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FRONT MOTION IN
MULTI-DIMENSIONAL VISCOUS CONSERVATION LAWS

WITH STIFF SOURCE TERMS DRIVEN BY
MEAN CURVATURE AND VARIATION OF FRONT THICKNESS
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Abstract. The bistable reaction-diffusion-convection equation

dtu + V ■ f(u): = —g(u) + eAu, x G Rn, u £ R (1)

is considered. Stationary traveling waves of the above equation are proved to exist when
f(u) is symmetric and g(u) is antisymmetric about u = 0. Solutions of initial value
problems tend to almost piecewise constant functions within 0{l)e time. The almost
constant pieces are separated by sharp interior layers, called fronts. The motion of these
fronts is studied by asymptotic expansion. The equation for the motion of the front is
obtained. In the case of f = bu2 and g(u) = au(l — u2), where b G R™ and 0 < a G R
are constants, the front motion equation takes a more explicit form, showing that the
front's speed is

V/U _K+ — ■ T

where k is the mean curvature of the front, /i is the width of the planar traveling of (1)
in the normal direction n of the front, and T is a vector tangential to the front. Both k
and V/x/// • T are elliptic operators, contributing to the shrinkage of closed curves. An
ellipse in R2 is found to preserve its shape while shrinking.

1. Introduction. Typical reactive flows are governed by Navier-Stokes equations
with reaction source terms. These equations have the form

Ut + V ■ f(«) — -g(u) + 7Au, t > 0, x G Rn. (1.1)
e
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Here e > 0 is the reaction time and [i is the viscosity. We shall consider the scaling 7 = e
in this paper. We restrict our attention to the bistable type of source term g(u). We
assume for convenience that

g(± 1)=0, </(±l)<0, .9(0) =0, g'(0) > 0 (1.2)
with no more zeroes. Under the assumption, ±1 are the two stable equilibrium points of
(1.1). When e > 0 is small, we see that the solution of the initial value problem of (1.1)
will quickly become almost ±1 over subdomains separated by sharp fronts across which
u changes from —1 to 1. We shall study the motion of these fronts in this paper.

The one dimensional version of (1.1) and its inviscid version

ut + f{u)x = -g(u)
e

are studied by [FH1, FH2, FJT, FJ, Lyb, Mas, Sinl, Sin2]. They considered the large
time behavior and e —» 0+ limits. No study has been done for the multidimensional case
of (1.1) yet.

When f = 0, the equation (1.1) is a typical reaction-diffusion equation:

ut = -g(u) + 7Au, t > 0, x e Rn,
e

which has been extensively studied. When e > 0 is small, the solution of the reaction-
diffusion equation tends to a piecewise constant function within 0(1)e time. The constant
pieces are separated by layers called fronts. If the two wells of the potential f g(u)du are
equal, then the front will move at the normal speed en where k is the mean curvature
of the front. This phenomenon was conjectured by Allen and Cahn [AC] and justified
formally by [Fife, Ca, RSK], Rigorous results were obtained by [BES, BK, Br, Ch, D,
DS, ESS, II, Son], etc. Among the above papers, the one that is most closely related to
this paper is [RSK]. Many of its techniques are used in this paper. For more information
about the motion of fronts in reaction-diffusion equations, the reader is referred to the
lecture notes [E, Sou] and references cited therein.

The motion by mean curvature when f = 0 is due to the interaction of fast reaction
and slow diffusion in the reaction-diffusion equation. What is the effect of the convection
term f on the front motion? To answer this question, in this paper, we shall investigate
the motion of fronts in (1.1) when f / 0. From our earlier results [FJT], we see that
in the e —i 0+ limit, Eq. (1.1) has two types of planar waves: The first kind is the
ordinary Lax shock propagating in the direction of the unit vector n, pointing from the
1 to the —1 side, at the speed n- (f(l) — f(—1))/2 as determined by the Rankin-Hugoniot
condition. The second type of wave, called a rarefaction layer, has the speed — n • f'(0).
These wave speeds are the 0(1) order approximation of the front propagation speeds in
(1.1). They are speeds of planar waves. To get the O(e) order of the wave speeds and
to observe the effect of curvature of the front and variance of thickness of the front in
different directions on the front propagation, we set

f(l) - f(-l) = f'(0) = 0. (1.3)

In this paper, we assume that

f(-u) = f(u), g(-u) = -g( u). (1.4)
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Under this assumption, the condition (1.3) is satisfied.
The main results and the organization of this paper is as follows: In Sec. 2, we

shall prove that, under the assumption (1.4), solutions of (1.1) with some initial value
will converge as t —> oo to a planar stationary wave. As a consequence, the existence
of stationary planar traveling waves in any direction n is established. Across these
planar waves, u changes from ±1 to q=l. The speed of these planar waves is necessarily
0. In Sec. 3, we formally derive, via asymptotic expansion, that after t = 0(l)e, the
domain R" will be divided into subdomains over which u « ±1. These subdomains are
separated by fronts across which u changes from ±1 to =pl. This leads to the investigation
of the front propagation in Sec. 4. Suppose we have a front separating the regions
{x G R™: u(x,t) > 0} and {x e R™: u(x, t) < 0}, over which u « ±1. The location of
the front can be denoted as the level curve $(x, t, t), e) = 0, where rj = et. In Sec. 4, we
shall show, through asymptotic expansions, that ^ = 0, i.e., the front does not move on
the 0(1) time scale, as expected since the planar waves are stationary. The front will
move on the 0(e_1) time scale. We obtained the partial differential equation relating

and partial derivatives of up to second order. This equation contains the planar
stationary waves ip{n • x/e, n) of (1.1) in n := V$/|V$| direction, determined by

n-f(uK-://(u) ■ u.-r.
(1.5)u(±oo) = ±1 or 1.

To further understand the behavior of this equation for front motion, we want to study
some special cases of f and g for which explicit solutions of (1.5) can be obtained. For
this purpose, we considered in Sec. 5 the case where f(u) = km2 and g(u) = au( 1 — it2),
where b is a constant vector in R" and a > 0 is a constant. For such f and g, the planar
stationary waves ip(n • x/e, n) of (1.1) in n direction is

if) = tanh(£/^) (1-6)

with
/i_1 = (—n • b ± \J(n ■ b)2 + 2ct)/2. (1-7)

The function /u(n) is the width of the traveling wave of (1.1) in n direction. With the
help of (1.6) and (1.7), we obtained the explicit expression for the front equation:

<Pr/ | Vfi
i v*r"+f-T' (1-8)

where k is the mean curvature of the level curve <&(x, t, 77, e) = constant, and the vector
T := (b — (b • n)n)/(2/x-1 + b • n) is in a tangential direction of the level curve. Both
k and ^ • T are elliptic operators on <!'. Eq. (1.8) states that the front motion of (1.1)
is driven by mean curvature of the front and the relative rate of change in a tangential
direction of the thickness of planar traveling waves of (1.1). In the two dimensional case,
the contributions of both k and -T are to make a circular front to shrink. An example
in R2 is given to show that Eq. (1.8) has an explicit solution representing an elliptic front.
This front maintains its shape while shrinking. The time it takes for this elliptic front to
shrink to a point and then to disappear is given. We guess that simple closed fronts of
other shapes (for example, a circle) will evolve, as r] increases, towards the shape of this
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ellipse before it shrinks to a point. In Sec. 6, we solve a differential equation to provide
its solutions needed in Sec. 4 and Sec. 5.

2. Planar Traveling Waves of (1.1). In this section, we consider planar traveling
waves of (1.1) when 7 = Ae. A planar traveling wave of (1.1) in the direction of the
unit vector n is a solution of (1.1) of the form u(e_1(x ■ n — ct)). We see that a planar
traveling wave of (1.1) connecting u± = ±1 or =fl must satisfy the following connecting
orbit problem of ODE:

— cu' + n ■ f(«)' = g(u) + Au",
(+ ^ (2'1}u(± 00) = u±.

For simplicity, we use the following notation

/(«):= n • f(u). (2.2)

Then the system (2.1) becomes

— cu + f(u)' = g(u) + Au",
c_i_ -1 (2-3)u(±oo) = u±.

The traveling wave equation of

ut + f(u)x = g(u) + Auxx (2.4)

is the same as (2.3). To prove the existence of solutions of (2.3), we shall show that
the solution of (2.4) with some initial data u(x, 0) will converge to a stationary solution
under condition (1.4). Some of the lemmas in this section are proved in our earlier paper
[FJ]. However, the proof in [FJ] is for the special case g(u) = u(l —u2). Here we present
a proof that holds for general g G C1(K, R). We shall further prove that the speed of
traveling waves of (2.4) and hence that of (2.1) is 0.

Lemma 2.1. Let u(x,t) be the solution of (1.1) with initial data u{x, 0). If ux(x, 0) < 0
(> 0), then ux(x,t) < 0 (> 0).

Proof. Let v = ux; then v satisfies

vt + f'(u)vx + f"(u)v'2 = vxx + g'(u) v,

v(x, 0) = ux{x,Q) > 0 (< 0).

The maximum principle type of argument applies to (2.5) to yield that v(x,t) > 0 (< 0)
if v(x, 0) > 0 (< 0). □

In the rest of this section, we assume the initial data satisfies

ux(x, 0) < 0, and — 1 < u(x,0) < 1. (2-6)

In this case the solution u(x, t) is decreasing. Then the transformation from (x, t) to

w = u(x, t),
(2-7)s = t
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is one-to-one. Then for any smooth function h(w, s), the chain rule reads

hf — hwut "I- hsi
h - * (2'8)

Let v := ux. After changing variables according to (2.7) and (2.8), Eqs. (2.5) and (2.6)
become

v, = v2 VWW+(9-^) - /"(to) w e (-1, l),
(2.9)

v(w, 0) < 0.

From Lemma 2.1, we know that the solution of (2.9) satisfies v(w, s) < 0 for s > 0.

Lemma 2.2. If vs(w,0) > 0 (< 0), then vs(w,s) > 0 (< 0) for all s > 0.

Proof. Taking d/ds on (2.9), we obtain

(■vs)s = v2(vs)ww + 2v[vww - f"(w)]vs - g{w)(vs)w + g'(w)(vs). (2.10)

Again, the maximum principle type of argument applies to (2.10) to yield that if vs(w, 0)
> 0 (< 0), then vs(w, s) > 0 (< 0) for all s > 0. □

Lemma 2.3.
(i) Let

u(x, 0) = — tanh(x/5), (tanh(x/5)),

where 6 > 0 is a constant and v(w, 0) is the function ux(x, 0) with variables (w, s)
given in (2.8). Then when <5 > 0 is small enough, the solution v of (2.9) satisfies
va(w, s) > 0 (< 0) for all s > 0.

(ii) Let u(x, 0) be the solution of

u* = i —, «(0,0) = 0. (2.11)
oi u

If Si > 0 are large enough, then the solution of (2.9) with initial data v(w, 0) =
ux(x(w, 0),0) satisfies vs(w,s) > 0 for all s > 0.

(iii) Let u(x, 0) be the solution of

Ux = -T- —, u(0,0) = 0. (2.12)
02 U

If S2 > 0 are large enough, then the solution of (2.9) with initial data u(iw, 0) =
ux(x(w, 0),0) satisfies vs(w,s) < 0 for all s > 0.

Proof, (i) We only prove the case where u(x, 0) = tanh(x/<5). The other case can be
similarly proved by multiplying the minus sign to v since the equation is linear in v.

From Lemma 2.2, it suffices to prove that the initial data given by (2.10) satisfies
(2.9)2 and vs(w,0) > 0 for w S ( — 1,1). It is easy to see that v(w,0) — ux(x, 0) > 0 for
u(x,0) = tanh(x/S). Also, the limiting process w —» ±1 corresponds to x —> =Foo and
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hence v(w —> ±1,0) = 0. We compute straightforwardly to get

f n, . dx Ut
vs (w, 0) = vt + vx — <= vt - vx —

OS UT

V'xxx ^xx/^z f (^)^x 9 (^O^x 9{^)^xxl^x

9(u)

=sKh' (i)

sech4

= sech4 ( ^

(I)
(I)

- f"(u)u2x + u,

2 /»'
53 <52

2 /"(«)'
53 <52

5ux

Sul

fM
1 — u2

9(u)
1 — u2

2 /"(«) + 0(1)
53 «52 <5 ^

Here we used conditions (1.2) and (1.4) and iij = (1 — u2)/S. The conclusion follows
from Lemma 2.2 immediately.

(ii) Now, the initial data u(x, 0) is determined by

q(u)
«x = yi, U (0,0=0.

0\U

By the conditions (1.2) on g(u), we see that the range of u(x, 0) is ( — 1,1) and ux(x, 0) > 0.
The computation, similar to that in the proof of (i), yields that

uxx\ 2 i ... (diu)
vs(w, 0) = ux ) - / (u)ux + II

= (^ + 0(1) + 6^ u2x.

When (5i > 0 is sufficiently large, vs(w,0) > 0 and hence vs(w,s) > 0.
(iii) The proof is almost the same as that of (ii). □

Corollary 2.4. Let v(w,s) be the solution of (2.9) with initial data — tanh(x/<5) (or
tanh(x/<5)) where S > 0 is sufficiently small. Then v(w,s) —> 6(w) < 0 (> 0) for
w G (—1,1) as s —> oo. Furthermore, the function 9(w) satisfies

[1 1 rW 1 rw 1 ,-1 1

"°° = / aT^dw < / "7 7^dw < / ~7 mdw < / 777 \ = 00 (2-13)Jo °\w) Jo v{w, 0) J0 v(w,0) J0 9{w)

f1 1 (w 1 fw 1 [~l 1 \
OO = / ——-dw > / -7 -rrdw > / ——-~dw > / ——- = —00 . (2.13')Jo 0{w) J0 v(w, 0) 70 i>(w,0) 7o 6»(w) J

Proof. We only prove for the case where v(w,0) = — tanh(x/6). The other case can
be proven in the same way. Lemma 2.3 states that the solution of (2.9) with initial data
(2.10) with 5 > 0 sufficiently small satisfies vs(w,s) > 0 and hence v(w,s) is increasing
as s increases. On the other hand, v is also bounded from above by 0. Therefore, the
limit limg-^go v(w, s) =: 9(w) exists for all w £ (—1,1). To prove that 6(w) < 0 for
w e ( — 1,1), we consider the solution u2 of (2.9) given in Lemma 2.3(iii) with 82 > 0
large enough. This solution satisfies 0 > V2(w, 0) > V2(w, s) for all s > 0 and w £ ( — 1,1).
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We note that the comparison principle holds for Eq. (2.9). To compare the initial datum
v(w,0) and V2(w,0), we consider the equation defining V2(w,0):

^2x r (1 2/ r /-t 2 \ '^2^2 (52w2(l ~ U2J

"2(0) = 0, (2.14)
u2(x(w)) = w,

^2(^,0) = «2x(^(w)).

By condition (1.2), the factor
9(u) < C

52u(l — u2)

for u G [—1,1]. Compare to the equation that the initial data v(w, 0) satisfies:

1 — u2u* = —T~'
u{ 0) = 0,

u(x(w)) = w,

v(w, 0) = (/x(j-(ir)).

Choosing 62 > 0 large enough, we see that when w = u(x) — u(x2), 0 > v2(w,0) >
v(w, 0). Thus, we have

0 > v2(w, 0) > v2(w, s) > v(w, s) > v(w, 0) (2-15)

and hence 0 > v2(w,0) > 6(w). Furthermore, the equality

dx 1
dw ux'

inequalities (2.14), the property of (2.10), and hence that of v(w, 0), implies that

f1 i r 1dw < / —; rdw = —00.
Jo 0(w) Jo v(w,0)

The other half of (2.13) can be proved similarly. □

Theorem 2.5. If f(u) = f(—u), then the solution u(x,t) of (2.4) with initial data

u{x, 0) = — tanh(a;/£) (or tanh(.r/<5)) (2.16)

with constant 5 > 0 small enough, converges to a stationary solution of (2.4).

Proof. Again, we present the proof obtained where the initial data is

u(x,0) = - taiih(.i:/rf).

The other case can be proved similarly.
From the definition (2.7) of the transformation (x,t) h-> (u,s), we see that

dx 1
du ux
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For the solution given in Corollary 3.2.4, we have

dx _ 1
du 6{u)

or equivalent ly

fu 1
lim x(u,s)= lim (x(u, s)B x(0, s)) = / ——du. (2-18)

^ *oo s-too J0 0(u)

The integral in (2.18) is regular for all w E (—1,1) in view of Corollary 2.4. When
f(u) = f(—u), the solution of (2.4) with initial data (2.16) is antisymmetric about the
point x = 0 and hence x(0. s) = 0. Then (2.18) yields

x = lim x(u, s) = G(u). (2-19)
S —>CO

Estimate (2.13) and 6{u) < 0 guarantee that for each i£l, there is a u(x) £ (—1,1),
that satisfies (2.19). By definition (2.7), we have

u(x) = u(x(u(x), s), s) = u(x, s) + ux(r], s)(x(u(x),s) — x)

for some r/ between x and x(u(x), s). Since ux is bounded as indicated by (2.14), we can
take s —> oo to obtain

lim u(x, s) = u(x)
s—+oo

for all x £ R. It is easy to see that this limit u(x) must be a stationary solution of

(2.4). □
The above theorem states that there is a stationary traveling wave of (2.4) if f(u) is

symmetric and g is antisymmetric about u = 0. Next, we shall prove that all traveling
waves of (2.4) are stationary under this condition.

By straightforward calculation, we obtain the eigenvalues of the linearized equation of
(2.4) at u = ±1. At u = 1, we have

A±(i) = ^4 [/'(1) " C ± y/(f'(l) - c)2 + 8A], (2.20)

while at u = — 1,

A±( —1} = ~ c ± V(/'(" 1) " c)2 + 8A]. (2.21)

We rewrite (2.3) as

u = p,

Ap<du +9^ = ^~C+ ^2'22^
p(u = 1) = p(u ~ —1) = 0.

We can compute the value of dp/du at u — ±1 to obtain

Jr =A±(!) (2-23)du U=1

and
rlr)

= A±(-1). (2.24)dp
du U=— 1
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r(-i,c)

Fig. 2.1

Theorem 2.6. If f(u) = f(—u) for u e I, then the speed of traveling waves of (2.4) is
necessarily 0.

Proof. For definiteness, we consider the case where u_ — 1 and u+ = —1 in (2.3).
The other case can be handled similarly.

For a solution of (2.3) to exist, it is necessary and sufficient that an unstable manifold
of (2.3) issued from u_ = 1 intersect a stable manifold of (2.3) entering u+ — —1. The
slopes of these manifolds at u = ±1 are

dP = A+(l) = ^[/'(l) - c + V(f'( 1) - c)2 + 8A], (2.25)
du U—l

1
= A-(—1) = -[/'(-1) - c - ^(/'(l) - c)2 + 8A\, (2.26)

u=-l

dp
du

respectively.
When c = 0, we know from Theorem 2.5 that an unstable manifold issued from

U- = 1 intersects and hence coincides with a stable manifold entering u+ = — 1. Since
the traveling wave given in Theorem 2.5 is monotone, the manifold is in the p < 0 half
plane. We denote this manifold in the (u,p)-plane as F(0).

We see from (2.25) that the slope of the unstable manifold from (u — 1 ,u' = 0),
denoted as r+(l,c), decreases as c increases. The slope of the stable manifold, denoted
as F_(—l,c), at (u = —1 ,u' = 0) is also decreasing as c increases. If c > 0, then the
stable manifold at u = — 1 is below F(0) near u = — 1, while the unstable manifold at
it = 1 is above T(0) near u = 1. The opposite occurs when c < 0. Thus, for a connection
between u = —I and u = 1 with c ^ 0 to be possible, it is necessary that one of the
following two cases hold (see Figure 2.1):

Case 1. r+(l,c) intersects T(0).
Case 2. T+(l,c) crosses v! = 0 from above at u > 1.
Case 2 is impossible since at (u > 1, v! = 0),

Au" = —g(u) > 0

which prevents r+(l, c) to go below u' = 0.
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Now, to prove this theorem, we only have to prove that Case 1 cannot happen. To
this end, we assume the contrary, i.e., T(0) and F+(l,c) intersect at some point (u*,p*).
We denote T(0) by po{u) and T+(l,c) by p\(u). Then, we have the following equations
from (2.22):

APo-^r + (j{Po) = (-0 + /(u))po, (2-27)du

APi^ +f(Pi) = (-C+ fiu))pi. (2.28)

We further use (u*,p*) to denote the point of intersection with the maximum u*. Then
at the point (u*,p*) and when c > 0, we have

p0(u*)=pi(u*)=p* <0 (2.29)

and
dpo
du

The difference of (2.27) and (2.28) reads

' dp00 < Ap*
du

<
~ du

dpl
du

(2.30)

= cp\ < 0, (2.31)

which is a contradiction. Similarly, we will also get a contradiction when c < 0. These
contradictions complete the proof. □

Corollary 2.7. If f(u) = f(—u) and g(u) = —g(—u), then solutions of (2.3) are
antisymmetric about a point £ = £oi i.e., u(£ — £o) = — u{~(£ ~ £o))-

Proof. Assume the contrary, that is, there is a solution of (2.3) that is not antisym-
metric, and hence u' is not symmetric about any point £. Then there is a nonsymmetric
solution of (2.22), that is

p{uo)¥=p(—«o) (2-32)

for some point uo € ( — 1,1). We recall from the last theorem that c = 0 in (2.22). Then
we see that p{—u) is also a solution of (2.22) under the assumptions on / and g. If (2.32)
held, then p(u) and p{—u) would intersect at some point u\ £ (—1,1). However, in our
proof of the last theorem, we see that any two manifolds of (2.22) of (u = ±l,p = 0)
either coincide or do not intersect on (—1,1) at all. This contradiction completes our
proof. □

3. Asymptotic Behavior of u. Here we consider the behavior of u away from
a front when e > 0 is small through asymptotic expansion. To do this, we have to
assume functions f(u) and g(u) are smooth enough. We observe that in the region where
ti(x, t, e) > 5 > 0, the estimate ?i(x, t, e) = 1 — 0( 1) exp(0(l)i/e) holds. This prompts us
to use the "fast variable" r :=t/e and start with the ansatz

u(x, t, e) = no(x, r) + evi(x,r) + e2v2(x,r) + 0(e3). (3.1)
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Plugging (3.1) into (1.1) and equating the coefficients of e"1, 1, and e to zero, we obtain

dTvo = g{v o), (3.2a)

dTvi + V • f(v0) = g'{v0)vi, (3.3a)

dTv2 + V • (f'(v0)i>i) = g'(v0)v2 + \g"{vo)v\ + Au0. (3.4a)

The corresponding initial data for the above equations are

u0(x,0) = u(x, 0), (3.2b)

vi(x, 0) = 0, (3.3b)
v2(x,0)=0, (3.4b)

respectively. It is clear that (3.2), (3.3), and (3.4) are ordinary differential equations of
Vo, vi, and v2 respectively and x acts only as a parameter.

Now, we study the behavior of u(x, t) as r —> oc for x away from fronts. If we divide
Kn into connected components of {u(x, 0) > 0} and {tt(x, 0) < 0}, then inside each such
component, vo(x, t) —> 1 or —1, due to the assumption on g(u), (1.2). Similarly, we can
prove that Vi and v2 converge to zero exponentially as r —* oo. From this analysis, we
can imagine the picture of u(x, t, e) when e > 0 is small and t > 0. At any time t > 0, Rn
is divided into subdomains inside which u(x, t, e) is close to 1 or —1. Near the boundaries
of these subdomains, there are sharp layers, called fronts, across which u changes from 1
to —1. Then, the characterization of the behavior of u(x, t, e) is reduced to that of these
sharp layers.

In the next section, we shall investigate the behavior of these fronts.

4. Derivation of the Equation for the Front Motion. In this section, we shall
formally derive the motion equation for fronts of (1.1) through asymptotic expansions.

It is clear that the ansatz (3.1) is no longer useful near the fronts since it requires
some smoothness uniform in e > 0 to be valid. Thus, we shall introduce a new ansatz
near a front.

We consider the front To in Rra that separates the subdomains {u(x, 0) > 0} and
{w(x,0) < 0}. The equation of this front is <fo(x) = 0. The front at time t evolved
from To is denoted as T(t). Suppose that the front T(t) can be represented by a function
0(x, t, rf) with

rj = et (4.1)

and

<^>(x,0,7?) = 00 (x). (4.2)

The layer around T(t) is expected to be of width e. Thus we introduce the stretched
spatial variable

y := e~V(x,t,?j). (4.3)
We introduce the following ansatz for u{x.,t,e) around the front r(t):

u(x,t,e) = u0(y,x,T,t,r),e) + eui(y,x,T,t,r],e) + 0(e2). (4.4)
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Here r = t/e is defined in Sec. 3. Putting (4.4) into (1.1) and equating the coefficients
of e_1 and e°, we obtain

dTu0 + (j)tdyu0 + (V0 • {'(u0))dyu0 = g{u0) + (V0)2<92uo, (4.5)

dTui + (4>t + V0 • f'{u0))dyui

+ (V0 ■ f"{u0)dyU0 - g'(u0))u 1 - (V0)2d2ui (4.6)

= -dtUQ - V • f(u0) + 2V(<9yu0) • V0 + V205yUO - (pvdyu0.
Equation (4.5) is a parabolic partial differential equation with variables r > 0 and

y £ Rn with parameters x, t, 77. To uniquely determine uq, we need the initial data
uo(y,K,T = Consider the coordinate system x = (£, 2) where £ is the signed
distance from the point x to the n— 1 dimensional surface To and 2 is the n—1 dimensional
coordinate system on IV According to the definition of y, (4.3), we have

ey = 0o(x) = 0O(£, z) = 0(0, 2) + £<%0O(0, 2) + 0(£2) = £<%0o(O, 2) + 0(£2), (4.7)

where, in the last step, we used that along To, 0o(x) = 00(0, 2) = 0. Let the initial data
of (1.1) be u(x, 0,e) = a(x). Then from (4.4) and (4.7) we have the initial data for «o:

uo{y,0,z,r = 0, t, 77, e) = 0(0,2) +eyjrj(4-8)
^00 (0,2)

Similar statements hold for u\.
When r —* 00, it is expected that the solution Uq of (4.5) approaches to a traveling

wave. So, we assume that

u0(y, x, r, t, 77, e) ~ ip{y - ct, x, t, 77), (4.9)

where ip is & traveling wave of (4.5) with speed c. The function ■0 satisfies the traveling
wave equation of (4.5):

(0ti - c + V0 • f'{ip))ip' = g(tp) + (V0) V,
■0(±OO) = It-t

where u± are the two stable equilibria of (1.1).
In Sec. 2, we proved that the traveling wave equation

(-s + F'{ip))ip' = 3(0) + Aip", ^
0(±oo) = U-t

has a solution when F(u) is symmetric and g(u) is anti-symmetric about u = 0. The
speed s must be zero and the solution is anti-symmetric around a point £ = £o- Applying
this result to (4.10), we see that

c — 0t = 0 (4.12)
and hence

(V0-/'(0))0' = g(V') + (V0)20",
^ (4'13)■0(±OO) = U±.

From the definition of y, (4.3), we can see that a fixed point in the x-coordinate
system travels at a speed 04/e relative to the y-coordinate system. The traveling wave of
(4.5) travels at a speed c/e relative to the y-coordinate system. Then the speed of this
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traveling wave relative to the x-coordinate system is (c — <pt,)/e which is 0 according to
(4.12). In other words, the front F(t) is the level curve

$ := 0(x, t, e) — ct = 0,

which does not move on the t time scale. Furthermore, (4.12) shows that V</> is in-
dependent of t and therefore the traveling wave equation (4.10) and hence (4.13) are
independent oft: ip = ip{^, x).

Now, we shall find the motion of the front on the r/ time scale. To this end, we
consider Eq. (4.6) for the next order of approximation u±. We assume that as r —> oo,
U\ approaches a traveling wave of (4.6):

«i -» w(y - cr,yL,t,rj). (4.14)

The traveling wave equation of (4.6) is

(-C + cf>t + VcP ■ f'(V0 - g'(1>)W + (V0 • f"(iP))iP'u> - (V0) V
(4-15)= -V • f(V>) + 2V# ■ V0 + ^'V20 -

Now, we use cpt — c = 0 and (4.10) to obtain

[(v^-f 'K-j'Ww-W)V'
= -V ■ f(tp) + 2Vip' ■ V0 + ip'V2<j> - ip'^.

We consider the adjoint equation for the left hand side of (4.16):

(v</>)2< + (W • f'WOM + g'tyW i = o. (4.17)
It is closely related to the equation for ip, (4.13). Taking derivative on (4.13), we get

(V0)2(V>2)" - ((v</> • f'mrhY + a'm2 = 0 (4.18)
with ip2 = ip'■ It is the adjoint equation of (4.17). Since ip is monotone, the solution
ip2 = ip' of (4.18) satisfies ip2 7^ 0. We shall see from Theorem 6.1 in Sec. 6 later that the
general solution of (4.17) is

tpi = f /* -W ' /'WO ^ -V<j> ■ f(iP) jn\jnI iw derl iw^expU, iw *r'/ 0

where C\ and C2 are any constants. We choose

ipi = ip' exp f / L^d9 | =: ?/>'(£)W(£). (4-19)
/o |V0|2

A straightforward calculation on the decay rate of ip, the solution of (4.13), and that of
(4.19) at £ = ±00 shows that ip'ipi decays at £ = ±oo exponentially. We multiply (4.16)
by ip± given in (4.19) and integrate by parts on the left hand side to obtain

, _2, , IZl-v ■ m + 2V0 ■ w']<M£
bv = V <p + foo 77 T ,c 

_2, , VfZ^Wdt (4.20)
VV + ^  /oo 77777777 — + V</>v2wdt fZo^'2wdt
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To further clarify the dependence of ip and on x, we perform the transformation

(4-211

in (4.13) to yield
11' f(V0c ~ ffWO + V'CC (4-22)

where

n:=W\ (4-23)
is the unit normal vector of level curves of <fi. We do the same on (4.17) to get

n ■ {'(ip)ipiq + g'(ip)tpi + V'icc = (4.24)
From (4.22-4.24), we can see that ip and ip\ only depend on £ and n(x). In fact, the
function tp((, n(x)) is the traveling wave of (1.1) in the direction n. In this new variable,
ipi in (4.19) has the form

tpi = |^7Vc(C,n)W(C,n), (4.25a)

where

W = exp ^~~n ' f (^(^' n))d0^ • (4.25b)

We note that the gradient V in (4.18) is Vx with £ fixed, denoted more precisely by
V|^. If we want to use the new variable (C,x) = (£/|V</>|,x) in (4.18), we have to use the
chain rule

V|€« = V|ci> + V|f(C)<9<;w
( 1 \ (4-26)

= V|CW + C|V0|VX —- ac«|V<A|
in (4.20). This leads vis to

t>v = V20 - V0 • ' ' "T' + V0 ■ oo
V|V0| , VfZtfWdC
iy^l fZ^Wd<

V(p fOO
/, 2

f-^lwdc n w + |v0|v(^)wcc d( (4.27)

|V0| ^£V[v- dC
fZ^(Wdc J-c

We note that the first two terms on the right hand side of (4.27) are

V<A
|V0|V • = |V0k>,

where is the mean curvature of the level curve of <j>. Therefore, the equation of motion
for (f>, (4.27), takes the form

f°° (\7ip?)Wd( f°° il>?Wc(d(^ = |V0|« + V0 • + n ■ V(|V0|) JTgg

|V01
JZ,^wdc

poo

ipcW v f + iw|v( dC-
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When f = 0, the function ip determined by (4.22) is independent of x, and W = 1. Then
Eq. (4.28) reduces to the well-known motion by mean curvature equation

(frr, = |V^|/-C0 (4.29)
when f = 0.

To further simplify (4.28), we let the function 0(x,i,7?) = d(x,t,rj), the distance of
the point x to the front. Then the front is denoted by the level curve d(x, t., r]) = 0. With
this choice of <^>, we have

n = Vcf>, | V0| = 1.
Thus, Eq. (4.28) is simplified to

dv — K H — ^55 ,Our is • (4.30)

5. Some Special Cases Where (4.22) and (4.24) Have Exact Solutions. To
investigate the behavior of the front propagation equation (4.28) further, it is better that
we have exact solutions of (4.22) and (4.24) for some special f(it) and g{u). Here, we
assume

g{u) = au(l — u2) (5.1)
and

f (u) = b u2 (5-2)
where a is a constant and b e Mn is a constant vector. For definiteness, we shall assume

a > 0. (5.3)

Then, Eqs. (4.22) take the form

2 bijjip1 = 1 — ip2) + ip",

ip(i oo) = ±1 (or =[= 1)
(5.4a)

where

It is easy to check that

with

b := n • b. (5.4b)

V'(C) = tanh(<5£) (5.5a)

8 := \{-b ± Vb2 + 2a) (5.5b)
are solutions of (5.4).

Under the choice of (5.1) and (5.2) for f and g, Eq. (4.24) becomes

v" + 2bipipi + g'{4')ipi = 0. (5.6)
The solution of (5.6) chosen for deriving (4.28) is

-01 = tp'W (5.7)

with

W«) = exp ^—26 ip(e)d(]j . (5.8)
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From (5.5), we find that
W(0 = sech2f>/(5 (<$£)■ (5.9)

Now, we plug the expressions (5.9) and (5.5) into (4.28) to see what (4.28) becomes
under assumptions (5.1) and (5.2). We write (4.28) as

<j>n = |V0|/c + II + III + IV. (5.10)

We compute the term II
f°° (W?)WdC

J/:=V0-~V    (5.11)
J oo^Wd<:

as follows:
/oo />oo

tfWdt = S2 sech4+2b/\6C)dC
-oo J — oo

/oo sec h A+2b/s(0)d0,
-oo

where 9 = S(,

2 S b
Hence we have

Similarly, we can obtain

O

/oo (sech4+2b/'5 6 - 20 sech^267"5 9 tanh 9)d9
-OO

/oo roc
sech4+2b/s 9d9 + 4V5 / 9 sech3+2b/s 9d{sech6)

-oo J — OO

/oo

-(
26 + 2bVS I sech4+2b'69d9.

' — OO

and

JV:=- ™r^iwdc J°° v ■ f +1V0|V (|^i) • fWcCd(

jr^wdc l
|V0| V|V^h

26+ b V <5 |V0| J b.

Plugging (5.14-5.16) into (5.10), we obtain

bv | V5 f(25 + 2b)n — VjV0| f bri — b
|V0| 6 V 26 + b J lv<^l V2 S + b«+-r- v or • ttt r • (5-17)

(5.12)

(5.13)

S7d> f°° i'fWcQdC, b Vd>
<" ' m ' V(|V0l,ltW = V(|V",|)' (5'I5)

iwi (,16)
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With the notation
b — 6n I

<5-18'

Eq. (5.17) becomes

- r. I W (n T) I V|V01 T (5 19)m~K+ s (n r)+ 1V01 (5-19)
Recalling that b = n b and ||n|| = 1, we see that n • T = 0. We recall that n = V(j>/\V(f>\
is the unit normal of the level curve <j> = C. Thus, T is in the tangent direction of the
level curve. We claim that

V<5 VIV0IT'n + W' ~°'
Indeed, we further compute V5 defined in (5.5b) to get

-1— = V6.
<5 2 S + b

In the remainder of this section, we use the convention that summation is taken for
repeated indices. Using (4.23), (5.4b), and (5.18) in (5.20), we obtain

-1 V6-n— V|V" b-6n
2(5 + 6 |V^| 2 5 + b

-IV0I"1
\rikbj ((foxjXk TljUl&XkXi) TljtfrxjXkiPlTllTlk ^fc)]

\jlkbj(j>XjXk bk'R'jtfrxjXk rR/kbj'ft,jHl4,XkXi Tljbl'ft'lTlkffixjXk]

2^ _|_ L J \rXj Xk J lr XfcXj / Jr Xj X fc V, I I K K J J ^521)

= -IV0I"1
2 6 + b

= 0

as desired. Thus, we can further simplify Eq. (5.19) as

M = (5-22)
Recalling (5.5), we see that <5_1 is the width of the traveling wave of (1.1) in the n
direction. Then the last term in Eq. (5.22) represents the relative rate of change of the
thickness of the front in the tangential direction T of the level curve <j> = constant.

Since the original equation (1.1) is of parabolic type, we expect Eq. (5.19) for its front
is also of parabolic type. We prove this in the following theorem:

Theorem 5.1.
(i) The operator

« = V. V*

in (5.22) is elliptic,
(ii) The operator

in (5.22) is elliptic.

v^"1 T
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Proof, (i) Although k is well known to be an elliptic operator, we still present the
proof since we will use it later. We compute k to get

|V^|V20 — V0- V| V0|
WW

_ |V<A|V20 - (l>xj<t>xk<t>xkxj/\V<P\
I V0|2

We replace <pXjXk in the above by XjXk, use n = V</>/|V<£|, and apply Schwarz inequality;
then the operator k becomes

XjXj ~^kXjXk = A, A) - (A, n)2) > 0 (5.23)

where A is the vector (Ai, A2,..., An). The equality in (5.23) holds if and only if A =
|n. This shows that k is an elliptic operator.
(ii) We further compute V<5 defined in (5.5b) to get

^ ■ T = -^-rVfe • T6 25 -j- b

Tkb,dx.ri, (5.24)26 + b~ 3 k 3

— 2^ 1 ^kbj{<t>xjxk ~ n-jni<t>Xlxk)|V<^|

Replacing 4>XjXk by XjXk and using (5.18) in (5.24), we see that (5.24) becomes

-1
2 S + b

2
|V(^| bj(bk bimrik^XjXk rij rii Xi Xkj

(2d + b) 1^k^k ~ bininkXk)(Xjbj - njbjniXi) (5.25)

|V0|_1((b • A) — (b • n)(n • A))2 > 0

with equality holds if and only if parts of b and A perpendicular to n are perpendicular
to each other: (b — (b • n)n) • (A — (A • n)n) = 0. The estimate (5.25) completes the
proof. □

Remark. Eq. (5.22) is degenerate since when n = A/||A||, both (5.25) and (5.23) are
0.

Remark. From the above theorem, we see that the convection term of (1.1), V ■ f(u),
also contributes to the parabolicity of the front motion equation.

Now, we consider the evolution of a front that is a circle in K2 at initial time under Eq.
(5.22). Take </>(x, y, 0) = x2/2 + y2 /2 — r2 as the initial data where r > 0 is a constant.
We can calculate to get that

« - j^f > °. (5-26)
and

~T 'T = j2sTWm~1{h'b _ (b'n)2) - °" (5'27)
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We see from (5.22) that (j>v(x,y,0) > 0. We then expect that the front represented by
cj) = 0 shrinks as rj increases. We also see that the circular front shrinks fastest when the
normal direction of the front n is perpendicular to the vector b in the function f, (5.2),
and slowest when n is parallel to b. This suggests that some elliptic front may preserve
its shape as it shrinks. The following example shows that it is indeed the case.

Example. Assume b = (i>i, 0). Let the initial data for (5.22) be
2 2

«t>{x,y,0) = ^ + ^2 - ro- (5-28)

If

then the solution of (5.22) is

where

CI^ CL<y

«i = , (5.29)

(x, y, rj) = X— + ^ - (r(v))2, (5-30)
a i a2

r{rf) = y «T«22'/ - ?o- (5-31)
Thus, the front which is at <j) = 0 will maintain the shape of the ellipse of (5.30) while
shrinking as indicated by (5.31). At the rescaled time = rga^a2, the ellipse will shrink
to a point and then disappear.

Proof. By straightforward calculation, using the ansatz (5.30), we see that

1 f x2 y2
72 + 72 > (5-32)a2a2\X7(f)\3 \a2 a2

V(5 1
^ = ZjT 5)21 V0j ~ ^ ' n^nk^i^x3xk ~ njni(t)xixk)

(bk - (b • n)nk)bj(SjkaJ2 - njmSika^2)
(25 + b)2\Vc/)\

b\y2 fx2 w2
9

(5.33)

(25 + 6)2a2a.2|V0|5 \a2
To determine r(rj), we plug (5.33), (5.32) into (5.22) and use (5.5b) to obtain

1 b\y21 + iy
|V0|2(&2ni +2a)a%

x2 y2

b2 + 2a 1 (x2 y2\ (5.34)
9 I 9a2a2 (2 a+bpx2 + 2g^_\al a2

When (5.29) holds, the above equality yields that

<t>v = -(r2)r, = alai2,

and hence

r(rj) = \j-a\a2 2rj + r\

as desired. □
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6. Solutions of (4.24). In this section, we shall find solutions of (4.24). This can
be described in a broader context of the relation between solutions of the boundary value
problem

(Po(fX)' + (Pi(Ov)' + P2(S)v = 0, (6.1)
and that of

(PoitW)' - Pi(€W + P2(Ow = 0. (6.2)
We see that the equation (4.17) and (4.18), (4.24) and derivative of (4.22) are special
cases of (6.2) and (6.1).

Suppose we already know a special solution of (6.1), denoted as i>o(£)- Assume this
solution satisfies

i>o(0 ~f~ 0. (6.3)
We let

MO = wbKWO- (6.4)
This way, we can eliminate P2 in (6.2):

0 = (po(tWY ~ Pi(t)w'+ P2{Qw
= [CPo^o)' + P2V0 - pWq}W + [2p0v'0 + p'ov0 - P!V0]W' + p0v0W"

- [-(Pi^o)' - pA)W + [2p0v'0 + p'0v0 - piv0]W + p0v0W"

= v0(poW - piwy + 2v'0(p0w - piW)

or simply
vo(p0W'-piwy + 2v'0(p0w'-PlW) =0. (6.6)

We integrate Eq. (6.6) once to get

PoW'- PlW = CiVq2

and hence

W (0 = C2 exp ̂  J ^drj^+CiJ p^1(j))vq2(r?) exp yj • (6-7)

We summarize the above result in the following theorem:

Theorem 6.1. Assume that (6.1) has a solution vo satisfying v'0 ̂  0. Then the general
solution of (6.2) is

"•(0 = vqW(Q, (6.8)
where W(£) is given by (6.7).

Proof. We already see that the function given by (6.7) are solutions of (6.2) for any
constants C\ and C2. It remains to prove that any solution of (6.2) can be expressed by
(6.7) with suitable constants C\ and C2■ Since solutions of (6.2) are uniquely determined
by initial data u>(0) and u/(0), it suffices to prove that for any given initial data lu(O)
and m/(0), there are constants C\ and C2 such that the w(£) given by (6.8) satisfies the
initial data. It is clear from (6.7) and (6.8) that ui(0) = i;o(0)C2 or C2 = u>(0)/uo(0).
Similarly, we see that C\ can also be determined by w(0) and u/(0). This completes the
proof. □
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