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Abstract 2D and 3D solitons and related states, such as quantum droplets, can ap-
pear in optical systems, atomic Bose-Einstein condensates (BECs), and liquid crystals 
among others. However, multi-dimensional solitary states supported by the standard 
cubic nonlinearity, tend to be strongly unstable – a property far less present in 1D 
systems. Thus, the central challenge is to stabilize multi-dimensional states and nu-
merous approaches have been proposed over the years. Most strategies involve non-
cubic nonlinearities or using various potentials, including periodic ones. Completely 
new directions have recently emerged in two-component BECs with spin-orbit cou-
pling, which have been predicted to support stable 2D and metastable 3D solitons. A 
recent breakthrough is the creation of 3D quantum droplets. These are self-sustained 
states existing in two-component BECs, stabilized by the quantum fluctuations 
around the underlying mean-field states. Here we review recent results in this field 
and outline outstanding current challenges. 
 
Key points 
 

• We provide a brief summary of recent theoretical and experimental advances 
in the study of multidimensional solitons, chiefly in nonlinear optics, ultracold 
bosonic gases and in liquid-crystal and magnetic media. 

 
• We cover results for fundamental nonlinear modes and for topologically non-

trivial states, such as vortex solitons, hopfions, and skyrmions. 
 

• The experimental realization of multidimensional solitons has proven to be 
more challenging than for 1D solitons due to the propensity to instabilities of 
2D- and 3D states, both fundamental and topologically structured. We address 
different stabilization mechanisms that have been put forward to potentially 
observe multidimensional solitons, such as competing nonlinearities, linear 
and nonlinear potentials, spin-orbit coupling, quantum corrections, and dissi-
pative effects. 

 
• Special attention is paid to recent theoretical and experimental results that 

produced stable 3D solitons in the form of `quantum droplets‘ in ultracold 
bosonic gases, whose stability is secured by a macroscopic effect of quantum 
fluctuations around mean-field states. 

 
 
 
40-word summary 
Multidimensional self-trapped states exist in many models of physical systems. 
However, they are highly unstable in media with a cubic nonlinearity. We review 
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different mechanisms that may stabilize them, including non-Kerr nonlinearities, 
spin-orbit coupling, and quantum fluctuations, among others. 
 
 

[H1] Introduction 
 

Soliton-like bound states  – self-sustained localized packets of light or matter-
waves  in nonlinear media–are known in many areas of physics, including nonlinear 
photonics (optics, plasmonics, and exciton-polariton condensates), BECs and other 
types of quantum gases, hydrodynamics of classical fluids and superfluids, plasmas, 
nonlinear dynamical lattices, superconductors, semiconductors, magnetic materials, 
electronics, hadron matter (considered in terms of field theory), gravitation and cos-
mology. [1-3]. But in the vast majority of cases, experimental observations of solitons 
have only been reported in effectively 1D settings. 

Higher-dimensional (2D and 3D) geometries open the way to the observation of 
a variety of new phenomena such as topological states in the form of vortex rings 
and vortex tori, that are 2D and 3D solitons, respectively, with embedded integer 
vorticity, 𝑆𝑆. The wave fronts of such states feature one or several nested phase singu-
larities (in particular, vortex lines in the 3D case), whose topological charge, or wind-
ing number, is determined by the total phase, 𝜑𝜑 = 2𝜋𝜋𝑆𝑆, acquired along a closed con-
tour surrounding the singularity [4,5]. 

More sophisticated 3D topological self-sustained states may exist (for example, 
in the form of hopfions and Skyrmions) that carry two independent topological 
charges [6]. Such states frequently exhibit closed vortex rings inside the wave field. 
In particular, hopfions are shaped as twisted toroidal vortex modes, with the phase 
of the wave function varying both along the vortex ring (which determines the over-
all vorticity 𝑆𝑆 of the hopfion) and also in the transverse plane, around the ring line 
(which determines the intrinsic twist, 𝑚𝑚, of the hopfion). Skyrmions have fundamen-
tally important physical realizations as baryons in the classical field theory that arises 
as a low-energy limit of quantum chromodynamics [7] (the original Skyrme model 
was introduced in this context). Skyrmions were also predicted in two- [8] and multi- 
[9] component BECs and3D topological modes in the form of Dirac monopoles iden-
tified as terminus points of vortex lines have been recently observed in spinor BECs 
[10]. In addition to the more complex structures, multidimensional solitons also often 
exhibit richer interactions than their 1D counterparts [11]. 

However, the creation of soliton states in 2D and, especially, in 3D settings is a 
long-standing challenge because even the simplest fundamental solutions of the cor-
responding nonlinear wave equations are often prone to strong instabilities, such as 
the onset of the spatiotemporal collapse of fundamental solitons [12-14] and sponta-
neous azimuthal splitting of vortex rings and tori [15,16]. Theoretical mechanisms 
allowing the stabilization of higher-dimensional self-trapped states are known, as de-
scribed below, but they are rare and many of them have proven to be challenging to 
realize in practice. In particular, in pure optical settings the identification of materials 
featuring the proper interplay between dispersion, diffraction, and nonlinearity re-
quired for the creation of stable, long-living 3D solitons, or `light bullets‘ [17], is still 
an essentially open problem  experimentally.  

Earlier approaches to the realization of stabilized multidimensional solitons 
were reviewed in Ref. [4]. Some of the more recent results were briefly summarized 
in Ref. [18] and [19]. Some early schemes for the stabilization of 2D and 3D solitons, 
including solitary vortices, relied on the use of non-Kerr nonlinearities, discreteness, 
and dissipative media. But several important advances have been recently achieved. 
In particular, the first examples of stable multidimensional states in ultracold bosonic 
gases, in the form of quantum droplets, the stability of which is grounded in the Lee-
Hung-Yang corrections to the mean-field settings [20], have been predicted and ex-
perimentally created very recently [21-30]. Further advances may be foreseen in the 
nearest future, as several new concepts and techniques are currently under investiga-
tion. 
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[H1] Multidimensional states in photonics 
 
[H2] Uniform media 
 

Spatiotemporal solitons in dispersive optical media may occur when two fun-
damental linear effects – group-velocity dispersion (GVD), leading to broadening of 
the electromagnetic wave packet in time, and diffraction, acting in the transverse di-
rections – are balanced by a focusing nonlinearity. The most common source of such 
nonlinearity is provided by the Kerr effect (known as the 𝜒𝜒(3) nonlinearity) in dielec-
tric media [1-3].  In general, in the case of bright solitary waves,  a necessary condi-
tion for the balance between the two effects is anomalous GVD:  an increasing group 
velocity with decreasing wavelength, 𝜆𝜆. In the paraxial approximation, the evolution 
of the wave packet in uniform Kerr-type nonlinear media is governed by the nonlin-
ear Schrödinger equation (NLSE), also known as the Gross-Pitaevskii equation (GPE) 
in the context of BECs. In normalized form, the NLSE is written as 
 

 𝑖𝑖 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = − 12 (
𝜕𝜕2𝜕𝜕𝜕𝜕𝜏𝜏2 +

𝜕𝜕2𝜕𝜕𝜕𝜕𝑥𝑥2 +
𝜕𝜕2𝜕𝜕𝜕𝜕𝑦𝑦2)−𝒩𝒩(𝜓𝜓)𝜓𝜓, (1) 

 
where 𝜓𝜓 is the complex field amplitude, 𝑧𝑧 is the propagation distance, 𝜏𝜏 = 𝑡𝑡 − 𝑧𝑧/𝑉𝑉𝑔𝑔𝑔𝑔 is 
the reduced time, 𝑉𝑉𝑔𝑔𝑔𝑔 is the group velocity of the carrier wave, (𝑥𝑥,𝑦𝑦) are the trans-
verse coordinates, and 𝒩𝒩(𝜓𝜓) = |𝜓𝜓|2 in pure Kerr nonlinear media. The same model 
without the GVD term, 𝜕𝜕2𝜓𝜓/𝜕𝜕𝜏𝜏2, governs the evolution of 2D beams in the spatial 
domain. 

The NLSE allows the existence of families of bell-shaped (fundamental) spatio-
temporal solitons of the form 𝜓𝜓 = 𝑢𝑢(𝜌𝜌)exp(𝑖𝑖𝑖𝑖𝑧𝑧), where 𝑖𝑖 > 0 is the propagation con-
stant, 𝜌𝜌 = (𝑥𝑥2 + 𝑦𝑦2 + 𝜏𝜏2)1 2⁄  is the spatiotemporal radial coordinate, and 𝑢𝑢 is a real 
function vanishing at 𝜌𝜌 → ∞ as 𝜌𝜌−1exp[−(2𝑖𝑖)1 2⁄ 𝜌𝜌]. The 2D version of such states, 
with 𝜌𝜌 replaced by 𝑟𝑟 = (𝑥𝑥2 + 𝑦𝑦2)1 2⁄ , is known as Townes’ soliton (TS) [31], with as-
ymptotic decay ∼ 𝑟𝑟−1/2exp[−(2𝑖𝑖)1 2⁄ 𝑟𝑟] at 𝑟𝑟 → ∞. Historically, TSs were the first spe-
cies of solitary waves predicted in nonlinear optics, but they cannot be realized ex-
perimentally as they are strongly unstable. 

The experimental realization of multidimensional solitons faces two main chal-
lenges, which have proven to be difficult to overcome despite significant efforts ap-
plied during the last three decades. Firstly, the mathematical soliton solutions must 
be dynamically stable for a given nonlinearity law, 𝒩𝒩(𝜓𝜓). Secondly, in the case of 
spatiotemporal states, a suitable material setting that simultaneously exhibits suffi-
ciently strong GVD, ultrafast nonlinear response, and low losses is required, so that 
diffraction and dispersion effects are comparable and this without using too short 
pulses (ideally, no shorter than a few picoseconds). The latter condition is essential 
because various higher-order linear and nonlinear effects, which are not included in 
Eqn. (1), dramatically increase as pulses become shorter, preventing the balance re-
quired for the stationary propagation of solitons. 

In focusing media, the stability of fundamental solitons is often determined by 
the Vakhitov-Kolokolov (VK) stability criterion [32]. It predicts the instability of the 
solutions with 𝑑𝑑𝐸𝐸/ 𝑑𝑑𝑖𝑖 < 0, and provides  necessary, but sometimes not sufficient, 
stability condition 𝑑𝑑𝐸𝐸/ 𝑑𝑑𝑖𝑖 > 0, where 𝐸𝐸 = ∭ |𝜓𝜓|2𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝜏𝜏∞−∞  is the total energy of the 
spatiotemporal state. In uniform Kerr media the scaling relation ∼ 𝑖𝑖1−𝐷𝐷/2 , where 𝐷𝐷 = 2,3 is the space dimension, between the energy and the propagation constant 
holds [4]. This scaling implies the VK instability of 3D solitons. In the 2D case, which 
corresponds to the above-mentioned TSs, 𝐸𝐸 does not depend on 𝑖𝑖. In this case, the 
instability still persists, becoming nonlinear and growing sub-exponentially, in con-
trast to the exponential instability growth that occurs in the 3D setting. Multidimen-
sional solitons can carry vorticity [33], which makes them additionally vulnerable to 
the instability that causes  their spontaneous azimuthal self-splitting into several 
fragments. . 

One possibility to create stable multidimensional solitons, including light bul-
lets, is provided by models with quadratic (𝜒𝜒(2)) nonlinearities, which do support ful-
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ly stable solutions in 2D and 3D geometries [34-38]. Stable spatial 2D fundamental 
solitons were experimentally observed in Ref. [39].Vortex-carrying solitons are un-
stable in such media [16], as was observed in experiments showing the splitting of 
the vortex-ring into several fragments [40]. The existence of stable 3D fundamental 
spatiotemporal solitons in 𝜒𝜒(2) media was originally pointed out in Ref. [41], and 
subsequently elaborated in several works (see, in particular, Ref. [42]). 2D spatiotem-
poral solitons (namely, wave packets with nonlinearity balancing temporal spread-
ing and diffraction in only one transverse spatial direction) were created in a series of 
experiments using a specific method to generate suitable effective anomalous GVD 
[43,44]. Several potential approaches to generate 3D states, for instance using tandem 
or metamaterial structures with engineered group velocity, GVD, and nonlinearity 
have been put forward [45]. They are yet to be  experimentally demonstrated. 

Another strategy for creating stable multidimensional states relies on the use of 
materials with saturable or competing nonlinearities, such as 𝒩𝒩(𝜓𝜓) = |𝜓𝜓|2/(1 +𝜈𝜈|𝜓𝜓|2) or 𝒩𝒩(𝜓𝜓) = |𝜓𝜓|2 − 𝜈𝜈|𝜓𝜓|4 (with real coefficient 𝜈𝜈 > 0 representing the quintic, 
alias 𝜒𝜒(5), defocusing nonlinearity), leading to new forms of the 𝐸𝐸(𝑖𝑖) dependencies. 
Saturable nonlinearity is typical for photorefractive crystals, where a nonlinear 
change of the refractive index is induced via the electro-optic effect (for a review 
about its application to spatial solitons, see Ref. [46]), in vapors of alkali metals [47] – 
in particular, sodium vapors [48] – and in other media. The use of saturable nonline-
arities enables the creation of a  variety of stable 2D spatial solitons. Among them are 
solitons supported by quasi-steady-state [49] and steady-state screening [50,51], 
which were observed in photorefractive crystals at low power levels. In Ref. [52] it 
was shown theoretically that the saturable nonlinearity leads to nonmonotonic 𝐸𝐸(𝑖𝑖) 
curves. Their segments that satisfy the VK criterion correspond to stable states.  

Standard saturable nonlinearities do not suppress azimuthal instabilities of soli-
tons carrying vorticity [53], but competing nonlinearities have been predicted to 
support stable vortex solitons in both 2D (Ref. [54,55]) and 3D (Ref. [38,56]) geome-
tries. Stability is achieved close to the regime where the contributions from the 𝜒𝜒(3) 
and 𝜒𝜒(5) nonlinearities almost balance each other, leading to flat-top solitons. These 
may be described as exhibiting `liquid-like‘ behavior [57]. The formation of 2D fun-
damental and vortex solitons, attributed in part to effective competing 𝜒𝜒(3) − 𝜒𝜒(5) 
nonlinearities, was experimentally reported in CS2 (Ref. [58,59]) and in suspensions 
of metallic nanoparticles [60]. However, the presence of significant linear and nonlin-
ear absorption in such media must be taken into account in the interpretation of the 
observations and it severely limits the applicability of such materials in the present 
context.  

The competition between nonlinearities of different orders is one of the mecha-
nisms supporting stable dissipative solitons in models of laser cavities, based on the 
complex Ginzburg-Landau equation [61,62]. This is an extension of Eqn. (1) with 𝒩𝒩(𝜓𝜓) = 𝑖𝑖𝑖𝑖 + (1 − 𝑖𝑖𝑖𝑖)|𝜓𝜓|2 − (𝜈𝜈 − 𝑖𝑖𝑖𝑖)|𝜓𝜓|4, which includes linear loss 𝑖𝑖, nonlinear gain 𝑖𝑖, and nonlinear absorption 𝑖𝑖. Further, spectral filtering is represented by the coeffi-
cient 𝛽𝛽 ≥ 0 included into the (1 + 𝑖𝑖𝛽𝛽)𝜕𝜕2𝜓𝜓/𝜕𝜕𝜏𝜏2 expression which replaces the GVD 
term in Eqn. (1). Complex Ginzburg-Landau models give rise to stable 3D fundamen-
tal solitons [63,64] and vortex tori [65]. Asymmetrically rotating and precessing 3D 
vortex solitons [66] and vortex knots [67] have been predicted in media with satura-
ble gain and absorption. Recently, dissipative mode-locked cavity solitons with the 
pulse duration shorter than the cavity round-trip, which may be considered as isolat-
ed 3D objects, were observed in a vertical-cavity surface-emitting laser [68]. Such dis-
sipative settings are promising for the generation of multidimensional solitons be-
cause they appear as stable attractors with a broad attraction basin, a property that 
should facilitate their creation. 

The possible existence of stable multidimensional states has also been shown in 
nonlocal media [69]. The respective nonlinear nonlocal response in Eqn. (1), 𝒩𝒩(𝜓𝜓) =∫ 𝐾𝐾(𝐫𝐫′ − 𝐫𝐫)|𝜓𝜓(𝐫𝐫′)|2𝑑𝑑𝐫𝐫′, at a given point 𝐫𝐫 depends on the entire spatial intensity pro-
file, where 𝐾𝐾(𝐫𝐫) is the nonlocality kernel that depends on the type of nonlinearity. 
The nonlocality can smooth out the spatial intensity fluctuations, and thus prevent 
the development of instabilities driven by the Kerr nonlinearity. Nonlocality is typi-
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cal for example for reorientational [70] and thermal [71] optical nonlinearities that 
respond to time-averaged intensities. Such a nonlocal response is typically very slow, 
thus it is insensitive to the pulsed character of the excitation and can be used for spa-
tial self-trapping of pulse-train solitons. Fast Kerr nonlinearity, which acts only 
around the maximum of each pulse, may be used for the dispersion compensation 
[72]. A similar mechanism allowed the recent observation of dark (in time)-bright (in 
space) 3D pulse train solitons in photorefractive crystals [73]. 
 
1.1. [H2] Photonic lattices 
 

A universal theoretical method for the stabilization of both fundamental and 
vortex solitons in 2D [74-76] and 3D [77-79] geometries with the Kerr focusing non-
linearity is enabled by the use of spatially periodic potentials, induced by photonic 
lattices or arrays [80-83]. Such potentials are created by shallow (𝛿𝛿𝛿𝛿 ∼ 10−3) modula-
tions of the refractive index of the material in the transverse plane. Light propagation 
in such media is governed by the modified version of Eqn. (1): 
 

 𝑖𝑖 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = − 12 (
𝜕𝜕2𝜕𝜕𝜕𝜕𝜏𝜏2 +

𝜕𝜕2𝜕𝜕𝜕𝜕𝑥𝑥2 +
𝜕𝜕2𝜕𝜕𝜕𝜕𝑦𝑦2)−𝒩𝒩(𝜓𝜓)𝜓𝜓 + 𝑈𝑈(𝑥𝑥, 𝑦𝑦)𝜓𝜓, (2) 

 
where the effective potential 𝑈𝑈 ∼ −𝛿𝛿𝛿𝛿(𝑥𝑥, 𝑦𝑦) represents the shape of the periodically 
modulated refractive-index landscape. Different approaches to the creation of such 
potentials have been suggested. Among them, two techniques have been well elabo-
rated (for other methods see Refs. [82,83]). The first is the induction of virtual optical 
lattices in the photorefractive media [84], which allowed the creation of 2D funda-
mental lattice solitons [81], vortex solitons in square [85,86] and hexagonal [87] lattic-
es, as well as soliton trains [88] and dislocations [89]. The second method is based on 
the direct laser writing of arrays by femtosecond pulses [90]. Optical induction al-
lows erasing and rewriting lattices in the same sample, whereas laser writing creates 
permanent periodic waveguiding arrays, with practically any desirable shape [91]. 

Even though the effective potential 𝑈𝑈(𝑥𝑥,𝑦𝑦) in Eqn. (2) is 2D, it was theoretically 
shown to be sufficient for the stabilization of 3D solitons. This was first suggested in 
combined discrete-continuous systems [92,93], and then in continuous 3D media [77]. 
The periodic modulation of the refractive index not only stabilizes the 3D solitons 
(see Ref. [94] for a description of the physics of soliton formation in periodic media), 
but also allows controlling the relative strength of diffraction and dispersion, which 
is an essential ingredient in the creation of 3D states. The first observation of semi-
discrete 3D light bullets, albeit in a transient state, was an important milestone. It was 
performed in a hexagonal fiber-like array with silica cores (Fig. 1(a)) illuminated by 
focused 150 fs pulses at wavelength 𝜆𝜆 = 1.55 𝑖𝑖𝑚𝑚 with peak powers up to 1 MW [95]. 
The temporal compression of such pulses results in the transient excitation of light 
bullets with a temporal width of ≈ 25 fs. With such a small pulse duration, the Ra-
man effect and self-steeping gradually drive the light bullet below its existence 
threshold, making the spatiotemporal state a transient object [96]. Vortex light bullets 
were observed in a similar setting, also in a transient form [97]. In fiber arrays, vortex 
bullets are composed of several spots (three in Ref. [97]), with vorticity imprinted on-
to them (in contrast to the conventional ring spatial shape of bullets in uniform me-
dia), thus building a vortex structure that can coherently propagate in the array, as 
illustrated in Fig. 1(b). 

In addition to the management of diffraction, the approach to the generation of 
stable 3D solitons based on the use of linear potentials offers control over the energy 
intervals where 3D solitons may be stable. Stable bullets can exist not only in period-
ic, but also in radially symmetric (Figs. 2(a) and (b)) and other types of potentials 
[98]. They exist in complex 𝒫𝒫𝒫𝒫-symmetric structures [99] too, with spatially separat-
ed and globally balanced gain and loss. There vortex bullets develop complex shapes 
(Figs. 2(c) and (d)) that depend on the sign of the topological charge [100]. In such 
systems, the otherwise detrimental effect introduced by linear losses, may be used to 
shape the beam, and control diffraction. 
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If the GVD of the material is normal, rather than anomalous, the medium sup-
ports a different type of waves, namely a nonlinear generalization of the X-wave so-
lution of the hyperbolic Schrödinger equation [101,102]. Such waves decay in the spa-
tial domain slower than exponentially and, to be stationary, they should carry infi-
nite energy. Nevertheless, truncated versions were observed in waveguide arrays in 
2D Ref. [103] and 3D Ref. [104] configurations. Finally, 3D linear wave packets in-
volving combinations of shapes based on the Bessel and Airy functions can also ex-
hibit localized features, even though their invariance upon propagation is a geomet-
ric linear phenomenon rather than a result of self-trapping [105,106]. 
 
[H2] Multimode waveguides 
 

The stabilization mechanism of multidimensional states that relies on the inho-
mogeneity of the refractive-index landscape has also been actively investigated in 
multimode optical fibers. Standard optical fibers used in telecommunications and 
other applications are usually designed for single-mode transmission of infrared 
light, thus they may be considered as effectively 1D media in the context of self-
trapping [107]. Graded-index multimode fibers feature a large transverse area, where 
nonlinearity can couple the multiple modes, resulting in complex spatiotemporal 
field dynamics [108-114]. In particular, the nonlinearity-induced locking of duration 
and location of relatively long pulses in different modes, resulting in the formation of 
spatio-temporal localized states, was experimentally observed in graded-index mul-
timode optical fibers [110]. A significant contribution to the spatial confinement was 
provided by linear waveguiding properties, induced by the graded-index profile of 
the fiber. 

In this context, we note that the multiple filamentation and the generation of 
supercontinuum by short pulses in multimode fibers was shown to be enhanced by 
the selective excitation of multiple spatial modes [111]. Spatiotemporal soliton oscil-
lations in multimode waveguides may generate multimode dispersive waves in an 
ultrabroadband spectral range [112]. In the normal-GVD regime, multimode fibers 
were used to demonstrate nonlinearity-induced cleaning of spatial modal profiles 
[113,114]. These may be seen as the condensation of multimode waves, occurring de-
spite the presence of disorder, and subsequent mode decay due to spatiotemporal 
instabilities. Despite their complexity multimode systems  are promising for the crea-
tion of fully 3D self-sustained states propagating over considerable distances in 
weakly-guiding refractive-index profiles, provided that the conditions for the stable 
nonlinear locking of pulses propagating in different spatial modes can be achieved. 
 
[H2] Exciton-polaritons 
 

Self-trapping phenomena are a subject of intense investigation in polariton con-
densates created in semiconductor microcavities. Polaritons are quasi-particles re-
sulting from the coupling of cavity photons and excitons supported by the quantum 
wells embedded into the cavity. Their low effective mass, which is about five orders 
of magnitude smaller than the electron’s mass in the strong-coupling regime, allows 
the formation of BECs at temperatures ~5 K [115], which is roughly eight orders of 
magnitude higher than the critical BEC temperature in atomic gases. Such conden-
sates are dissipative states, therefore their persistence is supported by a resonant or 
non-resonant pump. A noteworthy feature of this system is the strong nonlinear re-
pulsion of polaritons through the dipole-dipole interaction of the excitonic compo-
nent, which was used for the experimental observation of dark quasi-solitons and 
vortices [116,117], as well as bright 1D solitons [118,119]. 

The available technology for microcavity structuring has enabled the creation of 
various lattice potentials [120,121], and thus of 1D [122] and 2D [123] gap polariton 
solitons (see also Refs. [124,125] for a detailed theoretical analysis). Polaritons in a 
planar resonator feature momentum-dependent linear coupling between the states 
with positive and negative spins, which is formally analogous to the spin-orbit cou-
pling (SOC) in atomic physics [120]. Combined with the sensitivity to magnetic 
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fields, SOC  enables the realization of nonlinear polariton topological insulators and 
lasers [126,127]. Being essentially a 2D system, as the confinement in the remaining 
dimension is imposed by the microcavity, polaritons offer a unique platform for the 
experimental exploration of the physics of 2D spatial solitons in non-equilibrium 
condensates, which can be controlled by adjusting the pump laser and by using  
complex potential landscapes that may be built in the microcavity. In particular, 
skyrmion lattices in a plasmonic field have been recently realized in experiment 
[128]. 
 
[H2] Plasma filaments 
 

Multidimensional transient self-trapped states may appear as a result of the fil-
amentation of high-power laser radiation in solids or gases. Filamentation occurs due 
to the strong spatiotemporal contraction of the wave packet for laser powers exceed-
ing the self-focusing threshold. The contraction leads to the formation of dynamically 
evolving 3D wave packets that exhibit a high degree of spatiotemporal localization 
[129]. The propagation of femtosecond quasi-bullets (namely transient modes that 
are losing energy through multiphoton ionization) over several centimeters in fused 
silica was reported in Ref. [130]. The formation of bullet chains due to refocusing was 
demonstrated in Ref. [131], and the creation of bullet filaments by a single fs pulse 
was reported in Ref. [132]. Such 3D filaments are usually composed of a localized 
high-intensity core and a ring-shaped spatiotemporal peripheral structure refueling 
the core [133]. In Ref. [134] such ring-shaped refueling beam was used to considera-
bly extend the propagation distance of the central filament in air, albeit in the nor-
mal-GVD regime. Such an approach, when realized in a suitable material with suffi-
ciently highanomalous GVD, may result in the formation of long-lived 3D filaments. 
New prospects for the robust long-range propagation of multi-terawatt femtosecond 
laser pulses in the single-filament regime may become available for long wave-
lengths (in the mid-infrared, in air) [135]. 
 

[H1] Multidimensional states supported by nonlinear potentials 
 

A radically different theoretical approach to the creation of stable multidimen-
sional solitons, which has been studied in a number of settings [136-142], relies on the 
use of nonlinear potentials (or pseudopotentials [143]) induced by a defocusing non-
linearity with strength 𝑔𝑔(𝐫𝐫) growing fast enough from the center to periphery. The 
evolution of excitations in such models is governed by the modified multidimen-
sional NLSE/GPE equation, 
 

 𝑖𝑖 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = − 12∇2𝜓𝜓 + 𝑔𝑔(𝐫𝐫)|𝜓𝜓|2𝜓𝜓. (3) 

 
This model predicts the existence of diverse 𝐷𝐷-dimensional self-trapped modes 

that although decaying at 𝑟𝑟 → ∞, are nonlinearizable solutions of Eqn. (3), which 
means that is the asymptotic form of the stationary solutions, 𝜓𝜓 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝜕𝜕𝑢𝑢(𝑟𝑟), with re-
al chemical potential 𝑖𝑖 > 0, at 𝑟𝑟 → ∞ is determined by the nonlinear term. In particu-
lar, for 𝑔𝑔(𝑟𝑟) = 𝑔𝑔0𝑟𝑟𝛼𝛼, with 𝛼𝛼 > 𝐷𝐷, the asymptotic form of the solution is 𝑢𝑢𝑔𝑔→∞ ≈
(𝑖𝑖/2𝑔𝑔0)1 2⁄ 𝑟𝑟−𝛼𝛼/2 at 𝑟𝑟 → ∞, for 𝑖𝑖 > 0. Such states can be interpreted as solitons with 
convergent energy (integral norm), provided that 𝛼𝛼 > 𝐷𝐷, which is a fundamental 
condition for self-trapping for this class of models. In principle, such 2D and 3D 
models may be implemented in BECs by means of Feshbach resonances controlled by 
magnetic [144,145] or optical [146,147] fields with appropriate spatial profiles 
[148,149]. The 2D version of the model may also be realized in optics, provided that 
the local nonlinearity of the material can be shaped, for instance by adjusting the 
concentration of nonlinearity-inducing dopants [150], or in hollow photonic-crystal 
fibers infiltrated with index-matching liquids having different nonlinearities. 

Systems with spatially inhomogeneous repulsive nonlinearities of this type 
have been theoretically shown to support a variety of stable 2D and, also, 3D soli-
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tons. These can be stable vortex solitons with high values of the topological charge 𝑆𝑆 
[137,140], which are usually highly unstable in other systems. In contrast, 3D vortex 
solitons predicted in these systems were found to be robust. In particular, the sudden 
application of a torque does not destroy them, but rather casts them into a state of 
stable precession, thus providing a remarkable example of a vortex-soliton gyroscope 
[140]. The model in Eqn. (3) also gives rise [141] to stable self-trapped toroidal vortex 
rings or hopfions [6], which carry the usual topological charge (winding number), 𝑆𝑆, 
and an intrinsic twist of the torus, characterized by an independent topological 
charge, 𝑚𝑚. Illustrative examples are shown in Figs. 3(a) and 3(b). States such as hop-
fions were considered impossible in previously studied scalar (single-field) settings. 
Hybrid 3D vortex solitons, composed of two vertically separated vortex states with 
equal 𝑆𝑆1 = 𝑆𝑆2 = 1 or opposite 𝑆𝑆1 = −𝑆𝑆2 = 1 topological charges, may exist in aniso-
tropic `peanut-shaped‘ nonlinearity landscapes [142], representing, in the case of 𝑆𝑆1 = −𝑆𝑆2 = 1, the first example of 3D composite vortex-antivortex modes. These are 
shown in Figs. 3(c) and 3(d). The realization of all these fascinating theoretical predic-
tions depends on the practical feasibility of the models, which is still awaiting exper-
imental confirmation. 
 
[H1] Multidimensional states in atomic BECs 
 
[H2] Stabilization by optical lattices 
 

Similar to the situation in nonlinear optics, a universal method for the stabiliza-
tion of matter-wave multidimensional solitons, including vortical ones, is provided 
by the use of periodic potentials. These can be induced as optical lattices [151]. How-
ever, a fundamentally new feature is the possibility to create 3D potentials. These 
have been used in many experiments, such as the observation of the Mott-insulator 
phase [152,153], but, thus far, not for the creation of solitons, despite several im-
portant theoretical predictions. 

In particular, stable 2D gap solitons, including states with embedded vorticity, 
were predicted to exists in BECs with repulsive nonlinearity and a square-lattice po-
tential over  a decade ago [154-156]. Such solitons feature unique physical properties. 
For example 2D gap solitons are mobile, with a negative effective mass (which is a 
generic property of solitons of the gap type [94,151]). As a result, an additional trap-
ping harmonic-oscillator potential superimposed on the periodic lattice expels the 
solitons, while the anti-trapping potential, with the inverted sign, supports stable 
motion of the gap soliton along an elliptic trajectory [157]. Bright 2D solitons have 
also been predicted to exist in a stable form in radial lattices, including radial poten-
tials shaped like Bessel functions [158], or those represented by periodic functions of 
the radial variable, such as cos (𝑖𝑖𝑟𝑟 + 𝛿𝛿) with wavenumber 𝑖𝑖 and phase shift 𝛿𝛿 [159]. 
Solitons created in such potentials may be strongly localized objects, capable to per-
form  motion along circular trajectories in annular potentials  [158]. These and several 
other related theoretical predictions for multidimensional solitons in BECs are yet to 
be experimentally demonstrated. 
 
[H2] Stabilization by SOC  
 

Progress in predicting settings that may support stable 2D and 3D matter-wave 
solitons has been boosted by the observation of SOC in binary BECs [160,161]. A 
noteworthy result is that SOC has been theoretically shown to create the ground state 
in the 2D GPE with attractive nonlinearity, in the form of solitons of the SV (semi-
vortex) and MM (mixed-mode) types [162-164]. In the absence of SOC, the free-space 
GPE in 2D has no ground state (it is formally replaced by the collapsing solution). 
The evolution of binary BECs under the action of SOC is modelled by the coupled 
GPEs for the components 𝜓𝜓±(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) of the mean-field wave function [160-164], which 
take the following form in 2D: 
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𝑖𝑖 𝜕𝜕𝜕𝜕+𝜕𝜕𝜕𝜕 = − 12∇2𝜓𝜓+ − (|𝜓𝜓+|2 + 𝑖𝑖|𝜓𝜓−|2)𝜓𝜓+ + (𝜆𝜆R𝒟𝒟(−) − 𝑖𝑖𝜆𝜆D𝒟𝒟(+))𝜓𝜓−,𝑖𝑖 𝜕𝜕𝜕𝜕−𝜕𝜕𝜕𝜕 = − 12∇2𝜓𝜓− − (|𝜓𝜓−|2 + 𝑖𝑖|𝜓𝜓+|2)𝜓𝜓− + (𝜆𝜆R𝒟𝒟(+) − 𝑖𝑖𝜆𝜆D𝒟𝒟(−))𝜓𝜓+,

 (4) 

 
where the SOC operators are 𝒟𝒟(±) = 𝜕𝜕/𝜕𝜕𝑥𝑥 ± 𝑖𝑖𝜕𝜕/𝜕𝜕𝑦𝑦, with real coefficients 𝜆𝜆R,D for the 
SOC terms of the Rashba and Dresselhaus types, respectively, and 𝑖𝑖 is the relative 
strength of the cross-attraction between the two components. 

In particular, solitons of the SV type with chemical potential 𝑖𝑖 are represented, 
in terms of the polar coordinates, by an ansatz which is compatible with Eqn. (4): 𝜓𝜓+ = 𝑒𝑒−𝑖𝑖𝑖𝑖𝜕𝜕𝜙𝜙+(𝑟𝑟), 𝜓𝜓− = 𝑒𝑒−𝑖𝑖𝑖𝑖𝜕𝜕+𝑖𝑖𝑖𝑖𝑟𝑟𝜙𝜙−(𝑟𝑟), where functions 𝜙𝜙±(𝑟𝑟) are finite at 𝑟𝑟 = 0, de-
caying as ∼ exp[−(−2𝑖𝑖)1 2⁄ 𝑟𝑟] at 𝑟𝑟 → ∞. The SV component 𝜓𝜓− is the vortical one, 
whereas 𝜓𝜓+ carries zero vorticity (hence its semi-vortex nature). 

An essential effect introduced by SOC is the breaking of the scaling invariance 
of the 2D GPE, which is the source of the above-mentioned degeneracy of the TS 
(which means that all TS solutions have the single value of the norm). As a result, the 
coupled GPEs in Eqn. (4) give rise to a family of solitons with values of the norm that 
completely fill the interval from 0 up to norm 𝑁𝑁T of the degenerate family of TSs, as 
shown in Fig. 4(a). Because  𝑁𝑁T  is the threshold necessary for the onset of the critical 
collapse, solutions whose norm falls below 𝑁𝑁T  cannot initiate collapse, which secures 
their stability.  Thus, SVs become the ground state that is missing in the usual self-
attractive GPE in 2D, as mentioned above. Furthermore, the entire SV branch satisfies 
the VK stability criterion, 𝑑𝑑𝑖𝑖/𝑑𝑑𝑁𝑁 < 0. Both the SVs and MMs exist at all values of pa-
rameters, but the SVs are stable at 𝑖𝑖 ≤ 1 and unstable at 𝑖𝑖 ≥ 1, and the MMs are pre-
dicted to be stable exactly in the opposite case. The physical origin of this phenome-
non arises from the fact that the SV and MM species realize the energy minimum at 𝑖𝑖 ≤ 1 and 𝑖𝑖 ≥ 1, respectively [162]. Increasing the Dresselhaus coefficient in Eqn. (4), 𝜆𝜆D, while keeping 𝜆𝜆R = 1, eventually leads to delocalization (disappearance of soli-
tons) at a critical point [164]. 

Soliton mobility in the framework of Eqn. (4) is a nontrivial issue, as SOC 
breaks the Galilean invariance of the usual GPE. Numerical analysis has shown that 
MMs exhibit mobility in one direction (𝑦𝑦 in Eqn. (4)), up to a critical value of the ve-
locity, beyond which the soliton's amplitude vanishes. For the SVs, the critical veloci-
ty was found to be extremely small [162]. 

Regarding 3D states, SOC cannot suppress the supercritical collapse. Neverthe-
less, the 3D generalization of Eqn. (4) has been shown numerically to give rise to 3D 
metastable soliton states, which realize local energy minima, being therefore stable 
against small perturbations [165]. As well as in the 2D geometries, 3D systems give 
rise to metastable solitons of the SV and MM types at 𝑖𝑖 ≤ 1 and 𝑖𝑖 ≥ 1, respectively, 
as illustrated in Figs. 4(b) and 4(c). All results described in this section are awaiting 
experimental exploration. 
 
[H2] Giant vortex solitons in binary BECs 
 

Theoretical efforts have been devoted to elucidate a physically realizable BEC 
model that may support stable vortex solitons with high values of vorticity 𝑆𝑆. Note 
that, in SOC systems, all such states have been shown to be unstable [162]. A relevant 
2D model, which produces stable vortex solitons with high values of 𝑆𝑆 was put for-
ward in Ref. [166], in the form of coupled GPEs for wave functions representing two 
different hyperfine atomic states in an ultracold bosonic gas, resonantly coupled by a 
magnetic component, 𝐻𝐻, of a microwave electromagnetic field. In turn, the micro-
wave field is generated by the Poisson equation with the respective source density, 𝜓𝜓+𝜓𝜓−∗ . Eliminating the magnetic field by means of the Green function of the 2D Pois-
son equation, the corresponding governing equation can be cast in the form featuring 
an effectively nonlocal interaction (possibly combined with the local nonlinearity): 
 

 𝑖𝑖 𝜕𝜕𝜕𝜕±𝜕𝜕𝜕𝜕 = − 12∇2𝜓𝜓± − 𝛽𝛽|𝜓𝜓±|2𝜓𝜓± + Γ𝜓𝜓∓∫ 𝜓𝜓±(𝐫𝐫′)𝜓𝜓∓∗ (𝐫𝐫′)ln|𝐫𝐫 − 𝐫𝐫′|𝑑𝑑𝐫𝐫′, (5) 
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where Γ is the strength of the feedback of the wave function onto the magnetic field, 
and 𝛽𝛽 is the strength of the contact self-interaction of the BEC. Solving Eqn. (5) nu-
merically produces vortex solitons which are predicted to be stable, at least, up to 𝑆𝑆 = 5 (hence the term `giant vortices‘) [166]. Illustrative examples are shown in Fig. 5. 
Similar to the above-mentioned exciton-polariton system, these are hybrid solitons, 
as they include both the matter-wave and field components. Their experimental ob-
servation is still an open question. 
 
[H2] Stable quantum droplets in binary BECs 
 

A recent breakthrough opens up a whole new direction in multidimensional 
self-trapping. This is the creation of a new class of quantum liquids [24-29], which are 
fully coherent and extremely diluted (their density is of the order of ~1014 at-
oms/cm3, which is eight orders of magnitude smaller than that of liquid helium [24]). 
Already in 2002, it was pointed out [167]  that bosonic droplets (or `boselets‘) could 
in principle be created if the mean-field (MF) energy of self-attraction is compensated 
by three-body repulsive terms, resulting in a minimum of the energy as a function of 
density, although such mechanism was not used in practice. Then, in 2015 it was 
predicted that the repulsive Lee-Hung-Yang (LHY) corrections [20], induced by 
quantum fluctuations around the MF state, can be exploited for the stabilization of 
the two-component condensates [21,22] (see also Ref. [168]). In 3D geometries, the 
interactions should be tuned in such a way that the self-repulsion in each component 
is slightly overbalanced by the attraction between the components [21]. Note that the 
strength of interactions can be tuned by exploiting a Feshbach resonance. Such sys-
tems would be unstable in models based solely on the MF approximation, but the 
LHY corrections can make them stable. 

Unlike classical liquids, in which the  equilibrium density is uniquely deter-
mined by the interaction potential (typically of the Van der Waals type), in quantum 
droplets it is controlled by the balance of the MF and LHY terms, and thus can be 
tuned [169]. The diluteness of the quantum droplets justifies the applicability of per-
turbation theory, in contrast to usual quantum liquids where such an approach is not 
valid. The separation of scales of the underlying soft and hard modes allows the der-
ivation of the LHY terms in local form, depending solely on the density. For a mixed 
binary fluid with equal wave functions 𝜓𝜓 of the two components, this implies addi-
tion of a self-repulsive quartic term with coefficient 𝑔𝑔LHY > 0 to the 3D GPE with the 
effective MF cubic self-attraction, with respective coefficient 𝑔𝑔 > 0 Ref. [21], as: 
 

 𝑖𝑖 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = − 12∇2𝜓𝜓 − 𝑔𝑔|𝜓𝜓|2𝜓𝜓 + 𝑔𝑔LHY|𝜓𝜓|3𝜓𝜓. (6) 

 

Exact Monte-Carlo calculations [22,172,173,174] and approximate variational es-
timates [175] have been found to agree with the predictions of Eqn. (6) in the limit of 
weak interactions. For stronger interactions the corrections due to the finite effective 
range can be significant [174,175], thus an empiric energy functional taking into ac-
count such effects was proposed [174]. Modifications of the system for Rabi-coupled 
[170] and SOC-coupled [30] mixtures, as well as Bose-Fermi systems [171], were re-
cently elaborated. The reduction of the 3D model in Eqn. (6) to lower dimensions, 
under the action of tight confinement, has been reported [22]. In the case of equal 
wave functions of the two components as described by Eqn. (6), the 2D model 
amounts to the single GPE with a nonlinear term ∼ |𝜓𝜓|2𝜓𝜓ln|𝜓𝜓|2, which implies self-
attraction for small densities |𝜓𝜓|2, and repulsion for large |𝜓𝜓|2. Such nonlinearity has 
been theoretically shown to give rise to stable fundamental states [22,30], as well as 
to states with embedded vorticity with topological charge up to 𝑆𝑆 = 5 Ref. [176]. The 
1D geometry is special in that the beyond-MF correction turns out to be effectively 
attractive, ~ − |𝜓𝜓|𝜓𝜓, thus the quantum liquid is formed when the MF term is slightly 
repulsive [22,177]. 
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Ultradilute quantum droplets have been realized experimentally recently [24-
26]. Single-component dipolar condensates [23,178-184] exhibit a competition be-
tween short-range and anisotropic long-range interactions. The interactions are 
tuned in such a way that the MF energy is slightly negative, whereas the repulsive 
LHY corrections stabilize the system [181,182] against collapse [183]. Unlike funda-
mental dipolar quantum droplets, their counterparts with embedded vorticity were 
found to be unstable [184]. 

Stable single-component dipolar quantum droplets were created recently in 
condensates of Dy164  Ref. [24,25] and Er166  Ref. [26]. It was experimentally verified 
that the stabilization mechanism indeed originates from quantum fluctuations [25]. 
Due to the nature of the dipole-dipole interactions, the dipolar quantum droplets fea-
ture strong anisotropy, as shown by the 3D simulations illustrated in Fig. 6(a). The 
creation of 3D states in gases with contact interactions was recently demonstrated 
experimentally [27-29], using binary mixtures of two hyperfine atomic states of K39 . 
In these experiments, the necessary balance between the repulsive and attractive in-
tra- and inter-component interactions was achieved by means of the Feshbach reso-
nance. The experiments were performed both in the presence of a strong confining 
potential, applied in one direction, which leads to the formation of quasi-2D states 
[27,28], and in the absence of the confinement, which allowed the observation of iso-
tropic droplets [29]. The boundary between the quantum-droplet and usual soliton 
regimes was experimentally mapped in Ref. [28]  

Recently stable quantum droplets with embedded vorticity in the full 3D model 
have been theoretically predicted [185]. The corresponding solution to Eqn. (6) with 
chemical potential 𝑖𝑖 and integer vorticity 𝑆𝑆 has the form of 𝜓𝜓 = exp(−𝑖𝑖𝑖𝑖𝑡𝑡 +𝑖𝑖𝑆𝑆𝑖𝑖)𝜙𝜙(𝜌𝜌, 𝑧𝑧) in cylindrical coordinates (𝑧𝑧,𝜌𝜌,𝑖𝑖), where the real function 𝜙𝜙(𝜌𝜌, 𝑧𝑧) decays 
exponentially at 𝜌𝜌 → ∞ and |𝑧𝑧| → ∞, and vanishes as ~𝜌𝜌|𝑆𝑆| at 𝜌𝜌 → 0. The family of 
vortical states with 𝑆𝑆 = 1 was found to be partly stable and a narrow stability region 
was also found to exist for  𝑆𝑆 = 2. It was also found that vortex solitons are stable 
when the norm exceeds a minimum value which scales as ~𝑆𝑆6, which explains the 
difficulty of finding stable modes with 𝑆𝑆 > 1 (in the 2D model, with the above-
mentioned nonlinearity, ∼ |𝜓𝜓|2𝜓𝜓ln|𝜓𝜓|2, the corresponding scaling is 𝑆𝑆4, making it 
possible to construct stable states up to 𝑆𝑆 = 5 Ref. [176]). 

Estimates indicate that the experimental creation of such states in a mixed con-
densate 87Rb-41K requires densities of the order of ~5 × 1015 atoms/cm3. Reaching 
such states experimentally is challenging at present, but they should become achiev-
able as the state of the art advances. 
 
[H1] Multidimensional solitons in liquid crystals and liquid ferromagnets 
 

Recent experiments in liquid crystals and in ferrofluids, made of colloidal sus-
pensions of disk-shaped magnetic nanoparticles [186-188] have allowed the study of 
static material structures (rather than propagating fields discussed in all previous 
sections). Topologically structured 3D solitons were created, such doughnut-shaped 
torons (twisted cylinders closed on themselves in the form of tori similar to the 
above-mentioned hopfions in the BEC model), which coupled to the surrounding 
uniform field, as illustrated by Figs. 7(a)-7(c). In spite of the mathematical similarity 
to the matter-wave hopfions, the nature of these 3D states is drastically different 
from those addressed in previous sections as they occur in completely different phys-
ical settings, as explained below. 

In nematic liquid crystals, the hopfions in the form of torons are realized as fi-
nite-energy configurations of the corresponding order parameter (director field), 
characterized by an intrinsic knotted structure, with different particular knotted con-
figurations identified by values of the corresponding Hopf topological number, 
which represents different types of states [186]. Each particular type may be charac-
terized by the so-called pre-image: a closed loop in the 3D space, which exhibits the 
same knottedness as carried by the respective toron in the liquid-crystal medium. In 
Ref. [186], various species of the torons were created experimentally, using laser 
tweezers to set the necessary configurations of the order parameter, and an optical 
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imaging technique was employed to observe the shapes of the respective 3D states. 
The actual size of the modes created in the nematic samples is measured on the mi-
cron scale. Thus, pre-images of these 3D toron modes were reconstructed from the 
experimental data and  reproduced numerically using the Hamiltonian of the nemat-
ic liquid crystals, expressed in terms of the local order parameter.  As stated by the 
Hobart-Derrick theorem [189,190], rigorous energy arguments demonstrate that 3D 
solitons, built of a single real scalar field, cannot be stable, unless the underlying 
Hamiltonian density includes higher-order spatial derivatives, in addition to the 
standard squared-gradient term. The stability of torons/hopfions found in Ref. [186]  
stems from the fact that they are based on the vectorial order parameter. 

Similar experimental and theoretical results were reported in Ref.[188] for hop-
fions  created in liquid-colloidal ferromagnets, in which the same role as the local di-
rector in the above-mentioned liquid crystals is played by the local direction of the 
magnetization (whereas its absolute value is fixed), the respective Hamiltonian being 
similar to its liquid-crystal counterpart. We also mention the recent experimental cre-
ation of a 3D stable nontopological soliton, in the form of a confined region of oscil-
lating nematic director. It propagates in the liquid crystal at a constant velocity, in the 
presence of dc electric field, perpendicular to the field and to the original orientation 
of the director [191]. Topological modes, such as Skyrmions in magnetic media [192] 
and nematic liquid crystals [193], may also move, in principle with much larger 
speeds than the nontopological solitons. 

Despite the rather specific nature of these systems, they are important as a way 
to experimentally construct distinct species of fully macroscopic and perfectly stable 
3D self-trapped topologically organized states (and non-topological 3D solitons as 
well) under well-controlled conditions. In addition, the use of well-established un-
derlying Hamiltonians makes it possible to accurately identify the observed modes 
as expected complex topological states. An example of the cross-fertilization between 
different areas is the potential existence of 3D structures defined by knotted core 
lines of the mean-field wave-function patterns, recently predicted for BECs loaded 
into an optical lattice [194].  
 
[H1] Conclusion  
 

This paper presents a brief overview of the recent progress in the creation of 
dynamically stable multidimensional soliton-like states, with a focus on optical mate-
rials, matter-wave condensates and ultradilute quantum liquids,  liquid crystals and 
ferrofluids. Despite not being exhaustive, the Review aims at bridging different 
communities in an attempt to foster the exchange of ideas and stimulate the imple-
mentation of concepts, originally developed in a specific physical setting, in com-
pletely different ones. The motivation is harnessing the unique opportunities offered 
by multidimensional settings for the creation of localized states with rich internal 
structures that are not possible in 1D geometries.  

The conclusion drawn from more than three decades worth of efforts is that 
theoretical predictions are far more advanced than experimental demonstrations. 
Various 2D states (both spatial and spatio-temporal ones) have been observed exper-
imentally, but robust 3D states are more difficult to create. The main challenge to be 
overcome is the trend of multidimensional states to be strongly unstable. This is in 
sharp contrast to 1D solitary waves, which exist as robust states in many systems and 
may be used in practical applications. An example is the recent use of dissipative 
Kerr temporal solitons for the generation of robust frequency combs that are of par-
amount importance to high-precision techniques in a variety of scientific and techno-
logical areas [195]. 

A recent breakthrough is the experimental creation of quantum droplets that 
are stable in 2D and 3D geometries due to the effects of quantum fluctuations. Be-
yond their intrinsic significance, these observations open up an important direction 
for exploration of concepts directly linked to multidimensionality.  Along these lines, 
we note that over the past decade, photonic settings and BECs in optical lattices 
proved to be powerful tools to mimic the behaviour of other physical systems that 
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are much harder to access experimentally. The research about the formation of mul-
tidimensional self-trapped states should be seen from a similar perspective, hence its 
fundamental and far-reaching importance.  
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Fig. 1. Observed excitation of short-lived fundamental and vortex light bullets in 
hexagonal waveguiding arrays. The top panels show the isointensity levels of the 
experimentally measured spatiotemporal structure of (a) an excited fundamental 
light bullet centered on a single waveguide [95] and (b) a vortex light bullet occu-
pying three waveguides [97] . The bottom panels show the corresponding time-
integrated output intensity distributions illustrating the spatial structure of the bul-
let (left side), and temporal cross-correlation traces in the central waveguide for the 
fundamental light bullet, or in three excited waveguides for the vortex bullet (right 
side). The overlap of the traces in the latter confirms that wave packets forming the 
bullet propagate synchronously. The bullets were excited at peak powers ~0.5 𝑀𝑀𝑀𝑀 
(a) and ~1.6 𝑀𝑀𝑀𝑀 (b) with femtosecond pulses. Thus, in both cases, higher-order ef-
fects led to their decay. I is the intensity and in all panels τ is the time. Panel (a) 
adapted with permission from Ref. [95]; panel (b) adapted with permission from 
Ref. [97]. 
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Fig. 2. Predicted light bullets in radially-symmetric and complex potentials. 
Isosurface plots (top) and spatial distributions of the field's absolute value at 𝑡𝑡 = 0 
(bottom) show extended (panel a) and strongly localized (panel b) stable funda-
mental bullets supported by the two-dimensional Bessel lattice, as in Ref. [98], as 
well as vortex bullets with topological charges +1 (panel c) and −1 (panel d), sup-
ported by a two-dimensional periodic 𝒫𝒫𝒫𝒫-symmetric lattice, as in Ref. [100]. Note 
the symmetry imposed by the lattice potential on the spatial profile of the bullets. 
In the 𝒫𝒫𝒫𝒫-symmetric lattice, the shape of the bullet depends on the sign of its topo-
logical charge. Panels (a),(b) adapted with permission from Ref. [98]; panels (c),(d) 
reproduced with permission from Ref. [100]. 
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Fig. 3. Predicted hopfions and hybrid 3D vortex solitons. In theory inhomogene-
ous repulsive-nonlinearity landscapes provide rich possibilities for confinement and 
stabilization of 3D solitons that are either unstable or do not even exist in other set-
tings. Examples shown here by isosurface density plots include stable hopfions, 
which are twisted tori with vorticity 𝑆𝑆 = 0 (a) and 1 (b), and the intrinsic twist of the 
torus with topological number 𝑚𝑚 = 1 in the model with the anti-Gaussian nonline-
arity profile, as per Ref. [141], as well as stable hybrid vortex solitons, whose upper 
and lower parts can carry equal 𝑆𝑆1 = 𝑆𝑆2 = 1 (c) or opposite 𝑆𝑆1 = −𝑆𝑆2 = 1 vorticities 
(d), in a model where the repulsive nonlinearity grows at 𝑟𝑟 → ∞, while having two 
local minima on the 𝑧𝑧 axis, as in Ref. [142]. Panels (a),(b) reproduced with permis-
sion from Ref. [141]; panels (c),(d) reproduced with permission from Ref. [142]. 
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Fig. 4. Predicted stable multidimensional solitons in Bose-Einstein condensates 
(BECs) with spin-orbit coupling. (a) the chemical potential versus norm for the 2D 
semi-vortex (SV) solitons predicted to exist in the model in Eqn. (5) with 𝜆𝜆R = 1, 𝜆𝜆D = 0, 𝑖𝑖 = 0, as in Ref. [162]. The entire family is predicted to be stable in accord-
ance with the Vakhitov-Kolokolov stability criterion. The limit value 𝑁𝑁 = 𝑁𝑁T at 𝑖𝑖 →−∞ is the norm of the degenerate Townes’ soliton family. (b) and (c) sets of three 
isosurface density plots display examples of 3D metastable solitons of SV (b) and 
mixed mode (c) types in BECs with spin-orbit coupling, as in Ref. [165]. Panel (a) 
adapted with permission from Ref. [162]; panels (b),(c) adapted with permission 
from Ref. [165]. 
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Fig. 5. Predicted vortex solitons in the binary Bose-Einstein condensates coupled 
by a microwave field. Stable (panel a and b) and unstable (panel c and d) 
evolution of the hybrid vortex solitons with topological charges 𝑆𝑆 = 1 and 5  (β is 
the strength of the attractive contact interaction, see Eqn. (5)). The unstable solutions 
are predicted to split into necklace-like patterns, which may keep their shape for a 
while in the course of the subsequent evolution [166]. Figure reproduced with 
permission from Ref. [166]. 
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Fig. 6. Observed self-sustained multidimensional quantum droplets. Dipolar 
droplets that were predicted to form in the condensate of 164Dy atoms [23] before (a) 
and after (b) turning off the trapping potential and adjusting the s-wave scattering 
length. The black lines show the shape of the external trap when it is present. (c) 
Experimental observation of quantum droplets in a two-component condensate of 
39K atoms [27]: expansion of a two-component gas (top row), stable self-bound evo-
lution of two-component liquid (middle row) and collapse of a single attractive 
component (bottom row). The sign of the scattering length 𝛿𝛿𝛿𝛿 = 𝛿𝛿↑↓ + (𝛿𝛿↑↑𝛿𝛿↓↓)1/2 is 
indicated for each row, where 𝛿𝛿↑↑,𝛿𝛿↓↓ and 𝛿𝛿↑↓ are intra- and inter-state scattering 
lengths (the state is indicated by arrows ↑ or ↓), 𝛿𝛿 is the scattering length for single-
component condensate. The interplay between the mean-field interactions and 
quantum fluctuations stabilizes the droplets. Panels (a),(b) reproduced with permis-
sion from Ref. [23]; panel (c) reproduced with permission from Ref. [27]. 
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Fig. 7. Observed topological solitons with differently knotted nematic fields in a 
liquid crystal. (a) A closed-loop preimage (regions in the 3D liquid-crystal sample 
that have the same orientation of the physical field), and isosurfaces drawn at 𝛿𝛿𝜕𝜕 =
0, illustrating the structure of 3D torons with complex linking, and 3𝜋𝜋 (b) or 5𝜋𝜋 (c) 
twist between their central axes and the far-field periphery, as in Ref. [186]. S2 is (a) 
is the two-dimensional sphere used to define the core of the preimage. Surface col-
ours denote different azimuthal orientations in the (𝑥𝑥, 𝑦𝑦) plane of the nematic direc-
tor 𝐧𝐧(𝐫𝐫) in the topological soliton. Figure reproduced with permission from Ref. 
[186]. 
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Glossary 
 
 
Feshbach resonance 
The effect which makes it possible to change the magnitude and sign of the scattering 
length characterizing collisions between atoms in quantum gases. It is a powerful ex-
perimental tool enabling the control of the strength and sign of the effective nonline-
arity in Bose-Einstein condensates (as it concerns both self- and cross- interactions, in 
the case of two-component condensates). 
 
hopfion 
A class of 3D localized modes, in the form of tori carrying the global vorticity, which 
are additionally twisted in the torus' cross section. This mode carries two independ-
ent topological charges (winding numbers), one representing the overall vorticity 
and the other accounting for the intrinsic twist. 
 
mixed modes 
Stable 2D and 3D solitons in two-component Bose-Einstein condensate with the spin-
orbit  coupling between the components. Unlike semi-vortices, each component of 
such a mode is a mixture of terms with zero vorticity, and vorticities (+/-)1. 
 
PT symmetry 
The special symmetry of evolution equation or non-Hermitian Hamiltonian govern-
ing dissipative system under the transformation of time reversal and parity inversion 
(flip of the sign of spatial coordinate). In the so-called unbroken PT phase, such Ham-
iltonian shows an entirely real energy spectrum in spite of being non-Hermitian. 
 
pseudopotential 
An effective potential which is induced by the nonlinearity whose local strength is 
subject to spatial modulation. 
 
skyrmions 
Complex 3D states in various two-component field-theory systems, which carry  
two independent topological numbers. They were introduced by Skyrme as a  
classical-field model which effectively describes barions, and may be derived  
as a low-energy (semi-classical) limit of quantum chromodynamics. 
 
semi-vortex 
A stable two-component 2D or 3D soliton in two-component spin-orbit-coupled  
Bose-Einstein condensate, in which, unlike mixed modes, one component has zero 
vorticity, whereas the other  one carries vorticity 1. 
 
spinor Bose-Einstein condensate 
A condensate composed of two or several components, which may be considered 
as a set forming a spinor wave function, corresponding to pseudo spin 1/2 (two 
components), 1 (three components), or 2 (five components). 
 
 
spin-orbit coupling 
Originally it referred to the coupling between the spin of electrons  
in semiconductors and their motion through the crystalline electrostatic field. 
In the context of Bose-Einstein condensate, spin-orbit coupling is realized as linear 
mixing between two components  
of a binary condensate through first spatial derivatives of the respective wave 
functions. 
 
topological insulator 
Originally, a dielectric material (insulator) possessing complete gap in the bulk, 
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but admitting conductance through in-gap edge states, existing due to peculiarities 
of the intrinsic topological structure of the material. This  
name is also used for photonic settings which emulate the same phenomenology in 
terms of light transmission. 
 
toron 
A toroidal localized mode which may be created in liquid crystals and ferrofluids. 
It is organized in essentially the same way as a hopfion (a twisted torus, which  
may carry overall vorticity). 
 
vortex soliton 
A 2D or 3D soliton represented by a complex wave function whose phase carries an 
integer winding number (vorticity, alias the topological charge), and has the  
amplitude vanishing at the central pivot. 
 
X-wave 
A delocalized linear or nonlinear 2D wave with the local power featuring an X shape 
profile, which may be supported by defocusing nonlinear optical material when 
signs of dispersion and diffraction coefficients are opposite. 
 
Bessel and Airy beams 
Bessel beams represent two-dimensional nondiffracting solutions of the 
Helmholtz equation in circular cylindrical coordinates, where this equation is sepa-
rable. Airy beams are nondiffracting one- or two-dimensional beams that bend along 
parabolic trajectory upon propagation, while maintaining their functional shapes. 
Their combinations can be used to construct nondiffracting three-dimensional wave-
packets. 
 
Tandem structures 
Optical tandem structures represent periodic stacks of materials with different pa-
rameters, such as refractive index, nonlinearity, and dispersion, where widths of in-
dividual layers are usually small in comparison with average diffraction and disper-
sion lengths. 
 
Kerr nonlinearity 
Universal optical nonlinearity occurring in dielectric media that yields a correction to 
the local refractive index proportional to the intensity of the electromagnetic wave. It 
is represented by the cubic self-attractive term in the corresponding nonlinear Schrö-
dinger equation. 
 


