

be fixed independently when introducing the slip condition24,33,36. In contrast, in the absence
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of motion the precursor film models require that the contact angle be zero, although once the

film is in motion the dynamic contact angle depends on the velocity of the advancing front. In

an alternative approach37 either the vapor-liquid or fluid-solid interface, or both, are treated as

separate phases with properties that differ from the bulk fluid.

The third, and most realistic, option is the explicit introduction of molecular interactions

into the hydrodynamic formalism. This is accomplished by means of an additional pressure

term, the disjoining pressure38. Depending on the particular problem treated, this disjoining

pressure may incorporate long-range van der Waals and/or various types of short-range inter-

action terms39–42. These interactions are essential for the process of dewetting, and studies of

dewetting of a thin liquid film on a substrate are generally based on models involving a dis-

joining pressure43–48. However, only a few studies of instabilities of an advancing liquid front

have adopted a similar approach10,13, despite the fact that such an approach predicts all the ad

hoc parameters of the slip or precursor models (i.e., the static and dynamic contact angle, drop

velocity, and the drop and precursor film thickness) connected with the wetting properties of

the liquid in terms of the parameters characterizing the disjoining pressure.

Recently PISMEN and POMEAU49 derived a film thickness equation with a disjoining

pressure term that remains finite even for vanishing film thickness by combining the long wave

approximation for thin films50 with a diffuse interface description for the liquid-gas interface51.

These authors take into account the deviation of the liquid density from its bulk value in the

vicinity of the liquid-solid and liquid-gas interface and discuss the resulting vertical density

profile for a horizontal liquid layer on a solid substrate. The sharp liquid-gas interface is thereby

replaced by a smooth transition between liquid and gas densities. Likewise, the density varies

close to the solid substrate due to molecular interactions that enter into the calculation via the

boundary condition for the fluid density at the substrate. The resulting density profile is then

incorporated into a fully consistent theory based on the Stokes equation in the long wave ap-

proximation to take into account dynamical situations. The film thickness equation that re-

sults has the usual form of a thin film equation with a disjoining pressure50, but the disjoining

pressure is purely hydrodynamic in origin and its form is derived self-consistently rather than

modeled. For reasons already discussed this equation admits instabilities of the homogeneous

(i.e., flat) film, and the resulting structure formation was investigated both for a liquid film on

a horizontal substrate48,52 and for a film flowing down a slightly inclined plane53. Very recent
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two-dimensional simulations of sliding drops and liquid ridges on an inclined plane using this

model13,54 revealed the presence of transverse instabilities at both the front and the back of the

ridge, apparently with different wavenumbers even in the linear regime of the instability. Re-

lated simulations of sliding drops have revealed a sequence of transitions in the drop shape with

increasing inclination angle, from an elongated drop to one with a cusp at the upstream tip, and

then to a drop with a cusp that emits small satellite droplets much as observed experimentally55.

Motivated by these and other results on advancing fronts and ridges, we study here the lin-

ear stability of liquid ridges on horizontal and inclined substrates as a function of their volume

and the inclination angle of the substrate. For inclined substrates we take the ridge to be trans-

verse, i.e., perpendicular to the slope. Our aim is on the one hand to understand the transition

between the varicose instability present on a horizontal substrate and the asymmetric varicose or

zigzag instabilities of ridges on an inclined plane, and on the other hand to relate these findings

to existing results for a falling semi-infinite sheet obtained with different microscopic models.

In other words, we are interested in understanding the role played by the back instability found

in Ref. 54, and its coupling to the better known instability at the front.

Our study is organized as follows. In Section II we introduce the evolution equation for

the film thickness, discuss the form of the disjoining pressure used, and nondimensionalize the

equations. In Section III we discuss the strategy used to determine stationary solutions and their

linear stability properties. Section IV gives the results for the transverse stability of a ridge on

horizontal (Section IV A) and inclined (Section IV B) substrates. In the latter case we explore

in detail the dependence on both the ridge volume and inclination angle. In Section IV C we

discuss the physical mechanism of the front and back instabilities using an adaptation of the

energy analysis introduced by SPAID and HOMSY5 . In Section IV D an evolution equation for

transverse disturbances of very small wavenumber is derived, and used to explain an unexpected

property of the dispersion relation for transverse perturbations on an inclined substrate in the

long wavelength limit. Section V summarizes the main results, relates them to the literature and

points out possible directions of future research.
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II. FILM THICKNESS EQUATION

We start with the evolution equation for the film thickness derived by PISMEN and

POMEAU49 combining the long wave approximation for thin films with a diffuse interface de-

scription for the liquid-gas interface:

∂th = −∇ · (Q(h) {∇ [γ∆h− ∂hf(h, a)] + ~exᾱρg}) . (1)

Here h(x, t) denotes the film thickness, x denotes the longitudinal (downstream) direction, g is

the gravitational acceleration, Q(h) ≡ h3/3η is the mobility factor due to the Poiseuille flow in

the film, ᾱ is the inclination angle between the substrate and the horizontal, and ρ, γ and η are

respectively the density, surface tension and (dynamic) viscosity of the liquid. The subscripts t

and h denote the corresponding partial derivatives.

Eq. (1) incorporates the Laplace or curvature pressure (first term), driving due to gravity

(last term), and the disjoining and hydrostatic pressures contained in the derivative of the free

energy f(h, a):

∂hf(h, a) = κM(h, a) + ρgh ≡ 2κ

a
e−h/l

(
1 − 1

a
e−h/l

)
+ ρgh. (2)

Here Π(h) ≡ −κM(h, a) is the disjoining pressure derived from diffuse interface theory49, a is

a small positive parameter describing the wetting properties in the regime of partial wetting, l is

the length scale of the diffuse interface, and κ is the strength of the molecular interaction. Ex-

cept for its behavior for small h the disjoining pressure used here resembles qualitatively other

disjoining pressures that combine destabilizing short-range and stabilizing long-range interac-

tions, such as the combination of destabilizing polar and stabilizing apolar interactions that is

often used in studies of dewetting44,47,52,56, or the two antagonistic power law interactions used

elsewhere10,45. The use of these alternative expressions has no qualitative effect on the results

reported below. A similar conclusion for dewetting on a horizontal substrate was established

earlier52.

In the following we use the dimensionless quantities53 (denoted temporarily by a tilde)

t =
ηγ

κ2l
t̃,

h = l h̃, (3)

x =

√
lγ

κ
x̃,
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to rewrite Eq. (1) in the form

∂th = −∇ · {Q(h) [∇ (∆h− ∂hf) + ~exαG]} , (4)

where

∂hf = M(h, a) +Gh, (5)

α = ᾱ
( γ
κl

)1/2

, (6)

and

G =
lρg

κ
(7)

measures the relative strength between gravity and molecular interactions. Since the film flows

down the upper surface (as opposed to the underside) of the substrate, G > 0. Moreover,

Q(h) = h3/3 and M(h, a) is given by Eq. (2) with l = 1; since κl/γ = O(a2)49 the length

scale in the x-direction is l/a. It follows that the effect of inclination is comparable to that of

the hydrostatic term when α ∼ 1, i.e., when ᾱ ∼ a. Since a is small this balance occurs only

for small inclinations α. This is the case considered in this paper. In the following we use only

dimensionless quantities unless otherwise stated.

The parameter a can be incorporated into the mobility factor Q using the transformation

h′ = h+ ln a leading to an equation for h′ of the form (4) but with

∂hf = 2 e−h
(
1− e−h

)
+ Gh, Q(h, a) = (h− ln a)3/3. (8)

In either form all spatially periodic solutions with spatial period L satisfy

1

L

∫ L

0

h(x, t) dx = h̄, (9)

where h̄ is a constant, hereafter referred to as the mean thickness. This quantity therefore

measures the volume of liquid in the spatial period L (i.e., the liquid contained in the drop and

the precursor); since it is a constant it provides a good measure of the notion of volume. In

contrast the term drop volume, also used below, refers only to the volume in the drop on top of

the precursor film. This quantity is not constant since liquid may flow in and out of a drop at

the expense of the precursor. Of course when L contains several drops the volume of one may

grow at the expense of another, and as a result the different drops within L may have different

volumes.
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In the following we solve the problem in the form (8). It is important therefore to re-

member that the true thickness of the film is h − lna, i.e., a quantity slightly larger than that

computed from Eqs. (4,8). It is appropriate to think of this change in thickness as a change in

the thickness of the precursor.

The linear stability properties of the flat film solution h0(x) = h0 ≡ h̄ of Eq. (4) in

one dimension are well understood53,54. The (one-dimensional) stability properties of spatially

periodic solutions have also been extensively investigated53,54. On a horizontal substrate these

solutions are time-independent, while on an inclined substrate they are stationary only in an

appropriately moving reference frame. Such stationary solutions are obtained as solutions of

the nonlinear eigenvalue problem

0 = Q(h, a)(∂xxxh − ∂hhf ∂xh) + αGQ(h, a)− vh+ C0, (10)

for the drift speed v of the solution, measured in units of (lκ)3/2/η
√
γ. Here C0 is a constant of

integration, and is nonzero whenever the substrate inclination is nonzero. For a homogeneous

film of thickness h0 we write

C0 = −(Γ0 − vh0) = −Q(h0, a)αG + vh0, (11)

where Γ0 ≡ Q(h0, a)αG is the downstream flux of liquid in the laboratory frame. This problem

can be solved using continuation techniques, starting from small amplitude steady solutions on

a horizontal substrate53,54. One finds that, depending on the mean film thickness, different

types of solutions may be present. These may be classified into linearly unstable (subcritical)

nucleation solutions and linearly stable larger amplitude states. Although for small inclination

angles the solution families found correspond to those found on the horizontal substrate48 there

are already some significant differences. First, the solutions are asymmetric and slide down the

inclined plane. Second, the dependence of the velocity on the solution period varies strongly

with the mean film thickness, a behavior that has no counterpart in the horizontal case. In

addition, for larger values of α, stationary nonlinear surface waves are present.

The large amplitude stable solutions take the form of (i) small drops whose shape re-

sembles an asymmetric inverted cup whose properties like the drift speed and dynamic contact

angles at the front and back depend both on the drop volume and on the inclination angle, or (ii)

large flat drops resembling a liquid sheet of constant thickness with a capillary ridge at its front

end. Both types of drops sit on a precursor film whose thickness is also given by the model.
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In contrast to the small drops the properties of the flat drops do not depend on the volume in

the drop53. However, with increasing inclination angle the thickness of the film in the plateau

region decreases while the precursor film thickness and the drift speed v increase, and the dy-

namic contact angle at the rear decreases. In contrast the dynamic contact angle at the front

shows a nonmonotonic dependence on the speed v: it first increases with v and then decreases

and even falls below its static equilibrium value. This effect is more pronounced for larger G.

In two dimensions these solutions are independent of the transverse coordinate y and will be

referred to as ridges.

Fig. 1 shows the transition, for fixed inclination angle and interaction parameters, from

a small cup-like drop to a large flat drop as the volume in the drop increases. In two spatial

dimensions the cup-like solutions correspond to cross-sections of ridge-like solutions that are

independent of the transverse coordinate y (and so are perpendicular to the slope). The flat

drops correspond to cross-sections of liquid sheets of finite longitudinal extent. Both solutions

are related to appropriate limiting cases already studied in the literature: (i) the front of a long

flat drop resembles a single front moving down an inclined plate5, and (ii) the liquid ridges on a

horizontal substrate26 resemble the small volume drops when the inclination angle approaches

zero. The transverse stability properties of these limiting cases are already known; we explore

below the corresponding results for drops of finite extent on an inclined substrate, focusing on

small but not too small values ofG. Existing work in one dimension53,54 shows that even though

G is normally very small qualitatively correct results are obtained already for moderately small

values of G. Consequently we limit our study of the two-dimensional problem to such values

of G, anticipating that the results will remain qualitatively correct down to physically relevant

values of G.

III. LINEAR STABILITY

Having determined the stationary solutions h0(x) in the comoving frame we now

study their linear stability to transverse perturbations. The Ansatz h(x, y, t) = h0(x) +

ε h1(x) exp(iky + βt) used in Eqs. (4,8) in the comoving frame leads to a linear eigenvalue

problem for the growth rate β of the form

βh1(x) = S(k, h0(x))h1(x). (12)
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Here the operator S is a function of the transverse wavenumber k, and a functional of h0 and

its derivatives, and is given in the Appendix, Eq. (A.9). The eigenvalue problem (12) is solved

using a three step procedure. First, h0 and the speed v are determined, at fixed volume, using nu-

merical continuation techniques57 starting from analytically known small amplitude solutions,

as described elsewhere53. The eigenvalue problem is then discretized in space and solved nu-

merically. The necessary equidistant discretization imposes a strong limitation on the parameter

range where it can be used. The method gives, for instance, no reliable eigenvalues for large

periods (L > 150)53. To overcome this problem we use, as a third step, the small L results as

starting solutions for numerical continuation in L of both h0 and v, and of the solutions to the

eigenvalue problem (12). It is convenient to fix the L2 norm of h1 during this process. The

required extended system consists of 11 first order differential equations (3 for h0 and 4 each

for the real and imaginary parts of h1). Using this method we determine in parallel the sta-

tionary solutions, and the eigenfunctions and eigenvalues of the linear problem (12) for any set

of parameter values. Furthermore, points of special interest such as the zeros or the maxima of

β(k), or the transition between real and complex eigenvalues can be followed through parameter

space. The maxima generally occur at k < 0.1, implying that the most unstable (dimensional)

wavelength is of order 60l/a� l.

IV. RESULTS

A. Horizontal substrate

Instabilities of a liquid ridge on a horizontal substrate (α = 0) are characteristic of the

dewetting process. In this process an initially thin film may rupture at defects, and the resulting

holes grow until they touch one another, creating a polygonal network of straight liquid ridges.

It is observed that these ridges decay on a longer time scale forming rows of drops58,59. The

stability study performed here applies to the individual straight ridges.

Typical cross-sections of such ridges are shown in Fig. 2 (a). These have been computed

as steady solutions of Eq. (4) with α = 0. For these cases the precursor thickness is given (via a

Maxwell construction) by the potential f(h); in contrast on an inclined substrate the precursor

thickness depends in addition on the drop velocity and the inclination angle48,53. The disper-

sion relation for transverse perturbations of such a ridge, obtained as described in Section III,
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is shown in Fig. 2 (b). It is important to note that there are two modes with zero growth rate

at k = 0: these are the marginally unstable varicose mode and the marginally stable zigzag

mode, already discussed by SEKIMOTO et al.27 using an energy functional. Note that the zero

growth rate for the varicose mode at k = 0 is a direct consequence of volume conservation: a

non-zero growth rate would violate it. The appearance of these modes is sketched in the insets

in Fig. 2 (b). Both are related to the neutral modes corresponding to the continuous symme-

tries of the one-dimensional solution: translation invariance is responsible for the zigzag mode,

while invariance with respect to volume change gives rise to the varicose mode. These neutral

modes, i.e., the eigenfunctions of the two-dimensional stability problem at k = 0, are shown

in Fig. 2 (c). Their resemblance to the finite k modes is clear. Note that both dispersion curves

vanish quadratically as the transverse wavenumber k approaches zero. As a result each mode

is mapped onto itself under k → −k. The eigenfunctions of the two modes are virtually un-

changed in the k-range shown in Fig. 2 (b): the modes for k = 0 and k = 0.06 cannot be

distinguished on the scale of Fig. 2 (c). Increasing the drop volume at fixed period by increasing

the mean film thickness (cf. Fig. 2 (a)) leads to ridges with cross-sections that resemble flat drop

solutions48. Such drops are still unstable to the varicose mode, although the maximum growth

rate and the corresponding transverse wavenumber both decrease exponentially with increasing

volume, measured in Fig. 2 (d) in terms of mean film thickness h̄. In practice, therefore, broad

ridges are effectively stable on the time scales accessible in experiments.

B. Inclined substrate

The physical situation changes dramatically once α 6= 0 as a consequence of the broken

symmetry x → −x. As a result the drops become asymmetric and slide down the substrate

(on top of the precursor film whose thickness now depends on inclination angle and the drop

velocity53).

When α = 0 the variational structure of Eq. (10) implies that v = C0 = 0. As a result the

equation is invariant under both translations in x and changes in volume (or h̄). In particular

for each set of parameter values there is a two-parameter family of solutions. In contrast, when

α 6= 0 the stationary solutions are described by Eq. (10) with α, v, and C0 all nonzero. The

resulting equation is still invariant under translation but no longer under volume change. This
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is because a change in volume also changes the velocity v. As a result only the translational

neutral mode remains, i.e., only one mode with zero growth rate exists at zero wavenumber,

in contrast to the two modes for the horizontal substrate. This implies that the two leading

eigenmodes of the transverse stability problem, i.e., the equivalents of the varicose and zigzag

modes for the inclined case are either no longer independent at k = 0 or only one has a zero

growth rate at k = 0. In fact we find that the first hypothesis is true: the two modes coincide at

k = 0 forming the translational neutral mode, but are distinct whenever k 6= 0 being mapped

into one another by the transformation k → −k.

In the following we study the stability of a liquid ridge as a function of both its volume

and of the inclination angle.

a. Change of ridge volume The volume of the liquid in the ridge can be changed in

two ways. On the one hand the volume in the ridge can be increased [decreased] by increasing

[decreasing] the mean film thickness keeping the period fixed. On the other hand one can fix

the mean film thickness and increase [decrease] the period. Both procedures lead to identical

drops sitting on precursor films of identical thickness but different length, and give identical

results for the dispersion relation unless the period used is so small that individual ridges in

the different periods ’overlap’. For the parameter values used this can be avoided by choosing

L ≤ 75. The results reported below have been obtained in both of the above ways and cannot

be distinguished on the scale of the figures.

As the volume is increased the ridges with small cup-like cross-section change to large

flat drops with a capillary ridge at the front whose profile relaxes towards the upper plateau

thickness (see for instance the upper panels of Figs. 3(a-d)). This change in the ridge profile is

accompanied by a rather drastic change in the dispersion curves for the two leading eigenvalues

(Fig. 4) and the corresponding eigenfunctions (lower panels of Fig. 3). At small volume two

dispersion curves, β1(k) and β2(k), are still present, but in contrast to the α = 0 case these now

cross linearly at k = 0, implying that β1(k) = β2(−k) and β1(k) = −β2(k). Note in particular

that the dominant instability mode (i.e., the mode with maximum growth rate) may now be an

asymmetric zigzag mode (dashed line in the lower panel of Fig. 3 (a)), even though for smaller

drop volume and very small α the (asymmetric) varicose mode remains dominant (not shown).

With increasing volume the character of the dispersion relation undergoes two consecutive

changes (Fig. 4). First, the two dispersion curves approach one another at a finite value of k.
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At a certain volume they touch, and for larger volumes there is an interval of wavenumbers

ko1 < k < ko2 in which the growth rate is complex, and real growth rates are present for

k < ko1 and k > ko2 only (Fig. 4 (b)). The complex (oscillatory) mode is initially stable but

with increasing volume it acquires an interval of instability which increases until the complex

mode is unstable throughout its range of existence. With further increase in volume the real

modes at large k also lose stability; at the same time the interval of complex modes shrinks

(Fig. 4 (c)), and there is a second critical volume at which the imaginary part of the growth rates

vanishes, and the modes become purely real again (Fig. 4 (d)). Note that the maximum growth

rate of the oscillatory mode is always smaller than the maximum of the real growth rates so

that any instability is dominated by modes that grow monotonically. Thus oscillations may

only be expected in laterally confined systems. The net outcome of these changes is to replace

the dominant unstable mode at small volumes by a different mode, one that is related to the

stable mode at small k. In particular, for sufficiently large ridge volumes the former dominates

only at small k while the new mode dominates at larger k and has a larger maximum growth

rate (Fig. 4 (d)). Neither of these modes resembles the zigzag or the varicose modes present at

small volume. Instead, the eigenfunctions at maximum growth rate are localized at the front

(the small k mode) or the back (the large k mode) of the ridge. Fig. 4 (d) therefore indicates

that for the parameter values considered the instability of the back is always faster than the

instability of the front. However, because the instability modes at the maxima of the dispersion

relation are totally decoupled one may expect that in an experiment on ridges of large volume

both instabilities may proceed in parallel, and exhibit different wavelengths and growth rates.

These predictions concur with preliminary results from two-dimensional numerical simulations

of Eq. (4)13,54.

To systematize these results we plot in Fig. 5 the growth rates at the two maxima as func-

tions of the ridge volume, using the spatial period as control parameter (at fixed mean thickness).

Using the values given in the caption to Fig. 4 as a guide one can “translate” the horizontal axis

into mean film thickness h̄ at fixed period. As expected both growth rates approach constant

values at large periods because the front and back instabilities are then completely decoupled

and therefore independent of the length of the drop. The system behavior can be quantified

further by tracking the various special wavenumbers (kmax for maximum growth rate, kc for

marginal stability and ko at the transition between real and oscillatory modes) as a function
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of the spatial period at fixed mean film thickness (Fig. 6). The most important curves are the

heavy dashed (dotted) lines that separate, for real (oscillatory) modes, the unstable wavenum-

bers (shaded gray) from the stable ones. The thin dashed lines indicate the remaining zero

crossings of branches of the dispersion relation (i.e., crossings in the unstable regime), whereas

the thin dotted line denotes the limits of existence of the oscillatory modes. The positions of

the maxima of the dispersion relation are indicated by the solid lines, with heavy lines indicat-

ing the wavenumber of the absolute maximum. It is noteworthy that the critical wavenumber

decreases with increasing period in the small volume regime, while it increases (slightly) in the

large volume regime towards its value for the completely decoupled back.

b. Change of inclination angle Beside the ridge volume the second control parameter

of interest is the inclination angle α of the substrate. At fixed period and a mean film thickness

large enough that the one-dimensional steady state for α = 0 is a flat drop48 an increase in α

produces sliding drops whose upper plateau is inclined relative to the substrate over all of its

length (Fig. 7 (a)). With further increase in α this inclination decreases as the drop develops a

capillary ridge at the front and a upper plateau of constant thickness (Fig. 7 (c)). With further

increase in α the upper plateau thickness decreases slightly while the precursor film thickness

slightly increases (Fig. 7 (c,d)). These changes are reflected in the corresponding changes in the

dispersion relation (Fig. 8); these resemble the sequence of changes found when increasing the

ridge volume in Section a above, but with fastest growing wavenumbers and maximal growth

rates that differ by one and two orders of magnitude, respectively.

The stationary solutions and the front and back eigenmodes at maximum growth rate and

at k = 0 can be found in Fig. 7. At large inclination angle the modes at the two maxima

correspond to pure front (small k maximum) and pure back (large k maximum) modes. The

maximal growth rates of both modes increase with increasing α as shown in Fig. 9. For smaller

α the small k mode is dominant but is eventually overtaken by the large k mode; the latter

dominates for α > 0.15. Fig. 10 shows the various special wavenumbers identified in Fig. 6 as

a function of α for fixed volume. The critical wavenumber kc increases with α, as do the two

fastest growing wavenumbers. This increase is faster for the back mode.

Knowing that on the one hand the two eigenmodes at the maxima in Fig. 4 (d) are lo-

calized at the front or the back and that on the other hand at k = 0 they both represent the

translational neutral mode (a zigzag mode) the question arises how the eigenfunctions change
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along the dispersion relations. We visualize this change by plotting in Fig. 11 (a-d) the maxi-

mum (or minimum) amplitudes h1m of the eigenfunctions at the front and the back of the ridge

for the parameter values corresponding to the dispersion relations in Fig. 8 (a-d). The oscil-

latory modes are omitted from this plot because they are not important for the analysis. The

dashed (solid) lines represent the contributions from the front (back) of the ridge, while the

heavy (thin) lines are used to distinguish the two modes using their large k behavior. Thus the

heavy (thin) lines refer to what we have called the back (front) modes, or equivalently the large

k (small k) modes. The latter terminology is based on Fig. 11 (d), in which the dotted vertical

lines mark the k values corresponding to maximum growth rate and the filled circles indicate

the corresponding eigenfunction maxima. One sees that in all four panels of Fig. 11 the dashed

heavy line approaches zero at large k implying that at large k this mode is not involved in the

instability of the front position, i.e., that it is localized at the back. In contrast, the fact that the

dashed thin line approaches a finite value while the solid thin line approaches zero implies that

the small k mode is localized at the front. If at a certain value of k the values along the thick

(or thin) curves are both nonzero and of opposite sign, the corresponding eigenmode represents

a zigzag mode, whereas like signs indicate a varicose mode. Thus for α = 0.025 the long wave

unstable mode (heavy lines near k = 0) is a zigzag mode; the anticipated varicose instability

occurs for yet smaller values of the inclination (not shown).

One can use Fig. 11 to distinguish four distinct k ranges. (i) The region k ≈ 0, where

the deviation of either mode from the translational neutral mode (a zigzag mode with nearly

equal contributions from the front and the back) is linear and can be treated analytically, as in

Section IV D. Region (ii) with 0 < k < 0.02 (see Fig. 11 (a)) where the unstable mode remains

of zigzag type but the contribution from the front of the ridge dominates more and more as

k increases (heavy lines). The corresponding stable mode is also of zigzag type (thin lines),

and for this mode the contribution from the back exceeds that from the front. In region (iii) at

k ≈ 0.02 (Fig. 11 (a)) the relative contribution to either mode from the back falls dramatically.

For the unstable mode this contribution changes sign and the mode becomes a varicose one;

with increasing k the contribution from the front drops rapidly and at large k this mode is

therefore confined to the back of the ridge. In contrast the stable mode remains a zigzag mode

but for k >∼ 0.02 this mode is dominated by the contribution from the front of the ridge. Thus

at large k the dominant modes take the form of pure back and front modes (regime (iv)). If we
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ignore the narrow k ranges where the eigenmodes are oscillatory the above description, with

obvious modifications, also applies to the remaining panels of Fig. 11. The general tendency

is towards a narrowing of the transition regions (i) and (iii) with increasing ridge volume, with

the provison that at the same time the wavenumbers corresponding to maximum growth rates

move from range (i) to (iv). Thus for sufficiently large ridge volumes (and inclination angles)

the dominant unstable modes are localized at the front and back of the ridge.

C. Physical mechanism

The physical mechanism responsible for contact line instabilities can be studied using

the widely used method of energy analysis5,21,22,60. The growth rate β of an unstable mode is

interpreted as an energy production rate and contributions to it from the individual terms of

the linearized problem can be connected to underlying physical mechanisms5. For this type of

analysis we multiply Eq. (12) by h1 and integrate the result over one spatial period. The right

side then consists of a sum of the individual contributions, βn, defined by

βn = −〈h1,Snh1〉
〈h1, h1〉

, (13)

where

〈v,w〉 =

∫ L

0

vwdx. (14)

The operators Sn that add up to give the linear operator S are given, together with their physical

interpretation, in Table I and depend nonlinearly on the base flow solution h0(x).

The assessment of the influence of the individual terms, used in the literature, is based

on the signs of the respective βn: positive βn are destabilizing, while terms corresponding to

negative βn are stabilizing5,21,22. Although this interpretation provides useful information about

the overall influence of the terms it does not reveal either the mechanism of the instability or

the terms responsible for the selected wavenumber because it does not take into account that

all the contributions βn in fact balance at k = 0:
∑
βn(k = 0) = 0. This requirement is

a consequence of the fact that at k = 0 the unstable mode becomes the translational neutral

mode of the one-dimensional geometry. It is the destabilization of this mode, and therefore the

deviation of the βn from their values at k = 0 that determines the transverse instability60. Hence

the most important instability mechanisms are those for which the associated βn deviate most
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from their value at k = 0. These deviations are plotted in Figs. 12 (a) and (b) for the back and

front mode, respectively (parameter values as in Fig. 4 (d)).

Fig. 12 reveals rather drastic changes in the individual contributions near k = 0 (both

modes) and k = 0.05 (back mode). These correspond to the qualitative changes in the eigen-

modes around these k values noted already in Fig. 11. Thus as formulated here the energy

analysis is capable of revealing more detailed information than its traditional version5,21,22. A

second difference between the present problem and those studied in the literature arises from

the fact that contributions to βn, for either mode, can arise from the front, βfn , and the back, βbn,

if the eigenfunction has two peaks. So a situation may arise where β ≡ β f + βb is dominated

by either the front or the back, but the individual contributions to these, β fn or βbn, may bear no

relation to the location of the dominant instability. Here we have introduced

βbn = 〈h1,Snh1〉b/〈h1, h1〉, βfn = 〈h1,Snh1〉f/〈h1, h1〉, (15)

where

〈v, u〉b =

∫ ξ

0

vu dx, 〈v, u〉f =

∫ L

ξ

vu dx, (16)

respectively, with ξ chosen to lie between the locations of the back and the front. For drops

of sufficiently large volume the exact value of the cut x = ξ becomes immaterial and the

quantities βfn , βbn become independent of ξ. Figs. 13 (a) and (b) show β, βf and βb for the front

and back mode, respectively. These show clearly that the front mode is exclusively caused by

contributions from the front part of the profile even in the range at very small k for which the

eigenfunction has significant amplitude at both the front and the back. In this case all but one

of the signs of the βfn agree with the signs of the corresponding βn. Likewise, the back mode is

mainly caused by contributions from the back part of the profile (Fig. 13 (b)). However, during

the qualitative change in the eigenfunction near k = 0.05 the instability is briefly dominated

by contributions from the front. For the back mode the split of the βn into the βfn and βbn has

a profound effect on the signs of the individual contributions as can be seen when comparing

Fig. 14 with Fig. 12 (b).

The overall influence of the individual terms is summarized in Table II. Comparison of

the contributions from the front part of the front mode (column 3) with the contributions from

the back part of the back mode (column 4) indicates that in both cases the main stabilizing

influence comes from term 2, i.e., the flow in the x-direction due to x-curvature, and the main
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destabilizing influence from term 8, i.e., the flow in the x-direction due to variations of the

disjoining pressure. The hydrostatic pressure terms are stabilizing for both instabilities, whereas

the flow in the y-direction due to variations of the disjoining pressure (term 10) is destabilizing.

The two instabilities differ only in terms 4 and 5, that are both destabilizing for the front and

stabilizing for the back. However, of these term 5 is relatively unimportant, while term 4 arises

from the flow in the x-direction due to the body force, one of the two most destabilizing terms

in the model of SPAID and HOMSY in either interpretation of the energy analysis60.

D. Analytical approach

As already mentioned the dispersion curves undergo a remarkably transition near k = 0

as soon as α becomes nonzero. To understand the origin of this change we introduce two slow

timescales, τ = εt and T = ε2t, and a long transverse scale Y = εy, where ε � 1, so that

∂t = ε∂τ + ε2∂T and ∂y = ε∂Y . Next we suppose that the film thickness can be written in the

form

h = h0(x+ θ(Y, τ, T )) + ε h1(x, Y, τ, T ) + ε2 h2(x, Y, τ, T ) + O(ε3), (17)

where

θ = θ0 + εθ1 + ε2θ2 + O(ε3) (18)

is a slowly varying spatial phase, and h1 and h2 represent perturbations of the drop. With this

Ansatz the left hand side of Eq. (4) becomes

ht = h0x(εθτ + ε2θT ) + ε2h1τ + ε3h1T + ε3h2τ + O(ε4). (19)

The nonlinear differential operator N [h] on the right hand side of Eq. (4) (in the comoving

frame) can also be written as a series in ε. Writing N = N0 + N2 + N4, where N0 denotes

the part that does not contain derivatives with respect to Y , N2 denotes terms with two such

derivatives, and N4 denotes terms with four derivatives, we find that

N [h] ≡ N [h0+εh1+ε2h2] = N0[h0]+εN0h[h1]+
1

2
ε2N0hh[h1]+ε

2N0h[h2]+ε
2N2[h0] +O(ε3),

(20)

where N0h is a linear operator depending on h0 and acting here on h1 or h2 and N0hh is a

nonlinear operator depending on h0 and involving terms quadratic in h1. From the Ansatz for
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h0 (Eq. (17))N2[h0] can be written in the form θY YN2a[h0(x)]+θ2
YN2b[h0(x)]. All of the above

operators are summarized in the Appendix.

At leading order one now obtains the equation 0 = N0[h0] for the one-dimensional sta-

tionary solutions. Order ε yields

h0xθ0τ = N0h[h1]. (21)

Note that the O(ε) equation does not yield the translational neutral mode h0x because this mode

is already included in the Ansatz for h0 = h0(x+ θ). The linear inhomogeneous equation (21)

for h1 has a solution if and only if

0 =

∫
g+N0h[h1] dx = θ0τ

∫
g+h0x dx, (22)

where g+ is the eigenfunction of the adjoint operator N+
0h (see Appendix) corresponding to

the eigenfunction h0x of N0h. Inspection of N+
0h shows that g+ is a constant implying that the

solvability condition is trivially fulfilled (since
∫
h0xdx = 0). Thus N0h has a unique inverse,

and

h1 = θ0τN
−1
0h [h0x] (23)

can be calculated from h0x. To order ε2 one finds

h1τ + h0xθ0T + h0xθ1τ =
1

2
N0hh[h1] +N0h[h2] +N2[h0]. (24)

This is an inhomogeneous equation for h2. The solvability condition, obtained by multiplying

by g+ and integrating over 0 < x < L yields the desired envelope equation. Using Eq. (23) and

the fact that
∫
h0x dx = 0 this equation takes the form

a1θ0ττ = a2θ
2
0τ + a3θ

2
0Y + a4θ0Y Y , (25)

where

a1 =

∫
N−1

0h [h0x] dx (26)

a2 =
1

2

∫
N0hh[N−1

0h [h0x]] dx

a3 =

∫
N2b[h0] dx

a4 =

∫
N2a[h0] dx. (27)
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The linearization of Eq. (25),

a1θ0ττ = a4θ0Y Y , (28)

now gives the desired dispersion relation valid near k = 0, viz. a1β2 + a4k2 = 0, implying

the presence of two branches of the dispersion relation β(k) crossing the axis k = 0 linearly at

β = 0. The slope β ′(k) at k = 0 is given by ±
√
−a4/a1, a quantity that can be computed for a

given stationary profile h0 from the formulae (26,27). Fig. 15 demonstrates excellent agreement

between the above prediction and the full dispersion relation computed directly from Eq. (12).

As the inclination α of the substrate decreases towards zero so does the coeffient a4. As this

occurs the scaling assumed above breaks down and fourth order derivatives enter the leading

order balance in the dispersion relation, resulting in a dramatic change in the dispersion relation.

V. CONCLUSION

In this paper we studied the transverse instability of liquid ridges on horizontal and in-

clined substrates using a film evolution equation based on a long wave approximation, incorpo-

rating a disjoining pressure to account for the effective interaction of the film with the substrate.

The disjoining pressure used was recently derived by PISMEN and POMEAU using diffuse in-

terface theory49. The form of the disjoining pressure that results remains nonsingular even for

zero film thickness, and is therefore convenient for analytical study. However, we expect quali-

tatively similar results for other forms of the disjoining pressure involving a destabilizing short

range and a stabilizing long range interaction as occurs for dewetting52.

We have studied three different types of transverse instabilities for liquid ridges:

(i) The varicose instability on a horizontal substrate involving symmetrically both edges of

the ridge. In this situation the competing zigzag mode is stable.

(ii) Coupled instabilities of the front and back of the ridge on an inclined substrate. These are

mostly of an asymmetric zigzag type but an asymmetric varicose instability also occurs

for very small inclination angles. These instabilities, in which the behavior of the front

and back is coupled, are found for small volumes of the ridge or small inclination angles

of the substrate.
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(iii) Decoupled instabilities of the front and back having different growth rates and fastest

growing wavenumbers. These occur for large volumes or large inclination angles.

These instabilities and the transitions between them were studied as a function of the system

parameters by means of a linear stability analysis of stationary one-dimensional solutions. Both

the stationary solutions and their stability properties can be followed simultaneously in para-

meter space using numerical continuation techniques57. In the transition region between the

instabilities (i) - (iii) oscillatory instabilities are present in a certain wavenumber range. How-

ever, in the cases studied the oscillatory modes were never dominant, and may therefore be seen

only when the corresponding wavenumber is selected by the experimental apparatus.

The mechanisms responsible for the pure back and front instabilities were elucidated us-

ing an adaptation of the energy analysis originally proposed by SPAID and HOMSY5 . The main

destabilizing effect in both cases is given by the flow in the longitudinal direction due to the vari-

ation of the disjoining pressure caused by the perturbation, while the main difference between

the two instabilities arises from the body force that is destabilizing at the front and stabilizing

at the back, as in Ref. 5.

The linear stability problem of a finite ridge is characterized by a double zero eigenvalue

at k = 0. On a horizontal substrate these eigenvalues are a consequence of the two neutral

modes of the system, arising from translation invariance in the logitudinal direction and in-

variance with respect to changes in the mean film thickness. We have seen that for nonzero

transverse wavenumber k these eigenvalues become nonzero and depend on k quadratically.

This property is a consequence of the invariance of the system under reflection. We have iden-

tified the resulting unstable mode with the varicose mode and the stable mode with the zigzag

mode. Thus both the algebraic and the geometric multiplicity of the zero eigenvalue is two. In

contrast, once the substrate is inclined the algebraic multiplicity of the zero eigenvalue remains

two but the geometric multiplicity drops to one: the two dispersion curves cross linearly at the

origin where the unstable and stable modes degenerate into one another. We have derived an

amplitude equation for the time evolution of transverse perturbations of a sliding ridge on an

inclined plane to demonstrate this fact analytically, and showed that this equation reproduces

quantitatively the wavenumber dependence of the dispersion relation near the origin. The cross-

ing is a direct result of the breaking of the reflection symmetry that occurs when the substrate

is inclined from the horizontal.
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The transverse instability of a liquid ridge on a horizontal substrate was studied earlier

by DAVIS26, SEKIMOTO, OGUMA and KAWASAKI27 , and ROY and SCHWARTZ28, focusing

on ridges of heights smaller than the capillary length in order to neglect gravitational effects.

Such ridges are always unstable, with the product of ridge width and the critical transverse

wavenumber decreasing monotonically from about 2.4 for zero contact angle to zero at a contact

angle of 180◦28. Estimates of this product for the ridges shown in Fig. 2 give values of about 3.4

(h̄ = 0.8), 2.1 (h̄ = 1.0) and 0.33 (h̄ = 1.6). The first two of these values are in good agreement

with the literature value for small contact angles (viz., 2.4), especially since the small drops

involved are strongly influenced by the destabilizing disjoining pressure used here. The third

value is for a ridge that is already flattened by gravity and reveals the stabilizing influence of

hydrostatic pressure.

We remark that the variational formulation employed in Ref. 27 yields results that dif-

fer from ours. To determine the stability of the ridge the authors examine the variation of

the generalized forces with respect to contact line replacements for the varicose and zigzag

modes. Negative eigenvalues of the resulting matrix imply instability, and their dependence on

the transverse wavenumber k yields information about the most dangerous mode, i.e., the mode

with maximal energy gain. The authors of Ref. 27 argue that the eigenvalue of the matrix corre-

sponding to the unstable varicose mode approaches quadratically a nonzero value as k vanishes,

implying that the most dangerous mode is of the order of the system size. However, due to vol-

ume conservation the authors exclude the point k = 0 from this curve. The difference between

this result and ours (a quartic relation going to zero as k2, see Fig. 2 (b)) appears to be due to the

intrinsic difference between their static approach involving the study of an energy functional

and the dynamical approach we pursue here that takes into account the viscous character of the

fluid that suppresses the motion of the liquid on very large scales. Refs. 26, 28 do not compute

equivalent dispersion (or eigenvalue) relations.

Our results for small inclination angles or small ridge volumes can be compared with

earlier work25. The product of the ridge width and the most dangerous wavenumber is in both

cases approximately one (cf. Figs. 3 (a) and 4 (a) or Figs. 7 (a) and 8 (a)). However, the transition

to large flat ridges with increasing inclination or ridge volume decreases this product by an order

of magnitude, although inspection of Figs. 3 (d) and 4 (d) or Figs. 7 (d) and 8 (d) reveals that in

this case the product of the width of the capillary ridge at the front and the most dangerous
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wavenumber of the front mode still remains of order one, as observed in other studies of front

instabilities5,7,18. However, in contrast to Ref. 25, we find that even for quite small inclination

angles or ridge volumes the dominant mode is an asymmetric zigzag mode, with an asymmetric

varicose mode found only for very small inclination angles. The transition towards stability

found in Ref. 7 for an individual front with decreasing inclination angle is reflected here by the

transition between decoupled front and back instability and coupled instabilities. The decoupled

front instability has a counterpart in studies of an individual front, the coupled instabilities do

not.

Note that for the instability of the back the product of the back width and of the most

dangerous wavenumber is also about one. To our knowledge there are currently no experi-

mental investigations of back instabilities for wide ridges or receding fronts on inclined planes.

However, a transverse back instability occurs in dewetting, where a liquid recedes on a solid

substrate58,61. There the mechanism proposed here may play a role although the instability is

believed in the literature to be a combination of a Rayleigh instability of the liquid rim formed

at the receding back and an instability due to the slip at the substrate61. Related work on the

stability of a receding dewetting front under evaporation, including the effects of a disjoining

pressure, can be found in Ref. 62. Here, too, the presence of the instability is believed to be

associated with the forming rim. However, the rim is tiny and it may be that the instability is in

fact due to the disjoining pressure, as in the problem studied here. Further studies involving an

energy analysis of this type of instability are necessary to decide this issue.

We conclude with a few remarks about the possible nonlinear states that may result from

the instabilities discussed here. When α = 0 and the drop volume is small the unstable varicose

mode grows monotonically and may saturate at a finite amplitude, forming a fingered state.

If such a state remains unstable the continued growth of the instability will break the ridge

into drops which may merge on a longer timescale forming finally a single drop. On an inclined

substrate the growth of the fingers, be they varicose or zigzag in structure, affects the speed with

which the ridge slides. This effect remains small when the transverse perturbation is small, but

the nonvariational structure of the system for α > 0 now permits the occurrence of parity-

breaking bifurcations producing varicose, zigzag or mixed modes that drift in the transverse

direction; these in turn can lead to complex dynamical behavior, as discussed elsewhere63,64.

Fig. 4 (d) suggests another source of complex dynamics as well. The figure shows that the
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maximum growth rate of the varicose mode occurs near k = k0 ≡ 0.035 while that of the

zigzag mode occurs near k = 2k0. Since the ridge has the symmetry O(2) in the transverse

direction, generated by translations y → y + c and reflection y → −y, the resulting mode

interaction corresponds to the 1 : 2 spatial resonance in the presence of O(2) symmetry, at

least if periodic boundary conditions with spatial period 2π/k0 are imposed in this direction.

Recent work indicates the presence of a remarkable wealth of dynamical behavior generated by

this mode interaction65,66. For other parameter values lateral boundaries may select a primary

oscillatory instability, and this may evolve into a pattern of standing oscillations; with periodic

lateral boundary conditions with an appropriate period waves that travel either in the +y or

the −y directions become possible, and these resemble the laterally drifting states produced

in the secondary parity-breaking bifurcations. Distinct dynamical behavior is present near the

codimension-two Takens-Bogdanov bifurcations with O(2) symmetry whose presence is also

suggested by Fig. 4; at these bifurcations the oscillation frequency vanishes, and the bifurcation

therefore represents the transition between an oscillatory and a steady state primary bifurcation.

Such bifurcations are, however, accessible only through selecting an appropriate slope α and

spatial period 2π/kTB. Simulations of an unstable ridge in two dimensions are likely, therefore,

to generate a plethora of new types of behavior that may be relevant to thin film instabilities.

APPENDIX

The nonlinear operatorsN0, N2, and N4 are given by

N0[h] = −{Q [(hxx − fh)x + αG]}x + vhx (A.1)

N2[h] = −{QhY Y x}x − {Q (hxx − fh)Y }Y (A.2)

N4[h] = −{QhY Y Y }Y , (A.3)

where Q = h3/3 and fh is given by Eq. (8). The time-independent equation N0[h] = 0 gives,

after integration and transformation into comoving coordinates, the equation for the stationary

states (10). Taking into account that h0 = h0(x+θ(Y, τ, T )),N2[h0] can be written asN2[h0] =

N2a[h0] θY Y +N2b[h0] θ2
Y with

N2a[h0] = −{Qh0xx}x −Q (h0xx − fh)x (A.4)

N2b[h0] = −{Qh0xxx}x − {Q (h0xx − fh)x}x . (A.5)
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Using the Ansatz h = h0(x) + εu(x, Y ) where ε � 1 and u is a perturbation, the linearized

operators N0h, N2h and N4h are

N0h[u] = −{Qhu [(h0xx − fh)x + αG]}x + vux

−{Q (uxx − fhhu)x}x (A.6)

N2h[u] = −{QuxY Y }x −Q (uxxY Y − fhhuY Y ) (A.7)

N4h[u] = −QuY Y Y Y , (A.8)

whereQ = (h0(x)− lna)3/3 and all derivatives of f are functions of h0(x). The linear operator

S used in the numerical calculations (Eq. (12)) is given by

S = N0h +N2h +N4h, (A.9)

with each derivative with respect to Y in N2h and N4h replaced by the factor ik. The adjoint

operator, N+
0h, of the linear operatorN0h defined by 〈w,N0h[u]〉 = 〈N+

0h[w], u〉 is given by

N+
0h[w] = Qh ([h0xx − fh]x + αG)wx − vwx − (Qwx)xxx + fhh (Qwx)x. (A.10)

For the eigenvalue zero the eigenfunction is given by wx = 0, i.e., the adjoint eigenfunction for

the neutral mode of N0h is a constant.

Finally, the leading nonlinear operatorNhh is given by

Nhh[u] = − {Qhu (uxx − fhhu)x}x
−
{
Qhhu

2 [(h0xx − fh)x + αG]
}
x

+
{
Q (fhhhu

2)x
}
x
. (A.11)
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Term Expression Physical Mechanism

1 vh1x Convective flow in x-direction due to reference velocity v

2 1
3(h3

0h1xxx)x Capillary flow in x-direction induced by perturbation curvature in x-direction

3 −1
3(k2h3

0h1x)x Capillary flow in x-direction induced by perturbation curvature in y-direction

4 αG(h2
0h1)x Flow in x-direction due to gravity

5 (h2
0h0xxxh1)x Capillary flow in x-direction due to perturbation thickness variations

6 −1
3k

2h3
0h1xx Capillary flow in y-direction induced by perturbation curvature in x-direction

7 1
3k

4h3
0h1 Capillary flow in y-direction induced by perturbation curvature in y-direction

8 (h3
0f̃hhh1)xx Flow in x-direction due to variation of disjoining pressure

9 G(h3
0h1)xx Flow in x-direction due to variation of hydrostatic pressure

10 −h3
0f̃hhk

2h1 Flow in y-direction due to variation of disjoining pressure

11 (h3
0f̃hhh1)xx Flow in y-direction due to variation of hydrostatic pressure

TABLE I: The terms Snh1 and their physical interpretation (terms 1-7 are identical to those in Ref. 5.

f̃hh stands for fhh without the contribution of the hydrostatic pressure.

31



Term front mode back mode front mode (front only) back mode (back only)

1 none none none none

2 stabilizing destabilizing stabilizing stabilizing

3 stabilizing stabilizing stabilizing stabilizing

4 destabilizing stabilizing destabilizing stabilizing

5 stabilizing destabilizing destabilizing stabilizing

6 stabilizing destabilizing stabilizing stabilizing

7 stabilizing stabilizing stabilizing stabilizing

8 destabilizing stabilizing destabilizing destabilizing

9 stabilizing destabilizing stabilizing stabilizing

10 destabilizing destabilizing destabilizing destabilizing

11 stabilizing stabilizing stabilizing stabilizing

TABLE II: Effect of the terms Snh1 on the stability of moving contact lines. The respective main

stabilizing and destabilizing influences are marked by bold letters.
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FIG. 1: Ridge profiles h0(x) for different values of the mean film thickness h̄ (see legend) forG = 10−5,

α = 0.2, L = 20000 and a = 0.1. The ridge is sliding towards the right.

FIG. 2: Transverse stability of a ridge on a horizontal substrate: (a) Ridge profiles h0(x) for different

values of the mean film thickness as given in the legend. (b) Dispersion relation β(k) for the two trans-

verse modes when h̄ = 1: the unstable varicose mode (solid) and the stable zigzag mode (dashed). The

corresponding modes are sketched in the inset. (c) The eigenmodes h1(x) corresponding to (b). The

neutral modes obtained at k = 0 are indistinguishable from the modes for the other k in (b). (d) Depen-

dence of the maximum growth rate βmax (left scale) and the corresponding transverse wavenumber kmax

(right scale) on the mean film thickness h̄. The remaining parameters are α = 0, G = 0.1, and a = 0.1.

FIG. 3: Stationary profiles h0(x) (upper plots) and the corresponding eigenfunctions h1(x) (lower plots)

for k = 0 (dotted line), at the maximum of the dispersion relation (Fig. 4) for small k (dashed line) and

at the maximum for larger k (solid line, (b-d) only) when h̄ = 1.5 and (a) L = 75, (b) L = 150, (c)

L = 200 and (d) L = 500. For narrow ridges the small k (large k) maximum corresponds to a zigzag

(varicose) mode. For broader ridges the small k (large k) instability is localized at the front (back) of the

ridge. The remaining parameters are α = 0.2, G = 0.1, and a = 0.1.

FIG. 4: Dispersion relations β(k) for h̄ = 1.5 and (a) L = 75, (b) L = 150, (c) L = 200 and (d)

L = 500. Identical dispersion relations are obtained for L = 500 and (a) h̄ = 0.59, (b) h̄ = 0.77, (c)

h̄ = 0.88 and (d) h̄ = 1.5. For L < 75 (at h̄ = 1.5) the results from these two approaches start to differ

because the ridges in the different periods interact. The remaining parameters are α = 0.2,G = 0.1, and

a = 0.1. Thick (thin) lines indicate real (complex) modes.

FIG. 5: The maximum growth rate βmax at the two maxima of the dispersion relation as a function of

the longitudinal period L. Parameters are as in Fig. 4 at fixed h̄ = 1.5.



FIG. 6: The linear stability results as a function of the longitudinal period L. The dashed lines show

the critical wavenumbers kc of the first two eigenvalues of the two modes (the small k mode in the

upper left part of the plot and the large k mode in the upper right part). The system is linearly stable

above the thick dashed and dotted lines (shaded region). The dashed line denotes the zero crossing of a

real eigenvalue while the dotted line denotes the zero crossing of the real part of a complex eigenvalue.

The complex mode exists in the parameter range enclosed by the thin dotted lines. The solid lines

represent the transverse wavenumbers corresponding to local maxima in the growth rate, with the thick

lines representing the absolute maximum. Parameters are as in Fig. 4 at fixed h̄ = 1.5.

FIG. 7: Stationary profiles h0(x) (upper plots) and corresponding eigenfunctions h1(x) (lower plots) for

k = 0 (dotted line), at the maximum of the dispersion relation (Fig. 8) for small k (dashed line) and at

the maximum for larger k (solid line, (b-d) only) when L = 500, h̄ = 1.5, G = 0.1, a = 0.1 and (a)

α = 0.025, (b) α = 0.05, (c) α = 0.1 and (d) α = 0.2.

FIG. 8: Dispersion relations for (a) α = 0.025, (b) α = 0.05, (c) α = 0.1, (d) α = 0.2 and L = 500,

h̄ = 1.5, G = 0.1 and a = 0.1. Thick (thin) lines indicate real (complex) modes.

FIG. 9: Maximum growth rate βmax as a function of the inclination angle α when L = 500, G = 0.1,

h̄ = 1.5 and a = 0.1. Solid (dashed) lines indicate back (front) modes corresponding to the two local

maxima of the dispersion relation at large k.

FIG. 10: As for Fig. 6 but showing the α dependence of the linear stability results for L = 500,G = 0.1,

h̄ = 1.5 and a = 0.1.

FIG. 11: The maximum or minimum values h1m of the eigenfunctions h1(x) at the front (dashed lines)

and back (solid lines) of the ridge. The two different eigenmodes are indicated by heavy and thin lines.

The dotted vertical lines indicate the values of kmax at the local maxima of the dispersion relation. The

filled circles indicate the corresponding mode. The inclination angles α and other parameters are as in

Fig. 8.

FIG. 12: The contributionsβn to the overall growth rate β of (a) the front and (b) the back mode, relative

to their values at k = 0, plotted as a function of the transverse wavenumber k. The parameters are as in

Fig. 4 (d) and the numbering follows Table I.



FIG. 13: The contributions of the front part, βf , and back part, βb, to the eigenvalue β for (a) the front

mode and (b) the back mode. The parameters are as in Fig. 4 (d).

FIG. 14: The contributions βbn to the eigenvalue of the back mode. Normalization, term numbering and

parameters are as in Fig. 12.

FIG. 15: Comparison of the full dispersion relation (heavy lines) with the small k dispersion relation

derived in Sect. IV D (thin lines) for different values of L (given in the legend). The parameters are as in

Fig. 4.
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