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Front propagation: Precursors, cutoffs, and structural stability

David A. Kessler and Zvi Ner
Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, Israel

Leonard M. Sander
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 2 February 1998!

We discuss the problem of fronts propagating into metastable and unstable states. We examine the time
development of the leading edge, discovering a precursor which in the metastable case propagates out ahead of
the front at a velocity more than double that of the front and establishes the characteristic exponential behavior
of the steady-state leading edge. We also study the dependence of the velocity on the imposition of a cutoff in
the reaction term. These studies shed light on the problem of velocity selection in the case of propagation into
an unstable state. We also examine how discreteness in a particle simulation acts as an effective cutoff in this
case.@S1063-651X~98!10706-7#

PACS number~s!: 05.70.Ln, 02.50.Ey, 03.40.Kf, 47.54.1r
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I. INTRODUCTION

The study of front propagation is one of the most fund
mental problems in nonequilibrium physics. As such, it h
received much attention over time, and indeed much is n
known about the phenomenon. For example, it is known
there is a fundamental difference between propagation in
metastable state~a case we shall label MS in the following!
and that of propagation into an unstable state~US!. Of the
two, the MS case is the simpler and better understood. T
the front has a unique velocity which is determined by so
ing for the unique traveling-wave solution of the field equ
tions. The US case is more subtle. There the same proce
produces a continuum of possible velocities and associ
steady-state solutions. Thus the velocity selection is no
result simply of the steady-state equation as it is in the
case. The question of how a particular velocity is selecte
then paramount. Much progress has been made on this q
tion since the pioneering work of Kolmogorov, Petrovsk
and Piscounov@1# in the 1930s and Aronson and Weinberg
@2# some 20 years ago. Nevertheless, a good intuitive ph
cal picture has been lacking. Noteworthy attempts to sup
such a picture include the famed ‘‘marginal stability’’ hy
pothesis of Dee and co-workers@3,4# and the ‘‘structural
stability’’ hypothesis of Chen and co-workers@5–7#.

Most recently, the work of Brunet and Derrida~BD! @8#
cast a most illuminating light on this problem. They focus
on two questions. The first is the time development of
front. They solved the problem of how the steady-state fr
is developed starting from a typical initial condition. The
showed that the front slowly builds itself up over time,
that the tail of the steady-state front extends farther and
ther ahead of the bulk of the front as time goes on. This s
buildup leads to a very slow approach of the front velocity
its steady-state value, with a correction that vanishes onl
1/t as the timet goes to infinity. The second question B
addressed is the effect on the velocity of the front of a cu
e on the reaction term far ahead of the front@9#. They
showed that this effect is surprisingly strong. First of all, a
cutoff, no matter how small, serves to select a unique ve
PRE 581063-651X/98/58~1!/107~8!/$15.00
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ity, which approaches a finite limit as the cutoff is remove
This is indicative of a structural instability of the origina
problem, and indeed is the basis for the considerations of
structural stability hypothesis of Refs.@5–7#. Moreover, the
dependence of this selected velocity on the cutoff is qu
dramatic, approaching its limiting value only as (lne)22.

The purpose of this paper is to develop further the insig
into front propagation afforded by the work of BD. The tw
issues raised by BD are of importance for all front propa
tion problems, and not just for the US problem. In particul
looking at the buildup of the front in the MS case reveals
hitherto unnoticed existence of a ‘‘precursor’’ front. The ro
of this ‘‘precursor,’’ which moves more than twice as fast
the ‘‘bulk’’ front itself, serves to build up the characterist
exponential leading edge of the steady-state front. Turn
back to US, we then see that in this case such a precurs
impossible, except for the special selected velocity. We t
see that only this special velocity is realizable from localiz
initial conditions. In addition, we can understand BD’s so
tion as a special degenerate case of the general precurs

Similarly, examining the effect of a cutoff in MS, we se
that the induced velocity shift is weak, and in fact superl
ear. This is in contradistinction to the strong (lne)22 behav-
ior seen by BD in the US case. Again, this difference can
tied to the different structure of the linearized problems
the leading edge. The stronge dependence in the US case
seen to be a reflection of the structural instability of th
problem.

In fact, we discover that both of BD’s issues are in
mately related. The effect of the localized initial conditio
acts as an effective cutoff for the steady-state dynamics. T
cutoff is time dependent, and vanishes as more and mor
the steady-state leading edge is built up. The difference
tween the familiar exponential relaxation of the velocity
MS and the 1/t relaxation in US is, as we shall see, a res
of the very different sensitivities to the cutoff in the tw
cases. Thus we may alternatively understand the ‘‘wea
velocity selection of the US case as being driven by
initial conditions, as opposed to the ‘‘strong’’ velocity sele
107 © 1998 The American Physical Society
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108 PRE 58DAVID A. KESSLER, ZVI NER, AND LEONARD M. SANDER
tion of MS, which results directly from the steady-state eq
tion.

In addition, we examine in more detail the conjecture
BD that in a discrete system of reacting particles, the d
creteness acts as an effective cutoff. We find that, w
qualitatively correct, a deeper understanding is needed
make this association quantitatively reliable. Finally, w
study the US case called ‘‘nonlinear’’ or ‘‘type II’’ margina
stability, and show that it interpolates between the typical
case and MS. We also find that an examination of the lin
stability of the steady-state solutions in this case sheds l
on the meaning of the ‘‘marginal stability’’ hypothesis.

II. PROPAGATION INTO A METASTABLE STATE:
GINZBURG-LANDAU EQUATION

The most classic example of front propagation into
metastable state is the Ginzburg-Landau~GL! equation

ḟ5Df91~12f2!~f1a!. ~1!

This equation possesses two locally stable states atf561
with an unstable state atf52a. When started with an ini-
tial condition, such that the system is in thef521 state
except for some region at the left which is in thef51 state,
the f51 state will propagate into thef521 state~for 0
,a,1). The propagating front quickly achieves a tim
independent shape which moves at a constant velocitc
5c(a). This velocity and front shape are given by th
unique solution of the steady-state equation

Df91cf81~12f2!~f1a!50, ~2!

where nowf is a function ofy[x2ct, and satisfies the
boundary conditionsf(y→7`)561. This velocity selec-
tion can be simply understood from a classic mode coun
argument. Asy→2`, Eq. ~2! for a given c, linearized
aroundf51, possesses two exponential modes, one de
ing and one growing. This is a direct result of the stability
the f51 state. Thus there is one degree of freedom in
solution aty52`, the fixing of which corresponds to break
ing the degeneracy induced by translation symmetry. Do
this leaves no freedom in the solution aty52`. Now, as
y→`, since thef521 state is also stable, there are aga
two exponential modes, one decaying and one growing.
requirement that the growing mode be absent from the s
tion fixes the velocity. This behavior of the linearized equ
tion will be the crucial ingredient in all that follows.

For the cubic reaction term in Eq.~1!, the explicit form of
the solution can be obtained, and is given by

f52tanh@q~y2y0!/2#, ~3!

with c5aA2D, q5@c1Ac218D(12a)#/2D, andy0 arbi-
trary. However, as we have indicated, what is important
us is the asymptotic behavior of the solution for largey,
which is f;211A exp(2qy), with the constantA depen-
dent ony0 .

The first of BD’s two questions we wish to address is h
this front develops itself. To begin, let us examine the res
of a simulation. We started with a step-function front, a
integrated forward in time. In Fig. 1, we plot 11f in the
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frame moving with the asymptotic front velocityc(a), for
different times. We see that, in the front region, 11f ap-
proaches the pure exponential behavior noted above. H
ever, far ahead of the moving front, 11f falls much faster
than exponentially. The transition region where the fro
starts to deviate from the pure exponential is seen to m
steadily ahead, this in the comoving frame, leaving in
wake more and more of the correct exponential front. Th
is thus seen to be a ‘‘precursor’’ front, which acts to build
the true steady-state front.

Motivated by the numerical evidence and the results
BD, we assume the following ansatz for 11f in the leading
edge, in terms of the moving frame variabley:

11f;Ae2qyf S y2c* t

ta D . ~4!

Since we are interested in the front region, where 11f is
small, we can linearize Eq.~1! aboutf521. Of course, the
linear equation does not know whichq ~or equivalentlyc) to
choose, since this is fixed by the full nonlinear proble
Nevertheless, we know we must choose the steady statec, q
in Eq. ~4! if we are to match on to the bulk steady-sta
solution. Substituting Eq.~4! into the linearized version o
Eq. ~1!, and writingz[(y2c* t)/ta, we find

f 8~2c* /ta2az/t !5D~ f 9/t2a22q f8/ta!1c f8/ta. ~5!

We see that we can eliminate the leading ordert2a terms, if
we choose

c* 52qD2c5Ac218D~12a!. ~6!

Then the other terms balance if we choosea51/2, resulting
in the following equation forf (z):

D f 952z f8/2, ~7!

whose solution such thatf (z→2`)51 and f (z→`)50 is

f ~z!5 1
2 erfc~z/2AD !. ~8!

In Fig. 2 we show a plot of exp(qy)@11f(y)#, together with
our analytical result. The agreement is clear.

FIG. 1. f11 vs y5x2ct for GL equations@Eq. ~1!#, a50.1
andD50.5 wheref(x,t50)5122u(x), for t51,2, . . .,10.
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PRE 58 109FRONT PROPAGATION: PRECURSORS, CUTOFFS, . . .
Let us make a few observations regarding this result. F
we note that, depending as it does only on the lineari
equation, it is extremely general. Second, we see that
precursor front indeed moves ahead of the front, with a c
stant velocity in the lab frame ofc1c* .2c. The precursor
front exhibits diffusional broadening, so that its width i
creases ast1/2. For fixedy, larget, we find that

11f;Ae2qy2AADe2cy/2D
e2~c* !2t/4D

c* Apt
. ~9!

This is directly related to the structure of the stability ope
tor for the steady-state solution. The spectrum consists
discrete zero mode, and a continuum of states with de
rates that extend from (c* )2/4D. The t21/2 results from the
integration over the continuum of states, which has the st
ture *dk exp(2k2t). The factor exp(2cy/2D) is just the de-
cay rate of these continuum states. We can also read off f
this result the approach of the velocity to its asympto
value:

c~ t !2c}
e2~c* !2t/4D

At
. ~10!

The prefactor depends on the exact definition of the fr
position, and in fact also varies in sign. If the front positi
is defined by the point wheref crosses some particula
value, than if this value is chosen sufficiently close to21 ~in
particular, if it is close enough that the linear solution abo
is relevant to describe the front position!, the coefficient is
always positive, so that the velocity approaches
asymptotic value from above.

The second of BD’s two questions is the response of
system to the imposition of a cutoff in the reaction term@9#.
We modify the reaction term to (12f2)(f1a)u(11f
2e) such that the reaction term is turned off iff is too close
to its metastable value of21. In the presence of the cutof
there is still a unique selected velocity, which is nowe de-
pendent, which we write asce5c1dc. To see this, it is

FIG. 2. exp(qy)(f11) vs y5x2ct for same simulation as in
Fig. 1. The theory curve isA erfc@(y2c* t)/2ADt#, with A
51.8535 a fitting parameter, and the translation invariance is u
to suitably adjust the origin of bothy and t.
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sufficient to note that, as in thee50 case, up to the transla
tion zero mode, there is no freedom of the steady-state s
tion ~with some given velocity! asy→2`. We integrate the
solution forward iny till the point yc when it reachesf5
211e. The first derivative off at this point must match the
unique solution of the steady-state equation in the nonre
ing region,y.yc :

f5211e exp@2ce~y2yc!/D#. ~11!

This requirement fixes the velocity.
We may calculatedc for small e as follows. For largey

,yc we may linearize the equation aboutf521. The gen-
eral solution is, to leading order,

11f5Ae2qy1Bdcely, ~12!

whereq is as above andl 5@2c1Ac218D(12a)#/2D is
the spatial growth rate of the second, growing mode of
linearized equation. The coefficientsA and B are fixed by
matching this to the solution of the steady-state equat
treatingdc as a perturbation. What is important is thatA and
B are independent ofe. We have to match this solution atyc
to the nonreacting solution@Eq. ~11!# above. This implies
that qyc is of order ln(1/e), and that therefore

dc;e11 l /q. ~13!

Note that 0, l /q,1, so thatdc vanishes faster than linearly
with a power between 1 and 2. This result is corroborated
a numerical solution of the cutoff steady-state equation, p
sented in Fig. 3. The weakness of the effect of the cutoff
the velocity is a result of thestructural stability@5–7# of the
velocity selection problem in this system. Both with an
without e, the nature of the velocity selection problem is t
same: only a precise dialing of the velocity will achieve t
desired behavior in the front region. This is because in b
cases the dying exponential behavior of the front isunstable;
an infinitesimal change of the velocity will induce a differe
dominant behavior of the front. Furthermore, since the dy

ed

FIG. 3. dc[c(e)2c(e50) vse for MS propagation in the GL
equation, Eq.~1! with D51/2 anda51/2. The theoretical scaling
predictiondc}eb, b511 l /q53/2 is also shown.
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110 PRE 58DAVID A. KESSLER, ZVI NER, AND LEONARD M. SANDER
exponential behavior of thee50 front is unstable, we can
make major, i.e., order 1, changes in it via relatively min
changes inc.

Before leaving the GL equation, we wish to make o
additional remark. Above we noted the connection betw
the structure of the precursor front and the stability analy
In particular, the GL stability operator had no discrete mod
other than the translation zero mode. However, it is eas
modify the reaction term, so that the stability operator h
some finite number of discrete stable modes, without d
matically changing the overall structure of the select
problem. Clearly, the long-time behavior of the front regi
is dominated by this mode, and it is important to understa
how the front region develops in this case. In the case wh
the stability operator has a single stable discrete mode
decay rateV, for example, the generalization of Eq.~4! is
given by

f2f~y5`!;Ae2qyf S y2c* t

At
D

1Be2Vte2qVyf S y2cVt

At
D , ~14!

whereqV is the spatial decay rate of the discrete mode,cV

52qVD2c, and f is as above. This can be shown also
satisfy the linearized dynamical equation forf, and goes
over at long times and fixedy to a sum of the steady-stat
~front! solutionA exp(2qy) plus the decaying stable mod
Again, the linear equation does not fixV, which we choose
so as to match onto the solution of the full stability operat
We see from Eq.~14! that in this case there are two precu
sors, one associated with the solution and one with the st
discrete mode. AsqV,q, the velocity cV of the latter is
always slower than the velocityc* of the former. In fact, one
can show that the stable mode precursor is always s
ciently slow that the stable mode is cut off byf before its
slower spatial decay rate allows it to overcome the stea
state front. Thus the finite propagation speed of the sta
mode is crucial in ensuring that the entire front is domina
by the steady state and not by the perturbation.

III. PROPAGATION INTO AN UNSTABLE STATE:
FISHER EQUATION

We can now use the results of Sec. II on the behavio
the GL equation to give a broader context to, and thus be
understand, the behavior of the Fisher equation@10#. The
Fisher equation~also referred to in some circles as th
Fisher-Kolmogorov, or Fisher-Kolmogorov-Petrovsk
Piscounov, equation! is

ḟ5Df91f~12f!. ~15!

Again, we have a stable state atf51, but now there is no
second stable state, just an unstable state atf50. If we start
out with a step-function initial condition interpolating be
tween these two states, then the stable state propagate
the unstable state at a velocityc52AD. The problem is that
the steady-state equation possesses solutions for all ve
ties. As is the MS case, this follows from simple mo
r
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counting. As in MS, since the solution approaches the sta
state at large negativey, there is one growing exponentia
mode and one dying exponential mode of the linearized
erator. Again, fixing the translation mode leaves us with
freedom of the solution asy→2`. Now, however, in con-
tradistinction to MS, the instability of thef50 state at large
positivey implies that both modes of the linear operator a
dying exponentials. There is then no growing mode to elim
nate, and all velocities are acceptable. Nevertheless, a s
function initial condition leads to a selected velocity
2AD. Understanding this ‘‘dynamical’’ selection of the cho
sen velocity is a challenge, one that has been taken up
many different groups over the years.

Let us first discuss the time dependence of the front. If
attempt to apply the technique we used in the GL case,
run into an immediate problem. The velocity of the precurs
front, in the comoving frame, is againc* 52Dq2c. How-
ever, nowq, the spatial decay rate of the front, is given b
the slower of the two dying exponentials, and so
q5(c2Ac224D)/2D. Thus c* 52Ac224D is negative,
which clearly makes no sense. Thus, there is in genera
way to build up the appropriate exponential front. The on
way out is if c52AD, so that the precursor moves at th
same velocity as the front itself. This then is the origin of t
‘‘dynamical’’ selection; fronts with faster velocities, an
hence slower spatial decay cannot build themselves upex
nihilo, although they are perfectly stable~in an infinite sys-
tem; a finite system will provide an effective cutoff; see b
low! if they are present in the initial condition. Slower fron
are linearly unstable@4#, and are not dynamically relevant, a
can be seen directly from Eq.~9!, sincec* is imaginary in
this case and so the front grows exponentially in time.

The dynamics of the developing front is thus seen to
degenerate, and requires a slightly more sophisticated an
sis, which is exactly that provided by BD. They found th
the front development is given by

f5Aze2~z2!/4Dte2z/AD, ~16!

wherez5y23/2 ln t is the front position. Again, this func
tion describes a spreading Gaussian far ahead of the fr
For fixed z, as t becomes large, the true steady front is r
produced. Here, however, sincec* 50, the steady front is
only achieved through diffusive spreading, and thus only
a distance of ordert1/2 ahead of the front. This is a reflectio
of the marginal stability of thec52AD front.

We now turn to the effect of a cutoff on the Fisher equ
tion, now turning off the reaction term whenf,e. Here the
cutoff changesqualitativelythe nature of the steady-state s
lection problem. Whereas fore50 the steady-state equatio
possessed solutions forall velocities, any finitee implies that
only a single velocity is possible. This is a result of the fa
that, whereas fore50 the decaying nature of the solution
stable, with finitee it is not, as we saw in the GL equation
This was first pointed out by Chenet al. @6#, who also noted
that ce approaches 2AD as e is taken to 0. They also pre
sented data to this effect, but did not investigate the natur
the approach, which was studied by BD. BD found that
deviation from the asymptotic value 2AD is anomalously
large, vanishing only as (lne)22.
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Here we wish to emphasize the difference between
Fisher case and that of GL discussed above. In the GL c
the instability of the decaying behavior implied that a sm
change in velocity allowed for anO(1) change inf8/f. In
the Fisher case, for velocities larger than 2AD, the decaying
behavior is stable, and so small changes in velocity mod
f8/f by a small amount from its unperturbed value o
2q. There is thus no way to bring it to the value o
2c/D, required by matching to the solution in the nonrea
ing region. Forc,2AD, however,f passes through zero
and sof8/f diverges. Thusf8/f crosses2c/D at some
point. The closer we are toc52AD, the more this crossing
is pushed out to largery, and the smaller the value off is at
the crossing. Butf at the crossing is juste, so we see why
c approaches 2AD from below whene is taken to zero. We
can understand in a simple way the origin of the lar
O(ln e)22 correction to the velocity. Due to the degenera
of the decay rate of the two solutions of the linear opera
for c52AD, the steady-state solution behaves for largey as
f;Ay exp(2y/AD). If we then examine the perturbativ
effect of a change inc on this solution, the front region is
described by

f;Aye2y/ADS 11dc
y2

6D3/2D , ~17!

which immediately implies thatyc;AD ln(1/e) and dc
;AD(ln e)22. Thus dc is relatively large because the fir
correction is not exponentially larger than the steady-s
term, as in GL, but only power law larger. Thus, just as
stability of the pure dying exponential behavior forc
.2AD gives rise to the structuralinstability of these solu-
tions to the introduction of the cutoff, so the very singu
behavior of the velocity in thee→0 limit arises from the
relatively weak instability of the front behavior of thec
52AD solution.

There is an intriguing correlation between the two pro
erties investigated by BD. In essence, we can argue tha
initial conditions, which are responsible for the velocity s
lection in the Fisher equation, act as a sort of effective cu
beyond which the steady-state equation no longer ho
However, this cutoff is time dependent, and goes to zero
more and more of the steady-state front is establish
Roughly speaking, since the front is close to the steady-s
front out to a distanceyc of order t1/2, the effective cutoff
eeff is of order exp(2qyc). Then the velocity is expected t
be less than the steady-state velocity by an amount of o
(ln eeff)

22;yc
22;1/t, which is indeed what BD found. Th

argument is not precise, as indicated by the fact that
numerical prefactor in this relation does not come out c
rectly. Nevertheless, it does seem to capture the correct p
ics. It is amusing to note that a similar argument can be m
for the GL equation. Here the exponential approach w
time of the velocity to its steady-state value is correctly
produced, but the exponent comes out wrong by a facto
4. Thus, in both cases, it is as if the true effective cutoff
some power of our naiveeeff estimated above.

We also note that the introduction of the cutoff has a
other effect on the dynamics. Instead of the 1/t convergence
of the velocity in the absence of the cutoff, the velocity no
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converges exponentially to its long-time value. For sm
cutoff, the velocity follows the zero-cutoff 1/t behavior up to
some time, slowly increasing, and then sharply ‘‘break
when it nears the velocity of the cutoff model. In terms of t
picture presented above, the dynamics is insensitive to
cutoff as long as the ‘‘dynamic’’ cutoff,eeff , is larger thane.
Eventually,eeff falls belowe, and the velocity exponentially
approaches its asymptotic value. This behavior is exhib
in Fig. 4. Also of interest is the time constant that gover
the post-break time decay. The equation for the stability
erator, transformed to a Schro¨dinger-type representation b
eliminating the first-derivative term via a similarity transfo
mation, reads

2Vdf52~df!91F c2

4D
2u~yc2y!~122f0!

2d„f0~y!2e…~f0!~12f0!Gdf, ~18!

where yc marks the cutoff point,f0(yc)5e and V is the
decay rate of the perturbation. For largey and smalle, this
becomes

2Vdf52D~df!91F c2

4D
2u~yc2y!2

D

c
d~y2yc!Gdf.

~19!

We see that the flat region of the ‘‘potential’’ term at largey
with valuec2/4D21, which was responsible for the onset
the continuum atV50, is now transformed by the additio
of a step of height 1 aty5yc , in addition to ad-function
potential at this point. Thus the continuum of modes is re
dered discrete with a spacing inversely proportional to
square of the width of the potential. This width is justyc for
small e. Using the result from BD thatyc5p/AD ln(1/e),
we find a spacing proportional to (lne)22. Thus the time
constant 1/V diverges withe, but very slowly.

FIG. 4. 2dc(t)/c vs t, where dc(t)[c(t)2c, c5c(t5`)
52AD for the cutoff Fisher equation, withD51/2, ande51026,
1028, 10210, 10212, and 0. The data fore50 are indistinguishable
from the BD prediction ofdc/c53/4t.
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IV. STOCHASTIC FISHER MODEL

BD offered the conjecture that in a stochastic model
US type, the discreteness of the particles gives rise to
effective cutoff. The point here is since thee-induced cor-
rection to the velocity is so large, it should overwhelm a
other effect. It should be noted, however, that the point is
completely obvious. It is true that each realization has so
point beyond which no interactions occur. However, if o
considers the ensemble average, there is no such sharp
off. Since the average velocity is a function of the ensem
one might have cause to question BD’s conjecture.

BD found support for their conjecture from simulations
a model related to directed polymers. Due to the importa
of this point, we have sought further evidence via a simu
tion whose mean-field limit is precisely the Fisher equati
The model is a slight modification of an infection mod
studied by Mai and co-workers@11#. In our model, we intro-
duce an infectious~black! particle into a sea of white par
ticles. All particles move randomly, with no constraint on t
number of particles at any one site. When a black part
and a white particle are on the same site in a given time
Dt, they have a small probabilitykDt of interacting during
this time. If they do interact, the white particle is ‘‘infected
and turns black, and may go on to infect additional partic
at later times. If the black particle is introduced at one end
the system, then a front is established which invades
white phase at a velocity which on average is constan
time. It is particularly convenient to work with a paralle
version of this algorithm, using a binomial random numb
generator to determine the number of interactions and h
at each site during each time step. This way we can take
average number of particles per site,N, to be huge, with
essentially no cost in performance. This form is also ni
since, if the binomial random number generator is repla
by the mean of the binomial distribution, we explicitly obta
a discretized form of the Fisher equation.

We have performed extensive simulations of this mod
measuring the average velocity of the front. The results
presented in Fig. 5. We see that they are consistent wi
(ln N)22 behavior. The prefactor, however, differs signi
cantly from that of the mean-field version, supplemented
a BD-type cutoff ofe51/N. ~The much smaller 10% dis
crepancy between the mean-field prefactor and the BD
diction of p2/2 is the result of the finite lattice and time ste
Dt.) This reiterates the findings of BD for their discre
model where the prefactor also did not match the predict
Since any simple rescaling of the cutoff would not affect t
prefactor, this effect is not trivial. Evidently the effect of th
discreteness is more subtle, and similar to the effective cu
imposed by the initial condition, involves an effective cuto
that is a power of the naive one. This point merits furth
investigation.

Not only theN dependence of the velocity, but also i
time dependence, mirrors that of the cutoff Fisher equat
As seen in Fig. 6, the velocity initially falls as in thee50
deterministic model, ast21, but eventually breaks and con
verges exponentially to its asymptotic value. The break po
is past that of the model with the naive cutoff,e51/N. This
is consistent with what we found above, that the asympt
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velocity iscloserto the Fisher result than one would naive
expect.

The question remains why BD’s conjecture works, giv
the reservations expressed above. It is tempting to sug
that the answer lies in a correct definition of the ensem
average. If the ensemble average is taken in the lab fram
is clear that the ensemble-averaged reaction density ha
cutoff. Even if the average is taken relative to the bulk fro
~defining the front position where the concentration cros
N/2, say!, reactions still have a nonzero probability of occu
ring arbitrarily far in front of the front. However, if the av
erage is taken with respect to the frame defined by the l
particle position, then indeed the averaged concentration
computed has a sharp cutoff, and no reactions occur bey
this point. Such a definition was found to be crucial in stud
ing the ensemble average of a model of~transparent!

FIG. 5. (2dc/c)(ln cutoff)2 vs u log10(cutoff)u for the stochas-
tic Fisher model and its cutoff deterministic~mean-field! counter-
part. For the stochastic Fisher model, the cutoff isN, the average
number of particles per site. For the deterministic counterpart,
cutoff is e51/N. In both models, the parameters arek50.1/N,
Dt50.1, andD50.5, and the lattice spacingdx51.

FIG. 6. @2dc(t)/c# vs t for the stochastic Fisher model and i
deterministic~mean-field! counterpart, with and without a cutoff
where dc(t) is as in Fig. 4. For the stochastic Fisher model,N
5109. For the cutoff deterministic counterpart, the cutoff
e51/N. The other parameters are as in Fig. 5.
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diffusion-limited aggregation in one dimension@12#. It
would appear that here too a sensible description of the
semble average requires this kind of averaging procedur

V. PROPAGATION INTO AN UNSTABLE STATE:
GINZBURG-LANDAU EQUATION

Given that the GL equation has an unstable state, we
also consider propagation into the unstable state. For ea
comparison to the Fisher equation, we will set the unsta
state tof50 and the stable states tof51 andf521/a, so
that the GL equation reads

ḟ5Df91f~12f!~11af!. ~20!

Clearly, fora50, this simply reduces to the Fisher equati
with its asymptotic velocity ofc52AD. In fact, for all a,
the equation possesses steady-state propagating solutio
terpolating betweenf51 and 0 for all velocities, just as in
the Fisher equation, since thef50 state is unstable. Furthe
more, since the linearization aroundf50 is independent of
a, one would naively expect that the initial condition wou
again select the degeneratec52AD solution for alla. How-
ever, Ben-Jacobet al. ~BJ! @4# noted that this expectation i
only met fora<2. Fora.2, on the other hand, the selecte
velocity is greater than this. As BJ noted, this is connecte
the existence of a special velocityĉ(a)5(a12)AD/2a for
a.2. They show that, for this velocity, the solution does n
have the spatial decay rateq5(c2Ac224D)/2D typical of
all other velocities. Rather, the spatial decay rate is fas
that of the typically subdominant solution of the lineariz
steady-state equation:q̂5(c1Ac224D)/2D. Of course, this
behavior is unstable, and so is associated with a unique~or,
in general, a discrete set of! velocity. This situation, which
BJ called ‘‘nonlinear’’ or ‘‘type II’’ marginal stability, and
we will label as US-II, is in a sense intermediate between
MS case discussed in Sec. II, and the standard US cas
exemplified by the Fisher equation in Sec. III.

BJ noted that fora.2, ĉ(a) is the selected velocity. We
can understand this in light of our previous discussio
Since the decay rate for this solution isq̂, notq, the velocity
of the precursor is positive~in the comoving frame!, with
valuec* 5Ac224D5(a22)AD/2a. For all other solutions
with c.2AD, the precursor has negative velocity, and
these solutions cannot be constructed dynamically. Thc
52AD solution is ruled out, since, as pointed out by Be
Jacobet al., this solution is unstable@as are all solutions with
c, ĉ(a)]. Thus like the MS case, the precursor has posit
velocity relative to the front. However, unlike the MS cas
where this relative velocity is always larger than the fro
velocity c, here this relative velocity can be arbitrarily sma
Thus, as in the MS case, the approach of the front velocit
its asymptotic value is exponential, but the time consta
being inversely proportional to (c* )2, becomes arbitrarily
long asa approaches 2.

We now turn to the effect of a cutoff on the select
velocity. As in the MS case, the instability of the largey
behavior of theĉ solution with respect to a change inc
indicates that a solution of the cutoff problem can only
n-
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constructed close toĉ. Settingc5 ĉ1dc, the dominant be-
havior for f is, to leading order,

f5Ae2q̂y1Bdce2qy. ~21!

Even though both modes are decaying exponentials, un
the MS case@Eq. ~12!#, nevertheless it is true that, as wit
MS, and unlike Fisher, the correction term is exponentia
larger than the original solution. Working out the matchi
to the cutoff region, the correction to the velocity is seen
scale as

dc;e12q/q̂5e~a22!/a. ~22!

This behavior is exemplified in Fig. 7. Again, as in MS, th
correction is power law ine, but now the power is always
less than 1, and goes to 0 asa approaches 2. At the othe
extreme, the power approaches 1 asa→`, whereupon the
metastable state atf521/a merges with the unstable sta
at f50, rendering it marginally~meta! stable. This then
naturally matches onto the limit of the MS case studied
Sec. II, whena→0. In general, then, the cutoff dependen
for US-II is more singular than MS but less singular than U

Finally, let us discuss the nature of the stability spectru
Ben-Jacobet al. in their discussions of stability, did not giv
the boundary conditions necessary to define the spectrum
the stability operator. However, the appropriate definition
the cases we examined above seems clear. If we trans
the problem into a Schro¨dinger form, as discussed above, w
know what boundary conditions give rise to a complete
of states. This completeness is crucial if we wish to deco
pose some initial condition via this set of states and th
integrate the linear problem forward in time. In particula
we must demand that any discrete state vanish exponent
at both 6`. This leads to the striking conclusion that th
stability spectrum of the Fisher equation about anyc
.2AD solution does not include the translation zero mo
This mode, after the similarity transformation, diverges at`.
This fact in and of itself would lead one to suspect that th
solutions are illegitimate. Only atc52AD does the operato

FIG. 7. 2dc vs e, wheredc5c(e)2c(e50) for US propaga-
tion in the GL equation@Eq. ~20!#, with D5

1
2 , 2a53. The theo-

retical scaling predictiondc}eb, b5(a22)/a5
1
3, is also shown.
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recover, at least in some weak sense, a zero mode, sin
this case the continuum starts at 0.

The case of propagation into the unstable phase in the
equation is very illuminating in this context. Fora,1, nu-
merical work indicates that the spectrum consists solely
the continuum modes, extending upward fromV5c2/4D
21, with no discrete modes. Of course, this has to be, or
only realizable solution for this range ofa, thec52AD one,
would be unstable. However, fora.2, a discrete mode
emerges out of the continuum. This mode has a positiveV
for large c, and crosses 0 exactly atĉ. This is guaranteed
since the translation mode for theĉ solution is a legitimate
eigenmode of the Schro¨dinger equation, due to the fast sp
tial falloff of this solution. Forc, ĉ, the mode has negativ
V and so is unstable. Again, the translation mode is illeg
mate, and this is the only discrete mode. Thus the sele
solution is the only one which has a legitimate translat
mode in its stability spectrum. This fact is related to t
structural stability of theĉ solution in the presence of a cu
off. When discussing the spectrum of a Schro¨dinger operator
in an infinite space, it is traditional to put the system in
finite box. This box is another kind of cutoff, and only theĉ
solution survives for a large but finite box. This may be
more appropriate way of understanding the ‘‘marginal sta
ity’’ of the selected solution, namely, the requirement th
the stability operator of a physically realizable solution po
sess a translation zero mode.

VI. CONCLUSIONS

In this paper, we have seen how analyzing the time
velopment of the front in the MS case sheds light on ma
w
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aspects of front propagation. In particular, we have sho
how the MS front develops through the propagation o
diffusively spreading precursor front which moves at le
twice as fast as the front itself. Ahead of this precursor,
field falls off in a Gaussian manner typical of a pure diff
sion problem. Behind, the exponential tail of a propagat
front is established. This precursor is an essential elemen
propagating fronts, and its nonexistence in the US case
plains the dynamical velocity selection seen therein.

We have also seen how the precursor follows immedia
from the structure of the linear operator ahead of the fro
This structure is also intimately connected with the structu
stability of the problem to the introduction of a cutoff, a
well as to the nature of the stability spectrum. This cutoff c
arise from the finiteness of the system, from the discreten
of the underlying reacting system, or from the initial cond
tions. The two issues of cutoffs and the stability spectrum
themselves interdependent, as we have seen, and in tur
back to and give a deeper understanding of the original
ture of marginal stability.

Note added in proof.The result, Eq.~16!, has also been
obtained by Ebert and van Saarloos@13#.
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