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Lung cancer is the leading cause of cancer-related deaths worldwide and non-small

cell lung cancer (NSCLC) accounts for more than 80% of all lung cancer cases. Recent

advancements in diagnostic tools, surgical treatments, chemotherapies, and molecular

targeted therapies that improved the therapeutic efficacy in NSCLC. However, the

5-years relative survival rate of NSCLC is only about 20%due to the inadequate screening

methods and late onset of clinical symptoms. Dysregulation of microRNAs (miRNAs)

was frequently observed in NSCLC and closely associated with NSCLC development,

progression, and metastasis through regulating their target genes. In this review, we

provide an updated overview of aberrant miRNA signature in NSCLC, and discuss the

possibility of miRNAs becoming a diagnostic and therapeutic tool. We also discuss the

possible causes of dysregulated miRNAs in NSCLC.
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INTRODUCTION

MiRNAs are a class of small single-stranded, endogenous non-coding RNAs with approximately
20∼22 nucleotide length. miRNAs act as post-transcriptional gene regulators by binding to the
complementary 3′- untranslated regions (3′-UTRs) of target mRNAs, resulting in translational
inhibition or degradation of mRNAs (Bartel, 2009). The first miRNA, lin-4, was discovered in 1993
by Ambros and colleagues from the Caenorhabditis elegans (C. elegans) (Lee et al., 1993). In 2000,
another miRNA in C. elegans, let-7, was reported by Reinhart et al. let-7 capable of being inhibited
the expression of heterochronic gene lin-41 by sequencing specific RNA - RNA interaction with
the 3′-UTRs of its mRNA (Pasquinelli et al., 2000; Reinhart et al., 2000). In 2002, Dr. Croce group
provided the first evidence that miRNA was involved in human cancer pathogenesis. They revealed
that miR-15a and miR-16-1, located at 13q14 chromosome region, were frequently deleted in B-cell
chronic lymphocytic leukemia (CLL) (Calin et al., 2002). Over the past decade, growing evidences
have indicated that the dysregulation of miRNAs is implicated in the development, progression,
and metastasis of various cancers (Iorio and Croce, 2012a).

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer-related
deaths worldwide (Bray et al., 2018). Lung cancer is classified into two main histological groups,
including NSCLC (∼85%) and small cell lung cancer (SCLC,∼15%) (Osmani et al., 2018). miRNAs
dysregulation is frequently found in NSCLC, and aberrant expressions of miRNAs play a key role
in NSCLC proliferation, invasion, and metastasis through regulating their target genes (Peng et al.,
2013; Cortez et al., 2015; Liang et al., 2020). In this review, we briefly introduce aberrant miRNA
signatures in NSCLC and summarize howmiRNAs act as oncogene or tumor suppressor to regulate
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NSCLC progression and metastasis by modulating their target
genes. We also discuss the possibility of miRNAs becoming
therapeutic targets or biomarkers in NSCLC.

TUMOR SUPPRESSOR AND ONCOGENIC
MIRNAS IN NSCLC

miRNA dysregulation causes aberrant expression of their target
genes, thus involves various aspects of cancer cells including
cell growth, apoptosis, metabolism, and invasion (Bartel, 2004;
Bracken et al., 2016). A number of studies have shown that
miRNAs function as tumor suppressors or oncogenes in NSCLC
by inhibiting their target genes (Table 1). Here, we introduce
several prominent miRNAs that play critical roles in NSCLC.

Tumor Suppressor miRNAs in NSCLC
let-7 Family
The let-7 family, a first known human miRNA (Pasquinelli
et al., 2000; Reinhart et al., 2000), contains 10 isoforms that
functions as tumor suppressors by targeting a wide variety of
mRNAs encoding oncogenes (Roush and Slack, 2008), including
RAS (Johnson et al., 2005). Takamizawa et al. reported that
significantly shorter survival after potentially curative resection
was observed in cases with reduced let-7 expression (Takamizawa
et al., 2004). let-7c, a member of the let-7 family, prevents
migration and invasion of NSCLC cells by degrading ITGB3
and MAP4K3. Low expression of let-7 was associated with
metastasis, venous invasion, advanced TNM stages, and poor
survival of NSCLC patients (Zhao et al., 2014). Loss of let-7
function enhances the lung tumor formation in mouse models,
whereas exogenous delivery of let-7 to established tumors
in mouse models of NSCLC significantly reduces the tumor
burden (Trang et al., 2010). Let-7g effectively induces cell
cycle arrest and cell death in K-RasG12D expressing murine
lung cancer cells by targeting KRAS oncogene (Kumar et al.,
2008). These evidences indicate that let-7 family may serve
as prognostic marker and therapeutic target in certain type
of NSCLC.

miR-34
The miR-34 family consists of miR-34a, miR-34b, and miR-34c,
and is directly regulated by p53, a tumor suppressor gene (He
et al., 2007). miR-34a is a direct proapoptotic transcriptional
target of p53 that mediates part of the biological functions
of p53. Down-regulated miR-34a expression is frequently seen
in NSCLC, which may thus contribute to tumorigenesis by
attenuating p53-dependent apoptosis (Raver-Shapira et al.,
2007). Cortez et al. found that p53 regulates PDL1 expression
by transcriptionally up-regulating miR-34 in NSCLC. miR-34
mimics alone or in combination with radiotherapy reduced
PDL1 expression in the tumor and antagonized T-cell exhaustion
(Cortez et al., 2015). MRX34, a liposomal formulation of miR-
34a, is a potential first-in-class miRNA mimic for cancer therapy
(Daige et al., 2014; Beg et al., 2017). Phase 1 study of MRX34
in patients with advanced solid tumors, including lung cancer,
was conducted and demonstrated manageable toxicity in most

patients and some clinical activity. Dose-dependent inhibition of
related target genes provides proof-of-concept for miRNA-based
cancer therapy (Hong et al., 2020).

miR-486
The low level of miR-486 was observed in various types of
human cancer including NSCLC, and considered as an ideal
biomarker in cancer diagnosis (Jiang et al., 2018). miR-486
directly targets components related to insulin growth factor (IGF)
signaling, including IGF1, IGF1R, and PI3KR1, and functions
as a tumor suppressor in NSCLC (Peng et al., 2013). Pim-1, a
proto-oncogene, is up-regulated in NSCLC and its expression
was associated with advanced stage and lymph node metastasis.
miR-486 directly targets Pim-1 and downregulated miR-486 in
NSCLC leads to the overexpression of Pim-1 to promote tumor
progression, suggesting that critical tumor suppressive functions
of miR-486 in NSCLC (Pang et al., 2014).

miR-218
Down-regulated miR-218 expression in NSCLC is implicated in
histological grades and lymph node metastasis by targeting the
EMT regulator, Slug and ZEB2 (Shi et al., 2017). Overexpression
of miR-218 in NSCLC cells inhibits cell proliferation, invasion
and colony formation by targeting the IL-6 receptor and
JAK3. Down-regulated miR-218 expression was associated with
poor prognosis of patients with NSCLC (Zhang et al., 2013;
Yang et al., 2017). In addition, miR-218 functions as a tumor
suppressor by targeting the expression of high mobility group
box-1 (HMGB1) in NSCLC, suggesting that miR-218 might be
a potential therapeutic biomarker for metastatic NSCLC patients
(Zhang et al., 2013).

miR-200
The miR-200 family (miR-200a, miR-200b, miR-200c, miR-429,
and miR-141) is a well-known tumor suppressor that inhibits
EMT by targeting ZEB1 and ZEB2 in a wide range of cancers
(Korpal et al., 2008; Park et al., 2008). Chen et al. found
that ZEB1, an EMT activator and transcriptional repressor of
miR-200, relieves miR-200 mediated repression of PD-L1 on
tumor cells, leading to CD8+ T cell immunosuppression and
metastasis (Chen et al., 2014). miR-200 mediated inhibition of
ZEB1 sensitizes KRAS mutant NSCLC cells to MEK inhibition
and reduces in vivo tumor growth of NSCLC (Peng et al.,
2019). In addition, miR-200 family inhibits lung cancer cell
invasion and metastasis by targeting Foxf2, a transcription factor
that elevated in mesenchymal-like lung cancer cells (Kundu
et al., 2016). miR-200 has also been reported to inhibit tumor
angiogenesis in NSCLC by directly targeting interleukin-8 and
CXCL1 secreted from the endothelial and cancer cells (Pecot
et al., 2013), suggesting multifunction of miR-200 family in
NSCLC progression and metastasis.

Onco-miRNAs in NSCLC
miR-196b
The function of miR-196b in NSCLC is controversial. Our
recent study demonstrated that the expression of miR-196b
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TABLE 1 | Representative oncogenic or tumor suppressive miRNAs in NSCLC.

microRNA Chromosome Function Expression Targets References

Let-7a 9q22.3 Tumor-suppressor Down-regulation BCL2L1, IGF1R, CCND1, KRAS Chin et al., 2008

11q24.1

22q13.31

Let-7b 22q13.31 Tumor-suppressor Down-regulation USP44, USP42, ATXN7L3, KRAS Chin et al., 2008; Spolverini et al., 2017

Let-7c 21q21.1 Tumor-suppressor Down-regulation ITGB3, MAP4K3, TRIB2, USP44, USP42,

ATXN7L3, TGFBR3

Kumar et al., 2014; Zhao et al., 2014;

Spolverini et al., 2017

miR-486 8p11.21 Tumor-suppressor Down-regulation PI3KR1, IGF1R, IGF1, Pim-1, ARHGAP5,

SNHG15, CDK14

Peng et al., 2013; Pang et al., 2014; Wang, J.

et al., 2014; Jin et al., 2018

miR-134 14q32.31 Tumor-suppressor Down-regulation CCND1, EGFR Qin et al., 2016

miR-218 4p15.31 Tumor-suppressor Down-regulation EGFR, Slug, ZEB2, IL-6R, JAK3, HMGB1 Zhang et al., 2013; Zhu et al., 2016; Shi et al.,

2017; Yang et al., 20175q34

miR-326 11q13.4 Tumor-suppressor Down-regulation CCND1, Sp1 Sun et al., 2016; Wang et al., 2019

miR-34 1p36.22 Tumor-suppressor Down-regulation PD-L1, CDK4, HDM4, ZNF281, ZBP99,

Snail1

Kim et al., 2011; Hahn et al., 2013; Okada

et al., 2014; Cortez et al., 2015; Feng et al.,

2019

11q23.1

miR-200 1p36.33 Tumor-suppressor Down-regulation ZEB1, ZEB2, PDL1, QKI, Foxf2, LOX,

LOXL2, IL-8, CXCL1

Pecot et al., 2013; Chen et al., 2014; Kundu

et al., 2016; Peng et al., 2017, 2019; Kim et al.,

2019

12p13.31

miR-520 19q13.42 Tumor-suppressor Down-regulation VEGF Zhou et al., 2019

miR-16 3q25.33 Tumor-suppressor Down-regulation MEK1, FEAT, Bcl-2 Chatterjee et al., 2015

miR-340 5q35.3 Tumor-suppressor Down-regulation PUM1, PUM2, ZNF503, CDK4, RAB27B Fernandez et al., 2015

miR-26 3p22.2 Tumor-suppressor Down-regulation ITGβ8, HMGA1, MALT1 Chen et al., 2016

2q35

miR-196b 7p15.2 Oncogene Up-regulation GATA6, TSPAN12, FAS Huang et al., 2020; Liang et al., 2020

Tumor-suppressor Down-regulation Runx2, LIN28, FOS, UGT2A1 Tellez et al., 2016; Bai et al., 2017

miR-21 17q23.1 Oncogene Up-regulation PDCD4, SOCS1, SOCS6, PTEN, Apaf11,

RhoB, Faslg, Spry1, Spry2, BTG2

Hatley et al., 2010; Zhang et al., 2010; Ma

et al., 2011; Xue et al., 2016

miR-31 9p21.3 Oncogene Up-regulation CDK5, PTEN, p70S6K, ERK, AKT,

RASA1, SPRY, SPRED

Meng et al., 2013; Edmonds et al., 2016

miR-224 Xq28 Oncogene Up-regulation TUSC3, CASP3, CASP7, TNFAIP1,

SMAD4, p21, TXNIP, PTEN

Knoll et al., 2014; Wang et al., 2014; Cui et al.,

2015a,b; Jeon et al., 2018

miR-155 21q21.3 Oncogene Up-regulation SOCS1, SOCS6, PTEN, TAB2, TP53 Xue et al., 2016; Van Roosbroeck et al., 2017;

Wan et al., 2019

miR-1246 2q31.1 Oncogene Up-regulation MT1G, DR5 Kim et al., 2016; Yuan et al., 2016; Zhang

et al., 2016

miR-210 11p15.5 Oncogene Up-regulation E2F3, SDHD, FGFRL1, VMP-1, RAD52, Puisségur et al., 2011; Cui H. et al., 2015

miR-221/222 Xp11.3 Oncogene Up-regulation APAF1, SOCS3, TIMP2, TIMP3, PTEN,

p27

Garofalo et al., 2009, 2011; Wei et al., 2017

miR-17/92 13q23.1 Oncogene Up-regulation NR2C2, HIC1, NR1I2, PTH, p38α,

BCL2L11, PPP2R5E

Borkowski et al., 2015; Guinot et al., 2016;

Baumgartner et al., 2018

is up-regulated NSCLC, and is negatively regulated by RNA
binding protein QKI-5, a tumor suppressor in NSCLC. miR-
196b promotes NSCLC progression and metastasis by targeting
the tumor suppressors, TSPAN12, GATA6, and FAS (Liang
et al., 2020) (Huang et al., 2020). However, Tellez et al.
reported that miR-196b-5p was epigenetically silenced in the
premalignant stage of lung cancer, suggesting that tumor-
suppressive functions of miR-196b in NSCLC (Tellez et al., 2016).
These dual functions of miR-196b might be due to differences
in stage and treatment received and differences in the ethnic
origin of the analyzed patients. Further study needs to validate
these results.

miR-221/222
The miR-221/222 Cluster is one of the most commonly
upregulated miRNA clusters in various cancers (Di Leva
et al., 2014). miR-221/222 plays a key role in tyrosine kinase
inhibitors (TKIs) resistance in NSCLC. EGFR and MET regulate
miR-221/222 expression to control gefitinib-induced apoptosis
and NSCLC tumorigenesis by targeting apoptotic peptidase
activating factor 1 (APAF1) (Garofalo et al., 2011). In addition,
miR-221/222 is involved in TNF-related apoptosis-inducing
ligand (TRAIL)-resistance and tumorigenesis of NSCLC by
targeting PTEN and TIMP3 tumor suppressors (Garofalo
et al., 2009). Another study also showed that exosomic
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FIGURE 1 | Potential causes of dysregulated miRNAs in NSCLC. Schematic figure of the possible pathways that involved in dysregulated miRNA expressions

in NSCLC.

miR-222-3p promoted cell proliferation, gemcitabine resistance,
migration, and invasion of NSCLC by targeting SOCS3
(Wei et al., 2017).

miR-17/92 Cluster
The miR-17/92 cluster encodes six miRNAs, including miR-
17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1,
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and resides in intron 3 of the C13orf 25 gene at human
chromosome 13q31.3, a region frequently amplified in various
solid tumors (Ota et al., 2004). Hayashita et al. reported for
the first time that miR-17/92 cluster is overexpressed in lung
cancer cells and promotes cell growth (Hayashita et al., 2005).
Inhibition of miR-17/92 cluster exerts cytotoxicity in p53-
negative NSCLC cells by suppression of CYP24A1 (Borkowski
et al., 2015). miR-19 family enhances Wnt signaling by targeting
p38α in NSCLC, and increases NSCLC malignant potential
(Guinot et al., 2016). Downregulated miR-19b expression is
closely associated with reduced phosphorylation of ERK, AKT
and their effector proteins in EGFR mutant NSCLC cells
(Baumgartner et al., 2018), suggesting that targeting miR-19b
could potentially be alternative therapeutic methods in EGFR
mutant NSCLC.

miR-21
miR-21 plays oncogenic functions by suppressing many
important tumor suppressor genes (Krichevsky and Gabriely,
2009). Large-scale profiling of miRNA expression in multiple
human cancer tissue samples revealed that miR-21 is the
only miRNA up-regulated in all types of analyzed tumor
samples (Volinia et al., 2006). A high level of miR-21 is
associated with advanced clinical stage and metastasis in
NSCLC, and stimulates cell growth and invasion by inhibiting
tumor suppressor PTEN in NSCLC (Zhang et al., 2010; Xue
et al., 2016). The expression of miR-21 is increased and is
associated with poor prognosis in NSCLC. miR-21 promotes
tumorigenesis through inhibition of negative regulators of
the Ras/MEK/ERK signaling pathway (Hatley et al., 2010),
suggesting that promising oncogenic functions of miR-21
in NSCLC.

miR-224
Our previous studies demonstrated that miR-224 is up-
regulated and promotes tumor progression and metastasis
in NSCLC. miRNA-224-mediated tumor suppressor candidate
3 (TUSC3) deficiency enhances the metastatic potential of
NSCLC through the regulation of three unfolded protein
response pathways andHRD1-dependent endoplasmic reticulum
associated degradation (ERAD) (Jeon et al., 2018). In addition,
miR-224 directly targets tumor suppressor, TNFAIP1 and
SMAD4, to promote tumor growth both in vitro and in vivo
in NSCLC. Considering that SMAD4 plays a central role in
the TGF-β family signaling pathways, and has low frequency
of mutation and/or deletion, miR-224 might be an ideal
therapeutic target for patients with certain NSCLC (Cui et al.,
2015b).

NSCLC metastasis is a complex, multistep process involving
a number of molecular and genetic changes, and is a sign of
poor prognosis (Zhu et al., 2020). As described avobe, some
miRNAs are closely implicated in fundamental processes of
NSCLC metastasis. Therefore, deeply understanding miRNA
signaling network will help to identify therapeutic targets for
NSCLC metastasis.

CIRCULATING MIRNAS IN NSCLC

Circulating miRNA was initially discovered in the cell-free
blood plasma and serum, and was considered as a novel class
of biomarkers for diagnosis and prognosis of various diseases
including cancer (Chen et al., 2008; Lawrie et al., 2008).
The plasma miR-590-5p was significantly down-regulated in
NSCLC patients and serves as a potential prognostic marker
in NSCLC (Khandelwal et al., 2020). Hypoxic lung cancer-
cell-derived extracellular vesicle miR-103a induces oncogenic
M2 macrophages polarization by targeting PTEN, it results
in activation of AKT and STAT3 signaling as well as
expression of several immunosuppressive and pro-angiogenic
factors to facilitate cancer progression (Hsu et al., 2018).
Circulating miR-320a secreted from neutrophils of high-risk
heavy-smokers induces immunosuppressive macrophages M2
phenotype through downregulation of STAT4 to increase lung
cancer risk (Fortunato et al., 2019). Although a growing number
of studies have reported that circulating miRNAs may serve as
diagnostic and prognostic biomarkers in NSCLC, concordance
between the experimental results is extremely low due to
the lack of standardized measurement methods. Accordingly,
establishing a standard guideline is extremely important to
screening circulating miRNA biomarkers in NSCLC.

CAUSES OF MIRNA DYSREGULATION IN
NSCLC

Aberrant miRNA signature was considered as an important
biomarker for diagnosis and prognosis of NSCLC (Iorio and
Croce, 2012a). Accumulating evidence suggests that genetic
and epigenetic alterations, and transcriptional regulations
are involved in miRNA dysregulation in cancers (Figure 1)
(Iorio and Croce, 2012b).

Genetic Alteration
Genetic alterations including chromosomal rearrangements,
genomic amplifications, deletions, and gene mutations
contribute to the miRNA dysregulation (Di Leva et al., 2014). In
2002, the earliest evidence of miRNAs deletion in human cancer
was provided by Dr. Croce’s group. They showed that the region
containing miR-15a and miR-16-1 in chromosome 13q14 was
frequently deleted in patients with B cell chronic lymphocytic
leukemia (CLL) (Calin et al., 2002).

Amplification of miRNAs as a result of being located in
amplified genomic regions is associated with carcinogenesis
and tumor progression. miR-21 and miR-205, known as the
oncogenic miRNAs, are located at the regions commonly
amplified in lung cancer (Yanaihara et al., 2006). Another
oncogenic miRNA, miR-17-92 cluster, is located within the third
intron of the open reading frame 13 (C13orf25) at 13q31.3
genomic region. The region containing miR-17-92 cluster is
frequently amplified in NSCLC, that results in upregulated miR-
17-92 family expression contributing to NSCLC progression
(Hayashita et al., 2005; Calin and Croce, 2006). A large scale
copy number variation analysis using NSCLC tissue samples
also showed that miR-21, miR-17, and miR-155 are the most
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frequently amplified miRNAs in NSCLC (Czubak et al., 2015).
Inversesly, the let-7 family are located in regions commonly
deleted in lung cancer, including let-7g at 3p21.1-21.2, let-7a-2 at
11q23-q24, and let-7c at 21q11.1 (Diederichs and Haber, 2006).

Aberrant expression or mutations in the genes that encoding
key components of the miRNA biogenesis pathway contribute
to the global downregulation of miRNAs in cancer (van
Kouwenhove et al., 2011). Czubak et al. reported that the
frequent amplification of DICER and DROSHA was observed in
NSCLC (Czubak et al., 2015). In addition, the phosphorylation
of argonaute 2 (AGO2) by c-Src inhibits the binding of DICER
to AGO2 and promotes tumorigenesis of lung cancer, suggesting
that change of these miRNA biogenesis related genes might cause
alternation of miRNA signature in NSCLC (Liu et al., 2020).
Under hypoxic stress, epidermal growth factor receptor (EGFR)
suppresses the maturation of specific tumor-suppressor miRNAs
by phosphorylation of argonaute 2 (AGO2). Phosphorylated
AGO2 protein reduces the binding between Dicer and AGO2,
results in inhibition of miRNA processing from precursor
miRNAs to mature miRNAs in NSCLC cells (Shen et al., 2013).

Epigenetic Changes
In addition to genetic alterations, epigenetic changes such
as aberrant DNA methylation and histone modifications may
contribute to the dysregulated miRNA expression in cancers
(Egger et al., 2004).

Methylation in the miR-34a promoter region was frequently
seen in various cancers including NSCLC, that results in
down-regulated miR-34a expression (Lodygin et al., 2008).
Hypermethylation in the promoter region of miR-124a
significantly reduces miR-124a expression in lung cancer cells,
results in increased expression of CDK6 and Rb phosphorylation
(Lujambio et al., 2007). miR-200c plays a critical role in
regulating EMT and inhibits cell invasion and metastasis.
Hypermethylation in the promoter region of miR-200c
significantly reduces miR-200a expression, and that results
in induction of an aggressive, invasive, and chemoresistant
phenotype in NSCLC (Ceppi et al., 2010).

Conversely, the promoter region of let-7a-3 gene was
hypomethylated in lung adenocarcinomas, that results in elevated
let-7a-3 expression and subsequent enhanced tumor phenotypic
changes in lung cancer (Brueckner et al., 2007). Recently, our
study reported that the hypomethylation in the CpG islands of
the miR-224 promoter region increased the expression of miR-
224, and promoted tumor progression and metastasis of NSCLC
by targeting SMAD4 and TNFα-induced protein 1 (TNFAIP1)
(Cui et al., 2015b). In another study, we found that the expression
of miR-196b-5p was partially controlled by hypomethylation in
its promoter region and up-regulated miR-196b-5p promoted
NSCLC cell migration, proliferation, and cell cycle through
directly targeting the tumor suppressors, GATA6 and TSPAN12
(Liang et al., 2020).

The miR-29 family, including miR-29a, miR-29b, and miR-
29c, is a key regulator of DNA methyltransferases, DNMT3A
and DNMT3B. In NSCLC, reduced miR-29 expression causes
hypermethylation in the promoter region of some tumor
suppressor genes by regulating DNMT3A and DNMT3B,

leading to elevated expression of tumor suppressor genes
(Fabbri et al., 2007).

In addition to DNA methylation, histone modifications play
an important role in chromatin remodeling, and cooperate
with DNA methylation to regulate miRNA expression in
cancers (Chuang and Jones, 2007). KDM5B, a histone H3
lysine 4 (H3K4) demethylase, promotes epithelial-mesenchymal
transition (EMT) of lung cancer cells by repressing the expression
of the miR-200 family (Enkhbaatar et al., 2013).

Transcriptional Control of miRNAs
Myc, an oncogenic transcription factor, has been reported to
positively or negatively regulate the expression of many protein-
coding genes and miRNAs (Croce, 2009). The overexpression
of miR-17-92 cluster in NSCLC is associated with gene
amplification of the miRNA cluster itself and enhanced
expression of the myc gene (O’Donnell et al., 2005; Osada
and Takahashi, 2011). In NSCLC, c-Myc suppresses miR-29b to
promote tumor aggressiveness and poor outcomes by targeting
tumor suppressor, FHIT (Wu et al., 2015).

p53, a well-known tumor suppressor, binds to the specific
DNA sequence, termed the p53-responsive element (RE) to
regulate p53 target genes. p53 promotes the transcription of the
miR-34 family by binding to p53 REs in its promoter region
(Bommer et al., 2007). p53mediated increased expression ofmiR-
34a promotes p53 induced apoptosis in NSCLC cells (Hollstein
et al., 1991; He et al., 2007; Raver-Shapira et al., 2007). The
upregulation of p53 simultaneously activates miR-34a and miR-
16, which in turn targets Bcl2 to induce apoptosis in NSCLC cells
(Upadhyay et al., 2019). Wang et al. found that miR-193a was
directly activated by p53 at the transcriptional level andmiR-193a
targets EGFR through directly binding to 3′-UTR of the EGFR
mRNA in NSCLC (Wang, W. et al., 2019). These facts indicate
that the aberrant expression of transcription factors consistently
contributes to the dysregulated miRNAs expression in NSCLC.

MIRNAS CONTRIBUTE TO DRUG
RESISTANCE OF NSCLC

Platinum-based chemotherapy is a standard first-line treatment
for NSCLC patients. However, most patients with NSCLC
eventually develop resistance to chemotherapy (Rizvi et al.,
2016). The changes in the type and amount of miRNAs in
exosomes are associated with the resistance of NSCLC cells
to chemotherapeutic drugs (Zhao et al., 2015). Qin et al.
demonstrated that the miRNAs were differentially expressed in
the exosomes of cisplatin (CDDP)-resistant and CDDP-sensitive
NSCLC cells. In CDDP-resistant NSCLC cell lines, the amount
of miR-100-5p was significantly decreased in exosomes and was
functionally involved in CDDP resistance of NSCLC (Qin et al.,
2017). In addition, cancer-associated fibroblasts (CAFs) derived
exosomes confer cisplatin resistance of NSCLC cells through
transferring miRNA-130a (Zhang et al., 2021).

Aberrant EGFR signaling is the main cause of metastatic
NSCLC. Molecular targeted therapy for EGFR in NSCLC has
achieved certain effects. However, mutations in EGFR and
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feedback activation of other signaling pathways limited the
therapeutic efficacy of targeted therapy (Lai-Kwon et al., 2021).
Abnormal expression of miRNAs has been considered as one
of the causes of tyrosine kinase inhibitors (TKIs) resistance
(Calin and Croce, 2006). Inhibition of miR-483-3p promotes
gefitinib resistance in EGFR-mutant NSCLC, suggesting that
miR-483-3p is a promising target to overcome acquired EGFR
TKI resistance in EGFR-mutant NSCLC (Yue et al., 2018).
Garofalo et al. reported that miR-30b-c and 221-222 are involved
in gefitinib, an EGFR inhibitor, resistance of NSCLC cells by
modulating APAF-1 and BIM (Garofalo et al., 2011). Zhou
et al. found that miR-34a restored the gefitinib sensitivity in
HGF/MET activation-mediated gefitinib-resistant NSCLC cells
by targeting MET (Zhou et al., 2014). These facts suggest that
manipulating the expression of miRNAs could sensitize drug
resistance in NSCLC.

CONCLUSIONS AND FUTURE
DIRECTIONS

Recent advancements in whole-genome profiles of miRNAs
for blood samples and biopsies of NSCLC patients facilitate
discovery of new biomarkers for diagnosis, prognosis,
aggressiveness, metastasis, and drug resistance of NSCLC.
However, inconsistent results were also reported between
different groups. These might be due to the differences in
stage and treatment received for the analyzed samples. Thus,

uniformed sample collection and detection methods, and
adequate number of samples are necessary to obtain best results.

Preclinical studies of miRNA replacement therapy using
miRNAmimics or inhibition of miRNA by antimiRs have shown
promising results with minimal toxicity, indicating that targeting
miRNAs might be potential novel therapeutics for NSCLC.
Nevertheless, only few of miRNA therapeutics advanced into
clinical trials. To achieve success in miRNA-based therapeutics,
big challenge is identification of best target miRNAs in specific
disease type. Other challenges include minimizing the off-target
effects of miRNAs, preventing potential toxicities and developing
more efficient and specific miRNA delivery methods.
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