

Front End Device for Content Networking

Jeremy Buboltz
School of EECS

University of Central Florida
Orlando, FL 32816, USA

je963524@pegasus.cc.ucf.edu

Taskin Kocak
Dept. of Electrical and Electronic Engineering

University of Bristol
Bristol, BS8 1UB, UK
t.kocak@bristol.ac.uk

Abstract

The bandwidth and speed of network connections

are continually increasing. The speed increase in
network technology is set to soon outpace the speed
increase in CMOS technology. This asymmetrical
growth is beginning to causing software applications
that once worked with then current levels of network
traffic to flounder under the new high data rates.
Processes that were once executed in software now
have to be executed, partially if not wholly in
hardware. One such application that could benefit
from hardware implementation is high layer routing.
By allowing a network device to peer into higher layers
of the OSI model, the device can scan for viruses,
provide higher quality-of-service (QoS), and efficiently
route packets. This paper proposes an architecture for
a device that will utilize hardware-level string
matching to distribute incoming requests for a server
farm. The proposed architecture is implemented in
VHDL, synthesized, and laid out on an Altera FPGA.

1 Introduction

The bandwidth and speed of network connections

are continually increasing. Systems that are based on
software applications not only have to process the
software application but also have the overhead
involved in unpacking/packing data through the
network protocol stack. Processes that were once
executed in software now have to be executed, partially
if not wholly in hardware. One such application that
could benefit from hardware implementation is high
layer routing.

1.1 Content Networking

Content networking (also known as layer-7 routing)

has many applications. By accessing the payload of

packets, more details about that packet can be gained.
Routers, firewalls, spam and virus filters could all
benefit from Content Networking. Some of these
applications, like firewalls, spam and virus filters,
require analyzing the entire contents of a packet.
However, for routing, only a particular aspect of the
payload may of interest. Perhaps the field of interest is
the host, a cookie or a URL [7].

A difficulty in content networking, which causes
content switches to be relatively rare, is that most of
the high layer protocols are designed to be worked with
on general purpose CPUs and also involve complex
protocol processing [11]. For those applications that
require inspecting the entire payload, the major
bottleneck is having to process the entire payload. This
can consume a vast amount of resources. This is
especially true of software based systems that are
limited by their base hardware which was designed to
be general purpose. By implementing a single purpose
hardware device, the speed of the device will be greatly
increased. The ever increasing speed of network traffic
is only stressing this point.

1.2 Front End Devices

Clusters of workstations or PCs are becoming a

popular platform to deliver websites and content on the
Internet. This architecture has proven to provide high
performance for a relatively low cost [8, 9]. Another
benefit is the ability to scale the resources to meet the
demands placed on the system. To deliver requests to
the individual machines of a server farm, a device is
needed to accept all incoming traffic and to assign a
request to a particular machine to handle [10]. These
devices are called Front End Devices (FEDs), because
they sit at the front of a server farm accepting all
requests. A major problem now arises, if a similar
workstation or PC is used for a FED, then the number
of attached machines in the server farm is typical
limited to ten or less [9]. This limits the scalability of

978-3-9810801-3-1/DATE08 © 2008 EDAA

the server farm, detracting from one of the major
benefits of this architecture.

 In this work, a design and implementation of a
hardware FED is presented. One application would be
a group of web servers specialized for specific tasks.
For example, an administrator might assign a specific
server to handle all multi-media requests, whereas
another server is used to handle all XML processing.
Or perhaps a server has been assigned to hold
databases and handle all database requests. Because of
the ever increasing size of the Internet and increasing
network speeds, a software based FED could be
stressed to handle the load of a moderate server farm.
However, by implementing the FED in hardware, then
the increase in operating speed would result in the
ability to handle larger server farms.

1.3 String Matching

The most important component of implementing a

hardware FED is being able to find the appropriate
server the packet needs to be assigned to. To do this,
the hardware FED must match the request with one of
a known set of strings. Therefore, a strong hardware
level string-matching mechanism is needed.

With a wide variety of applicability, string matching
has been continually optimized. String matching can be
applied to all sorts of problems. String matching
solutions can be categorized into two subcategories:
exact string matching and approximate string
matching. Each field can then be further divided into
hardware and software based solutions. Approximate
string matching is commonly used for spell checking or
other related functions. Exact string matching is more
suited for the requirements of a FED. Two of the most
popular algorithms for exact string matching are Aho-
Corasick [1] and the Boyer-Moore [12] algorithms.
The Boyer-Moore algorithm is sub-linear for the
average case. However, for length of text, n, and length
of pattern, m, in the worst case complexity is O(n*m).
For the Aho-Corasick algorithm, time complexity is
O(n+m). Another method to search strings is with a
content addressable memory (CAM). A CAM can
search a specific length of data in a single memory
access. By activating every memory cell with every
search, the CAM has proven to be very fast. However,
this method also consumes lots of power and can take
up a fair amount of silicon area [2, 13].

The Aho-Corasick (AC) algorithm is capable of
being implemented as a finite state machine.
Characters are fed into the state machine serially, with
each successful match leading further down a state path
to a final state of a match. Failures will either result in
a return to the initial state or a jump to another portion
of the state graph [1]. With the AC algorithm, only one

state will be active at a time. Thus, the AC
implementation will consume less power then a CAM
implementation. With the AC algorithm’s logical
transition to a hardware structure the control circuitry
needed will be minimized. The Boyer-Moore algorithm
would have needed a large amount of control circuitry
to implement in hardware. This results in a larger
design with a larger energy footprint than an AC
implementation. To minimize the footprint and power
consumption of the design, the Aho-Corasik string
matching algorithm was chosen for implementation in
the proposed FED.

2 Design

2.1 Proposed Architecture

To help illustrate the proposed FED architecture lets

first follow the flow of a packet through the system.
This flow can also be seen in Figure 1. As packets
arrive, the IP header is checked to verify that it is a
TCP packet. If a packet is determined to be a GET
request, the application layer data is extracted from the
packet in the stored buffer. Next that data is sent, a
byte at a time, to the Character Decoder. The Character
Decoder is used to eliminate the need for individual
decoders located at each state. After being decoded, a
single output line will be enabled. If that output line is
connected to the first state, then that state will become
active. The process will continue the same way for the
next byte. Once one of the output states has been
reached, the state encoder will encode the data and
send it to the port look-up table as an address. The port
look-up table will hold a value that is used to select a
port. Once a port has been selected, the data will move
from the Buffer, through the Port Selector and out the
specified port.

Controller

Buffer/
App-Layer
Extraction

Port
Look-Up

Table

State

State

A
B
C
.
.
.
Z

State
Encoder

Character
Decoder

Byte
Line

Packet
Transfer

Line

Packets-In

Port
Select

Port

Port

Port

Port

Figure 1 – Proposed FED Architecture

Figure 2 is a state diagram that illustrates the
described flow through the proposed FED. This
diagram shows some of the communication lines that
will need to be present to help the control circuit to
navigate from state to state.

Figure 2 - FED State Diagram

Figure 3Figure 3 depicts the design hierarchy for

implementing the proposed architecture in VHDL. This
diagram shows how the individual components are
architected and how these components are then joined
together to form the completed overall design. From
the diagram, there are seven individual components
that will be utilized.

Entity:
PortSelectorEntity

Entity:
TestEntity

Arch:
PortSelectorArchitecture

Arch: TestArchitecture

PortSelector:

LookupTable:

StateEncoder:

IndividualState:

CharacterDecoder:

Controller:

Entity:
LookupTableEntity

Arch:
LookupTableAtchitecture

Entity:
StateEncoderEntity

Arch:
StateEncoderArchitecture

Entity:
CharacterDecoderEntity

Arch:
CharacterDecoderArchitecture

Entity:
StateEntity

Arch:
StateArchitecture

DFFArchitecture:

Entity:
DFFEntity

Arch:
DFFArchitecture

Entity:
ControllerEntity

Arch:
ControllerArchitecture

Figure 3 - The VHDL Architecture Of The
Proposed FED

2.2 Sample Case

To implement the design and test the overall system,

an imaginary server farm was created. The system
entailed four separate servers for specific purposes.
Therefore, the proposed FED will have a single port
entering and four ports exiting to the servers. First, all
video requests will be tasked to a single server.
Second, there is a server for XML processing. Third,
there is a server for basic file transfers. And lastly,
there is a default server that all remaining traffic will

be sent to. The following file types will be matched by
the proposed FED: DOC, GIF, HTM, JPEG, JPG,
MPEG, MPG, MOV, PDF, PPT, TIFF, TXT, WMV,
XLS, XML. These file types were chosen because of
their prevalence on the Internet. If the proposed FED
reaches the end of a packet and no match was found,
then the packet will be sent to the default server.

In total there are 17 characters represented (not
case-sensitive). Therefore, the Character Decoder will
be an 8-bit to 17 output lines. Next, there will be 41 D-
Flip-Flop gates, each representing another state in the
Aho-Corasick Finite State Machine. There are fifteen
end states, one for each file type, with a sixteen end
state of no match. So, the State Encoder will be a 16
line to 4-bit encoder. Because there are only four
output ports, a two bit enumeration can be used to
represent any of the four output ports. Therefore, the
Port Look-up Table will only have to store 2 bits. So,
the Port look-up Table will be 16 rows (one for each of
the match states) by 2-bits. The Port Selector will then
be a 1-to-4 MUX with a 2 bit select line.

3 Results

3.1 System Simulation

Once all of the components are developed and

tested individually, the components are connected for
integration and system level testing. The overall circuit
has been simulated with the results shown in Figure 4.
The packet data is read in and transferred using the ‘s’
signal. The data is then passed to the Character
Decoder. The Character Decoder then asserts the
appropriate output lines, which are connected to the
inputs of the individual states. Next, we can see that the
proposed FED matches a file format as states 17, 18
and 19 are traversed. These states represent the three
letters of the file format ‘gif’. Because of the delay for
the characters to get decoded and for the D-flip-flops to
latch onto the output in the Individual States we can
see that the Individual States actually output an active
signal a full clock cycle after the byte has been passed
to the Character Decoder.

Once a final state has been reached and the
character for the last state has been matched, then the
output to the final state is asserted. In Figure 4, state 19
is the final state in the string of states used to match the
file format ‘gif’. When the output of a final state is
asserted, then the EndStateReached variable is
asserted. This signal then kicks off the second portion
of the circuit. First, the state is encoded by the State
Encoder, as seen in the EncodedState variable.

Next, the look-up table is enabled and the encoded
state is used to find the appropriate port number in the
table. The look-up table has been pre-encoded with the
appropriate file format to server matching. In Figure 4,
the PortSelector variable is outputting a value of 2,
signaling that the packet should be assigned to the third
server. Next, the Port Selector is enabled and the
packet information is sent to the Port Selector on a
transfer line. This can be seen in Figure 4, as the
PSEnable variable is asserted, then the packet is
transferred out of OutPort3.

3.2 Synthesis

After the functional simulation was completed, the

VHDL code was synthesized and laid-out using
Altera’s Quartus II software. After the VHDL code for
the Front End Device is imported into the Quartus II

program, VHDL compilation can occur. Figure 5 is an
annotated schematic of the RTL for the proposed FED.
All of the components of the proposed FED have been
highlighted.

As part of the synthesis process, the Quartus
software then translates the VHDL into hardware. This
hardware can include combinational logic, registers,
and Logic Cells (LCs). These hardware components
are available resources on the FPGA chosen as the
target board. Table 1 lists the total number of FPGA
elements used per VHDL entity, and the number of
elements that were implemented at the stated level of
implementation. For instance, the FEDEntity block
implements all of the VHDL entities, so it consumes
115 LCs. However, because the FEDEntity only
implements other VHDL entities, it does not require
any logic, only registers that are used to store date as it
is passed between the other entities. This is denoted by

Figure 4 - Completed Simulation

Figure 5 - Annotated RTL View

the seven in parenthesis following the number 115.
However, referencing the Register Only LCs column
shows that the seven LCs consumed by the FEDEntity
were simply for the use of registers.

VHDL Logic
Block

Logic
Cells

LUT
only
LCs

Register
only LCs

FEDENTITY
(Total)

108 (7) 108 (0) 7 (7)

Controller 3 (3) 3 (3) 0 (0)
Character-
Decoder

12 (12) 12 (12) 0 (0)

LookUpTable 2 (2) 2 (2) 0 (0)
PortSelector 4 (4) 4 (4) 0 (0)
StateEncoder 9 (9) 9 (9) 0 (0)
StateEntity –
State 1

2 (1) 2 (1) 0 (0)

State 1:
DFFEntity

1 (1) 1 (1) 0 (0)

StateEntity –
State 2

1 (0) 1 (0) 0 (0)

State 2:
DFFEntity

1 (1) 1 (1) 0 (0)

Table 1 - Resource Usage Per VHDL Entity

An interesting point to notice is that there are two

different implementations for the 42 StateEntities. The
first version represented by ‘StateEntity – State 1’ in
the table does not use require the standard AND logic
preceding the D-Flip-Flop, as in Figure 2. This is
because the state is the first state in a matching string.
So, there is no input to denote that the previous state
(previous letter) is active. Since the D-Flip-Flop
requires an ALUT itself, the total FPGA resource
consumption for this version of the StateEntity is a
single ALUT. However, the typical StateEntity does
contain internal logic as well as a D-Flip-Flop,
resulting in the ‘StateEntity – State 2’ VHDL entity in
2. This entry shows that 2 ALUTs are used, one for the
D-Flip-Flop and one for the internal logic.

3.3 Layout

Once, the Quartus software has completed

synthesis, all of the hardware required to completely
implement the circuit on the FPGA is known. So, the
next step is to layout the pieces, or in the case that the
circuit is going to be implemented on a FPGA, to
assign the required resources to the available resources
on the FPGA. A model EMP240F100I5 from the Max
II FPGA family contains 240 Logic Elements.
Referring to Table 1, the sample circuit implemented

requires roughly 45% of the available resources of the
FPGA.

Once layout is completed, a more detailed timing
analysis can be performed. The proposed FED has a
worst-case set-up time (tsu) of 0.106 ns, a clock-to-
output delay (tco) of 17.997 ns, an intrinsic [pin-to-pin]
delay (tpd) of 8.921 ns, and hold time (th) of 1.433 ns
for the FPGA operating at 140 MHz. Therefore, if the
average URL length is 100 bytes, then the proposed
FED can search 1.4 million queries per second. This
shows that the true limiting factor on the device is how
quickly an implementation can pass queries to the
proposed FED.

Lastly, a power analysis can be performed once
layout is complete. With a toggle rate of 50% on the
input I/O pins, the proposed FED design will consume
61.48 mW. This is the sum of the Core Dynamic
Thermal Power Dissipation of 9.97 mW, Core Static
Thermal Power Dissipation of 39.61 mW and the I/O
Thermal Power Dissipation of 11.91 mW.

4 Related Work

In [7], a router is implemented that checks for the

URL in a request packet. There was a large overhead
found related to the retrieval and converting the string.
The solution was to format a link on a website into a
code. The special links were denoted with a preamble
before to coded portion of the link began [7]. The
disadvantages are that the router could not be used on
an existing website without any work having to be
done to the website. Also, a factor of the human
interface of the website was degraded by encoding the
URL of links. The proposed device in [7] was capable
of supporting 0.6 – 0.9 million queries per second.

In [6], a firewall was implemented in hardware. By
allowing the firewall to search the content of the
packet, it was capable of performing spam and virus
filtering. The firewall also limited the rate of per-flow
traffic to prevent denial-of-service attacks. The firewall
was implemented as a system-on-programmable-chip
with an architecture that will help mitigate against
future attacks as new exploits are developed. By
implementing their design in hardware, the authors
were able to achieve multiple gigabit throughput
speeds. If an ASIC was used, then when adding extra
functionality the entire chip would have to go through
the design process again.

Much of the current research has been applied
towards creating high wire-speed network intrusion
detection systems (NIDS). Because of the large number
of threats faced by networks and computers and
increasing line speeds, software based NIDS have
become unusable [3, 4, 14].

A method is presented in [5] to reduce space
consumption by removing the character matchers from
the individual states and creating a single ‘character
decoder.’ This decoder allows multiple states to all use
the same decoder. This helps to eliminate repetition in
the design. This method is also implemented in the
FED proposed in this paper.

A difficulty in content-based switching is that most
web services use TCP as their high layer protocol. To
access any payloads, a TCP connection must first be
made. Once the connection has been made with the
switch, it is difficult to migrate the connection to the
server. So in [11], work was performed to help
eliminate the difficulty of migrating form of TCP
splicing allows the port controllers on the switch to
handle any minor processing needed to continue the
connection. This allows the processor to be freed for
other actions.

5 Conclusions and Future Work

Modern web services and large websites are moving

towards distributing the amount of incoming traffic
among multiple servers. However, as the speed and
amount of internet traffic increase, a single point of
failure is the distribution node. As the rate of growth of
network speed increases, software solutions which
have to process the software application as well as
packing and unpacking through the TCP/IP stack begin
to fail under the increased network load. To increase
the front-end device’s ability to handle ever increasing
workloads, this paper proposed migrating the FED to a
hardware only architecture. A VHDL implementation
of a FED for hardware level string matching has been
constructed. This device would make an ideal
component or add-in to a router or any other front-end
device with other features such as security. The
proposed FED was synthesized for a MAX II FPGA
from Quartus. A synthesized operational frequency of
140 MHz with a power consumption of 61 mW was
achieved.

Future work for this project would involve more
fully integrating the FPGA with the design of popular
routers. This would involve accessing the data path of
the router, allowing the network processors to send
data to the FGPA chip. Also, a mechanism for TCP
hand-off could be implemented. By handing off the
TCP connection, stress would be relieved from the
router.

References

[1] A. Aho and M. Corasick, Efficient String Matching:
 An Aid to Bibliographic Search, Communications of
 the ACM, 18(6):333-340, 1975.
[2] S. Fide and S. Jenks. A Survey of String Matching
 Approaches in Hardware, Technical Report, UC-
 Irvine, 2006.
[3] M. Aldwairi, T. Conte, and P. Franzon. 2005.
 Configurable string matching hardware for speeding
 up intrusion detection. SIGARCH Comput. Archit.
 News 33, 1 (Mar. 2005), 99-107.
[4] B. L. Hutchings, R. Franklin, and D. Carver.
 Assisting Network Intrusion Detection with
 Reconfigurable Hardware. Proceedings of Field-
 Programmable Custom Computing Machines, 2002.
[5] C. R. Clark and D. E. Schimmel. Scalable Parallel
 Pattern-Matching on High-Speed Networks. Proc.
 IEEE Symposium on Field-Programmable Custom
 Computing Machines, Napa Valley, CA, April 2004.
[6] J. W. Lockwood, C. Neely, C. Zuver, J. Moscola, S.

Dharmapurikar, and D. Lim. An extensible, system
on-programmable-chip, content-aware Internet
firewall. Proc. of the Field Programmable Logic and
Applications, Lisbon, Portugal, Sept. 2003.

[7] M. Luo, C. Yang, and C. Tseng. Content management
on server farm with layer-7 routing. Proc. of the 2002
ACM Symposium on Applied Computing, Madrid,
Spain, March 11 - 14, 2002.

[8] M. Aron, D. Sanders, P. Druschel, and W.
Zwaenepoel. Scalable content-aware request
distribution in cluster-based network servers. Proc. of
the 2000 USENIX Annual Technical Conference, San
Diego, CA, June 2000.

[9] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P.
Druschel, W. Zwaenepoel, and E. Nahum. Locality-
aware request distribution in cluster-based network
servers. SIGPLAN, no. 33, 11; Nov. 1998.

[10] E. A. Brewer. (2001, Jul/Aug) Lessons from giant-
scale services. IEEE Internet Computing. 5(4). pp. 46-
55

[11] G. Apostolopoulus, D. Aubespin, V. Peris, P.
Pradhan, D. Saha. (2000, Mar) Design,
Implementation and Performance of a Content-Based
Switch. INFOCOM 2000 . 3(3) pp. 1117-1126

[12] R.S. Boyer and J.S. Moore, A fast string searching
 algorithm. Carom. ACM 20 (10), 262-272, 1977.
[13] T. Kocak and F. Basci. A power-efficient TCAM

architecture for network forwarding tables. Journal of
Systems Architecture, 52 (5), 307-314, 2006.

[14] T. Kocak and I. Kaya. Low-power bloom filter
architecture for deep packet inspection. IEEE
Communications Letters, 10 (3), 210-212, 2006.

