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Abstract. For a semi-Pfaffian set, i.e., a real semianalytic set defined by equations and
inequalities between Pfaffian functions in an open domainG, the frontier and closure inG
are represented as semi-Pfaffian sets. The complexity of this representation is estimated in
terms of the complexity of the original set.

Introduction

The Pfaffian functions introduced by Khovanskii [K] are analytic functions satisfying
a triangular system of Pfaffian differential equations with polynomial coefficients (see
Definition 1.1 below). The class of Pfaffian functions includes elementary functions, such
as the exponential and logarithmic function, and trigonometric functions in a bounded
domain. Many important special functions, such as elliptic integrals, are also Pfaffian.

Khovanskii [K] found an effective estimate for the number of isolated real solutions of
a system of equations with Pfaffian functions. This implies global finiteness properties of
semi-Pfaffian sets, i.e., semianalytic sets defined by equations and inequalities between
Pfaffian functions.

Gabrielov [G1] found a similar estimate for the multiplicity of any complex solution
of a system of Pfaffian equations. The latter estimate allowed new finiteness results for
the geometry of semi-Pfaffian sets in the real domain, including an effective estimate
on the exponent in the Lojasiewicz inequality for semi-Pfaffian functions [G1] and the
complexity of a weak stratification of a semi-Pfaffian set [GV], to be derived.

The theory of Pfaffian functions has an important application to computations with
usual polynomial functions, based on Khovanskii’s theory of “fewnomials.” Fewnomials
are polynomials containing a limited number of nonzero monomials, of an arbitrarily
high degree. Fewnomials can be defined, outside coordinate hyperplanes, as Pfaffian
functions of the complexity depending only on the number of nonzero monomials,
not on their degrees. This allows the techniques of Pfaffian functions to be applied to
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the complexity of different operations with semialgebraic sets defined by fewnomial
expressions in terms of the number of nonzero monomials.

In this paper we apply the finiteness properties established in [G1] to construct a
semi-Pfaffian representation for the frontier and closure of a semi-Pfaffian set. Note that
the frontier and closure are considered only within the open domain where the Pfaffian
functions are defined.

We use a modification of the algorithm suggested in [G3] for the frontier and closure
of a semianalytic set. For semi-Pfaffian sets, this allows an effective estimate of the
complexity of the semi-Pfaffian representation of the frontier and closure, in terms of
the complexity of the original semi-Pfaffian set.

Using the estimates for the multiplicity of a Pfaffian intersection from [G1], we
reduce the question whether a given pointx belongs to the closure of a semi-Pfaffian
set to the question whetherx belongs to the closure of an auxiliary semialgebraic set
Zx, replacing Pfaffian functions by their finite-order Taylor expansions atx. We apply
algebraic quantifier elimination [R], [BPR] to obtain a semialgebraic condition on the
coefficients of the polynomials in the formula definingZx, satisfied exactly whenx
belongs to the closure ofZx. As these coefficients are polynomial inx and in the values
at x of the original Pfaffian functions and their partial derivatives, the set of thosex for
which our semialgebraic condition is satisfied is semi-Pfaffian.

The paper is organized as follows. Section 1 introduces Pfaffian functions and semi-
Pfaffian sets. The main result (Theorem 1.1) is formulated at the end of this section.
Section 2 presents the necessary finiteness properties of semi-Pfaffian sets, based on the
estimate of the multiplicity of Pfaffian intersections from [G1]. Reduction to semial-
gebraic quantifier elimination and the proof of the main result are given in Section 3.
Section 4 contains applications to fewnomial semialgebraic sets.

1. Pfaffian Functions and Semi-Pfaffian Sets

Pfaffian functions can be defined in the real or complex domain. We use the notation
Kn, whereK is eitherR or C, in the statements relevant to both cases. Correspondingly,
“analytic” means real or complex analytic, and “polynomial” means a polynomial with
real or complex coefficients whenever the real or complex domain is considered.

Definition 1.1. A Pfaffian chainof order r ≥ 0 anddegreeα ≥ 1 in an open domain
G ⊂ Kn is a sequence of analytic functionsy1(x), . . . , yr (x) in G satisfying a triangular
system of Pfaffian equations

dyi (x) =
n∑

j=1

Pi j (x, y1(x), . . . , yi (x)) dxj , for i = 1, . . . , r. (1)

Herex = (x1, . . . , xn), andPi j (x, y1, . . . , yi ) are polynomials of degree not exceeding
α. A functionq(x) = Q(x, y1(x), . . . , yr (x)), whereQ(x, y1, . . . , yr ) is a polynomial
of degree not exceedingβ > 0, is called aPfaffian functionof degreeβ with the Pfaffian
chainy1(x), . . . , yr (x). Note that the Pfaffian functionq(x) is defined only in the open
domainG where all the functionsyi (x) are analytic, even ifq(x) itself can be extended
as an analytic function to a larger domain.
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Remark. The above definition of a Pfaffian function corresponds to the definition
of a special Pfaffian chain in [G1]. It is more restrictive than the definitions in [K]
and [G1] where Pfaffian chains were defined as sequences of nested integral manifolds
of polynomial 1-forms. Both definitions lead to (locally) the same class of Pfaffian
functions.

In the following, we fix a Pfaffian chainy1(x), . . . , yr (x) of degreeα defined in an
open domainG ∈ Kn, and consider only Pfaffian functions with this particular Pfaffian
chain, without explicit reference to the Pfaffian chain, parametersn, r , andα, and the
domain of definitionG.

For K = R, we can define acomplexificationof the Pfaffian chainy1(x), . . . , yr (x),
extendingyi (x) as complex-analytic functions into an open domainÄ ⊂ Cn containing
G. Correspondingly, any Pfaffian function can be extended to a complex Pfaffian function
in Ä.

We need the following simple properties of Pfaffian functions [K], [GV].

Lemma 1.1. The sum(resp. product) of two Pfaffian functions, p1 and p2 of degrees
β1 andβ2, is a Pfaffian function of degreemax(β1, β2) (resp. β1+ β2).

Lemma 1.2. A partial derivative of a Pfaffian function of degreeβ is a Pfaffian function
of degreeα + β − 1.

Lemma 1.3. For a Pfaffian function q(x) = Q(x, y1(x), . . . , yr (x)) of degreeβ, its
Taylor expansion

q̌ν(x, z) =
∑

k:|k|≤ν

1

k1! · · · kn!

∂ |k|q
∂xk

(z)(x − z)k

of order ν at z ∈ G is a polynomial in x, z, y1(z), . . . , yr (z) of degree not exceeding
β + αν.

Proof. From Lemma 1.2, the value atzof a partial derivative∂ |k|q/∂xk is a polynomial
in zandy1(z), . . . , yr (z) of degree at mostβ+|k|(α−1). Henceq̌ν(x, z) is a polynomial
in x, z, y1(z), . . . , yr (z) of degree at mostβ + αν.

Definition 1.2. An elementary semi-Pfaffian setin G ⊂ Rn of theformat(L , n, r, α, β)
is defined by a system of equations and inequalities

x ∈ G, sign(qi (x)) = σi , for i = 1, . . . , L , (2)

whereσi ∈ {−1, 0, 1} andqi (x) are Pfaffian functions of degree not exceedingβ. A
semi-Pfaffian setof theformat(N, L , n, r, α, β) is a finite union of at mostN elementary
semi-Pfaffian sets of the format(L , n, r, α, β).
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Thus, a semi-Pfaffian set of the format(N, L , n, r, α, β) can be defined as

N⋃
j=1

L⋂
i=1

{x ∈ G, sign(qi j (x)) = σi j }, (3)

whereqi j (x) are Pfaffian functions of degree not exceedingβ andσi j ∈ {−1, 0, 1}.

Definition 1.3. TheclosureX̄ of a setX in an open domainG is defined as the inter-
section withG of the usual topological closure ofX:

X̄ = {x ∈ G, ∀ε > 0, ∃z ∈ X, |x − z| < ε}. (4)

Thefrontier ∂X of X in G is defined as∂X = X̄\X.

Theorem 1.1. Let X be the semi-Pfaffian set(3) in an open domain G,and let(N, L , n,
r, α, β) be the format of X. Then the frontier∂X and closureX̄ of X in G can be
represented as semi-Pfaffian sets, with the format ofX̄ not exceeding(N′, L ′, n, r, α, β ′)
where

N ′ = N L2(n+1)(n+r+1)d(n+r+1)O(n), (5)

L ′ = L2(n+1)dO(n), (6)

β ′ = dO(n). (7)

Here d= β + α(K (n, r, α, β) + 1)2, and K(n, r, α, β) is as defined in Section2. The
format of∂X does not exceed(N ′′, L ′′, n, r, α, β ′)where N′′ = N ′L N and L′′ = L ′+N.

Remark. It is important that the frontier and closure here are considered withinG
only. In [G2], we give an example of a semi-Pfaffian setX ⊂ G such that the closure of
X in Ḡ is not semi-Pfaffian.

2. Finiteness Properties of Pfaffian Functions

Definition 2.1. Let x ∈ Kn, and let f1(x), . . . , fm(x) be analytic functions in an open
domainG. Let U be an open subset inG. The set

X = {x ∈ U, f1(x) = · · · = fm(x) = 0} (8)

is effectively nonsingularat z ∈ G if d f1(x) ∧ · · · ∧ d fm(x) 6= 0, for all x ∈ X close
to z.

Lemma 2.1. Let x ∈ Kn, and let f1(x), . . . , fm(x), s1(x), . . . , sm(x) be analytic func-
tions in an open domain G3 0. For generic constants c1, . . . , cm, the set

{x, s1(x) = c1 f1(x), . . . , sm(x) = cm fm(x), f1(x) 6= 0, . . . , fm(x) 6= 0}
is effectively nonsingular at0.
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Proof. Consider the mapping( f1, s1): Kn
x → K2. Let6 ⊂ Kn be the germ at 0 of its

critical points and let0 ⊂ K2 be the set of its critical values. Then0 is a germ of a
one-dimensional analytic (in the real case, semianalytic) subset inK2. The germ at 0 of
the set

Y1 = {x, s1(x) = c1 f1(x) 6= 0}
is singular when the germ at 0 of0 ∩ {s1 = c1 f1} is one-dimensional. This can happen
only for a finite number of values ofc1. To complete the proof, we can apply the same
arguments to the mapping( f2, s2): Y1→ K2, and so on.

Definition 2.2. Let x ∈ G ⊂ Kn andε ∈ K . A deformationof a Pfaffian functionq(x)
is an analytic functionθ(x, ε) such thatθ(x, 0) = q(x) and, for a fixedε, the function
θ(x, ε) is Pfaffian, with the same Pfaffian chain and of the same degree asq(x).

Let q1(x), . . . ,qn(x) be Pfaffian functions. Themultiplicity at z ∈ G of thePfaffian
intersection q1(x) = · · · = qn(x) = 0 is defined as the maximal number of isolated
complexzeros, for a fixedε 6= 0, of the system of equations

θ1(x, ε) = · · · = θn(x, ε) = 0

converging toz asε→ 0. Hereθi (x, ε) is any deformation ofqi (x), for i = 1, . . . ,n.

Lemma 2.2. Let x ∈ G ⊂ Kn,and let q1(x), . . . ,qn(x)be Pfaffian functions of degrees
β1, . . . , βn. Then the multiplicity of the Pfaffian intersection q1(x) = · · · = qn(x) = 0
at any point z∈ G does not exceed

M(n, r, α, β1, . . . , βn) = 2r (r−1)/2β1 · · ·βn[min(n, r )α+β1+ · · ·+βn−n+1]r . (9)

This is a reformulation of Theorem 2.2 from [G1].
The following lemma is a modification of Theorem 3.1 from [G1]. Note that formulas

(12) and (13) in [G1] are incorrect:α+β+ γ should be replaced by 2α+β+ γ at both
places in both formulas.

Lemma 2.3. Let x ∈ G ⊂ Kn, and 0 ∈ G. Let q1(x), . . . ,qm(x), f (x), and g(x)
be Pfaffian functions of degree not exceedingβ. Suppose that q1(0) = · · · = qm(0) =
f (0) = g(0) = 0. Let Q = {x ∈ G, q1(x) = · · · = qm(x) = 0}. Suppose that
Q′ = Q ∩ { f g 6= 0} (for K = R, Q′ = Q ∩ { f > 0, g > 0}) is effectively
nonsingular at0. Let 6 be the germ at0 of the set of critical points of the mapping
π = ( f, g): Q→ K2, and let0 be a germ at0 of an irreducible(semi-) analytic curve
in π(6), such that0′ = 0 ∩ π(Q′) 6= ∅. Let

K (m, n, r, α, β) = M(n, r, α, β, . . . , β︸ ︷︷ ︸
m+1

, τm, . . . , τm︸ ︷︷ ︸
n−m−1

), (10)

whereτm = (m+2)(α+β−1) and M(n, r, α, β1, . . . , βn) is as defined in(9).Then, for
small( f, g) ∈ 0′, we have f= c gλ + o(gλ), whereλ ≤ K (m, n, r, α, β) is a rational
number and c∈ K 6= 0.
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Proof. We consider only the complex case. The real case follows easily by complexi-
fication.
6 is defined by the Pfaffian equations

q1(x) = · · · = qm(x) = 0, dq1(x) ∧ · · · ∧ dqm(x) ∧ d f (x) ∧ dg(x) = 0.

The last equation means that all(m+ 2)-minors of

J = D(q1, . . . ,qm, f, g)/D(x1, . . . , xn)

vanish. According to Lemmas 1.1 and 1.2, these minors are Pfaffian functions of degree
not exceedingτm.

Suppose first that6′ = 6∩π−10′ is one-dimensional. There exist linear combinations
h1(x), . . . , hn−m−1(x) of the(m+ 2)-minors ofJ such that the germ at 0 of

{h1 = · · · = hn−m−1 = 0} ∩ π−10′

is one-dimensional. If0 = { f = c gλ+o(gλ)}, wherec 6= 0, the intersection0∩{ f = ε}
has at leastλ distinct isolated points converging to the origin asε→ 0. This implies that
the deformation

q1(x) = · · · = qm(x) = h1(x) = · · · = hn−m−1(x) = 0, f (x) = ε (11)

of the Pfaffian intersection

q1(x) = · · · = qm(x) = h1(x) = · · · = hn−m−1(x) = 0, f (x) = 0

has at leastλ isolated complex zerosxε converging to 0 asε → 0. From Lemma 2.2 it
follows thatλ ≤ K (m, n, r, α, β).

If the dimension of6′ is k > 1, then its intersection with a generic linear(n−k+1)-
dimensional subspace is nonempty and one-dimensional. In the above arguments we can
replacek− 1 minors by linear functions to obtain an even better estimate forλ.

Lemma 2.4. Let x ∈ G ⊂ Rn, and let f1(x), . . . , f I (x), g1(x), . . . , gJ(x) be Pfaffian
functions of degree not exceedingβ. Let

K (n, r, α, β) = max
0≤m<n

K (m, n, r, α, β), (12)

where K(m, n, r, α, β) is as defined in(10). Let ϕ(x) = maxi | fi (x)| and ψ(x) =
minj gj (x). Suppose that0 ∈ G andψ(0) = 0.Then, for any real a> 0 and any integer
ν > K (n, r, α, β), the closure of

Sa,ν = {x ∈ G, ϕ(x) ≤ aψ(x)ν, ψ(x) > 0}

contains0 if and only if the closure of S= {x ∈ G, ϕ(x) = 0, ψ(x) > 0} contains0.
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Proof. The only nontrivial case is whenϕ(0) = 0, the closure ofW = {x ∈ G, ψ(x) >
0} contains 0, and the closure ofS does not contain 0, i.e.,ϕ(x) > 0 for smallx ∈ W.
We want to show that the closure ofSa,ν does not contain 0 in this case.

Let δ be a positive number such thatG contains a cubeC of sizeδ centered at 0. Let
V be the set whereϕ(x) is minimal over{x ∈ C, ψ(x) = const}, i.e.,

V =
{

x ∈ C, ϕ(x) = min
z∈C,ψ(z)=ψ(x)

ϕ(z)

}
.

We want to show that there exist a positive constantc and a rational number

λ ≤ K (n, r, α, β) (13)

such that, for smallx ∈ V , we haveϕ(x) > cψ(x)λ.
Suppose that the closure ofV contains 0. If it does not contain 0, it should contain

another pointx0 ∈ C whereψ(x0) = 0. We can move the origin from 0 tox0 adding, if
necessary, linear equations and inequalities whenx0 is at the boundary{|x| = δ} of C.

For two nonempty setsA ⊆ [1, I ] and B ⊆ [1, J], let

WA,B = {x ∈ W, | fi (x)| = ϕ(x), for i ∈ A, | fi (x)| < ϕ(x), for i 6∈ A,

gj (x) = ψ(x) > 0, for j ∈ B, gj (x) > ψ(x), for j 6∈ B}.
We can suppose (multiplying, if necessary,fi andgj by nonzero constants and applying
Lemma 2.1) that each setWA,B is effectively nonsingular at 0, of dimensionn− |A| −
|B| + 2.

The setW is a disjoint union of the setsWA,B. In particular, there existA = {i0, . . . , i k}
andB = { j0, . . . , jl }, with m = k+ l < n, such that the closure ofV ∩WA,B contains
0, and the couple(A, B) is maximal with this property. Changing, if necessary, the signs
of fi , we can suppose that the closure ofV ∩W+A,B, where

W+A,B = {x ∈ WA,B, fi (x) = ϕ(x), for i ∈ A},
contains 0. In this case,V ∩W+A,B belongs to the critical set6 of ( f, g): Q→ R2 where
f = fi0, g = gj0,

Q = {x ∈ G, fi0(x) = · · · = fik(x), gj0(x) = · · · = gjl (x)},
andQ′ = Q ∩ { f > 0, g > 0} is effectively nonsingular at 0. The estimate (13) now
follows from Lemma 2.3.

Lemma 2.5. Let x ∈ G ⊂ Rn, and let f1(x), . . . , f I (x), g1(x), . . . , gJ(x) be Pfaffian
functions of degree not exceedingβ.Letϕ(x) = maxi | fi (x)|andψ(x) = minj gj (x).Let
K (n, r, α, β) be as defined in(12).Suppose that0 ∈ G andψ(0) = 0. For any positive
real numbers a and b, and for any integerν > K (n, r, α, β) andκ > K (n, r, α, β), the
closure of the set

Sa,b,ν,κ = {x, ϕ(x) ≤ aψ(x)ν, ψ(x) > b |x|κ} (14)

contains0 if and only if the closure of S= {x, ϕ(x) = 0, ψ(x) > 0} contains0. Here
|x| = maxi |xi |.
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Proof. According to Lemma 2.4, for anya ≥ 0 andν > K (n, r, α, β), the closure of
the set

Sa,ν = {x, ϕ(x) ≤ aψ(x)ν, ψ(x) > 0}
does not contain 0 when the closure ofS does not contain 0. AsSa,b,ν,κ ⊆ Sa,ν , the
closure ofSa,b,ν,κ does not contain 0 in this case.

Suppose now that the closure ofS (and the closure ofSa,ν ⊃ S) contains 0. LetV be
the subset ofSa,ν whereψ(x) is maximal over|x| = const, i.e.,

V =
{

x ∈ Sa,ν , ψ(x) = max
z∈Sa,ν ,|z|=|x|

ψ(z)

}
.

The closure ofV contains 0. We want to show that there exist a positive constantc and
a rational number

λ ≤ K (n, r, α, β) (15)

such that, for smallx ∈ V , we haveψ(x) > c |x|λ.
Permuting the variables and changing their signs, we can suppose that the closure of

V ′ = V ∩ {x1 > maxi 6=1|xi |} contains 0 (if the germ ofV at 0 is contained in any of the
hyperplanes|xi | = |xj |, for i 6= j , we can find a better estimate forκ).

Let D = {x ∈ Sa,ν , ϕ(x) = aψ(x)ν}. There are two possibilities:

(i) The closure ofV ′ ∩ D contains 0.
(ii) The closure ofV ′\D contains 0, and the closure ofV ′ ∩ D does not.

We consider here case (i). In case (ii) the arguments are exactly the same as in the
proof of Lemma 2.4, with(ϕ, ψ) replaced by(ψ, x1).

For two nonempty setsA ⊆ [1, I ] and B ⊆ [1, J], let

WA,B = {x, | fi (x)| = ϕ(x), for i ∈ A, | fi (x)| < ϕ(x), for i 6∈ A,

gj (x) = ψ(x) > 0, for j ∈ B, gj (x) > ψ(x), for j 6∈ B}.

Following the same arguments as in the proof of Lemma 2.4, we can suppose that each
setWA,B is effectively nonsingular at 0, of dimensionn− |A| − |B| + 2.

Moreover, the setsZA,B = WA,B ∩ Da are effectively nonsingular at 0. To prove this,
let A = {i0, . . . , i k} andB = { j0, . . . , jl }, and let f (x) = fi0(x) andg(x) = gj0(x). The
setZA,B belongs to the preimage of3 = { f = a gν}under the mapping( f, g): Q→ R2

where

Q = {x, fi0(x) = · · · = fik(x), gj0(x) = · · · = gjl (x)},
and the set of singular points ofZA,B belongs to the preimage of the intersection of3

with the set of critical values0 of ( f, g). The germ at 0 of the set of singular points of
ZA,B can be nonempty only if3 is a component of the curve0. Due to Lemma 2.3, this
is impossible whenν > K (n, r, α, β) ≥ K (k+ l , n, r, α, β).

The setD is a disjoint union of the setsZA,B. We can chooseA = {i0, . . . , i k} and
B = { j0, . . . , jl } so that the closure ofZA,B contains 0, and the couple(A, B) is maximal
with this property.
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Let f (x) = fi0(x) and g(x) = gj0(x). To prove estimate (15), we want to apply
Lemma 2.3 tog, x1, and tom= k+l+1 functionsq1 = fi1− f, . . . ,qk = fik− f, qk+1 =
gj1 − g, . . . ,qm−1 = gjl − g, qm = f − a gν . All these functions are Pfaffian of degree
not exceedingβ, exceptqm = f − a gν .

To see that the presence ofqm does not change the estimate forλ in Lemma 2.3,
we have to return to the proof of Lemma 2.3 where this estimate was obtained from
the estimate for the number of isolated zeros of the Pfaffian deformation (11). This
deformation now becomes

q1(x) = · · · = qm(x) = h1(x) = · · · = hn−m−1(x) = 0, g(x) = ε, (16)

which is equivalent to

q1(x) = · · · = qm−1(x) = h1(x) = · · · = hn−m−1(x) = 0,

g(x) = ε, f (x) = a εν. (17)

Herehµ are linear combinations of the coefficients of the(m+ 2)-form

dq1 ∧ · · · ∧ dqm ∧ dg∧ dx1.

However, asdqm ∧ dg= d f ∧ dg, this form is equal to

dq1 ∧ · · · ∧ dqm−1 ∧ d f ∧ dg∧ dx1.

Thush1, . . . , hn−m−1 are Pfaffian functions of degree not exceeding(m+1)(α+β−1) <
τm. Due to Lemma 2.2, the number of isolated zeros of the deformation (105), converging
to 0 asε→ 0, does not exceedK (m, n, r, α, β) ≤ K (n, r, α, β).

Lemma 2.6. In the condition of Lemma2.5, the closure of the set S contains0 if and
only if the closure of the set

Ta,b,ν,κ = {x, ϕ(x) ≤ a |x|νκ , ψ(x) > b |x|κ} (18)

contains0, for any positive real numbers a and b, and for any integerν > K (n, r, α, β)
andκ > K (n, r, α, β). This is also true without the conditionψ(0) = 0 of Lemma2.5.

Proof. Suppose first thatψ(0) = 0, as in Lemma 2.5. We haveTa,b,ν,κ ⊂ Sa′,b,ν,κ where
a′ = a/bν . If the closure ofTa,b,ν,κ contains 0, then the closure ofSa′,b,ν,κ contains 0
and, due to Lemma 2.5, the closure ofScontains 0. Asψ(0) = 0, there exists a constant
s> 0 such thatψ(x) ≤ s |x|, for smallx. HenceTa,b,ν,κ ⊃ Sa′′,b,νκ,κ wherea′′ = a/sνκ .
If the closure ofScontains 0, then, due to Lemma 2.5, the closure ofSa′′,b,νκ,κ contains
0. Hence the closure ofTa,b,ν,κ contains 0.

If ψ(0) 6= 0, then the closure ofS contains 0 if and only if 0∈ S, i.e., if ψ(0) > 0
andϕ(0) = 0. For any positivea, b, ν, andκ, the closure ofTa,b,ν,κ contains 0 under
exactly the same condition.
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3. Reduction to the Semialgebraic Case

Lemma 3.1. Let x ∈ Rn, and let f1(x), . . . , f I (x), g1(x), . . . , gJ(x) be Pfaffian
functions of degree not exceedingβ. Let K(n, r, α, β) be as defined in(12). Let κ >
K (n, r, α, β) be an integer number. For z ∈ G, let Fi (x, z) be the Taylor expansion of
fi (x) at z of orderκ2, and let Gj (x, z) be the Taylor expansion of gj (x) at z of orderκ.
Then the closure of the semi-Pfaffian set

S= {x, f1(x) = · · · = f I (x) = 0, g1(x) > 0, . . . , gJ(x) > 0}

contains z if and only if the closure of the following semialgebraic set Sz contains z:

Sz = {x, Fi (x, z) ≤ |x−z|κ2
, for i = 1, . . . , I , Gj (x, z) > |x−z|κ , for j = 1, . . . , J}.

Proof. According to Lemma 2.6, the closure ofScontainsz if and only if the closure
of the set

T = {x, ϕ(x) ≤ a |x − z|κ2
, ψ(x) > b |x − z|κ}

containsz, for any positive constantsa andb. Hereϕ(x) = maxi | fi (x)| andψ(x) =
minj gj (x). The latter condition does not depend on the terms of the Taylor expansion
at z of fi (x) of order greater thanκ2, and ofgj (x) of order greater thanκ. Replacingfi
andgj by their Taylor expansions atz of ordersκ2 andκ, respectively, we can replace
T by the semialgebraic setSz.

Proof of Theorem1.1. As the closure of the union equals the union of the closures, it
is enough to consider the case of an elementary semi-Pfaffian set:

S= {x ∈ G, f1(x) = · · · = f I (x) = 0, g1(x) > 0, . . . , gJ(x) > 0}

with I + J = L.
Let κ = K (n, r, α, β) + 1. Let Fi (x, z) be the Taylor expansion offi (x) at z of

orderκ2 and letGj (x, z) be the Taylor expansion ofgj (x) at z of orderκ. According to
Lemma 3.1,S̄containsz ∈ G if and only if z belongs to the closure of the set

Sz = {x ∈ G, Fi (x, z) ≤ |x − z|κ2
, for i = 1, . . . , I ,

Gj (x, z) > |x − z|κ , for j = 1, . . . , J}.

Let y1(x), . . . , yr (x) be the Pfaffian chain forfi andgj . According to Lemma 1.3,

Fi (x, z) = 8i (x, z, y1(z), . . . , yr (z)) and Gj (x, z) = 9j (x, z, y1(z), . . . , yr (z)),

where8i and9j are polynomial inx, z, andy = (y1, . . . , yr ), of degree not exceeding
β + ακ2 andβ + ακ, respectively.

Thus z ∈ S̄ if and only if the following semialgebraic formula is valid forz and
y1 = y1(z), . . . , yr = yr (z):

∀ε > 0, ∃x, |x − z| ≤ ε,
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8i (x, z, y) ≤ |x − z|κ2
for i = 1, . . . , I ,

9j (x, z, y) > |x − z|κ for j = 1, . . . , J.

This formula contains two blocks of quantifiers, of sizesk1 = 1 andk2 = n, andl = n+r
free variables. It includesL polynomials of degreed ≤ β + ακ2.

According to Theorem 1 of [BPR], which is an improvement of Theorem 1.1 of [R],
this formula is equivalent to a quantifier-free formula

N ′∨
i=1

L ′∧
j=1

(sign(Qi j (z, y)) = σi j ), (19)

whereσi j ∈ {−1, 0, 1},

N ′ ≤ L(l+1)(k1+1)(k2+1)d(l+1)O(k1k2) = L2(n+1)(n+r+1)d(n+r+1)O(n),

L ′ ≤ L(k1+1)(k2+1)dO(k1k2) = L2n+2dO(n),

andQi j are polynomial inx, y of degree not exceeding

β ′ = dO(k1k2) = dO(n).

Substitutingyk = yk(z) into (19), we obtain a semi-Pfaffian expression forX̄ with the
properties required in Theorem 1.1.

The statement for∂X = X̄\X follows easily from the statement for̄X.

4. Fewnomials

Definition 4.1. (See [K] and [GV].) LetK be a set ofr monomialsu1(x), . . . ,ur (x),
whereui (x) = xdi 1

1 · · · xdin
n . A polynomial P(x) is aK-fewnomialof pseudodegreeβ if

P(x) = Q(x, u1(x), . . . ,ur (x)), whereQ is a polynomial of degreeβ in x1, . . . , xn,
u1, . . . ,ur .

Lemma 4.1. LetK be a set of r monomials in x= (x1, . . . , xn), and let P(x) be a
K-fewnomial of pseudodegreeβ. Then P(x) is a Pfaffian function of degree1 defined in
G = {x1 · · · xn 6= 0}, with a Pfaffian chain of rank n+ r and degree2.

Proof. Let K = {u1(x), . . . ,ur (x)}, whereui (x) = xdi 1
1 · · · xdin

n , and let P(x) =
Q(x, u1(x), . . . ,ur (x)), whereQ is a polynomial of degreeβ. Let vi (x) = 1/xi , for
i = 1, . . . ,n. Thenv1(x), . . . , vn(x), u1(x), . . . ,ur (x) is a Pfaffian chain of rankn+ r
and degree 2, as

dvi (x) = −vi (x)
2 dxi ,

duj (x) = uj (x)(dj 1v1(x) dx1+ · · · + djnvn(x) dxn).
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Remark. Note thatG = {x1 · · · xn 6= 0} is the domain of definition for a fewnomial
P(x) in its Pfaffian representation, due to the presence of 1/xi in the Pfaffian chain,
althoughP(x) itself is defined for allx.

Theorem 4.1. LetK be a set of r monomials in x= (x1, . . . , xn), and let X be the
semialgebraic set(3), where G= {x1 6= 0, . . . , xn 6= 0} and all qi j areK-fewnomials
of pseudodegree not exceedingβ. Then the closurēX of X in G is a semialgebraic set

N ′⋃
j=1

L ′⋂
i=1

{x ∈ G, sign(gi j (x)) = σi j },

whereσi j ∈ {−1, 0, 1},

N ′ = N L2(n+1)(2n+r+1)d(2n+r+1)O(n),

L ′ = L2(n+1)dO(n),

and all gi j areK-fewnomials of pseudodegree not exceedingγ = (n + 1)dO(n). Here
d = β + 2(K (n, n + r, 2, β) + 1)2, and K(n, r, α, β) is as defined in Section2. The
frontier ∂X of X in G is a semialgebraic set

N ′′⋃
j=1

L ′′⋂
i=1

{x ∈ G, sign(hi j (x)) = σi j },

where N′′ = N ′L N, L ′′ = L ′ + N, and all hi j areK-fewnomials of pseudodegree not
exceedingγ .

Proof. LetK = {u1(x), . . . ,ur (x)}. According to Lemma 4.1 and Theorem 1.1,X̄∩G
can be represented as a semi-Pfaffian set

N ′⋃
j=1

L ′⋂
i=1

{x ∈ G, sign(si j (x)) = σi j }, (20)

where N ′ and L ′ satisfy (5) and (6), withα = 2 andr replaced byn + r , andsi j

are Pfaffian functions of degree not exceedingβ ′ = dO(n), with the Pfaffian chain
1/x1, . . . ,1/xn, u1(x), . . . ,ur (x).

As β ′ is an even integer number (except for the trivial casen + r ≤ 1) we can
replace eachsi j in (105) by aK-fewnomialgi j (x) = (x1 · · · xn)

β ′si j (x) of pseudodegree
γ = (n+ 1)β ′.

The statement for∂X follows easily from the statement for̄X.
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