Chapter 4

Front-End, Back-End, and Hybrid Techniques
for Noise-Robust Speech Recognition

Li Deng

Abstract Noise robustness has long been an active area of research that captures sig-
nificant interest from speech recognition researchers and developers. In this chapter,
with a focus on the problem of uncertainty handling in robust speech recognition, we
use the Bayesian framework as a common thread for connecting, analyzing, and cat-
egorizing a number of popular approaches to the solutions pursued in the recent past.
The topics covered in this chapter include 1) Bayesian decision rules with unreliable
features and unreliable model parameters; 2) principled ways of computing feature
uncertainty using structured speech distortion models; 3) use of a phase factor in an
advanced speech distortion model for feature compensation; 4) a novel perspective
on model compensation as a special implementation of the general Bayesian pre-
dictive classification rule capitalizing on model parameter uncertainty; 5) taxonomy
of noise compensation techniques using two distinct axes, feature vs. model domain
and structured vs. unstructured transformation; and 6) noise-adaptive training as a
hybrid feature-model compensation framework and its various forms of extension.

4.1 Introduction

Noise-robust speech recognition has been an active area of research for many years,
and is still a vigorous research area with many practical applications today, e.g.,
[1,7-10,17,18,24,39,59, 66, 80, 85]. There are numerous challenges to building
a speech recognition system that is robust to environmental noise. Noise is unpre-
dictable, time-varying, and has a variety of properties. Not only is accurate noise
estimation itself a difficult problem, but, even given an accurate model of noise,
nonlinear interactions between clean speech and noise in generating noise-distorted
speech (often parameterized in the log power spectrum or cepstrum) also give rise
to high complexity in decoding speech, with a high degree of imperfection.
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Standard noise robustness methods can be divided into the broad categories of
feature compensation and model compensation. Feature compensation is also called
feature enhancement or front-end denoising, where the effect of noise is removed
from the observed noisy speech features without using speech decoding results and
without changing the parameters of the acoustic model (e.g., HMM). On the other
hand, in model compensation the acoustic model parameters can be modified to in-
corporate the effects of noise, where each component of the model can be adapted
to account for how the noise affects its mean and variance. While typically achiev-
ing higher performance than feature compensation, model compensation often in-
curs significantly greater computational cost with straightforward implementation
(unless drastic approximations are made, such as the use of sub-space techniques,
e.g., [64]).

In the past decade, with the earliest work published in the same year [5,19,32,57],
a new approach to robust ASR has emerged that is aimed at propagating the uncer-
tainty in the acoustic features due to either the noise effect itself or the residual
noise after feature compensation into the decoding process of speech recognition.
These techniques provide, at the frame level, dynamic compensation of HMM vari-
ances as well as its means, based on the estimate of uncertainty caused by imperfect
feature enhancement, and incorporate the compensated parameters into the decod-
ing process. The goal is to achieve recognition performance that is comparable to
model compensation techniques, with computational cost similar to feature com-
pensation. This way of handling uncertainty in speech feature data, the theme of
this book, appears to strike a balance between computational cost and noise-robust
speech recognition accuracy. Several key issues related to the scheme of the above
uncertainty decoding have been addressed by a number of researchers, with various
new approaches proposed and developed in [28,43, 50,51, 65-67, 82].

Given the large number of noise-robust speech recognition techniques devel-
oped over the past two decades, this chapter provides a selective overview of them
and focuses on the topics that have particular relevance for the future development
of noise-robust speech recognition technology. Section 2 starts by introducing the
Bayesian perspective as a common thread that connects the remaining topics pre-
sented in this chapter, and provides a theoretical background for treating uncertain
data. A concrete example is given in Section 3 on how data uncertainty produced in
feature compensation can be computed in a principled way. The Algonquin model
of speech distortion is used in the example. A more detailed model of speech dis-
tortion and mismatch than Algonquin, which makes use of the non-uniform distri-
bution of phase factors between clean speech and mixing noise (due to many data
points in filter banks while computing cepstral features), is presented and discussed
in Section 4. Feature compensation experiments using this phase-sensitive model
and insights gained from these experiments are also provided. In Section 5, we shift
the discussion from feature-domain compensation and the associated uncertainty to
their model-domain counterparts. Uncertainty in model parameters is studied within
the Bayesian framework, where both feature and model uncertainties are integrated
into a most general form of Bayesian predictive classification rule. Importantly, in
this general framework, model compensation can be viewed as a special realiza-
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tion of the Bayesian predictive classification rule. Then, in Section 6, a taxonomy
of a multitude of model compensation techniques is provided based on the struc-
tured vs. unstructured transformation of the model parameters. This same axis of
structured vs. unstructured transformation in the feature domain is also used to cat-
egorize a multitude of feature compensation techniques. Finally, in Section 7, we
discuss hybrid feature-model compensation techniques and, in particular, its impor-
tant member, noise-adaptive training.

4.2 Bayesian Decision Rule with Unreliable Features

In this section, we start from the Bayesian framework to account for uncertainty of
the features that form the input into speech recognition systems. This framework
provides the theoretical basis for “uncertainty decoding”, which manifests itself in
various forms in the literature. In Section 5 of this chapter, we apply the same frame-
work to account for uncertainty of model parameters, providing the basis for model
compensation.

The standard Bayesian decision rule for speech recognition, with fixed model
parameter set A, gives

W = argmax p(y|W,A)P(W), 4.1)
w

where P(W) is the prior probability that the speaker utters a word sequence W, and
p(y|A, W) is the probability that the speaker produces the acoustic feature sequence
y=1[¥1,¥2,--+¥s,...yr] when W is the intended word sequence. The computation of
probability P(y|A, W) uses deterministic parameters, denoted by A, in the speech
model.

Using the rule of total probability and conditional independence, we have

PW.y) = [ p(W.y.x)ax= [ pWR)p(xly)dx. @2
Thus Eq. (4.1) becomes
W= argmax/p(W|X,A)p(x|y)dx, (4.3)
W

where the conditional p(x|y) represents the effect of feature compensation from
noisy speech y to enhanced speech x, and p(W|x,A) is the objective function for
the decoding problem of speech recognition with input feature x.

Applying Bayes’ rule on p(W/|x), we obtain from Eq. (4.3)

X7 p(X|W7A)
W= arg‘r)vnax/Wp(ﬂy,A)de(W). 4.4)
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Since the prior speech distribution of p(x) is sufficiently broad, with its variance
being significantly larger than the posterior (an assumption which was also used
in [32]), we can simplify the rule by assuming it is approximately constant over the
range of p(x) values of interest. Thus, Eq. (4.4) becomes

W= argmax [ p(x|W.A)p(xly. A)dxP(W), @.5)
\%\%

which is the uncertainty decoding rule used in [19, 28, 50]. It was pointed out in
[66] that under low-SNR conditions the above assumption no longer holds. This
observation accounts for poor uncertainty decoding results at low SNR.

One main advantage of the approximate uncertainty decoding rule of Eq. (4.5) is
the simplicity in its incorporation into the recognizer’s decision rule. This simplic-
ity arises from the fact that a product of two Gaussians remains a Gaussian. One
major improvement over the conventional uncertainty decoding rule of Eq. (4.5) is
the exploitation of temporal correlations in this rule. The work of [51] explicitly
models such correlations in the context of uncertainty decoding. A similar motiva-
tion for explicitly exploiting the temporal correlation is presented in [20,27] in the
context of feature compensation, which gives the mean values of the distribution
p(x|y). On the other hand, appending differential parameters to the static ones in
the implementation of the uncertainty decoding rule implicitly represents the tem-
poral correlations, as carried out in the work of [28,50]. Another major improvement
comes from a series of work reported in [65—67], where the authors developed “joint
uncertainty decoding” in which the acoustic space is subdivided into regions and the
joint density of clean and noisy speech is estimated using stereo data.

One of most practical issues in uncertainty decoding is the computation of fea-
ture uncertainty from p(x|y), or equivalently p(y|x) = & ’%";‘yy), in Eq. (4.4). In [32],
the SPLICE model, originally developed in [17, 18] with numerous further improve-
ments [3, 18,22,25,30,33,87], was used to compute feature uncertainty based on
some approximation of p(y|x) (although to a lesser degree than the assumption of
flat p(x)). Feature uncertainty is expressed directly as a function of the SPLICE
parameters determined separately using the techniques described in [17, 25]. In
[50, 51], feature uncertainty was determined by detailed analysis in an interesting
scenario of distributed speech recognition where bit errors or lost speech data pack-
ets on IP connections are encountered.

Finally, in [19, 28], feature uncertainty was computed using a parametric statis-
tical model of acoustic distortion, sometimes called the Algonquin model [37, 38],
a probabilistic extension of the commonly used deterministic VTS (Vector Taylor
Series) model [2,56,71]. Because the approach developed in this work has general-
ity, we will review it in some detail in the following section, and point out further
potential of this approach.
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4.3 Use of Algonquin Model to Compute Feature Uncertainty

In this section, we use the log-spectral features to represent all acoustic data, be
it clean speech, noise, noisy speech, or enhanced speech. We provide an iterative
solution, where each iteration contains a closed form solution, for the computation
of the “uncertainty” expressed as the MMSE estimate and its variance. It is impor-
tant to point out that when the complex Fourier transform is taken as the feature to
represent the acoustic data, a rather different type of analysis and solution can be
used [6].

4.3.1 Algonquin Model of Speech Distortion

The Algonquin algorithm [37, 38, 75] was originally developed as a feature com-
pensation technique, and was extended for use in uncertainty decoding in [19, 28].
Underlying the Algonquin algorithm is the Algonquin model which characterizes
the relationship among clean speech, corrupting noise, and noisy speech in the log-
spectral or the cepstral domain with an SNR-independent modeling-error residual.
Without such a modeling residual, the Algonquin model would be the same as the
standard VTS model of speech distortion [2, 56, 71]. The residual captures crude
properties of the modeling error in deriving the VTS model. The modeling error
includes notably the ignorance of phases between clean speech and noise vectors,
both in the log domain involving multiple filter bank channels, in producing the
noisy speech vector; see the detailed analysis in Section II of [27]. We now provide
an overview of the Algonquin model.

Lety,x, and n be single-frame vectors of log mel filter energies for noisy speech,
clean speech, and additive noise, respectively. These quantities are shown in [27] to
satisfy the following relationship when the phase relationship between clean speech
and noise is considered:

2Ae"T
T+
A

cosh(25*)’

y=x+log|(1+e" ™)1+

~x+log(1+€" )+ (4.6)

where A is the inner product of the clean speech and noise vectors of mel filter
energies in the linear domain, and the last step of approximation uses the assumption
that A < cosh(%5%).
In order to simplify the complicated evaluation of the small prediction residual
(Eq. (4.6)) of
A

r= Wn%x), (47)
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an “ignorance” modeling approach is taken to model it as a zero mean, Gaussian
random vector. This thus gives a probabilistic model of

y=x+gn-x)+r, (4.8)

where g(z) = log(1+¢?), and r ~ .4 (r;0,¥).
The Gaussian assumption for the residual r in Eq. (4.7) allows straightforward
computation of the conditional likelihood of the noisy speech vector according to

p(y[x,n) = A [y;x+g(n—x),¥]. 4.9)

We call Eq. (4.9) the Algonquin model, originally developed in [37], where the
parameter ¥ is fixed and independent of SNR. This model was later extended to
the phase-sensitive model by making ¥ dependent on SNR using more detailed
knowledge of the property of speech and noise mixing.

The Algonquin model is a central element of the Algonquin algorithm, which
uses prior Gaussian mixture models for both clean speech, p(x), and noise, p(n),
in the log domain for computing an MMSE estimate of clean speech x. In deriv-
ing the estimate, a variational algorithm is used to obtain an approximate posterior.
Multiple point Taylor linearization is used also, one at each of the Gaussian mean
vectors in the Gaussian mixture model of clean speech. The Algonquin algorithm in
its original form, which uses multiple points of Taylor series expansion, was com-
pared carefully with the single-point expansion method for log-spectral feature en-
hancement [20,27] in internal evaluation (unpublished). The single-point expansion
method requires more iterations to converge but overall is much more efficient than
the multiple-point expansion method of Algonquin and does not require the use of
variational inference. In terms of performance, the single-point expansion method
produces better results, especially after the dynamic prior is introduced to model the
temporal correlation in feature enhancement [27].

4.3.2 Step I in Computing Uncertainty: Means

As with the Algonquin model assumption, the following Gaussian-mixture distribu-
tion is used as the prior model for clean speech:

M M
p(x;) = Z cmp(Xe|m) = Z cm N (Xes Wy Z3,)-

m=1 m=1

For simplicity in presentation without loss of generality, the prior model for noise
is assumed to be a time-varying delta function instead of a Gaussian mixture as in
the original Algonquin model:

p(n;) = 6(n; —0y), (4.10)
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where I, is assumed known, and can be determined by any noise tracking algorithm,
e.g., [25,26,58].
The MMSE estimate is computed as the expected value of the posterior proba-
bility p(x|y):
X =E[x|y] = /Xp(x|y)dx. 4.11)

Using Bayes’ rule and using the prior speech and noise models just described, this
MMSE estimate becomes

. _ Jxp(ylx)p(x)dx

' P(y)
_ Yo_ ¢ | [ Xp(m) p(x|m)p(y|x,n)dxdn
p(y)
_ . CmeP(X|H1)p(y|X,ﬁ)dX- 12
p(y)

Substituting the parametric acoustic distortion model of Eq. (4.9) into Eq. (4.12)
and carrying out the needed integration in an analytical form via the use of iterative
Taylor series approximation (truncation to the first order), we have approximated
the evaluation of the MMSE estimate in Eq. (4.12) using the following iterative
procedure. First, train and fix all parameters in the clean speech model: ¢, i}, and
X7 Then, compute the noise estimate and the weighting matrices:

W (m) = (£ +¥)" '@,
Wy (m) =1—Wi(m). (4.13)

Next, fix the total number, J, of intra-frame iterations. For each frame ¢ =
2,3,...,T in a noisy utterance y;, set iteration number j = 1, and initialize the clean
speech estimate with

f(l(l) = argmax A [y;; iy, +g(n, — W,), . (4.14)
B,

Then, execute the following steps for each time frame (and then sequentially over
time frames):

e Step 1: Compute

cm«/V(yz;ui;Jrg(ﬁ Zx +¥)
Z%’:l NV (Y U3, + ) EY +¥)’

#m) =

where gl/) = log(1 +e,—,l,ﬁl<./>)'
e Step 2: Update the MMSE estimate:

8= 2l ) [Wa (s, - Walm =g )] @19
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e Step 3: If j < J, increment j by 1, and continue the iteration by returning to
Step 1. If j =J, then increment ¢ by 1 and start the algorithm again by resetting
Jj =1 to process the next time frame until the end of the utterance t =T .

The expectation of the enhanced speech feature vector is obtained as the final
iteration of the estimate above for each time frame:

e, =%, (4.16)

4.3.3 Step Il in Computing Uncertainty: Variances

Given the expectation for the enhanced speech feature computed as just described,
the variance of the enhanced speech feature can now be computed according to

Es, = E[xx{ yi] — By BE,, (4.17)
where the second-order moment is

E[XlxlT|yl] = /XZXZTP(XZWZ,I_IZ)dXZ

_ szXzTP(Xz)P(Yz|Xz»ﬁt)dXt
p(y:)

In(y1)

I e [ xoxd plxi m)p(yi .5 )dx
= 0 . (4.18)
t

After using the zero-th order Taylor series to approximate the nonlinear function
g(n; —x;) by go(fi; — Xo), the integral in Eq. (4.18) becomes

() [ %X (i 5 ) (353, + 0, W),
= [ XX A b, B (33: — 0, B,
_ / X XT N [%1 0 (t), (25, + W) Z5 W] dx,Nyu(v:)
= [+ ) 2L 4 0,60, Nu(v) (4.19)

where

0,,(t) = (X3 +¥) ' [®u, + Z5 (v — 20)],
Nu(y:) = N [y: —gos i, Z, + ] = A [y 4, + 80, 25, + ).

Substituting the result of Eq. (4.19) into Eq. (4.18), we obtain
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Efxd ] = 3 1(y0) (25 +9) ' E5 P+ 0,(08,(0)] (4.20)
m=1
where No(y:)
CmiVm Yt
M (y:) = SR
n( ' Zm lcm m(yl)

and where we used the result that p(y,) = Y2, ¢,,N,,(y;) for the denominator.

Equation (4.17) then gives the estimate of the variance for the enhanced feature.
In the implementation, an iterative procedure is also used to estimate the variance,
for the same purpose of reducing errors caused by the approximation of g(i — x) by
go(n —xp). For each iteration, the variance estimate takes the final form of

— Y ) [(zi;wp)”zi;m 8,(1)8},(1)] @21
S (Wt + Walon 3 )|
T
00 (W )+ Wal) 3~ )|

after combining Eqgs. (4.17), (4.20), and (4.15). Note that the weights ¥ (m) above
in the form of posterior probability are computed for each of the iterations.

4.3.4 Discussions

As can be seen from Egs. (4.21) and (4.16), the first two moments of the proba-
bilistic feature enhancement, characterized by p(x|y), is dynamic or time-varying
on a frame-by-frame basis. This is very powerful, and is difficult to achieve us-
ing the common model compensation techniques. To the best of our knowledge, the
only other technique that also achieves frame-by-frame compensation with practical
success is variable-parameter HMMs [84, 851, but this benefit comes with a higher
computation cost.

Characterization of feature uncertainty is typically done using the first two mo-
ments of p(x|y) as shown above. The approach we took as shown above permits
the computation of any higher-order moments. But how to incorporate such more
detailed information about uncertainty into the decoding rule of speech recognizers
based on Gaussian mixture HMMSs in a computationally efficient way is an open
problem.

One extension of the uncertainty computation technique discussed above is to
remove the temporal conditional independence assumption, which has been dis-
cussed in some detail in [27, 51]. Two solutions are offered in [27] and [51] both
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demonstrating clear performance improvement after incorporating the improved un-
certainty estimates.

In [65,67], the authors presented an interesting analysis demonstrating problem-
atic issues with front-end or feature uncertainty decoding schemes, e.g., [5, 19,32,
50, 51, 57]. The crux of the problem is the often-found acoustic regions where at
low SNR no discriminative information is retained since only a single set of com-
pensation parameters is propagated from the front-end processor to the recognizer’s
decoder. They developed an improved scheme, called joint uncertainty decoding
(JUD), where the model-based concept is embedded into uncertainty decoding.
Specifically, instead of linking feature components to the recognizer components,
they associate each feature component with a set of recognition model components.
Introducing the model component sets provides discriminative information at the
otherwise non-discriminative acoustic regions in the original front-end uncertainty
decoding without use of any discriminative method. How to exploit some concepts
from well-established powerful discriminative techniques (e.g., [44]) to further im-
prove joint uncertainty decoding, or simply to improve the more efficient front-end
uncertainty decoding, is an interesting research topic.

Another possible extension of the uncertainty computation technique discussed
in this section is to use more advanced models of speech distortion than the Al-
gonquin model. A series of such models have been developed, exploiting the SNR
dependency of the residual error in the Algonquin model but based on more detailed
analysis than the Algonquin model of the phase relationship between clean speech
and the mixing noise. We will take up this topic in the next section, with a review on
how these phase-sensitive models have been used for fixed-point feature compensa-
tion, which has yet to be extended to derive feature compensation uncertainty with
these models.

4.4 Use of a Phase-Sensitive Model for Feature Compensation

Traditionally, the interaction model for environmental distortion ignores the phase
asynchrony between the clean speech and the mixing noise [1,71]; it is known as the
VTS-model. This type of crude model has been improved over the past several years
to achieve higher fidelity that removes the earlier simplifying assumption by includ-
ing random phase asynchrony. As discussed in the preceding section, the Algonquin
model is a simple kind of extension that lumps all modeling errors, including the
phase effect, into a zero mean, fixed-variance Gaussian residual in an “ignorant”
manner [19,27,37,38]. Phase sensitive models developed subsequently make further
improvements over the Algonquin model, resulting in an SNR-dependent residual
component. A series of work on the phase-sensitive models, including their suc-
cessful applications to both feature compensation and model compensation, can be
found in [21,23,31,61, 62,75, 81]. In this section, we limit our review on this part
of the literature to feature compensation only.
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4.4.1 Phase-Sensitive Modeling of Acoustic Distortion —
Deterministic Version

To introduce the background and for simplicity, we derive the phase-sensitive model
in the log filter bank domain. (This can be easily extended to the cepstral domain.)
Using the discrete-time, linear system model for acoustic distortion in the time do-
main, we have the well-known relationship among noisy speech (y(¢)), clean speech
(x(2)), additive noise (n(t)), and the impulse response of the linear distortion channel
(h(2)):

y(t) =x(t) xh(t) +n(r).

In the frequency domain, the equivalent relationship is
Y k] = X[k]H[k] + N[k], (4.22)

where £ is the frequency bin index in the DFT given a fixed-length time window,
and H (k) is the (frequency domain) transfer function of the linear channel.

The power spectrum of the noisy speech can then be obtained from the DFT in
Eq. (4.22) by

Y[K* = [X[K]H K]+ N[k
= X[k P|H K] + [NK][* + (X K] H K]) (N [K])*
+(X[K]H[k])"N[K] (4.23)
= X[k P |H K] + [N[K][* +2(X [k] |2 [K]| IV [K]| cos B

where 6; denotes the (random) phase angle between the two complex variables
NIk] and (X[k]H[k]). Equation (4.23) incorporates the phase relationship between
the (linearly filtered) clean speech and the additive corrupting noise in the speech
distortion process. It is noted that in the traditional, phase-insensitive models for
acoustic distortion, the last term in Eq. (4.23) has been assumed to be zero. This is
correct only in the expected sense. The phase-sensitive model presented here based
on Eq. (4.23) with non-zero instantaneous values in the last term removes this com-
mon but unrealistic assumption.

After applying a set of mel scale filters (L in total) to the spectrum |Y[]|? in
the frequency domain, where the /-th filter is characterized by the transfer function

Wk(l) >0 (where Y Wk(l) = 1), we obtain a total of L mel filter bank energics of
w2 = Y wix kP lEK 2+ Y w Nk
Y WK =Y W (XKPIHKP + Y W N[k
k k k
+2Y W X K| H KN [K]| cos 6k, (4.24)
k

with/ = 1,2,.... L.
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Denoting the various filter bank energies in Eq. (4.24) by
POP =Y wl v P,
k

KO = WX kP,
k

NOP =Y W INK2, (4.25)
k
and "
AP — W (X (k]2 |H K]
T REoE
we simplify Eq. (4.24) to
|)7(l) ?= |)2(l) |2|ﬁ1(l)|2 + W(l) ? +2a) |)2(l) | |ﬁ(l) | W(l) , (4.26)

where we define the “phase factor” as

o) = Lk W | X [K]||HK)|IN[K]| cos 6

KON *27

Since cos 8, < 1, we have

a0 < DX HIK VK]
= XOAEONO]

The right-hand side is the normalized inner product of vectors N and X7, with ele-

ments Ny = \/W,C(I)W(l)(kﬂ and X} = \/Wk(l) 1X O (k)| |[AY (k)|. Hence

AT WH
0 <N, X" >
oV < ————— < 1.
A DR

Further, we define the log mel filter bank energy (log spectrum) vectors
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'10g|)7(1)|2'
log|7 )2

log| V)2
[ log [¥ )2 ]
Mog |[N(1)]27]

log| V)2

log |[N(®)[?

log |82 ]

and the vector of phase factors

Then, we rewrite Eq. (4.26) as

ey:ex'eh+en+2a'ex/Z'eh/Z'en/Z

'10g|)?(1)|2'
log |)?(2)|2

log |X (D)2

[ log|X ()2 |
Mog |AM 2T
log|A?)|?

log |A")|?

Llog |H®)|? ]

_ ex+h+en+2 a'e(x+h+n)/27

79

(4.28)

(4.29)

where the e operation for two vectors denotes element-wise product, and each ex-
ponentiation of a vector above is also an element-wise operation. To obtain the log
mel filter bank energy for noisy speech, we apply the log operation on both sides of

Eq. (4.29):

y = ]Og ex+h' (1+enfx7h_'_za'e—z—x*h*“fxfh)

=x+h+log[l+e" > M1 2ae e—r“”"h]
=y(x,n,h, o).

(4.30)

From Eq. (4.30), the phase factor (vector) & can be solved as a function of the

remaining variables:
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eyfxfh _ enfxfh -1

5]
|

n—x—h
2e
__ nix+h n—x—h _ n—x—h
572 —e 2 —e 2 )

0.
= o(x,n,hy). (4.31)

Equation (4.30) or Eq. (4.31) constitutes the (deterministic) version of the phase-
sensitive model for acoustic distortion due to additive noise in the log-spectral do-
main.

4.4.2 The Phase-Sensitive Model of Acoustic Distortion —
Probabilistic Version

We now use the nonlinear relationship between the phase factor & and the log-
domain signal quantities of x,n, h, and y, as derived above and shown in Eqs. (4.30)
or (4.31), as the basis to develop a probabilistic phase-sensitive model for the acous-
tic environment. The outcome of a probabilistic model for the acoustic environment
is explicit determination of the conditional probability, p(y|x,n,h), of noisy speech
observations (y) given all other variables x,n, and h. This conditional probability is
what is required in the Bayesian network model to specify the conditional depen-
dency. This conditional probability is also required for deriving an optimal estimate
of clean speech, which was carried out in [23].

To determine the form of p(y|x,n,h), we first need to assume a form of the statis-
tical distribution for the phase factor o = {Ot(l),l =1,2,...,L}. To accomplish this,
we note that the angle 6, between the complex variables of N[k] and (X [k]H[k]) is
uniformly distributed over (—7, 7). This amounts to the maximal degree of random-
ness in mixing speech and noise, and has been empirically observed to be correct.

Then, from the definition of a® in Eq. (4.27), it can be shown that the phase
factor er)) for each mel filter / can be approximated by a (weighted) sum of a num-
ber of independent, zero mean random variables cos(6}) distributed (non-uniformly
but symmetrically) over (—1, 1), where the total number of terms equals the number
of DFT bins (with a non-zero gain) allocated to the mel filter. When the number of
terms becomes large, as is typical for high-frequency filters, the central limit theo-
rem postulates that o () will be approximately Gaussian. The law of large numbers
further postulates that the Gaussian distribution will have a zero mean since each
term of cos(6;) has a zero mean.

Thus, the statistical distribution for the phase factor can be reasonably assumed
to be a zero mean Gaussian:

p(a) =¥ (0,2,

where the filter-dependent variance 2&[ ) is estimated from a set of training data.

Since noise and (channel-distorted) clean speech are mixed independently for each
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DFT bin, we can also reasonably assume that the different components of the phase
factor & are uncorrelated. Thus, we have the multivariate Gaussian distribution of

pla) =4 (a;0,Zy), (4.32)

where X is a diagonal covariance matrix.

Given p(a), we are in a position to derive an appropriate form for p,(y|x,n,h).
To do so, we first fix the values of x,n, and h, treating them as constants. We then
view Eq. (4.30) as a (monotonic) nonlinear transformation from random variables
a toy. Using the well-known result from probability theory on determining the pdf
for functions of random variables, we have

py(y|x,n,h) = |Ja(Y)| pa(a|x,n,h), (4.33)

where Jo (y) = 5 is the Jacobian of the nonlinear transformation.

£
The diagonal glements of the Jacobian can be computed using Eq. (4.30) and
then using Eq. (4.29) by

n—x—h
. y 2e 2
diag| == | = —
Ja 1+em X hidqee 2
n+x+h
_ 2e 2
eXJrh + e" + 2a N en+x+h
— 0 "By, (4.34)

The determinant of the diagonal matrix of Eq. (4.34) is then the product of all the
diagonal elements.
Also, the Gaussian assumption for & gives

p(ax,n,h) = pla(x,nhy)] =4 [a(x,nh,y);0,Z,]. (4.35)

Substituting Egs. (4.34) and (4.35) into Eq. (4.33), we establish the following
probabilistic model of the acoustic environment:

] . _ ntx+h
py(ypxnh) =5 |diag (&3 |
h

] __ nix+h n—x—h _ n—x
N z(ey T —e 2 —e 2

);O,Ea} : (4.36)

Because @ is the inner product (proportional to cosine of the phase) of the mel
filter vectors of noise and clean speech characterizing their phase relationship, a
Gaussian distribution on it makes the distortion model of Eq. (4.36) phase-sensitive.
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4.4.3 Feature Compensation Experiments and Lessons Learned

The phase-sensitive model expressed in the form of Eq. (4.6) is used directly in
the MMSE estimate of clean speech, which gives the compensated cepstral features
that feed into the speech recognizer. Deng et al. [23] provides details of the MMSE
estimate derivation using first-order Taylor series expansion. Second-order Taylor
series expansion can also be used to give a somewhat more accurate MMSE estimate
without incurring more computation (unpublished).

As reported in [23], a diagnostic experiment was carried out to assess the role
of phase asynchrony in feature enhancement for noise-robust speech recognition.
To eliminate the factor of noise power estimation inaccuracy, phase-removed true
noise power is used since in the Aurora 2 task the true noise’s waveforms are made
readily available [46]. Table 4.1 lists the percent accuracy in the Aurora 2 standard
task of digit recognition (as a function of the feature enhancement algorithm iter-
ations using the phase-sensitive model; see the algorithm in [23]). Clean HMMs
(simple back-end) as provided by the Aurora 2 task are used for recognizing en-
hanced features.

Table 4.1: Percent accurate digit recognition rate for the Aurora 2 task as a function of the fea-
ture enhancement algorithm iteration number using the phase-sensitive model. Phase-removed true
noise features (noise power spectra) are used in this diagnostic experiment as the n-layer variables

o[ 1 [ 247 ]12)]
SetA[[94.12]96.75[97.96|98.1198.12
SetB([94.80]97.29|98.10(98.48(98.55
SetC||91.00{94.50]|96.50(97.86|98.00

[Ave.][93.77]96.52[97.72]98.21]98.27]

When the phase information is removed, how much does the performance suffer?
To examine this issue, several spectral subtraction methods are used where the same
phase-removed true noise features are used as in Table 1. After careful tuning of
the spectral subtraction parameter of the floor value, the best accuracy is 96% (see
detailed results in Table 4.2), significantly below the accuracy of 98% obtained with
the use of the phase-sensitive model.

However, when instead of the true noise power, the estimated noise power is used
(with the algorithm for noise power estimation described in [23]), improvement of
recognition accuracy from the use of the phase-insensitive model to the use of the
phase-sensitive model becomes much smaller, from 84.80% to 85.74%; see detailed
results in Table 4.3.

What could be the reason for the drastic difference between the performance im-
provements (from the phase-insensitive to phase-sensitive models) with and without
noise estimation errors? Let us examine Eq. (4.26). It is clear that the third, phase-
related term and the second, noise-power term are added to contribute to the power



4 Front-End, Back-End, and Hybrid Techniques for Noise-Robust Speech Recognition 83

Table 4.2: Performance (percent accurate) for the Aurora 2 task using four versions of spectral
subtraction (SS) with the same phase-removed true noise features as in Table 1

|F100r|| e 20 | e*'0| e | e | e 2 |
SS1 {{93.57]94.26|95.90(92.18[90.00
SS2 [{12.50[44.00|65.46(88.69|84.44
SS3 |(88.52[89.26/93.19(90.75(88.00
SS4 {[10.00({42.50(63.08(87.41(84.26

Table 4.3: Right column: percent accurate digit recognition rates for the Aurora 2 task using noise
estimation and phase-sensitive feature enhancement algorithms, both described in [23]. Left col-
umn: The baseline results obtained with the phase-insensitive model

Baseline | Enhanced
(no phase)|(with phase)
SetA 85.66 86.39
SetB 86.15 86.30
SetC 80.40 83.35

[Ave]] 8480 | 8574 |

of noisy speech. If the estimation error in the second, noise-power term is compa-
rable to the entire third term, then the addition of the third term would not be very
meaningful in accounting for the power of noisy speech. This is the most likely
explanation for the huge performance improvement when true noise power is used
(Tables 4.1 and 4.2) and the relatively mild improvement when noise power esti-
mation contains errors (Table 4.3). The analysis above shows the critical role of
noise power estimation in enabling the effectiveness of the phase-sensitive model of
environmental distortion.

4.4.4 Discussions

In this section, we described one of the most advanced acoustic distortion models
and its application to model-based or structured feature compensation. In terms of
the degree of model sophistication, the phase-sensitive model is superior to the Al-
gonquin model, which in turn is superior to the standard deterministic VTS model.
For example, as a special case, when the variance from the phase factor is assumed
to be independent of SNR, the phase-sensitive model becomes reduced to the Al-
gonquin model. And as the phase factor is eliminated, the model becomes further
reduced to the VTS model.

When any of these acoustic distortion models is used for feature enhancement,
we call the resulting techniques model-based or structured feature compensation.
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This contrasts with the feature normalization techniques widely in use in front-
end design for speech recognition, where no such acoustic distortion model is ex-
ploited. Examples of the latter include feature moment normalization and cepstral
time smoothing. One main difference between these two classes of feature com-
pensation techniques is that the feature normalization methods do not provide any
mechanism to determine feature uncertainty. The model-based feature enhancement
methods, however, are equipped with this mechanism. In the preceding section, we
illustrated how the Algonquin model was used for computing uncertainty in the
enhanced features and then for uncertainty decoding. Recently, work has been re-
ported [60] on the use of phase-sensitive models for computing feature uncertainty
and then for uncertainty decoding. In this approach, which is detailed in Chapter
8 of this book, the authors propose a phase-sensitive distortion model, where the
phase factor ¢ is no longer modeled as a Gaussian and where the moments of ¢
are computed analytically. This distortion model together with an a priori model of
clean speech is used to compute the feature posterior by Bayesian inference. The
obtained feature posterior is then used for uncertainty decoding.

Finally, we remark that model-based feature compensation also contrasts with the
different class of noise-robust speech recognition techniques which we call model-
domain compensation, where speech recognition model parameters (e.g., means and
variances of the HMM) are modified. We will present model-domain compensation
in the next section in the context of studying uncertainty in the model parameter
space instead of in the feature space discussed so far.

4.5 Bayesian Decision Rule with Unreliable Model Parameters

4.5.1 Bayesian Predictive Classification Rule

Effective exploitation of uncertainty is a key ingredient in nearly all branches of
statistical pattern recognition. In the previous sections, we discussed the uncertainty
in the feature domain and examined how the feature-domain uncertainty can be
propagated to the back-end speech decoder. In this section, we turn to the more
authentic Bayesian framework, which accounts for uncertainty in model parameters,
providing a theoretical basis for understanding model compensation.

In the already successful applications of HMM-based speech recognition and
speaker verification, uncertainty in the HMM parameter values has been repre-
sented by their statistical distributions (e.g., [49, 52, 53]). The motivation of this
model-space Bayesian approach has been the widely varied speech properties due
to many different sources, including speakers (both intra-speaker and inter-speaker)
and acoustic environments, across and possibly within training and test data. In
order to take advantage of the model parameter uncertainty, the decision rule for
recognition or decoding has been improved from the conventional plug-in MAP
rule to the Bayesian predictive classification (BPC) rule [49]:
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where ¢ is the set of (deterministic) hyper-parameter characterizing the distribu-
tion of the random model parameters, €2 denotes all possible values that the ran-
dom parameters A can take, and the integral becomes the desired acoustic score.
How to simplify the integration in Eq. (4.37) to enable robust speech recognition
in the model space can be found in [53], which, unfortunately, is not as simple as
propagating the uncertainty in the feature space to the effect of only modifying the
deterministic HMM variance values as discussed in the preceding sections.

It is possible to combine the effects of model parameter uncertainty and feature
uncertainty into a single, comprehensive decision rule. Taking the integrals in both
the feature and the model-parameter domains, we have

i p(x|W,A)
W = argmax P(W) /A » / P Py Ap(Alg x)dxaA. @438)

4.5.2 Model Compensation Viewed from the Perspective of the
BPC Rule

As discussed in [41], there are a large number of model compensation or model-
based techniques developed in the past to handle uncertainty in noise-robust speech
recognition. It is interesting to place such techniques in the context of the imple-
mentation of the BPC rule exemplified in Eq. (4.38).

Let us first simplify Eq. (4.38) by disregarding feature uncertainty; that is, assume
the input features have a zero variance value:

p(x[y,A) =6(y =x). (4.39)
This then gives
W= argmaxP(W)/ Mp(AM),y)dA
w ree p(y)
— argmax [ p(WIy,A)p(A]9,)dA. (4.40)
W AEQ

We further assume that the model-parameter distribution, p(A |@,y), is sharp. It is
obvious then that the mode of p(A|¢,y) will be at the parameter set which matches
best the noisy speech input y. We denote this set of model parameters by A(y),
which is the goal that all the model compensation techniques are searching for. So
under the assumption of
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we further simplify Eq. (4.40) to

W= arg‘;naxp(WW,A(y)), (4.42)

which gives rise to the decision rule of all model compensation techniques published
in the literature, where A (y) is at the mode of the distribution p(A|¢,y), or

Aly) = arg;naxp(/\ |9,y). (4.43)

From the above discussion, we can view the decision rule of Eq. (4.40) as a gen-
eralized form of model compensation. An implementation of this general form of
decision rule and the associated training procedure was carried out to compensate
for acoustic variations using generic linear transformations [53]. Structured models
for speech and noise interactions such as VTS, Algonquin, or phase-sensitive mod-
els have not been explored using the generalized form of model compensation of
Eq. (4.40).

Another insight gained from the discussion above is that the generalized form
of model compensation (Eq. (4.40)), and further, the generalized form (Eq. (4.38))
that includes both model and feature compensation require active feedback from the
speech decoding results to update both speech and noise parameters. Fertile research
can be carried out in this direction.

4.6 Model and Feature Compensation — A Taxonomy-Oriented
Overview

We now return to the traditional techniques for model-domain compensation where
model parameter uncertainty is not considered and where the model parameters
are updated as fixed values. We provide an overview aimed at categorizing a large
number of existing techniques in model compensation and at clarifying some re-
lated nomenclature which sometimes causes confusion in the literature. A similar
overview is provided for the counterpart of feature-domain compensation.

4.6.1 Model-Domain Compensation

Many model compensation techniques have been developed by speech recognition
researchers over the past 20 years or so. They are used to update the model pa-
rameters, e.2., HMM means and variances, contrasting the feature compensation
techniques that reduce the noise and other distortions from the speech feature vec-
tors. Model compensation is also called a model-based or model-domain approach,
and the goal is to determine from a set of “adaptation” data the model parameter
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set A(y), which has the desirable property of Eq. (4.43), so as to implement the
decision rule described by Eq. (4.42).

The techniques of model compensation can be broadly classified into two main
categories, depending on two different approaches. In the first category, one uses
unstructured, generic transformations to convert the model parameters. The trans-
formations are typically linear, and often, a set of linear transformations are used.
The techniques are general, applicable not only to noise compensation but also to
other types of acoustic variations, notably speaker adaptation. They involve many
parameters and thus require a reasonably large amount of data to estimate them.
This category of techniques is also called model adaptation or adaptive scheme,
with typical algorithms of

Maximum Likelihood Linear Regression (MLLR) [40];
Maximum A Posteriori (MAP) [59];

constrained MLLR [40];

noisy constrained MLLR [55]; and

multi-style training [17,34].

Multi-style training is classified into this category of unstructured model com-
pensation because there is structured knowledge built into the training, where in-
stead of using a single noise condition, many types of noisy speech are included
in the training data. The hope is that one of the types will appear in the deploy-
ment condition. Multi-style training updates the model parameters generally in a
less efficient and less structured way than does the linear transformation approach.
It requires much more training data as a result, and it often produces the updated dis-
tributions in HMMs that are unnecessarily broad, making the trained model weakly
discriminative.

In the second category of the model compensation techniques, structured trans-
formations are used, which are generally nonlinear and which take into account the
way the noisy speech features (e.g., log spectra or cepstra) are produced from the
mixing speech and noise. These techniques are sometimes called predictive scheme
or structured model adaptation, and the structured transformations are sometimes
called mismatch function, interaction model, or acoustic distortion model. In con-
trast to the unstructured techniques, the structured methods make use of physical
knowledge, or a “model”, as an approximation to the physics of the speech and
noise mixing process. As such, they are not applicable to other types of acoustic
variation compensation such as speaker adaptation. Common techniques in the cat-
egory of structured model compensation include

¢ Paralle] Model Combination (PMC, with log-normal approximation) [39];
e Vector Taylor Series (VTS) [2, 64];
e phase-sensitive model compensation [61-63,78].

Note that the technique reported in [78] uses linear SPLINE interpolation to approx-
imate the phase-sensitive model presented in Section 4. The division above is based
on the type of mismatch or distortion functions in use. Alternative and further di-
visions can be made based on the kind of approximation exploited to represent the
mismatch functions.
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One main practical advantage of the structured model compensation techniques
over the unstructured counterpart is the much smaller number of free parameters that
need to be estimated. However, these parameters, e.g., those in the noise and channel
models, are harder to estimate than the generic linear transformation parameters.
Typically, second-order approaches are needed to estimate the variance parameters
effectively [62, 63]. In addition, the mismatch functions may be inaccurate, and the
computational complexity is higher as well.

4.6.2 Feature-Domain Compensation

The same scheme for classifying the model compensation techniques based on
structured vs. unstructured methods can be used for feature compensation. The latter
is also called feature enhancement or denoising in the literature. The techniques in
the category of structured feature compensation involve the use of the same or sim-
ilar structured transformations as those discussed earlier for model compensation.
Because of the use of the distortion or interaction model of speech and noise mixing,
structured feature compensation is often called model-based feature enhancement
or compensation in the literature. Note that here “model” refers to the distortion
model or structured transformation, with examples in Eqgs. (4.6), (4.8) and (4.30)
( [71,82]), and it may sometimes also refer to the use of Gaussian mixture mod-
els for clean speech. On the other hand, the “model” in model-based compensation
refers to the model used for speech recognition, or HMM (e.g., [41]). Some of the
commonly used techniques in the category of structured feature-domain compensa-
tion have been discussed in Section 3 (the part with mean calculation) and Section
4. Here is a brief summary with some more examples:

e VTS [71];
e Algonquin [20, 37];
e Phase-sensitive modeling for feature enhancement [23,31,81].

All these structured enhancement techniques use the estimate of Minimum Mean
Squared Error (MMSE) for clean speech in the cepstral or log-spectral domains.
In these domains, nonlinearity comes into play. The log domain is believed to be a
better one than the linear spectral domain because it is closer to what the back-end
HMM speech recognizer receives (see [85] for experimental evidence and related
discussions).

In the unstructured category of feature-domain compensation, the techniques de-
veloped make no use of structured knowledge of how speech and noise mix ex-
pressed in the log domain. They either use stereo data to learn the impact of noise
on speech in the log domain implicitly (e.g., SPLICE), or operate in the linear spec-
tral domain, where the mixing process is much simpler (e.g., spectral subtraction).
They also include several popular feature normalization methods. Examples of com-
monly used unstructured feature compensation techniques include
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SPLICE and its extensions, known as stochastic vector mapping [3, 17, 18,33,
47,871,

e spectral subtraction [12];

Wiener filtering combined with the HMM or trajectory-HMM methods [35, 76,
T7];

MMSE estimator on Fourier spectral amplitude [36];

MMSE estimator on cepstra [85];

cepstral mean, variance, and histogram normalization (cf., review in [34]); and
RASTA, FDLP (frequency-domain linear prediction), and other types of modu-
lation spectra (e.g., [72]).

4.6.3 Hybrid Compensation Techniques

We provide a summary in Table 4.4, with entries of classes F1, F2, M1, and M2, of
the two-way classification for each of the feature-domain and model-domain com-
pensation techniques discussed so far in this section. The feature and model tech-
niques can be combined to form hybrid techniques, shown as H1 and H2 in Table
44.

| [[Feature Domain|Model Domain| Hybrid |

Un-structured Class F1 Class M1 Class H1
Structured Class F2 Class M2 Class H2

Table 4.4: A summary and classification of noise-robust speech recognition techniques

As a summary, some typical examples in each of the classes of techniques in

Table 4.4 are provided below again, including the two classes of hybrid techniques
to be discussed:

Class F1: SPLICE, spectral subtraction, Wiener filter, HMM, MMSE, MMSE-
Cepstra, CMN (cepstral mean normalization), CVN (cepstral variance normal-
ization), CHN (cepstral histogram normalization), RASTA, modulation spectra;
Class F2: VTS, Algonquin, phase model;

Class M1: MLLR, MAP, C-MLLR, N-CMLLR, multi-style training;

Class M2: PMC, VTS, phase model,

Class HI: NAT-SS (noise-adaptive training with spectral subtraction), NAT-
SPLICE (noise-adaptive training with SPLICE), JAT (or NAT-LR), IVN (irrel-
evant variability normalization); and

Class H2: NAT-VTS, UD, JUD.

Examples of structured hybrid techniques are the various uncertainty decoding

(UD) techniques discussed in earlier sections in this chapter, where the structured
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transformation as provided by the Algonquin model was used to compute the uncer-
tainty in the feature that is subsequently propagated to the HMM decoder. A more
comprehensive discussion on uncertainty propagation and decoding is provided in
Chapter 3 and other chapters in this book.

The best example of unstructured hybrid techniques is noise-adaptive training
(NAT) and its various extensions. Due to its excellent performance and the recent
renewed interest in this scheme, we will devote the next section to this important
topic.

4.7 Noise Adaptive Training

Noise adaptive training (NAT) is a hybrid strategy of feature compensation and
model compensation. The part of feature compensation can be in any form of noise
reduction or feature enhancement (structured H2 with F2, or unstructured H1 with
F1). The part of model compensation, however, takes the specific form of multi-
style (re)training operating on the feature-compensated training data. This origi-
nal scheme of NAT, first reported in [17], which demonstrated its surprisingly high
performance, has formed one of the two standard paradigms (i.e., the multi-style
acoustic model of denoised features) in the Aurora experimental framework for the
evaluation of speech recognition systems under noisy conditions. Hence, the effec-
tiveness of NAT published in [17] has been verified by at least hundreds of additional
experiments with all sorts of feature enhancement techniques and databases world-
wide. In addition, the original scheme of NAT has been further developed in various
directions during the last decade. In this section, we will provide an overview of
these developments.

4.7.1 The Basic NAT Scheme and its Performance

Let us first review and demonstrate the effectiveness of NAT in Figure 4.1 (with
data extracted and reorganized from [17]), where the word error rate produced by
the author using a standard HMM system (with a noisy 5K-vocabulary Wall Street
Journal task) is shown as a function of SNR with added noise. Five sets of results
are shown. The results labeled as “Noisy-Noisy matched” (in green) were produced
by adding the same noise samples to the training and test data at each SNR level.
And the noise used was stationary. In this way, the perfect matching condition was
created artificially in the noisy speech domain. This is the condition that perfect
model compensation schemes are striving for, and conventional wisdom posits that
this sets the upper bound for the system performance. However, when the NAT
scheme was developed and applied with two relatively simple unstructured feature
compensation techniques, spectral subtraction (SS) and SPLICE, both re-trained
HMMs (NAT-SS and NAT-SPLICE) outperform the noisy-matched system under
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almost all SNR conditions (except the clean condition with slight degradation). And
NAT-SPLICE did better than NAT-SS. This finding has been verified by many types
of noise and SNR levels with SPLICE and SS (some of them were published in
[17]). Other feature compensation techniques discussed in this chapter were also
used with success as a component of the NAT training. More recently, this kind
of multi-style training in NAT was also successfully applied to multilingual speech
recognition [68].

There have been some discussions among speech recognition researchers as to
whether the model or the feature domain is more appropriate for noise compensa-
tion. The results discussed above demonstrate that while feature compensation alone
may not clearly outperform model compensation (with some possible exception,
e.g2., [13]), a simple hybrid such as NAT is already sufficient to beat it. The fact that
NAT with a more sophisticated type of feature compensation (e.g., SPLICE) outper-
forms a simpler type (e.g., spectral subtraction), as shown in Figure 4.1, points to
the importance of developing higher-quality feature compensation techniques.

In practical deployment, however, the basic paradigm of NAT discussed above is
difficult to realize because it requires knowledge of the exact noise characteristics
(e.g., noise type and level). Also, if the noise characteristics are numerous, and es-
pecially if they are time-varying, NAT cannot be easily carried out in advance even
for small systems. More recent developments of the NAT framework have offered
possible solutions to this problem, which we will review next.

4.7.2 NAT and Related Work — A Brief Overview

The basic NAT scheme just discussed can be viewed as a way of estimating “clean”
speech model parameters, which have been assumed to be available and accurate
in all the noise compensation and speech recognition techniques presented so far.
However, this assumption rarely holds in practice, since the training data used for
building large systems typically contain mixed clean and noisy speech. On the one
hand, this situation is similar to speaker adaptive training (SAT) [4], which deals
with speaker variation caused by mixed speakers in the training set. On the other
hand, the NAT problem differs from SAT in that there is the golden “target” for
feature adaptation or compensation, which is truly clean speech. In SAT, there is no
such predefined golden “sheep” speaker as the adaptation target.

In the basic NAT scheme of [17], the feature compensation components (SPLICE
and SS) have fixed parameters during NAT training. Only the “pseudo-clean” HMM
parameters are learned with the objective function, which is independent of SPLICE
and SS parameters. And the optimization criterion is maximum likelihood, opti-
mized via EM. This basic scheme has been extended in [48,54] in two ways. First,
the unstructured feature compensation components (SPLICE and SS) are improved
to the structured compensation technique of VTS, changing from the unstructured
hybrid technique NAT-SPLICE or NAT-SS to the structured hybrid technique NAT-
VTS. Second, the free parameters in the feature compensator VTS are subject to
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Fig. 4.1: Word error rates for a noisy WSJ task demonstrating that NAT outperforms the best noisy
matched condition

joint training with the HMM parameters. These free parameters include the noise
means and variances as part of the VTS distortion model. The use of EM for max-
imum likelihood estimation remains the same. In the work of both [48, 54], the
motivation comes from two key insights provided in [17]:

1. Any feature compensation technique inevitably introduces, however small they
may be, undesirable residual errors. These errors cause a special kind of model
mismatch if no retraining is done; and

2. No absolute clean speech data in training are available, and hence the ultimate
models built after the use of any feature compensation technique should settle
at best with “pseudo-clean” speech models.

The more recent work of [54] differs from [48] in the way to train the HMM
and VTR noise model parameters. One uses iteratively separate steps in the training
while insisting on the mapping from noisy speech to “pseudo-clean” speech [48].
The other uses single-step optimization, disregarding the true distribution of the
clean speech, matching the best to the adaptation scheme performed at runtime,
and achieving somewhat better recognition accuracy on the same task [54]. In this
regard, the NAT-VTS version of [54] is very similar to SAT in spirit.
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Another interesting extension of NAT is called Joint Adaptation Training (JAT)
[66], where linear regression instead of VTS or SPLICE/SS is used to represent the
feature transformation. As in [48] and [54], the adaptive transformation in JAT is
parameterized, and its parameters are jointly trained with the HMM parameters by
the same kind of maximum likelihood criterion as in [17,48, 54]. Since the feature
transformation is linear regression (LR) in the JAT technique, by the nomenclature
established in this chapter, JAT can also be rightfully called NAT-LR.

Another set of extension and generalization of the basic NAT scheme is called
Irrelevant Variability Normalization (IVN) (e.g., [80,88]), which is a general frame-
work designed not only for noise compensation but also for other types of acoustic
mismatch, and it encompasses SAT as a special case. A specific version of IVN [48]
designed for noise compensation using VTS as the feature enhancement method,
that gives rise to NAT-VTS in our NAT nomenclature, was discussed earlier. In [88],
a total of six feature compensation functions are presented, extending the original
SPLICE and SS mapping functions proposed in the basic NAT framework [17] in a
systematic manner. Among these feature compensation functions are SPLICE, clus-
ters of linear regressions, and clusters of bias removal mappings. And again, joint
training of all parameters in the feature compensation functions and in the HMM
is carried out in an iterative, two-step fashion. It is noted that in the original NAT-
SPLICE of [17], feature compensation is accomplished utterance by utterance in
the training set using SPLICE, whose parameters were trained separately from the
HMM training for pseudo-clean speech. In the decoding phase, the same SPLICE
technique is applied to the test input features. Differently, in IVN of [80,88], the “en-
vironment” variable has to be detected, a process called “acoustic sniffing”, during
the joint HMM and feature compensation parameters’ training. The same “acoustic
sniffing” is needed in the decoding phase also.

Additional improvements of IVN over the basic NAT framework of [17] are the
use of MAP instead of maximum likelihood training [88], and the use of sequential
estimation of the feature compensation parameters [80].

Finally, we point out that the mechanism presented in [53] for compensating
for extraneous or “irrelevant” variability of spontaneous speech is very similar to
that of IVN discussed above. In both techniques, the “condition” or “environment”
variable is used to denote a set of discrete unknown or hidden factors underlying
the extraneous variations in the observed acoustic data. And they both use a joint
training strategy for both the HMM and the transformation parameters. The main
difference is that the transformation from the distorted domain to the “canonical”
domain is done on the HMM mean vectors in [53] and on the features in IVN.

4.8 Summary and Conclusions

Handling uncertainty in both data and model is a general problem in pattern recog-
nition, and it has special relevance to noise-robust speech recognition, where the
uncertainty with both types abounds. In this chapter, selected topics in noise-robust
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speech recognition have been presented with in-depth discussion, framed using the
Bayesian perspective and centered on the theme of uncertainty treatment.

Since noise robustness is a vast subject, a number of other relevant topics —
for example, estimation of noise and channel characteristics, long-term reverberant
distortion, fast-changing non-stationary noise tracking, single-microphone speaker
separation, and voice activity detection in noisy environments — have not been
included in the overview and discussion in this chapter. Also, robust speech recog-
nition performance figures have not been systematically provided in this chapter for
comparisons of the techniques presented. The references included in this chapter
and other chapters in this book should fill in most of the missing topics, as well as
the information about performance comparisons.

Despite significant progress in noise-robust speech recognition over the past two
decades or so, many of which have been discussed in this chapter, the problem is far
from being solved. Further research in this area is required to enable a sufficiently
high level of accuracy in real-world speech recognition applications encompassing a
full range of acoustic conditions. Here, a brief discussion is offered from the author’s
perspective on the expected future research activities in the area of noise-robust
speech recognition in the relatively long term.

First, better acoustic modeling than the current ones for speech and noise and
the interactions between them is needed. To illustrate this need, we use a simple
example here. Estimation of clean speech and mixing noise from noisy speech is
a mathematically ill-defined problem, with one known and two unknown variables
and one constraint. The only way to have sensible solutions is to impose and ex-
ploit prior knowledge as constraints. The hallmark of the Bayesian framework is
its formalization of the use of prior knowledge in a mathematically rigorous man-
ner. As elaborated in [9, 10], some powerful sources of prior knowledge in machine
speech recognition, especially under noisy environments, come from human speech
perception and production. Computational models with appropriate complexity are
the first step in exploiting such prior knowledge; e.g., [14-16, 69, 73]. In addition,
algorithms extracting key insights from human speech perception and production
knowledge and the corresponding computational models are needed to benefit ro-
bust speech recognition, e.g., [11,75]. An example of the benefit can be found in
a solution to the multi-talker speech separation and recognition problem, a most
difficult kind in robust speech recognition, where the interfering “noise” is another
speaker’s speech. Powerful graphical modeling and related algorithms, coupled with
the Algonquin and phase-sensitive interaction models (see Sections 4.3.1 and 4.4),
as well as the use of speech and noise dynamics as part of prior knowledge built into
the Bayesian network, offer recognition accuracy superior to that of humans [45].
Given that embedding only very crude dynamic characteristics of speech and noise
gives promising results, exploitation of more insightful and relevant knowledge is
expected to be fruitful research.

Second, related to the above discussion on better acoustic modeling for speech
and noise interactions, we need to develop better techniques to characterize and
exploit the effects of noise on speech in a wide variety of front-end features. All
the work reviewed in this chapter assumes the use of log spectra or cepstra (e.g.,
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MFCC), based on which all nonlinear structured acoustic distortion models are de-
veloped and approximated. However, state-of-the-art front-end features may not al-
ways be strict cepstra. Tandem features [72], PLP features, some discriminatively
derived features [74], and mean-normalized MFCCs often perform better than plain
MFCCs. But these features make it difficult to derive the structured distortion mod-
els to enable structured feature and model compensation (classes of F2 and M2 in
Table 4.4 as well as NAT-VTR). Further, an emerging technology developed from
machine learning, deep learning (e.g., [42]), which has just started entering the field
of speech recognition [29,70,86], proposes a fundamentally different way of feature
extraction from the largely handcrafted features such as MFCC. The layer-by-layer
feature extraction strategy in deep learning provides the opportunity to automati-
cally derive powerful features from the primitive raw data, e.g., speech waveform
or Fourier transform. Given that in the linear domains of waveform and linear spec-
trum speech and noise interaction models become much simpler than in MFCC,
but that there are some special difficulties involved in using the primitive feature of
waveform in speech recognition (e.g., [79]), how to do noise robust speech recogni-
tion in the deep learning framework will require complete rethinking of the HMM
framework, which we have been so familiar with as the implicit assumption in this
and many other chapters in this book.

Third, as elaborated in Section 4.7, the hybrid strategy of feature and model com-
pensation exemplified by NAT, JAT, and IVN is a powerful framework that can
handle not only noise-induced uncertainty but also other types of variations extra-
neous to phonetic distinction. Better integrated algorithm design, improved joint
optimization of model and transformation parameters, more effective tracking tech-
niques for time-varying distortion factors, and clever use of metadata as labels for
the otherwise hidden “distortion condition” variables that are frequently available
from specific speech applications are all fruitful research directions.
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