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Abstract 
 
The bandwidth and speed of network connections 

are continually increasing. The speed increase in 
network technology is set to soon outpace the speed 
increase in CMOS technology. This asymmetrical 
growth is beginning to causing software applications 
that once worked with then current levels of network 
traffic to flounder under the new high data rates. 
Processes that were once executed in software now 
have to be executed, partially if not wholly in 
hardware. One such application that could benefit 
from hardware implementation is high layer routing. 
By allowing a network device to peer into higher layers 
of the OSI model, the device can scan for viruses, 
provide higher quality-of-service (QoS), and efficiently 
route packets. This paper proposes an architecture for 
a device that will utilize hardware-level string 
matching to distribute incoming requests for a server 
farm. The proposed architecture is implemented in 
VHDL, synthesized, and laid out on an Altera FPGA. 

 
 

1 Introduction 
 
The bandwidth and speed of network connections 

are continually increasing. Systems that are based on 
software applications not only have to process the 
software application but also have the overhead 
involved in unpacking/packing data through the 
network protocol stack. Processes that were once 
executed in software now have to be executed, partially 
if not wholly in hardware. One such application that 
could benefit from hardware implementation is high 
layer routing.  

 
1.1 Content Networking 

 
Content networking (also known as layer-7 routing) 

has many applications. By accessing the payload of 

packets, more details about that packet can be gained. 
Routers, firewalls, spam and virus filters could all 
benefit from Content Networking. Some of these 
applications, like firewalls, spam and virus filters, 
require analyzing the entire contents of a packet. 
However, for routing, only a particular aspect of the 
payload may of interest. Perhaps the field of interest is 
the host, a cookie or a URL [7]. 

A difficulty in content networking, which causes 
content switches to be relatively rare, is that most of 
the high layer protocols are designed to be worked with 
on general purpose CPUs and also involve complex 
protocol processing [11]. For those applications that 
require inspecting the entire payload, the major 
bottleneck is having to process the entire payload. This 
can consume a vast amount of resources. This is 
especially true of software based systems that are 
limited by their base hardware which was designed to 
be general purpose. By implementing a single purpose 
hardware device, the speed of the device will be greatly 
increased. The ever increasing speed of network traffic 
is only stressing this point. 

 
1.2 Front End Devices 

 
Clusters of workstations or PCs are becoming a 

popular platform to deliver websites and content on the 
Internet. This architecture has proven to provide high 
performance for a relatively low cost [8, 9]. Another 
benefit is the ability to scale the resources to meet the 
demands placed on the system. To deliver requests to 
the individual machines of a server farm, a device is 
needed to accept all incoming traffic and to assign a 
request to a particular machine to handle [10]. These 
devices are called Front End Devices (FEDs), because 
they sit at the front of a server farm accepting all 
requests. A major problem now arises, if a similar 
workstation or PC is used for a FED, then the number 
of attached machines in the server farm is typical 
limited to ten or less [9]. This limits the scalability of 
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the server farm, detracting from one of the major 
benefits of this architecture. 

 In this work, a design and implementation of a 
hardware FED is presented. One application would be 
a group of web servers specialized for specific tasks. 
For example, an administrator might assign a specific 
server to handle all multi-media requests, whereas 
another server is used to handle all XML processing. 
Or perhaps a server has been assigned to hold 
databases and handle all database requests. Because of 
the ever increasing size of the Internet and increasing 
network speeds, a software based FED could be 
stressed to handle the load of a moderate server farm. 
However, by implementing the FED in hardware, then 
the increase in operating speed would result in the 
ability to handle larger server farms. 

 
1.3 String Matching 

 
The most important component of implementing a 

hardware FED is being able to find the appropriate 
server the packet needs to be assigned to. To do this, 
the hardware FED must match the request with one of 
a known set of strings. Therefore, a strong hardware 
level string-matching mechanism is needed. 

With a wide variety of applicability, string matching 
has been continually optimized. String matching can be 
applied to all sorts of problems. String matching 
solutions can be categorized into two subcategories: 
exact string matching and approximate string 
matching. Each field can then be further divided into 
hardware and software based solutions. Approximate 
string matching is commonly used for spell checking or 
other related functions. Exact string matching is more 
suited for the requirements of a FED. Two of the most 
popular algorithms for exact string matching are Aho-
Corasick [1] and the Boyer-Moore [12] algorithms. 
The Boyer-Moore algorithm is sub-linear for the 
average case. However, for length of text, n, and length 
of pattern, m, in the worst case complexity is O(n*m). 
For the Aho-Corasick algorithm, time complexity is 
O(n+m). Another method to search strings is with a 
content addressable memory (CAM). A CAM can 
search a specific length of data in a single memory 
access. By activating every memory cell with every 
search, the CAM has proven to be very fast. However, 
this method also consumes lots of power and can take 
up a fair amount of silicon area [2, 13]. 

The Aho-Corasick (AC) algorithm is capable of 
being implemented as a finite state machine. 
Characters are fed into the state machine serially, with 
each successful match leading further down a state path 
to a final state of a match. Failures will either result in 
a return to the initial state or a jump to another portion 
of the state graph [1]. With the AC algorithm, only one 

state will be active at a time. Thus, the AC 
implementation will consume less power then a CAM 
implementation. With the AC algorithm’s logical 
transition to a hardware structure the control circuitry 
needed will be minimized. The Boyer-Moore algorithm 
would have needed a large amount of control circuitry 
to implement in hardware. This results in a larger 
design with a larger energy footprint than an AC 
implementation. To minimize the footprint and power 
consumption of the design, the Aho-Corasik string 
matching algorithm was chosen for implementation in 
the proposed FED. 

 
2 Design 
 
2.1 Proposed Architecture 

 
To help illustrate the proposed FED architecture lets 

first follow the flow of a packet through the system. 
This flow can also be seen in Figure 1. As packets 
arrive, the IP header is checked to verify that it is a 
TCP packet. If a packet is determined to be a GET 
request, the application layer data is extracted from the 
packet in the stored buffer. Next that data is sent, a 
byte at a time, to the Character Decoder. The Character 
Decoder is used to eliminate the need for individual 
decoders located at each state. After being decoded, a 
single output line will be enabled. If that output line is 
connected to the first state, then that state will become 
active. The process will continue the same way for the 
next byte. Once one of the output states has been 
reached, the state encoder will encode the data and 
send it to the port look-up table as an address. The port 
look-up table will hold a value that is used to select a 
port. Once a port has been selected, the data will move 
from the Buffer, through the Port Selector and out the 
specified port. 
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Figure 1 – Proposed FED Architecture 

 



   

 

Figure 2 is a state diagram that illustrates the 
described flow through the proposed FED. This 
diagram shows some of the communication lines that 
will need to be present to help the control circuit to 
navigate from state to state. 

 
Figure 2 - FED State Diagram 

 
Figure 3Figure 3 depicts the design hierarchy for 

implementing the proposed architecture in VHDL. This 
diagram shows how the individual components are 
architected and how these components are then joined 
together to form the completed overall design. From 
the diagram, there are seven individual components 
that will be utilized.  
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Figure 3 - The VHDL Architecture Of The 
Proposed FED 

 
2.2 Sample Case 

 
To implement the design and test the overall system, 

an imaginary server farm was created. The system 
entailed four separate servers for specific purposes. 
Therefore, the proposed FED will have a single port 
entering and four ports exiting to the servers. First, all 
video requests will be tasked to a single server. 
Second, there is a server for XML processing. Third, 
there is a server for basic file transfers. And lastly, 
there is a default server that all remaining traffic will 

be sent to. The following file types will be matched by 
the proposed FED: DOC, GIF, HTM, JPEG, JPG, 
MPEG, MPG, MOV, PDF, PPT, TIFF, TXT, WMV, 
XLS, XML. These file types were chosen because of 
their prevalence on the Internet. If the proposed FED 
reaches the end of a packet and no match was found, 
then the packet will be sent to the default server. 

In total there are 17 characters represented (not 
case-sensitive). Therefore, the Character Decoder will 
be an 8-bit to 17 output lines. Next, there will be 41 D-
Flip-Flop gates, each representing another state in the 
Aho-Corasick Finite State Machine. There are fifteen 
end states, one for each file type, with a sixteen end 
state of no match. So, the State Encoder will be a 16 
line to 4-bit encoder. Because there are only four 
output ports, a two bit enumeration can be used to 
represent any of the four output ports. Therefore, the 
Port Look-up Table will only have to store 2 bits. So, 
the Port look-up Table will be 16 rows (one for each of 
the match states) by 2-bits. The Port Selector will then 
be a 1-to-4 MUX with a 2 bit select line. 

 
3 Results 

 
3.1 System Simulation 

 
Once all of the components are developed and 

tested individually, the components are connected for 
integration and system level testing. The overall circuit 
has been simulated with the results shown in Figure 4. 
The packet data is read in and transferred using the ‘s’ 
signal. The data is then passed to the Character 
Decoder. The Character Decoder then asserts the 
appropriate output lines, which are connected to the 
inputs of the individual states. Next, we can see that the 
proposed FED matches a file format as states 17, 18 
and 19 are traversed. These states represent the three 
letters of the file format ‘gif’. Because of the delay for 
the characters to get decoded and for the D-flip-flops to 
latch onto the output in the Individual States we can 
see that the Individual States actually output an active 
signal a full clock cycle after the byte has been passed 
to the Character Decoder.  

Once a final state has been reached and the 
character for the last state has been matched, then the 
output to the final state is asserted. In Figure 4, state 19 
is the final state in the string of states used to match the 
file format ‘gif’. When the output of a final state is 
asserted, then the EndStateReached variable is 
asserted. This signal then kicks off the second portion 
of the circuit. First, the state is encoded by the State 
Encoder, as seen in the EncodedState variable. 



 

Next, the look-up table is enabled and the encoded 
state is used to find the appropriate port number in the 
table. The look-up table has been pre-encoded with the 
appropriate file format to server matching. In Figure 4, 
the PortSelector variable is outputting a value of 2, 
signaling that the packet should be assigned to the third 
server. Next, the Port Selector is enabled and the 
packet information is sent to the Port Selector on a 
transfer line. This can be seen in Figure 4, as the 
PSEnable variable is asserted, then the packet is 
transferred out of OutPort3. 

 
3.2 Synthesis 

 
After the functional simulation was completed, the 

VHDL code was synthesized and laid-out using 
Altera’s Quartus II software. After the VHDL code for 
the Front End Device is imported into the Quartus II 

program, VHDL compilation can occur. Figure 5 is an 
annotated schematic of the RTL for the proposed FED. 
All of the components of the proposed FED have been 
highlighted.  

As part of the synthesis process, the Quartus 
software then translates the VHDL into hardware. This 
hardware can include combinational logic, registers, 
and Logic Cells (LCs). These hardware components 
are available resources on the FPGA chosen as the 
target board. Table 1 lists the total number of FPGA 
elements used per VHDL entity, and the number of 
elements that were implemented at the stated level of 
implementation. For instance, the FEDEntity block 
implements all of the VHDL entities, so it consumes 
115 LCs. However, because the FEDEntity only 
implements other VHDL entities, it does not require 
any logic, only registers that are used to store date as it 
is passed between the other entities. This is denoted by 

 

 

Figure 4 - Completed Simulation 

 

 

Figure 5 - Annotated RTL View 



   

 

the seven in parenthesis following the number 115. 
However, referencing the Register Only LCs column 
shows that the seven LCs consumed by the FEDEntity 
were simply for the use of registers. 

 

VHDL Logic 
Block 

Logic 
Cells 

LUT 
only 
LCs 

Register 
only LCs 

FEDENTITY 
(Total) 

108 (7) 108 (0) 7 (7) 

Controller 3 (3) 3 (3) 0 (0) 
Character-
Decoder 

12 (12) 12 (12) 0 (0) 

LookUpTable 2 (2) 2 (2) 0 (0) 
PortSelector 4 (4) 4 (4) 0 (0) 
StateEncoder 9 (9) 9 (9) 0 (0) 
StateEntity – 
State 1 

2 (1) 2 (1) 0 (0) 

State 1: 
DFFEntity 

1 (1) 1 (1) 0 (0) 

StateEntity – 
State 2 

1 (0) 1 (0) 0 (0) 

State 2: 
DFFEntity 

1 (1) 1 (1) 0 (0) 

Table 1 - Resource Usage Per VHDL Entity 
 
An interesting point to notice is that there are two 

different implementations for the 42 StateEntities. The 
first version represented by ‘StateEntity – State 1’ in 
the table does not use require the standard AND logic 
preceding the D-Flip-Flop, as in Figure 2. This is 
because the state is the first state in a matching string. 
So, there is no input to denote that the previous state 
(previous letter) is active. Since the D-Flip-Flop 
requires an ALUT itself, the total FPGA resource 
consumption for this version of the StateEntity is a 
single ALUT. However, the typical StateEntity does 
contain internal logic as well as a D-Flip-Flop, 
resulting in the ‘StateEntity – State 2’ VHDL entity in 
2. This entry shows that 2 ALUTs are used, one for the 
D-Flip-Flop and one for the internal logic. 
 
3.3 Layout 

 
Once, the Quartus software has completed 

synthesis, all of the hardware required to completely 
implement the circuit on the FPGA is known. So, the 
next step is to layout the pieces, or in the case that the 
circuit is going to be implemented on a FPGA, to 
assign the required resources to the available resources 
on the FPGA. A model EMP240F100I5 from the Max 
II  FPGA family contains 240 Logic Elements. 
Referring to Table 1, the sample circuit implemented 

requires roughly 45% of the available resources of the 
FPGA.  

Once layout is completed, a more detailed timing 
analysis can be performed. The proposed FED has a 
worst-case set-up time (tsu) of 0.106 ns, a clock-to-
output delay (tco) of 17.997 ns, an intrinsic [pin-to-pin] 
delay (tpd) of 8.921 ns, and hold time (th) of 1.433 ns 
for the FPGA operating at 140 MHz. Therefore, if the 
average URL length is 100 bytes, then the proposed 
FED can search 1.4 million queries per second. This 
shows that the true limiting factor on the device is how 
quickly an implementation can pass queries to the 
proposed FED. 

Lastly, a power analysis can be performed once 
layout is complete. With a toggle rate of 50% on the 
input I/O pins, the proposed FED design will consume 
61.48 mW. This is the sum of the Core Dynamic 
Thermal Power Dissipation of 9.97 mW, Core Static 
Thermal Power Dissipation of 39.61 mW and the I/O 
Thermal Power Dissipation of 11.91 mW. 

 
4 Related Work 

 
In [7], a router is implemented that checks for the 

URL in a request packet. There was a large overhead 
found related to the retrieval and converting the string. 
The solution was to format a link on a website into a 
code. The special links were denoted with a preamble 
before to coded portion of the link began [7]. The 
disadvantages are that the router could not be used on 
an existing website without any work having to be 
done to the website. Also, a factor of the human 
interface of the website was degraded by encoding the 
URL of links. The proposed device in [7] was capable 
of supporting 0.6 – 0.9 million queries per second. 

In [6], a firewall was implemented in hardware. By 
allowing the firewall to search the content of the 
packet, it was capable of performing spam and virus 
filtering. The firewall also limited the rate of per-flow 
traffic to prevent denial-of-service attacks. The firewall 
was implemented as a system-on-programmable-chip 
with an architecture that will help mitigate against 
future attacks as new exploits are developed. By 
implementing their design in hardware, the authors 
were able to achieve multiple gigabit throughput 
speeds. If an ASIC was used, then when adding extra 
functionality the entire chip would have to go through 
the design process again. 

Much of the current research has been applied 
towards creating high wire-speed network intrusion 
detection systems (NIDS). Because of the large number 
of threats faced by networks and computers and 
increasing line speeds, software based NIDS have 
become unusable [3, 4, 14]. 



   

 

A method is presented in [5] to reduce space 
consumption by removing the character matchers from 
the individual states and creating a single ‘character 
decoder.’ This decoder allows multiple states to all use 
the same decoder. This helps to eliminate repetition in 
the design. This method is also implemented in the 
FED proposed in this paper. 

A difficulty in content-based switching is that most 
web services use TCP as their high layer protocol. To 
access any payloads, a TCP connection must first be 
made. Once the connection has been made with the 
switch, it is difficult to migrate the connection to the 
server. So in [11], work was performed to help 
eliminate the difficulty of migrating form of TCP 
splicing allows the port controllers on the switch to 
handle any minor processing needed to continue the 
connection. This allows the processor to be freed for 
other actions. 

 
5 Conclusions and Future Work 

 
Modern web services and large websites are moving 

towards distributing the amount of incoming traffic 
among multiple servers. However, as the speed and 
amount of internet traffic increase, a single point of 
failure is the distribution node. As the rate of growth of 
network speed increases, software solutions which 
have to process the software application as well as 
packing and unpacking through the TCP/IP stack begin 
to fail under the increased network load. To increase 
the front-end device’s ability to handle ever increasing 
workloads, this paper proposed migrating the FED to a 
hardware only architecture. A VHDL implementation 
of a FED for hardware level string matching has been 
constructed. This device would make an ideal 
component or add-in to a router or any other front-end 
device with other features such as security. The 
proposed FED was synthesized for a MAX II FPGA 
from Quartus. A synthesized operational frequency of 
140 MHz with a power consumption of 61 mW was 
achieved.  

Future work for this project would involve more 
fully integrating the FPGA with the design of popular 
routers. This would involve accessing the data path of 
the router, allowing the network processors to send 
data to the FGPA chip. Also, a mechanism for TCP 
hand-off could be implemented. By handing off the 
TCP connection, stress would be relieved from the 
router. 
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