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ABSTRACT 

This perspective article highlights the challenges in the theoretical description of photoreceptor 

proteins using multiscale modelling, as discussed at the CECAM workshop in Tel Aviv, Israel. 

The participants have identified grand challenges and discussed the development of new tools 

to address them. Recent progress in understanding representative proteins such as green-

fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin are presented, 

along with methodological developments. 
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INTRODUCTION  

Photoreceptor proteins are light-sensitive proteins involved in sensing and response to light in a 

variety of organisms.1 In nature, these proteins fulfill important biological functions, such as 

regulation of circadian rhythms, phototaxis, and light-oriented growth in plants. Photoreceptor 

proteins absorb light through small organic chromophores embedded within the protein matrix. 

The chromophore typically absorbs light at a specific wavelength and uses this radiant energy 

to trigger the protein response, which ultimately leads to completing a biological function. From 

a biotechnology viewpoint, these proteins represent potential candidates for use as efficient 

biological light converters. They have already been successfully utilized in a number of 

technological applications.2,3 For example, the green fluorescent protein and its derivatives are 

used to visualize spatial and temporal information in cells with molecular-level resolution. More 

recently, photoreceptor proteins have been used in the field of optogenetics, which allows light-

activation of specific cells in living organisms.4 In this context they have been successfully 

aiding researchers investigating biological conditions such as depression, Parkinson’s disease, 

sleep disorders and schizophrenia. Despite the ground-breaking nature of this utilization in life 

science and other disciplines, our understanding of photoreceptors' function at molecular level 

is still incomplete. These gaps in knowledge, which hinder the development of new 

technologies, can be filled with the help of computer simulations of photoreceptors using 

multiscale modelling.5 

Due to the large size of these proteins, the hybrid quantum-mechanics/molecular mechanics 

(QM/MM) embedding has been the main tool used to model photoreceptor proteins. QM/MM 

allows one to accurately model the chromophore and surrounding environment while remaining 
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computational feasible.6–8 In this scheme, the protein environment is treated with classical force 

fields and the chemically active part of the chromophore and its local environment are treated 

with more expensive quantum methods. Hence, the first step in using this multiscale approach 

is to determine how to appropriately partition the QM and MM regions. An additional challenge 

is to identify an appropriate QM method and force field parameters, if any exist at all. The 

QM/MM embedding has been widely applied to many families of photoreceptors involving 

retinal proteins 9, green fluorescent proteins10, photoactive yellow protein11, phytochromes12, and 

flavin binding proteins13,14 (Fig. 1). 

 

Fig. 1 Photoreceptor proteins addressed in this perspective article. A) Photoactive Yellow Protein with p-

coumaric acid as a chromophore; B) Rhodopsin with a retinal chromophore; C) Green Fluorescent Protein with a 

HBDI chromophore; D) Cyanobacteriochrome with phycocyanobilin as a chromophore; E) Phytochrome with a 

Biliverdin chromophore. 

 

Furthermore, the photocycle of typical photoreceptor proteins involves multiple competing 

processes15,16 illustrated in Fig. 2. Photoexcitation promotes the chromophore into an 

electronically excited state characterized by a different electron distribution than in the ground 

state. Different electron distributions result in different bonding patterns and, consequently, 
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different shapes of the PESs. Ensuing excited-state dynamics often entail isomerization, 

conformational changes, proton and electron transfer, as well as breaking and forming  bonds. The 

relaxation pathways include fluorescence, internal conversion, and intersystem crossing. 

Function of natural and engineered photoactive proteins is determined by the interplay between these 

processes, which entail coupled electronic and nuclear dynamics. Understanding how these 

quantum processes unfold in systems with many degrees of freedom and coupled to the 

environment, is of great fundamental and practical importance and quantitative theoretical 

modeling10,14 is the key tool for deriving mechanistic insights. Thus, theory is instrumental for 

understanding these fascinating species and for the design of novel motifs for practical 

applications. But in order to be useful, the theory should be able to describe multiple interacting 

electronic states, include the effect of the environment, and be able to provide not only accurate 

energies, but also nuclear gradients, interstate properties (i.e., non-adiabatic and spin-orbit 

couplings), as well as other properties relevant for spectroscopy. Furthermore, for a complete 

description of the photocycle, one needs to be able to execute dynamical simulations including 

electronic transitions between multiple states. The main challenge here lies in the electronic 

structure theory and software: despite a tremendous progress16, much more needs to be done in 

terms of devising more robust and more versatile electronic structure models for excited states 

and implementing them in efficient and practical software.17
 

In September 2019 leading experts in the field of computational modelling of photoreceptor 

proteins met for a Centre of Europeen de Calcul Atomique et Moleculaire (CECAM) meeting 

which took place in Tel Aviv (Israel). During this CECAM workshop titled “Frontiers in 

Multiscale Modelling of Photoreceptors” the participants identified the challenges currently 

facing the field and discussed the development of new tools to address them. Many specific 
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points were examined in detail including how to determine the correct protonation states of the 

chromophore within the protein, the effects of electronic polarization on the chromophore and 

resulting absorption spectra, QM/MM protocols for partitioning systems and sampling, and the 

computational software used in these types of simulations. In the following we present several 

contributions that were presented at the CECAM workshop Tel Aviv. The contributions are 

organized in three categories: 1) challenges in modelling of photoactive proteins, 2) application 

of multiscale methods to photoactive proteins and  3) methodological development and software 

updates. 

 
Fig. 2 Excited-state processes in photorecptor proteins.  The photocycle of a chromophore, an acting core of a 

photoreceptor, involves various competing processes: fluorescence, radiationless relaxation, inter-system crossing 

(not shown), excited-state chemical transformations and electron transfer. Reproduced with permission from Ref. 

15 

 

1. Challenges in modelling of photoactive proteins 

     1.1 Lessons from recent computational studies of GFP 

 

To illustrate some of the persisting challenges in modelling of photoactive proteins, we consider a 

recent study18 on the influence of the first chromophore-forming residue (in position 65) on brightness, 

photobleaching, and oxidative photoconversion of fluorescent proteins from the GFP family. The 
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goal of modeling was to explain stark differences in brightness and photostability of EGFP, 

EYFP, and their mutants with reciprocally substituted chromophore residues, EGFP-T65G and 

EYFP-G65T. The key quantities responsible for fluorescent quantum yield, extinction coefficients, 

and bleaching yield are the rates of radiationless and radiative relaxation of the photoexcited 

proteins. Their first- principle modeling would have required quantum-dynamical simulations of 

the photoexcited proteins using on-the-fly generated ab initio PES and couplings computed using 

high level of theory (e.g., equation-of-motion coupled-cluster methods19,20, which is currently 

impractical. Instead, the authors18 carried out classical molecular dynamics simulations on the 

ground and electronically excited states. To study excited-state state dynamics, the force-field 

parameters of the chromophores were modified to fit the results of electronic structure 

calculations, most importantly, the change in the torsional potential along the phenolate twist 

(see Fig. 3) and the changes in partial charges.  
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Fig. 3 Top: Structures of the model proteins with the TYG (EGFP, YFP-G65T) (left) and GYG (YFP, EGFP-

T65G) (right) chromophores and the definition of the QM/MM partitioning (the QM part is shown in blue and the 

MM part in black). The key difference between the TYG and GYG chromophores is the -C(OH)CH3 tail in the 

latter. Bottom left: Potential energy along torsional angle φ (phenolate flip) in the ground and excited states. 

Bottom right: First-order kinetics of the chromophore’s twisting in the excited state in four model proteins. 

Reproduced with permission from Ref. 18. 

The rate of twisting along torsional coordinate φ, was used as a proxy for the rate of radiationless 

relaxation. To evaluate brightness and the rate of radiative relaxation, the authors computed 

excitation energies and oscillator strengths by the QM/MM protocol with high-level electronic 

structure21 using the snapshots from the molecular dynamics trajectories. Despite the simplicity of 

this approach, the calculations were able to pinpoint the role of residue 65 on the photochemical 

properties of the proteins. The absence of the -C(OH)CH3 tail in the GYG chromophore affects 

hydrogen-bond pattern and results in an increased flexibility, which facilitates radiationless 

relaxation leading to the reduced fluorescence quantum yield in the T65G mutant. The computed 

lifetimes (see Fig. 3) were in a reasonable agreement with experiment. Although not conjugated 

with the π-system of the chromophore, the -C(OH)CH3 tail also affects its electronic properties. 

The GYG chromophore also has larger oscillator strength as compared to TYG, which leads to a 

shorter radiative lifetime (i.e., a faster rate of fluorescence). The faster fluorescence rate partially 

compensates for the loss of quantum efficiency due to radiationless relaxation. The shorter 

excited-state lifetime of the GYG chromophore is responsible for its increased photostability. One 
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important aspect left out in this study18 was the effect of mutation 65 on the rate of photoexcited 

electron transfer, one of the main bleaching channels.15,22 To evaluate the rates of electron transfer, 

one needs to compute Gibbs free energies and couplings, which requires extensive sampling using 

QM/MM PES of reduced and oxidized forms (as was done, for example, in Ref. 22). Presently, such 

calculations are rather labor-intensive and also computationally expensive, which precludes their 

large-scale applications. This study18 illustrate the need for devising faster electronic structure 

codes for excited-state treatments and more robust and automated protocols for QM/MM 

simulations. 

1.2 Challenges in modeling bioluminescent systems  

Other systems that are related to photoreceptor proteins are the bioluminescent systems. The 

most studied bioluminescent system is the one responsible for the light emission in fireflies.  The 

emitting light in fireflies arises from the electronic relaxation of oxyluciferin, an organic 

compound resulting from the oxidation of the D-luciferin substrate inside an enzyme called 

luciferase. As the fireflies’ bioluminescent system is already used as a marker in biology, 23 man 

needs to understand what are the chemical and physical important factors responsible for the 

emitted light’s color. In order to have insight of the mechanism of the light emission, both 

experimental and theoretical joint studies have been performed.  

In order to theoretically study such systems, the use of quantum mechanical/molecular 

mechanical (QM/MM) methods is required. Taking into account the surrounding protein at the 

MM level is essential in order to understand the influence of the enzyme in the color modulation.  

The increase of the capacity of the computer allows to deals nowadays with systems of twenty 

atoms like the firefly oxyluciferin surrounding by thousands of atoms from protein and/or 
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solvent.  The first QM/MM study on this system published in 2010 24 showed that the protein 

surrounding is able to modulate the color of the emitter. This first study based on second-order 

multiconfigurational perturbation calculations using a coupling between two programs 

MOLCAS, for the QM calculation describing the emitter molecule and TINKER for the MM 

part describing the protein and solvent environment, as long as using an additive QM/MM 

scheme with Electrostatic Potential Fitted (ESPF)25 method, showed that H-bonding network in 

the cavity was very important and explained how a single mutation of one residue, even far from 

the light emitter could dramatically changes the H-bond network and therefore the color of the 

light emission. This study and a latter study 26 demonstrated that increasing the H-bonding 

network involving the phenolate oxygen of the benzothiazole moiety was inducing a blue-shift 

of the light emitted whereas the increase of the network in the other side of the molecule was 

inducing a red-shift. This is easily understandable looking at electronic transition that has a 

character of LUMO-HOMO and comes with a negative charge transfer from the thiazolone 

moiety to the benzothiazole moiety during the emission. H-bonding stabilizing the HOMO will 

not stabilize the LUMO and increase the energy HOMO-LUMO gap, leading to a blue shift (Fig. 

4).   
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Fig. 4 Oxylyciferin and the H-bonding networks that induced blue or red-shifting of the light emission. 

 

The studies on modulation of the light emission from protein surrounding studies give hope to 

the computational community and fruitful collaboration with experimentalists. Computation of 

the light emission of modified emitters and analysis of factors responsible for the color are also 

very promising.27,28 Theoretical studies can give complementary insights to the experimental 

results for the understanding of such complex phenomena. However, all computational studies 

done in the last decade also point out the challenges to meet. For instance, the calculations are 

contributing to the availability of crystallographic structures of the protein. Only few structures 

have the ligands inside the cavity. Some have missing loops that can be very important to the 

correct description of the protein environment. 26 Models have to be constructed based on 

hypotheses. This is the case for all systems involving excited states in proteins. From the 

discussion in the CECAM meeting in Tel Aviv, there is a need to set up robust protocols to face 

theoretical results up to experimental results. 

Protonation state and nature of the emitter are other challenges that are shared with 

photoreceptor proteins. The nature of the emitter can depend on the pH and the “local” pH inside 

the cavity is not an experimental measurable data. Joint experimental and numerical 
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spectroscopic studies of emitters in solvent and of analogues that block the reaction like the 

keto-enol tautomerization of the thiazolone moiety or the deprotonation of the phenolate group 

shows that the experimental data can be reproduced by protocols taking into account the 

dynamic of the protein and that the use of analogues is helpful to a better comprehension of the 

nature of the light emitter.29–31 The fluctuating protonation states of the protein residues are still 

to be better taking into account.  

2. Application of multiscale methods to photoactive proteins 

Hybrid QM/MM simulations have been instrumental for gaining molecular level insights into 

the mechanism of light energy conversion and subsequent reactions. These simulations can be 

used to elucidate reaction pathways directly or in tandem with complementary spectroscopic 

studies. Often these studies go hand in hand with new method developments or derivation of 

new unifying concepts that advance our understanding of this light-triggered proteins. In the 

following sections we present state-of-the-art studies on four different photoreceptor proteins: 

photoactive yellow protein (PYP), the Green Fluorescent Protein (GFP), Phytochrome and 

Rhodopsin.      

2.1 Resonance interactions of ionic chromophores play a key role in biological photoreception 

Ionic chromophores bound to their receptor proteins in protonated or deprotonated forms, are 

efficiently modulated by interactions with the protein. Such tuning is typically linked to the 

charge transfer occurring in the chromophore upon photoexcitation and electrostatic interactions 

with the protein32–36. In the S0 state, the molecular charge is typically localized on the protonated 

(or deprotonated) moiety of the chromophore whereas in the excited state, the charge is 

translocated to the opposite end of the conjugated π-system leading to a considerable charge-
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transfer character of the S0-S1 transition. The electrostatic environment constituted by the protein 

interacts with these two different charge distributions and thus by modulates the S0-S1 energy. 

Moreover, charge separation at highly twisted geometries enables electrostatic control of the 

energies of conical intersections (CoIns) and saddle points mediating photochemical or thermal 

isomerization36,37. Although the protein-chromophore interactions are not limited to electrostatic 

effects38–40, considering the protein and solvent as a collection of point charges remains a popular 

approach which, in practice, is often sufficient for reproducing experimentally observed protein 

effects even quantitatively41–43. 

In the photoactive yellow protein (PYP) photoreceptor, the anionic p-coumaric-acid thioester 

(pCT-) chromophore is profoundly affected by hydrogen bonding44 or electrostatic interactions37. 

In the native protein environment, pCT- photochemically isomerizes around its central double 

bond (DB)45,46. In addition, computational studies suggested that pCT- may undergo rotation 

around its central single bond (SB)37. Properties of the pCT- chromophore are rationalized by 

invoking chemical resonance10,44 in addition to considering the S0-S1 charge transfer. Four 

resonance forms with the negative charge either on the phenolic or carbonyl groups (Fig. 5) are 

stabilized depending on the charge localization by hydrogen bonds that pCT- forms with the 

protein47. Naturally, the contributions of the resonance structures depend on the difference in 

their energies48. The extend of the resonance structure mixing in the S0 wave function is reflected 

by the difference in the length of the SB and DB at the S0 optimized geometry (the bond length 

alternation, BLA). The larger the energy difference, the larger the BLA and vice versa. 

Accordingly, the pCT- chromophore tuned by interactions with water molecules shows an 

increased BLA when hydrogen bonds are formed with the phenolic group and a decreased BLA 

when a hydrogen bond is formed with the carbonyl group49. The extend of the resonance mixing 
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determines the S0-S1 excitation energy and amount of charge transfer, as demonstrated by the 

linear correlation plots of these properties (Fig. 6).  

Twisting around a central bond increases contributions of the resonance forms with the twisted 

bond being a single bond (in the S0 state) and biradicaloid (in the S1 state), which determines the 

localization of the molecular charge. At the geometry 90° twisted around the SB, the negative 

charge is localized on the carbonyl fragment in the S1 state and on the phenolate fragment in the 

S0 state. In contrast, the DB twist increases the negative charge on the phenolate in the S1 state 

and on the carbonyl in the S0 state37,44,49. This opposite charge localization in the S0 and S1 states 

enables efficient stabilization of the SB-twisted and DB-twisted CoIns by the carbonyl and 

phenolic hydrogen bonds, respectively37. The energies of the SB and DB CoIns show linear 

correlations with the BLA (Fig. 6a); the signs of the energy correlations are determined by the 

charge localization and charge transfer (Fig. 6b). 

 
Fig. 5 Resonance structures explaining the interdependent properties of the anionic pCT- chromophore of PYP 

derived in ref. 49. C4-C7 and C7=C8 are the central single bond (SB) and double bond (DB), respectively. 

 

As suggested by the linear correlations, any property presented in Fig. 6 can be regarded as a 

descriptor40 characterizing tuning of the pCT- chromophore by interactions with its environment 

in the protein or solvent. The increased mixing of the resonance structures reduces the BLA and 

charge transfer character, shifts the absorption maximum to the red and activates the SB twist in 
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the S1 state. In contrast, the decreased mixing of the resonance structures increases the BLA and 

charge transfer character, blue-shifts the absorption maximum and favors DB isomerization. In 

accord with these dependences derived from a computational study, recently published 

theoretical analysis of systematically tuned green fluorescent protein (GFP) variants48 has 

suggested employing the difference in the energies of the resonance forms as a linear scale for 

analyzing and predicting optical properties. Among the chromophore properties obtained 

computationally, the BLA is a convenient descriptor as it is derived from the S0 state geometry 

optimization. In fact, models examining electrostatic tuning of biological chromophores by their 

protein environment highlight correlations among properties36, and in particular, the correlation 

between the BLA and excitation energy32–34,50,51. The correlations of photochemical properties 

strongly suggest that the theory of resonance could be generally applicable to rationalizing 

tuning mechanism of photoreceptor proteins. 

 

 

 
Fig. 6 The linear correlation plots summarize the XMCQDPT2/cc-pvdz results for the pCT- chromophore 

interacting with water molecules49. Panels a and b show correlations for the energies and charge transfer, 

respectively. The bond length alternation (BLA) value corresponds to the difference in the length of the C4-C7 

and C7=C8 bonds at the geometries fully optimized in the S0 state.  
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2.2 Modeling photochemical reactions  

Studies of chemical reactions occurring with chromophores or molecular groups in 

chromophore-containing pockets in the ground and excited electronic states, constitute an 

important field of the photoreceptor protein research. Application of methods of multiscale 

modeling is an essential step in computational simulations of these reactions.  

To illustrate the approaches, we consider a reaction of the recovery of the fluorescence state of 

the reversibly photoswitchable protein Dreiklang52. The unique properties of this protein from 

the Green Fluorescent Protein (GFP) family are due to a reversible hydration/dehydration 

reaction at the imidazolinone ring of the chromophore. Recovery of the fluorescent state, which 

is associated with a chemical reaction of chromophore dehydration, is an important part of the 

photocycle of this protein.   

In Fig. 7 a model system composed of the protein surrounded by solvent water molecules is 

shown in the left panel. The dark balls specify the atoms of the hydrated chromophore, and the 

side chains of the critical amino acid residues Arg96 and Glu222. The corresponding molecular 

groups are assigned to the quantum subsystem (QM-part) shown in the right panel in the figure. 

The remaining molecular groups are included to the molecular mechanics (MM) subsystem.  
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Fig. 7 Left: a model system for simulations of the recovery reaction of the fluorescent state in Dreiklang. Right: a 

part of the system selected for QM/MM calculations of the reaction energy profile. 

 

In QM/MM calculations, energies and forces in the QM-part are computed using conventional 

quantum chemistry methods, while the MM-subsystem is described by force field parameters. 

Usually, the electrostatic embedding scheme is applied to relate the QM and MM parts, 

assuming contributions of the partial charges from all MM atoms to the one-electron QM 

Hamiltonian.   

The first step of the dehydration reaction in Dreiklang is a proton transfer from the nitrogen atom 

N68 to the oxygen atom OW, leading to the cleavage of the bond between the hydroxyl and the 

imidazolinone ring and formation of the water molecule. To compute the corresponding energy 

profile for this step, a series of QM/MM constrained minimizations along the assumed reaction 

coordinate (here, the N68 – H distance) should be carried out. When the saddle point on the 

energy surface is located using the conventional transition state search, calculations of harmonic 

vibrational frequencies should confirm that single imaginary frequency (here, 810i cm-1) 

characterizes the obtained structure. The computed energy difference between the levels of the 

reactant and the transition state allows one to estimate the activation energy (here, about 25 
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kcal/mol), which is consistent with the measured rate constant of the reaction of thermal 

recovery of the fluorescent state in Dreiklang.   

In a similar fashion, a full cycle of chemical transformations in the chromophore maturation in 

the wild-type GFP,53 as well as reactions of the photo-induced decomposition of the GFP 

chromophore upon photobleaching of the protein are considered.54  Also, we can describe the 

competing reactions of covalent binding of the biliverdin chromophore to cysteine residues in 

the bacterial phytochrome domains upon assembly a prospective variant of the near-infrared 

fluorescent protein miRFP670.55 

The primary goal of all these simulation is to establish mechanisms of chemical transformations 

in the chromophore-containing pockets. 

2.3 pKa calculations of Phytochromes with Poisson Boltzmann electrostatics 

The accurate determination of pKa values of amino acid residues buried in a protein environment 

remains a challenging task. 56 Since, burial of titratable moieties in proteins usually leads to an 

increase of the pKa value of acidic groups and the decrease of the pKa value of basic groups, 

compared to their values in aqueous solution. However, depending on the concrete microscopic 

description of the protein environment, unusual titration may occur as a result of specific charge-

charge interactions which can shift the pKa values of titratable groups in any direction.57 This 

effect is often significant at active sites where perturbed pKa values of specific groups are of 

biological relevance.58 

Specifically, photoactivation of photoreceptor proteins is often coupled with protonation 

changes of the chromophore and/or key residues of the protein matrix.59–62 These protonation 
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changes, in turn, facilitate proton transfer reactions involved in signal transduction and 

functional activation.63 Thus, the precise determination of the protonation states of 

chromophores and titratable amino acids in their vicinity constitutes a major step in 

computational modeling of photoreceptors proteins. 

Various approaches for computing pKa values in proteins have been developed over the last six 

decades starting from the pioneering work of Tanford and Kirkwood. 64 Since pKa shifts are of 

electrostatic origin, much of the effort has been laid on the accurate description of electrostatics 

using either microscopic or macroscopic models or even a combination of both.56  For example, 

approaches based on the combination of electrostatic energy computations based on the solution 

of the Poisson Boltzmann equation (PBE) with classical molecular dynamics (MD) simulations 

have been used in different proteins for predicting pKa values.65  This hybrid approach allows 

taking into account protein flexibility, hydrogen-bond network rearrangements, side-chain 

reorientations and water molecules inside protein cavities.  

To illustrate this methodology, we will focus on the photoactivation process of the Agp2 

phytochrome structure. This process is initiated by a double bond isomerization of the biliverdin 

(BV) chromophore which is covalently bound to the protein matrix thereby triggering 

conformational changes and proton transfer reactions between protein and cofactor. It is 

important to mention that the BV molecule contains six titratable sites, two propionic side chains 

(pscB and pscC) and four pyrrole rings (A, B, C, and D) (see Fig. 8) Furthermore, two conserved 

histidine residues are in direct contact with the tetrapyrrole chromophore. Interestingly, 

spectroscopic data indicate that the propionic side chain at ring C (pscC) of the BV molecule of 

the Agp2 phytochrome is protonated in the Pfr and Meta-F states and remains protonated even 

up to pH of 11.66 Proton release is observed to take place at the step from Meta-F to Pr state 
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when the photoreceptor becomes activated. 67 Recently, it has been demonstrated that the pscC 

deprotonation of BV chromophore is essential for triggering a secondary structure change.68 In 

the case of prototypical phytochromes, it has been spectroscopically observed that one of the 

inner pyrrole rings transiently loses a proton during the transition from Meta-R to Pfr states.62,69 

These experimental results highlight the importance of considering the bilin chromophore as a 

titratable site for computational modeling. 

Since pKa calculations rely upon an accurate description of protein electrostatics, derivation of 

atomic partial charges represents an essential step.70 This is true in particular for many prosthetic 

groups such as bilin molecules which were not included in the standard parametrization 

protocols of classical protein force fields like CHARMM71, AMBER72 or GROMOS73. Such 

atomic partial charges can be generated from the electrostatic potential of the molecule 

computed using quantum chemical approaches and employing the two-stage restraint-

electrostatic-potential (RESP) method.74 
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Fig. 8 Left: crystal structure of Agp2 phytochrome in Pfr state, Right: BV chromophore, pyrrole water (PW) and 

histidines located in the chromophore binding pocket. Bottom: generic phytochrome photocycle with the red light 

absorbing parent state (Pr) and far-red light absorbing parent state (Pfr). 

 

Predicted pKa values of proteins are highly sensitive to the atomic arrangement of the input 

structure.75 This fact may have serious consequences when trying to gain mechanistic insights 

out of these calculations since the crystal structure represents the protein arrangement at the pH 

in which it was crystallized and not necessarily the active conformation. In the case of Agp2 

phytochrome the pH at which the protein was crystallized was estimated to lie between 5.5 and 

9.76  Since variations in pH can alter the protonation states of titratable groups including the bilin 

chromophore, slight conformational changes, such as propionic side chains reorientations (pscB 

and pscC) or rearrangements in the hydrogen bond network can be expected in the crystalline 

state. These minor structural distortions may significantly affect the computed pKa values. 

In order to sample a wider conformational space and thereby account for protein flexibility, 

Monte Carlo (MC) or Molecular Dynamics (MD) simulations are carried out considering 

different discrete protonation patterns.77 These approaches have been applied successfully on 

different proteins even using very short MD simulations (20 ns). 65  For example, the pKa 

calculation of the pscC of Agp2 in the Pfr state requires at least three MD trajectories: one 

trajectory with deprotonated pscC and two trajectories with singly protonated pscC. On each 20 

ns long trajectory, time frames are extracted every 100 ps and used as input for electrostatic 

energy computations performed by solving the linearized Poisson-Boltzmann equation using the 

BV atomic partial charges derived in the previous step. An equilibrium pKa value of the pscC 

can be then obtained by averaging the results of electrostatic energy computations for each of 

the three MD simulations weighted by their respective Boltzmann factor.38  The pKa values of 
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the pscC in the Pfr state obtained with this methodology are predicted within the range between 

4.5 and 9.6 units, which is in perfect agreement with experimental spectroscopic data suggesting 

a protonation of the of the carboxylic group. Furthermore, Meyer et al.,38 showed that the root 

mean square deviations (RMSD) between measured and computed pKa values of 194 titratable 

residues in 13 proteins can be improved from 0.96 to 0.79 (in pH units) if energy minimizations  

with weaker electrostatic interactions (ε = 4) of the structures extracted from MD simulations, 

is preformed prior to electrostatic calculations.  

In a similar fashion, this methodology can be applied to determine the protonation state of 

histidine residues located in the chromophore binding pocket. His248 and His278 (Fig. 8) are 

highly conserved residues that are involved in the proton transfer events in the chromophore 

binding pocket. There have been some efforts to determine precisely protonation states of both 

histidines. Velazquez et al.,78  identified one of these histidines as the key residue controlling 

pH-dependent equilibria in the Cph1 phytochrome, suggesting a pKa below 6.0. Additionally, 

Takiden et al.,79 performed electrostatic energy calculations in combination with MD 

simulations in the Agp1 phytochrome for determining the most likely protonation states of both 

histidines.  The pKa values obtained for both histidines were below 7.0, indicating that both 

histidines are deprotonated. These results are in agreement with previous PROPKA 

calculations.62,80  

Crystal structures are often dehydrated, that means that functional water molecules may be 

missing. Therefore, some proteins, require the inclusion of additional internal water molecules 

for the electrostatic energy calculations. This can be achieved implicitly by filling the volume 

occupied by water molecules with a dielectric medium with a dielectric constant ε = 80. 42 In 

deed, 81 applied a new cavity-algorithm to 20 titratable groups introduced as point mutations in 
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Staphylococcal nuclease (SNase) variants for which crystal structures and pKa values are 

available. This methodology led to a better agreement between computed and measured pKa 

values in a set of nine mutants, as reflected by an RMSD of 2.04 for pKa obtained with a cavity 

algorithm compared to 8.8 predicted using standard approach. 

In summary, since photoactivation of photoreceptor proteins is often coupled to proton transfer 

events between chromophore and key residues of the protein matrix, precise determination of 

their protonation states becomes a crucial step in computational modeling. In this respect, the 

combination of electrostatic energy calculations with classical MD simulations extended by 

proper description of protein hydration offers an efficient and reliable approach for investigating 

pKa shifts of chromophores and amino acid residues of photoreceptor proteins.  

2.4 Investigation of the Photoproduct Color Tuning in the Cyanobacteriochrome Slr1393g3  

Cyanobacteriochromes (CBCRs) were recently discovered and categorized as a subfamily of 

phytochrome photoreceptor proteins. They are distinct from the typical phytochrome due to their 

compact size, because they only require one domain for chromophore incorporation and 

complete photochemistry, whereas three domains are required in case of canonical 

phytochromes 82. Like all the representatives of this superfamily, they are photochromic meaning 

they have two stable forms which can be interconverted into each other by light of different 

wavelength. What makes CBCRs special is their variety in absorption maxima in contrast to the 

canonical phytochromes that absorb in red or far-red. Therefore, it is of high interest to 

understand the molecular regulation of the absorption in these proteins. One measure for this 

quantity is the difference in the positions of the lowest energy absorption maxima between the 

thermodynamically stable dark state and the photoproduct state. To investigate this, application 
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of multiscale modelling is the natural choice as it allows to determine the excited states of the 

chromophore, which is described with quantum mechanics, and to explicitly include the effect 

of the apo-protein, which is treated via molecular mechanics.  

One example of a CBCR is the cyanobacteriochrome Slr1393g3 where the absorption is shifted 

from the red in the dark form Pr, to the green in the photoproduct form Pg. For this protein, 

crystal structures of both forms are available 83. In addition, a hybrid form Ph was reported, in 

which the tetrapyrrolic phycocyanobilin (PCB) chromophore is found in Pr conformation, but 

its protein environment is in the Pg form. First insights into the absorption of the chromophore 

inside the protein for these forms could already be gained by calculations on optimized structures 

84. 

 
Fig. 9 Left: Slr1393g3 protein structure in the Pr form. The PCB chromophore is shown in gray in the balls and 

sticks representation and the colors of selected sidechains are: CYS-528 in green, HIS-529 in orange and ASP-

498 in blue.  Right: Absorption spectra for the Pr (red), Pg (green) and Ph (orange) forms calculated with sTD-

DFT based on CAM-B3LYP ground state calculations with a QM region consisting of PCB and the sidechains 

shown on the left. The spectra are based on 100 snapshots from a DFTB2+D/AMBER trajectory taken every 10 

ps. The sticks represent the positions and relative absorption maxima for the Pr and Pg forms extracted from 

measured spectra 85.  

For a systematic study of the absorption in the Pr and Pg forms, a benchmark study was 

conducted 86. One focus was on the efficient description of the chromophore in the ground state 
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geometry. For this purpose, semiempirical methods were employed to optimize the PCB 

structures of both forms in the ground state and the resulting geometries were compared with 

higher level ab initio calculations. It was found that DFTB2+D is the best performing method 

for this purpose. In addition, DFTB2+D/AMBER molecular dynamics (MD) simulations were 

realized to extract snapshots for excited state calculations, for which a variety of semiempirical 

and ab initio methods were benchmarked. Also the results for methods based on ab initio time-

dependent density functional theory were included in the benchmark, the semiempirical methods 

ZINDO/S and sTD-DFT as well as the ab initio method RI-ADC(2) turned out to be most 

promising.   

The photoproduct tuning was studiedsystematically, using DFTB2+D/AMBER for sampling of 

100 snapshots via a 1 ns trajectory and focusing on the three aferomentioned methods for the 

excited state calculations, 87. It was found that the electrostatic interactions of the protein with 

the chromophore induce similar shifts in absorption for both forms. In contrast to this, 

wavefunction analysis showed that the length of the conjugated system decreases when going 

from the Pr to the Pg form explaining the unusual blue shift observed in this protein. In 

particular, the tilt of the D-ring is correlated with the energy of the lowest excited state (S1), 

which is responsible for the absorption in the visible range.  

In conclusion, the computational studies lead to a molecular understanding of the photoproduct 

tuning in the CBCR Slr1393 supporting the trapped-twist mechanism proposed by Lagarias and 

coworkers for this class of red/green CBCRs 88. On the technical note, we established a 

computational protocol for spectra simulations, in particular the QM/MM partitioning, as well 

as with a benchmark of approaches for efficient conformational sampling. We expect that the 

derived protocol is applicable to further phytochrome-like photoreceptors.  
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2.5 Application of constant pH molecular dynamics simulations to sensory rhodopsin 

Most of the time, QM/MM models of photoactive proteins are based on a particularly drastic 

assumption: each and every titratable amino-acid keeps a user-defined protonation state which 

is determined according to chemical intuition and/or (semi-) empirical titration procedures 89–91. 

However, whenever the property of interest is experimentally found to be pH-dependent, this 

assumption no longer holds. The protein has to be considered as a poly-acid with a very large 

number of interacting titrating sites. Accordingly, even a slight pH shift may induce numerous 

protonation changes, leading to some structural reorganization and modified electrostatic 

interactions, eventually altering the property. The recently designed protocol based on Constant-

pH Molecular Dynamics followed by thousands of QM/MM calculations (CpHMD-then-

QM/MM) is specifically meant to study how pH can tune the photophysical and photochemical 

properties of a chromophore embedded in an extended (macro-)molecular environment 92. In a 

nutshell, it consists in (i) extracting thousands of statistically independent structures from MD 

trajectories which are sampling both the conformation and the protonation state spaces of the 

protein 93 and (ii) averaging the desired property obtained from the corresponding number of 

QM/MM calculations. The CpHMD-then-QM/MM protocol has been successfully applied to 

the elucidation of the molecular origin of the pH-dependent absorption spectrum of Anabaena 

Sensory Rhodopsin (ASR) 94, a trans-membrane protein featuring the retinal chromophore in 

either the all-trans or 13-cis conformations 95,96. Both the tiny pH=3 to pH=5 red-shift and the 

small pH=5 to pH=7 blue-shift have been reproduced and their molecular origin analyzed. 

Here we want to stress out that the number of populated protonation microstates is always large. 

In the case of ASR, assuming only aspartic acid (9 residues), glutamic acid (5 residues) and 

histidine (4 residues) can titrate between pH=3 and pH=8, the maximum number of microstates 
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is 2! × 2" × 3# = 1327104! Even if most of them are not significantly populated at a given pH 

value, it must be realized that hundreds or thousands of microstates can still co-exist (Table 1) 

Table 1. N: number of populated microstates at 3 different pH values (40 ns long CpHMD 
trajectories, ASR with 13-cis retinal) 94. #1 to #8: probabilities of the 8 most probable 
protonation microstates. Note that proton positions are considered indistinguishable in 
protonated ASP and GLU residues, as well as in deprotonated HIS. 
 

pH N 1 2 3 4 5 6 7 8 

3.5 492 0.31 0.13 0.08 0.06 0.05 0.04 0.03 0.02 

5.5 3600 0.03 0.03 0.03 0.02 0.01 0.01 0.01 0.01 

7.5 1161 0.08 0.07 0.06 0.06 0.05 0.04 0.03 0.03 

 

While pH=3.5 can be characterized by a few important protonation microstates, it is no longer 

the case for pH=5.5 and pH=7.5. Accordingly, the ASR absorption spectrum must be calculated 

as the weighted average of all the most important microstates (Equation 1). The weight	(𝑤$)  of 

a given microstate is pH-dependent: it can be evaluated by the number of structures featuring its 

proton distribution and extracted from a particular CpHMD trajectory, relatively to the total 

number of structures.  

𝜆%&' = ∑ 𝑤$$ 𝜆%&'
$  (1) 

In Equation (1), 𝜆%&'
$  represents the maximum absorption wavelength of a given protonation 

microstate, as calculated as an average of all the corresponding structures. Because the number 

of populated microstates is usually large, it is possible that the most abundant one is 
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characterized by a maximum absorption 𝜆%&'
$  that differs significantly from the overall 𝜆%&'. 

In equation (1) both 𝜆%&' and the 8 first 𝜆%&'
$  are reported together for the same 3 pH values. 

 

Fig. 10 pH 3.5 (top), 5.5 (middle), 7.5 (bottom) maximum absorption wavelength (in red) and the 8 most 

populated protonation microstate individual contributions (in grey). Wavelengths are given in nm. Bubble 

surfaces are proportional to microstate weights (squared labels), relatively to the complete ensemble. 

At pH=3.5, only a few ASP and GLU residues are titrating. This translates to a dominant 

contribution (31%) whose 𝜆%&'
$  is in good agreement with the corresponding 𝜆%&'. At neutral 
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pH, the most populated microstate features a 𝜆%&'
$  value which is 7 nm red-shifted. However, 

its probability is low (8%) and is balanced by other contributions which are closer to 𝜆%&'. 

Accordingly, this is the perfect example where the most abundant protonation microstate is not 

a good representative of the average. Finally, at the intermediate pH=5.5 value, most of the ASP, 

GLU and HIS residues are titrating, resulting in a huge number of populated microstates, i.e. to 

very low individual probabilities. In this case, it is virtually impossible to manually pick a 

protonation microstate whose 𝜆%&'
$  would be close to 𝜆%&'.  

3. Methodological Development and Software Updates 

Progress in algorithm and software developments is tightly coupled to the success of multiscale 

modeling in application to photoreceptor proteins. As a result higher accuracy can be achieved 

and larger systems can be studied. In this section seven contributions are presented which aim 

the implementation of data-driven approaches in  QM/MM methodologies, characterization of 

intricate hydrogen bonding networks in large macromolecular systems, the development of new 

sampling algorithms for the characterization ground- and excited state dynamics of biological 

chromophores and the implementation of user friendly software interfaces for efficient and 

automated modeling of complex biological systems, such as rhodopsin, using multiscale 

methods. 

3.1 Extending the capabilities of QM/MM by a data-driven approach 

Naturally, the essential purpose of applying any multiscale modeling technique is to reduce the 

associated computational cost. As explained earlier, QM/MM has been the most straightforward 

approach for studying photoreceptor and related proteins in this respect, as it does not suffer 
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from any limitations from the a priori selected potential models as in conventional force fields. 

As a matter of fact, describing photoactive systems requires one to adopt excited state 

calculations, and applying QM/MM is often very costly. One possible remedy against this cost 

issue will of course be employing computationally more economic approaches for the QM part 

such as semi-empirical techniques. However, matching the reliabilities of high level theories 

such as CASPT2 with semi-empiricism is a daunting task even after intensive re-parametrizing 

efforts. Thus, somehow constructing the potential energy surface in an explicit manner based on 

data from high level quantum chemical theories will be a desirable path. It can also be quite 

useful for studying protein mutation effects as the constructed surface can often be simply re-

used with the protein mutation without any further quantum chemical calculations, whereas 

directly using QM/MM for mutants necessitates re-performing costly QM calculations. The 

greatest hurdle against explicitly constructing PES is its reliability. When an analytic form of a 

surface is employed with parametric fitting with the high level computational data, the range of 

high fidelity region is rather limited. This is especially troublesome for treating photo-activated 

processes, as the molecular system after photon absorption tends to possess a large amount of 

vibrational energy such that the chromophore and potentially its neighboring units can wander 

around an ample configurational space. 

As a practical alternative of direct QM/MM calculations without assuming an intrinsically 

limited analytic form of the surface, using the interpolation mechanics/molecular mechanics 

(IM/MM) technique can be considered. The interpolation technique was originally designed for 

describing gas phase reaction dynamics97, and it was recently extended for describing excited 

state surface hopping dynamics of chromophore-embedded protein systems such as GFP98. Of 

course, the interpolation itself depends on a relatively large data set with energies, gradients, and 
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Hessians at multiple configurations. For example, for describing the GFP chromophore, a data 

set with more than 1000 configurations were needed for a reliability. This burden also increases 

with more flexible chromophore units. Even for the relatively flexible chromophore in the 

photoactive yellow protein (PYP) with multiple torsional degrees of freedom, an interpolated 

PES with high fidelity can still be constructed (Fig. 11) 

 

Fig. 11 Reliability of interpolated PES: contour maps of the interpolated S0 and S1 state surfaces (solid lines) of 

the PYP chromophore in comparison with the reference quantum chemical data (dashed lines). Energy values are 

denoted in eV units. The contours were drawn by varying a torsional angle and its coupled bond length around the 

S0-optimized geometry as denoted with the molecular structure. The interpolation data points were sampled in an 

iterative manner by adopting excited state molecular dynamics simulations. The size of the interpolation data set 

was 2100. 

Interpolation-based PES will be a typical example of data-driven surfaces. As such, how to 

expedite the data collection processes and how to filter out more important data from a large set 

will be an important task for generalizing the technique itself, and there are on-going 

improvements in this regard99. In addition, presently adopted Shepard interpolation scheme 

based on Euclidean distance in the configurational space does not have to be the most reliable 

approach. Machine learning algorithms which have come into much fashion these days may also 

contribute significantly in this regard in the future. 

3.2 Long-distance proton transfers via dynamic hydrogen(H)-bond networks  
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In protein environments, the transfer of protons across long distances is thought to occur via H-

bond paths composed of protein groups and water molecules. Such H-bond paths could be 

sampled transiently as the protein changes conformation along its reaction cycle; moreover 

changes in protonation states during the proton transfer reaction are likely to couple to changes 

in local protein and water dynamics. Prominent examples here are retinal proteins, for which 

changes in the retinal isomeric state associate with rearrangements of internal water molecules 

100–102, and photosystem II, in which dynamic water molecules help establish proton-conduction 

path 103. 

The dynamic nature of the water-mediated proton-transfer paths and the complexity of the bio-

systems, bring about the challenge of how to identify and characterize H-bond paths between 

putative proton-transfer groups. We have thus designed and implemented Bridge 104, a set of 

Phyton graph-based algorithms that relies on efficient analyses of water-mediated H-bond 

networks that derives graphs of the H bonds of the bio-system; this graph of H bonds can be 

interrogated to identify, for example, all H-bonded paths starting from a protein group, or all H-

bonded paths between two protein groups 104. 

Particularly important for long-distance proton transfers is to identify, in an ensemble of 

protein conformations, those events characterized by a continuous connection between the 

proton donor and acceptor group – such conformations could, for example, be used as starting 

point for quantum mechanical computations to find out whether the energetics of proton transfer 

along that path is compatible with experiments 104. 

To illustrate the usefulness of Bridge with identifying of H-bond paths in complex bio-

systems we present the network of protein-water H bonds in a dimer of chimera 
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channelrhodopsin, C1C2 (Fig. 12A). The extracellular halves of the two protein monomers 

participate in a remarkable network of H bonds that included some 48 charges and polar protein 

groups, and numerous water molecules (Fig. 12A). An unexpected observation from the Bridge 

analyses was that, in this network, the two retinal Schiff bases can bridge transiently via 

continuous H-bond paths of 12-13 H-bonds 104. This long-distance network between the two 

retinals is rapidly perturbed by mutations that alter H bonding 104. 

Once we computed a protein’s graph of H bonds, we can use centrality measures to 

identify protein groups that are common to H-bond paths of particular interest for the functioning 

of that protein 105. With betweenness centrality, for example, we evaluate how often a protein 

group participates in the short-distance paths that connect two other protein groups.105 Such an 

analysis reveals that, on the surface of photosystem II, there is a carboxylate group (PsbU-E93 

in (Fig. 12B) central to a dense network of protein-water H bonds that included the putative 

proton-binding site PsbO-D102 106,107. Although most of the waters that participate in the H-bond 

network are very dynamic 107 and visit the surface of the protein just shortly, for picoseconds or 

less, close to PsbU-E93 waters can stay for as long as 320.6 ± 0.6 ps 107. 

Pursuant to the considerations above, we suggest that graph-based analyses of protein 

H-bond networks provide valuable tools to analyze efficiently large data sets arising from 

numerical simulations of complex bio-systems, to identify long-distance H-bond paths that 

could conduct protons, explore the response to mutations, and predict protein groups with central 

role in long-distance connection networks of a protein. 
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Fig. 12 Dynamic H-bond networks in complex bio-systems.  Left: Extensive protein-water H-bond network in the 

extracellular halves of monomers Mon-1 and Mon-2 of the C1C2 dimer. The protein is shown as ribbons and 

molecular surfaces, and selected protein groups are shown as bonds with carbon atoms colored cyan, nitrogen – 

blue, and oxygen – red. For clarity, we label only protein groups part of a shortest-distance path that connects the 

two retinal Schiff bases. The molecular graphics and the path analyses are based on ref.104 Right: Protein-water H-

bond network at the surface of the soluble PsbO and PsbU subunits of photosystem II. Lines inter-connect 

charged and polar sidechains via H-bonded water bridges, for clarity, we only show water bridges that are present 

during at least 50 % of a simulation of the PsbO-PsbU complex in aqueous solution. Cα of amino acid 

residues are colored according to relative betweeness centrality values. Lines are color-coded, according to 

occupancy values. The image and the centrality computations are based on ref. 107. 

 

3.3 Toward efficient sampling of photoactivation mechanisms with path-based methods 

Even with the computational cost efficiency of multiscale modeling techniques, such as hybrid 

quantum mechanics/molecular mechanics (QM/MM) simulations, sampling the key steps of a 

photocycle can still be a daunting task. The pathway from the dark state to the signaling state, 

and back, is typically comprised of several somewhat activated processes–e.g., electron 

transfers, proton transfers, and conformational changes–which occur rarely in affordable 

simulation timescales. Enhanced sampling techniques are commonly used to tackle such 

challenges in protein systems. However, these schemes traditionally require the definition of a 

sensible reaction coordinate and/or stable states, both of which are not trivial to formulate and 

often unknown in photoreceptors. The application of more robust sampling techniques, not 

subject to numerous trials and errors, is vital to resolve intricate photoactivation mechanisms.  
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A first step toward increasing sampling efficiency and making free energy calculations and 

dynamics simulations more affordable, is offered by path-based methods. In these schemes, the 

handling of a high-dimensional reaction coordinate, composed of several collective variables 

(CVs), is simplified by the introduction of an optimizable curve that connects two known states 

in the space of the CVs. Then, the progress along this path CV can effectively be used as a 

reaction coordinate.  Examples of this kind of methods can be found in Refs (108–110). The benefits 

are three-fold: 1) free energy calculations along adaptive paths are not subject to the exponential 

increase in cost with the dimensionality of the reaction coordinate, and can reach a linear 

performance scaling 111; 2) with the diminished penalty for dimensionality, one can introduce 

more candidate CVs in a single attempt to increase the chance of success; and 3) with the 

directionality provided by the path, the sampling is focused into the transition region of interest. 

Furthermore, most standard biasing methods (e.g. umbrella sampling 112 or metadynamics 113)  

and algorithmic extensions can be employed either along the path 114, or in the direction 

perpendicular to it in order to find alternative mechanisms 115. In Fig. 13 we show an illustrative 

example of an adaptive path CV capturing a transition channel on the Müller-Brown 116 potential 

energy surface.  
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Fig. 13 An adaptive path CV captures the transition channel on the Müller-Brown 116 potential energy surface. 

 

Path CVs have been successfully used in BLUF photoreceptors, to efficiently extract 

mechanistic details and free energies 117,118. Other path-based methods that do not require biasing, 

such as transition path sampling (TPS) 119, have also been used in PYP photoreceptors 120, and 

similar principles have been applied to rhodopsin by tracking the time evolution of an excited-

state population 121. 

Path-based methods still require two stable state definitions–e.g., the dark and light states–as 

well as a set of, even if many, somewhat correct CVs. In cases where these aspects are unknown 

or debated, a new generation of data-driven and machine learning-based sampling methods holds 

the key to speed up the exploration of photoactivation mechanisms. CVs can be discovered with 

novel combinations of clustering, time-lagged independent component analysis, slow-mode 

separation, autoencoder-based dimensionality reduction, and many more techniques 122–126. 

Cutting-edge advances in deep learning also yield free energy differences without the need for 

reaction coordinates, by mapping atomic configurations to a reference latent representation 127. 
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3.4 FDET-Based Simulation of Vertical Excitation Energies of Chromophores Embedded in 

Proteins 

Frozen-Density Embedding Theory (FDET) 128,129 based multi-level simulations provide an 

alternative to conventional QM/MM simulations (both polarizable or not). In FDET, the total 

energy functional is expressed as a functional depending on two independent variables: NA-

electron wavefunction (embedded wavefunction ΨA) and a user-chosen density ρB(r) associated 

with the environment. ΨA is thus obtained from the constrained minimization of the Hohenberg-

Kohn density functional for the energy of the total system (Fig. 14). We refer the reader to Ref. 

129 for the FDET definitions and formulas for the energy and the embedding potential applicable 

to variational methods for ground state and Refs. 130,131 for FDET extensions. These are omitted 

here for the sake of brevity. Compared to QM/MM, setting up a FDET simulations involves 

similar steps: a) selecting the subsystem to be treated at the quantum mechanics level, b) 

choosing the suitable method for the quantum part, c) generating the embedding potential, d) 

solving the “embedded QM problem”, e) evaluating the properties. The most important 

differences between FDET-based based and QM/MM simulations concern steps a), c) and e).  

Concerning a), the commonly used universal system-independent approximations for the non-

Coulombic components of the FDET embedding potential given in Eq. (44) in Ref. 129 are 

adequate only for weakly overlapping ΨA  and ρB. Thus, the applicability of FDET with such 

approximations is limited to models where the chromophores are not covalently bound to the 

protein. Concerning b), generating the FDET embedding potential involves choosing electron 

density ρB(r) for the environment of the quantum part. This step corresponds to choosing 

parameters for atom-centered potentials in QM/MM describing the interactions with the 
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environment. Concerning e), in FDET the non-Coulombic interactions with the environment are 

taken into account in a self-consistent manner in both energy and in the embedding potential. 

This results in the dependence on the FDET embedding potential on ΨA. For electronic 

excitations, this numerically inconvenient feature of FDET can be efficiently treated by 

linearized FDET 130 or by performing additional iterations (see interface E in Fig. 16).  

The representation of not only the Coulomb part but also all quantum effects in the FDET 

embedding potential (not as a posteriori energy contributor to the energy, which usually made 

in QM/MM methods), makes FDET-based methods especially suitable for evaluation of changes 

in the properties evaluated as expectation values of the embedded wavefunction. The total FDET 

energy given in Eq. (30) in Ref. 129, includes a term depending solely on ρB(r). For practical 

applications targeting the energy of the total system, this term must be approximated as well. 

The essence of multi-level modeling is that this energy contribution is approximated using some 

simpler method. This offers a large number of possibilities for practical realizations. In this 

perspective, we focus on such practical applications of FDET where the explicit evaluation of 

this contribution to the total energy is not needed. This concerns studies targeting the 

environment induced shifts of observables evaluated as expectation values for a given ρB(r).  

Turning back to the choice of ρB(r), the simplest protocol consists in using the electron density 

evaluated as a ground state density of the environment without the embedded species (level 0). 

If the environment does not comprise molecules which are H-bonded one to another, this 

protocol can be simplified even further by means of generating ρB(r) as a superposition of 

densities of individual molecules 128,132. We recommend level 0 as the starting point for any large 

scale FDET based simulation. Benchmark studies on model systems indicate its great usefulness 

(MAE on 351 excitations is about 0.04 eV). Hydrogen bonding-induced shifts of excitation 
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energies in organic chromophores lie usually in the range of -1.5 to 1.5 eV. For excitations with 

magnitude exceeding 0.1eV, FDET-based protocols represent a valuable modeling tool (see Ref. 

133 and Fig. 16). More sophisticated protocols to generate ρB(r) take into account such effects as 

i) mutual polarization of different parts of the environment 132, ii) implicit or explicit treatment 

of electronic polarization of ρB(r)  by the chromophore 134, iii) fluctuations of the structure of 

the environment 135,136. We refer the reader also to the work by Neugebauer and collaborators 

137,138 on different protocols to generate ρB(r) and their effect on the observables obtained from 

the embedded wavefunctions for chromophores embedded in proteins. We rather see going 

beyond level 0 as a possible option decided on the case-by-case basis. The user should be given 

the possibility to estimate these effects using smaller model systems to determine if going 

beyond level 0 is needed in large scale simulations. Fig. 16 shows a flow diagram indicating 

essential steps and tools available for setting up and performing large scale FDET-based based 

computations of electronic excitations for a chromophore embedded in a protein environment. 

Our previous report on chromophores embedded in proteins 35, used the LR-TDDFT strategy for 

excited states. The tools presented in Fig. 16 allow the user to: a) use methods going beyond 

LR-TDDFT if the nature of the excited states requires it and b) more flexible and controllable 

choices for ρB(r) if going beyond level 0 is desired. 
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Fig. 14 Scheme of the FDET model of a chromophore embedded in a protein. Different colors represent regions 

in 3D space which are described using different descriptors: embedded ΨA for the chromophore (green) and 

density ρB(r) for its nearest neighbors (dark blue). Note that these regions can overlap. If needed, the long range 

effects on the embedded wavefunction can be accounted for by means of a Coulombic potential vext
Coulomb.  
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Fig. 15 Environment-induced shifts of the lowest vertical excitation energy for organic chromophores in 

hydrogen-bonded environments (XH-27 dataset from Ref. 139). Reference shifts (Δεref) are taken from Ref. 139 

(excitation energy shifts obtained from ADC(2) calculations for the whole clusters). FDET shifts (ΔεFDET) are 

obtained from embedded ADC(2) calculations as described in Ref. 139 except the reduction of the number of 

centers in the basis sets used for ΨA and ρB (monomer expansion is used here). 
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Fig. 16 General work-flow of a FDET-based simulation. The main steps, given in square boxes, can be performed 

using various standard quantum chemistry codes: 1 – generation of ρA(r) and ρB(r) in real space, 2 – generation of 

the embedding potential in real space, 3 – obtaining embedded NA-electron wavefunction (variational or not) from 

a user chosen quantum chemistry method and code; 4 – a posteriori evaluation of the FDET energy components 

which depend on the method used in step 2 2–4  and other properties. Interfacing is performed by subroutines 

indicated with capital letters: A – generation of initial NA-electron density ρA
ref(r); B – generation of ρB(r) 

(superposition of atomic or molecular densities, statistical ensemble averaging, pre-polarization , freeze-and-thaw 

optimization, etc.); C – generation of the embedding potential in atomic basis set representation (can include 

additional electric field component as shown in Fig. 14); D – extracting quantities obtained in step 2 for step 3; E 

– iterative update of the embedding potential for verification of the linearization approximation (optional). 

 

3.5 Polarizable Embedding as a Tool to Address Photoreceptor Proteins 

Photoreceptor proteins are activated by their interaction with light. In order to understand the 

working mechanisms of photoreceptors at an atomistic level at least a partial quantum 

mechanical description is needed. This, unfortunately, is significantly hampered by the fact that 

the size of photoreceptor proteins in their natural environments quickly becomes out of reach 

for conventional quantum chemistry methods. Thus, in order to gain atomistic insight into the 
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functioning, and eventually to be able to define rational design strategies of novel photoreceptor 

proteins, development of suitable quantum chemistry methods is of significant importance.  

The polarizable embedding (PE) model 140 is a fragment-based quantum-classical approach 

belonging to the class of discrete embedding models, i.e. a central part of the system in question 

is described at the level of quantum chemistry whereas the remaining part of the system – the 

environment - is described effectively. For photoreceptor proteins, the part treated using 

quantum chemistry would typically be chosen as the chromophoric part of the protein. In the PE 

model, the environment is divided into a number of fragments, and the permanent charge 

distribution of each fragment is modeled by a multicenter multipole expansion. In addition, 

distributed dipole–dipole polarizabilities are assigned to each of the fragments thus introducing 

an explicit account of polarization in the environment. One of the strengths of the PE model is 

exactly this account of environment polarization in addition to the possibility to calculate the 

fragment multipole moments and polarizabilities based on separate quantum chemistry 

calculations, i.e. the model does not rely on the use of a predefined force field. Fig. 17 contains 

an illustration of the PE model indicating the part of the system treated using either quantum 

chemistry or by multipoles and polarizabilities. 

The PE model has been designed for calculation of spectroscopic properties and excited states 

in particular. Thus, the model is centered around a formulation building on quantum chemical 

response theory. Both linear and non-linear properties, such as one-, two-, and three-photon 

absorption processes, may be described based on the PE model. In addition, PE has been 

formulated within both time-dependent density functional theory (TD-DFT) as well as 

correlated wave function approaches, such as coupled cluster (CC) and multi-configurational 

self-consistent field (MCSCF), and can thus be used to describe situations where TD-DFT is 
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known to possess problems for example in relation to excited states dominated by double 

excitations. For a recent discussion of the capabilities of PE model, we refer to Refs. 141,142. 

PE is generally applicable to any kind of environment ranging from simple solvents to highly 

heterogeneous systems like a protein matrix. For the latter, and other biological environments 

as well, the fragmentation of the environment becomes more involved since covalent bonds need 

to be broken in order to define the fragments making up the environment. For this we have found 

the method of molecular fractionation with conjugate caps to be very efficient 143,144. 

Through applications, we have generally found the PE model to represent a rather robust 

computational procedure providing results in close agreement with full quantum chemistry-

based calculations. However, care should be taken when considering especially negatively 

charged molecules (chromophores) or excited states of even partial Rydberg character 145. In 

such situations, PE-based calculations may suffer from so-called electron spill-out errors 

meaning that electron density from the part of the system treated using quantum chemistry is 

leaking into the environment thereby leading to an over-stabilization of the ground and 

especially the excited states 146. In order to address such issues, we recently formulated the 

polarizable density embedding (PDE) approach 147. In this model, the fragments in the 

environment are described by their full charge densities, replacing the multipoles, while still 

keeping the atom-centered polarizabilities to efficiently account for polarization effects. 

Importantly, the PDE model contains, in addition, a term in the embedding operator that 

accounts for Pauli repulsion thereby preventing electron spill-out 146. 
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Both the PE and PDE models are available through the Polarizable Embedding library (PElib) 

and are currently interfaced to a number of electronic structure programs – for details we refer 

to a recent tutorial paper on the use of PE 141. 

 

Fig. 17 Illustration of the PE model applied on the membrane-embedded C1C2 channelrhodopsin. The active 

part, a protonated retinylidene Schiff base, is modeled using DFT/WFT, while the effect from the chromophore 

environment is modeled classically using atom-centered multipoles and polarizabilities. 

 
 

3.6  Towards automated population dynamics simulations of light-responsive proteins 

At the molecular level, light sensitivity is controlled by two photoreceptor properties: (i) 

activation quantum efficiency and (ii) dark noise.121 A complete theory of light sensitivity in 

biological photoreceptors must therefore describe the relationship between each property and 

the photoreceptor electronic and molecular structure. Years ago, we reported36 on the theory of 

dark noise in a specific family of biological photoreceptors (i.e. light-responsive proteins): type 

II (animal) rhodopsins.9 However, even when limiting our interest to such rhodopsin family, a 

theory of quantum efficiency has not yet been established. As a consequence, we still ignore, 
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for instance, the mechanism enabling rod cell rhodopsin, the vertebrate retina most sensitive 

dim-light photoreceptor, to utilize almost 70% of the absorbed photons for visual transduction. 

Reveling such a mechanism will impact not only our understanding of light sensitivity, but also 

the design of rhodopsin mutants leading to controllable receptor responses with obvious 

implications in biology/medicine, 148,149 optogenetics150,151 as well as in the emerging field of 

synthetic biology.152 

As for the case of rhodopsin dark noise, to be of biological interest the validity of a quantum 

efficiency theory/mechanism has to assess not only for a single photoreceptor but for an entire 

array of related photoreceptors. When this investigation has to be carried out computationally, 

it is necessary to construct a full array of photoreceptor models of the same class or, in the case 

of proteins, homologues or/and mutants. There is another reason for focusing on arrays of 

models. Rarely chemists and biologists are interested in properties of a specific molecular 

system but, rather, in trends. In fact, trends are not only more significant for predictions and 

applications but are less affected by systematic errors in the property calculation. This also apply 

to the prediction of light sensitivity.  
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Fig. 18 Structure of a-ARM. (A) General scheme of a QM/MM model generated by a-ARM for a Type II 

rhodopsin. This is composed of: (1) environment subsystem (gold cartoon), (2) retinal chromophore (green 

tubes), (3) Lys side-chain covalently linked to the retinal chromophore (blue tubes), (4) main counter-ion MC 

(cyan tubes), (5) protonated residues, (6) residues of the chromophore cavity subsystem (red tubes), (7) water 

molecules, and external (8) Cl− (green balls) and (9) Na+ (blue balls) counterions. The external OS and IS charged 

residues are shown in frame representation (B). (right) General workflow of the a-ARM protocol for the 

generation of QM/MM models of wild-type and mutant rhodopsins. (B) The a-ARM protocol comprises two 

phases: input file preparation phase and (C) QM/MM model generator phase. 

 

The discussion above indicates that the investigation of light sensitivity in rhodopsins (or, 

actually, any other biological photoreceptor) poses a formidable computational chemistry 

challenge. On one hand, it is apparent that the complexity of the unavoidable atomistic and 

multiscale (QM/MM) photoreceptor models (a seven α-helices transmembrane protein 

incorporating a light responsive retinal chromophore. See Fig18A) and of the protocol for 

building them, limits the number of models, possibly a few tens, that can be built manually for 

each given investigation. Therefore, one has to employ an effective automated QM/MM model 

building protocol if one plans to study hundreds of mutants as it seems necessary for either 

establishing/simulating a trend, a general mechanism or a mechanistic spectrum. A second issue 

originates from the fact that the property to be calculated, i.e. the quantum efficiency of the 
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rhodopsin (Rh) activation, requires the simulation of the light-triggered dynamics of a sizable 

molecular population. For Rh this corresponds to the dynamics of the light-triggered 

photoisomerization of the retinal chromophore from its dark (i.e. equilibrium) form containing 

the 11-cis stereoisomer (rPSB11) to its transient bathorhodopsin (bathoRh) primary 

photoproduct (see Fig. 19A) containing a distorted form of the all-trans stereoisomer (rPSBAT) 

as illustrated in Fig. 19B. Thus, the quantum efficiency can be defined as the fraction of 

photoexcited Rh molecules that after absorption of a photon successfully form bathoRh. Such 

fraction is indicated with the symbol Φcis-trans. 

 

Fig. 19 Rhodopsin population dynamics. (A) 11-cis retinal chromophore (rPSB11 for Type II rhodopsins such as 

Rh) photoisomerization and isomerizing torsional angle α (C10-C11-C12-C13 dihedral angle). (B) Schematic 

representation of the light-triggered ultrafast population dynamics of Rh. ISS1/S0 [J,K] stands for intersection space 

between the ground state (S0) and the first singlet excited state (S1) representing collectively the points of decay 

(hop) to the ground state (S0). The reaction coordinate is complex but it is mainly driven by the α angle. The 

diagram on the right represents a non-adiabatic trajectory calculation where the initial vibrational wave-packet (or 

population) is represented by a collection of initial conditions (structures and velocities) indicated by light-blue 
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circles and one trajectory is propagated from each initial condition point. (C) The time progression of α along a 

set of 200 non-adiabatic trajectories simulating the S1 population dynamics of bovine rhodopsin at room 

temperature is given in the top-left panel. The bottom-left panel give the statistic of successful and unsuccessful 

hops as a function of time. The computed quantum efficiency value is also given. The circles represent decay 

from S1 to S0 with a red circle representing successful decays leading to the photoproduct while green circles lead 

to the reactant. Center. Same results for a model reconstructed from an amino acid sequence obtained via 

phylogenetic analysis and ancestral sequence reconstruction techniques [L,M]. Right. Same data for the opsin 

from a human green cone receptor cell. 

 

In this section we report on the prospective systematic investigation of the Φcis-trans, and therefore 

of light sensitivities of an entire arrays (say hundreds) of rhodopsins. While this is still an 

unpractical research endeavor, we show that the basic technology necessary to do so is rapidly 

becoming at hand. Such technology is based on two paradigms: (i) the automatic building of 

rhodopsin QM/MM models (see Fig. 18 B and C) and (ii) the use of such models for the 

automated generation of room temperature (actually, any temperature) Boltzmann distributions 

providing the initial conditions (geometries and velocities) for successive quantum-classical 

(non-adiabatic) trajectory calculations (see Fig 19B). The resulting trajectory bundle 

corresponds to a simulation of the light-triggered population dynamics describing the rhodopsin 

photoisomerization and necessary for Φcis-trans calculations (Fig. 19 C for three different cases). 

Automatic building of QM/MM models of rhodopsins. A specialized protocol for the 

automated construction of QM/MM models of rhodopsins, which uses OpenMolcas153 as the 

electronic structure calculation engine, has been introduced. This is the Automatic Rhodopsin 

Modeling (a-ARM) protocol designed to produce congruous and reproducible monomeric, gas-

phase and globally uncharged models of rhodopsins based on electrostatic embedding and the 

hydrogen-link-atom frontier between the QM and MM subsystems.154,155 Although a-ARM 

currently only constructs rhodopsin-like models (see the model structure in Fig 18 A.), it 

provides a template for future development and generation of an automatic QM/MM building 
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strategy for other, more general systems. The building protocol is illustrated and detailed in  Fig 

18 B and C. 

a-ARM has already been benchmarked for several rhodopsins from different organisms and for 

different functions. In fact, members of the rhodopsin family are found in diverse organisms 

and, thus, constitute an exceptionally widespread class of light-responsive proteins, driving 

fundamental functions in vertebrates, invertebrates and microorganisms.9,156,157 a-ARM has been 

shown to be able to generate models suitable for the prediction of trends in spectroscopic 

properties (i.e., maximum absorption (𝜆()*
&) and emission (𝜆()*

+) wavelengths) of wild type 

rhodopsin-like photoreceptors and their variants, with an error bar of 3.0 (0.13).154,155 See Fig. 

20 A and B. These two critical wavelengths are approximately calculated and expressed in terms 

of vertical excitation energies ΔES1-S0 from S0 and S1 energy minima respectively. 
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Fig. 20 Benchmarking of a-ARM. (A) Computed excitation energies ΔES1-S0 in both kcal mol-1 (left axis) and eV 

(right axis) for various rhodopsins. The employed protein structures where obtained from X-ray crystallography 

(left panel) or through comparative modeling (center panel). Two sets of variants for bovine rhodopsin (Rh) and 

bacteriorhodopsin (bR) are also reported (right panel). The computed data was obtained using the a-ARMdefault 

(blue up-turned triangles) and a-ARMcustomized (gold squares). Experimental data, as energy difference 

corresponding to the wavelength of the absorption maxima, is also reported (red down-turned triangles). (B) 

Differences between computed and experimental excitation energies ΔΔE Exp
 S1-S0 in both kcal mol-1 (left axis) and 

eV (right axis).  

 

The employed protein structures used as template for the model constructions where obtained 

from X-ray crystallography (green panel, left) or through comparative modeling (white panel, 

center). Two sets of variants for bovine rhodopsins (Rh) and bacteriorhodopsin (bR) are also 

reported (red panel, right). The computed data was obtained using the a-ARMdefault
155,158(blue up-

turned triangles) and a-ARMcustomized
155 (yellow squares). Experimental data, as energy difference 

corresponding to the wavelength of the absorption maxima, is also reported (red down-turned 

triangles). (B) Differences between computed and experimental excitation energies ∆∆EExp
S1−S0 

in both (left axis) and (right axis). All computed data is within a 3.0 kcal mol-1 (0.13) error, apart 

from a number of outliers that were corrected using a-ARMcustomized which required manual 

changes in, for instance, the conformation of a residue side chain or a change in the ionization 

state of an ionizable residue. Further details can be found in ref. 158. 

Population dynamics during the light-triggered isomerization of homologue rhodopsins. Rod 

rhodopsin, is the light-sensitive G-protein coupled receptor responsible for dim-light vision in 

vertebrates. As anticipated above and illustrated in Fig 19. A and B, its activation is driven by a 

vibrationally coherent 11-cis to all-trans double-bond photoisomerization of the retinal 

chromophore which occurs with a 67% quantum efficiency, triggers the receptor photocycle 

and, ultimately, visual transduction.9 From the above discussion the first step in investigating 

such a mechanistic problem must be the construction of the QM/MM model of the photoreceptor 

capable to describe its spectroscopic and photochemical properties and, most importantly, which 
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could allow to calculate Φcis-trans. This is possible by running a sufficiently large number of non-

adiabatic trajectories (e.g. with the surface-hop methodology of Tully and with decoherence 

correction, see ref. 159–162 and then counting the trajectories that reach the product all-trans 

configuration after the hop to S0: a process schematically illustrated in Fig 19. B as the fraction 

of red-circles with respect to the blue circles). The fraction of successful trajectories with respect 

to the total provides the Φcis-trans value.13 Of course, the trajectories require initial conditions 

(nuclear positions and velocities) consistent with a Boltzmann distribution. In the near future, 

we hope to be able to implement an automated initial condition generator as well as an automated 

way to start the required number of trajectories (few hundreds at least) directly in the a-ARM 

QM/MM model generator so that to automate the full procedure of computing Φcis-trans. The use 

of the constantly increasing number of CPU cores available either locally or at regional, national 

or international computer centers, would make such a research possible even for hundreds of 

rhodopsins hopefully representing different organisms and mutants. We are convinced that, soon 

in the future studying systematically Φcis-trans in many diverse organisms will lead to new and 

fundamental knowledge on how proteins control photochemical reactions in general and what 

are the mechanistic spectrum achievable. Most importantly we hope to "extract" from these 

calculations the general mechanistic rules, which must be based on factors such as the steric and 

electrostatic interactions between protein and chromophore, controlling the mechanistic 

spectrum and, most importantly, the Φcis-trans. 

In Fig. 19 C, we report, as demonstrative examples, the comparison between the population 

dynamics of three different Type II rhodopsin proteins all corresponding to visual pigments (one 

ancestral to indicate that the proposed calculations can also be applied to studies attempting to 

reconstruct the evolution of biological photoreceptors163). The result of each calculation is 
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described in terms of progression along the α coordinate spanning the potential energy surface 

connecting the S1 vertical excitation region to a decay region in the vicinity of ISS1/S0. where the 

decay occurs at geometries where α is comprised between 60 and 120 degrees on timescales and 

the timescale goes from 30 to 180 fs. All results shown are based on automatically constructed 

a-ARM models and 200 trajectory simulations.  

3.7 Unifying computational protocols for multiscale modeling of photoreceptor proteins 

Computational protocols for multiscale modeling of photoreceptor proteins involves a large 

number of computer programs and protocols that are generally highly specialized for a particular 

modeling technique and scale of modeling. The new platform VIKING (Scandinavian Online 

Kit for Nanoscale Modelling, viking-suite.com) integrates a number of these tools in a single 

easy-to-use multiscale platform, that provides tools for setting up simulations, data analysis and 

visualization.164 VIKING not only alleviates the need for specialized know-how, which is 

traditionally required for each individual modeling technique, but also provides a standardized 

workflow, making the elaborate work of integrating multiple methods in a single study 

significantly more tractable and reproducible. The primary goal of VIKING is to deliver a set of 

standard protocols that researchers could use to study complex functioning of biomolecular 

systems, where photoreceptors naturally provide a good example. Furthermore, VIKING has 

been developed as a platform where new methods and protocols could be implemented with ease 

once they become available to the broad research community. 

VIKING lowers the barrier of entry and time investment for computational studies of 

biomolecular processes occurring on sub-atomic to macromolecular scales and beyond. By 
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making it easy to set up multiscale molecular models and employ a range of industry standard 

tools, VIKING provides a rapid workflow and illustrates simulation results in a 3D web viewer. 

VIKING serves the purpose of a computational microscope, i.e. a unique instrument for 

researchers. In particular, it provides a computational workflow for intuitive linking of existing 

modeling software, which so-far existed as stand-alone programs. VIKING utilizes the 

established programs as “engines” to obtain scientific data and provides unique algorithms that 

are able to set up all the needed files for computations; earlier the process was often tedious even 

for experienced users. VIKING algorithms take the user through a carefully thought workflow 

(VIKING wizard). This VIKING wizard is relying on a unique approach as it integrates more 

than 15 years of research experience in computational biophysics which allow the system to 

provide protocol templates to address practically any possible simulation that involves spatial 

scales ranging from electronic to the macromolecular assemblies. The simulation protocols 

include justified combination of simulation parameters that throughout decades were shown to 

be optimal for different types of biophysical simulations.  
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Fig. 21 Concept and workflow of VIKING. Computational tasks are configured in the web interface by supplying 

the input data (structures, potentials, input field values etc), from the local computer or an online database. The 

simulation is then performed on a supercomputer (Stampede2, Marconi and Abacus 2.0 are currently supported), 

the results are aggregated and represented visually in the web browser. Supercomputer photograph courtesy of 

iStockphoto LP. Copyright 2012. 

 

VIKING wizard addresses all the key questions that one has to answer to prepare needed input 

for simulations (provide a structure for the simulation, define temperature, pressure, level of 

theory, etc.); many technical parameters for simulations are then automatically determined by a 

complex algorithm based on the input provided by the user. This permits unexperienced users, 

unaware of the algorithmic backgrounds, not to worry about the technicalities. The automatic 

determination of simulation parameters relies on those simulation protocols that have been 

shown appropriate for a given simulation through decades of research experience. For example, 

classical molecular dynamics (MD) simulations of biomolecules are handled through the so-
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called molecular mechanics (MM) potential. In MD simulations, a complex molecular assembly 

is modeled by a set of interacting particles, whose evolution in time and space is calculated by 

numerical integration of Newton’s second law. In most cases the parameters for numerical 

solutions of the Newton’s equation are standard, and the protocol for its solution in the case of 

a multimillion molecule can be automatized. MD simulations of biological systems in VIKING 

interfaces to the popular programs NAMD165, AMBER166, MBN Explorer167, or GROMACS168. 

Quantum chemical (QC) codes, such as, e.g., Gaussian169, GAMESS170, DALTON,171 ORCA172 

and Firefly, or the spin dynamics code MolSpin173 allow studying electronic processes in 

molecular systems and chemical reactions, which becomes an important issue in most problems 

dealing with photoreceptive proteins. Naturally, VIKING permits linking MD and QC 

simulations such that input for one calculation type can be used for another calculation. The 

multiscale nature of VIKING goes well beyond linking of MD and QC, as it provides the key 

framework to link any possible scale ranging from electronic to the scale of protein complexes. 

VIKING effectively prepares parameters for simulation on one scale from other complete 

simulations and thereby permits programs to exchange data in the most efficient way. VIKING 

handles the relevant chunks of data from one program into special file formats that permit 

effective communication between the codes on the dedicated VIKING server. 

VIKING is likely the first tool to enable streaming support of biomedical data from 

supercomputers. High performance computing (HPC) increasingly opens new frontiers for 

diverse research areas as well as for industrial applications; in this respect, computational 

investigations of photoreceptors is probably one of the highlight examples. A traditional area of 

research making extensive use of HPC is computational biophysics, where MD and QC are 

typically employed to study the workings of complex biomolecular machineries in the smallest 
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detail. While the increasing HPC power enables researchers to study ever more complex 

molecular systems, the amount of data produced is becoming a serious challenge of its own – 

both in terms of storage and processing but also in terms of visual exploration; researchers need 

large data storage arrays, a fast network connection to the supercomputer and powerful computer 

workstations with large amounts of memory to explore and analyze the resulting datasets. 

VIKING is designed as powerful web-based visualization toolkit for atomistic simulations that 

will allow the user to visually explore results using any PC without the need to download the 

data in full. Through invention of a unique specialized file format for storing simulation results, 

the VIKING toolkit will stream the compressed atomic coordinates from a server during 

“playback” of a simulation to the web browser on a client PC, which will use the data to generate 

an animated visual representation of the studied molecular structure on the fly. 

In summary, we hope that in the future, VIKING will be a handy platform to (i) alleviate the 

growing logistic challenges when working with large-scale simulation data, (ii) support broader 

adoption of biophysical simulations through easy-to-use and modern web-based tools and (iii) 

enable direct sharing of simulation data through the web to any target audience. 

CONCLUSIONS 

Multiscale modelling has matured as a vital research method since its foundation more than 40 

year ago. It has been widely applied in the field of photoreceptor proteins. Specifically, the 

hybrid QM/MM method have become essential for addressing electronic properties of biological 

chromophores such as those present in biological photoreceptors. Despite the immense 

knowledge and experience collected over the last decades, there are still numerous challenges 
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remaining in the field. The high computational demand associated with these hybrid techniques, 

the large degree of freedom of the protein matrix and environment, the lack of structural and 

chemical information and the complex nature of the electronic structure, significantly limits their 

applicability leaves opportunity for future development. Practical applications of QM/MM 

approaches to various photoactive proteins, such as GFP, PYP, phytochrome, rhodopsin and 

luciferase, clearly illustrate the urgent need for devising faster electronic structure codes for 

excited state description, comprehensible protocols for transparent handling of structural data 

input and user friendly software for the analysis and evaluation of computational output as well 

as more robust and automated protocols for QM/MM simulations in general. These challenges in 

the field as well as progress in the method development were presented and thoroughly discussed 

at the CECAM meeting in Tel Aviv.  

Several conceptual as well as technical strategies for reducing the computational cost of 

QM/MM approaches were introduced by the participants. For instance, the potential energy 

surfaces of ground and excited states of chromophores in proteins can be more efficiently 

performed by combining QM/MM methodology with data-driven approaches such as those 

based on interpolation mechanics. The implementation of these data driven approaches provides 

opportunities for further improvements with machine learning techniques. In addition, high 

computational demand can be also overcome by rational simplification of the system under 

study. This simple approach has been shown to be effecive for the anionic p-coumaric-acid 

thioester chromophore of PYP, for which linear correlations were found between excitation 

energies as well as charge transfer nature and BLA resulting from the combination of a set of 

resonance structures. 
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The relevance of conformational sampling when computing any molecular property has been 

suggested in many contributions. The computational cost of any QM/MM calculation, however, 

increases enormously upon exploration of the conformational space, which is, for biological 

systems, still being mostly performed at a classical level. Thus, development and 

implementation of efficient and accurate hybrid QM/MM sampling techniques are urgently 

requested. The computational cost of stuyding reaction mechanisms can be drastically reduced, 

for example, by using path-based methods which replaces the high dimensional space of reaction 

coordinates by an optimizable curve in the collective variable space connecting two known 

states. Although the definition of adequate collective variables is not trivial, several cutting-edge 

methods based on clustering techniques are currently under development.  

The complexity of the protein environment usually makes the computation of any ground or 

excited state property of biological chromophores demanding. Here, the fine tuning of protein 

electrostatics by protonation states of titratable amino acids and the dynamics of hydrogen bond 

networks should be adequately described. While the protonation states of titratable side chain 

can be accurately predicted by Poisson Boltzman based approaches combined with molecular 

dynamics simulations or in the form of constant pH MD simulations, the analysis of the intricate 

H-bond network is possible with the help of Bridge, a newly developed tool.  

Finally, two strategies for user friendly automation of multiscale modeling protocols of 

photoreceptor proteins were presented: the Automatic Rhodopsin Modeling (α-ARM) which is 

able to successfully reproduce and predict excited state properties of rhodopsin-like 

photoreceptor. Further, the VIKING project which offers a general online platform interfacing 

various quantum chemical codes and molecular dynamics packages for multiscale modeling of 

complex biological systems. 
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The rapid growth of high-performance computing technologies, including the emergence of new 

and potent mathematical algorithms and their implementations in more user friendly and 

automated codes, will certainly support the development and implementation of multiscale 

modeling methods towards higher accuracy and expand their applicability to larger and more 

complex dynamical biological systems. 
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