
Journal of Informatics and Mathematical Sciences
Volume 2 (2010), Numbers 2 & 3, pp. 109–119

© RGN Publications
http://www.rgnpublications.com

Frontiers of Topology

R.D. Sarma

Abstract. In the last half century, topology as a subject has undergone vast

changes. From its status of “Rubber sheet geometry”, topology has come a long

way to be one of the most important subjects not only in Mathematics, but

amongst various diverse systems and branches of modern sciences such as fuzzy

logic, computing, artificial intelligence, pattern recognition, image–processing

etc. In the process, the subject matter of topology has increased manifold. In

this article, we discuss some of such new frontiers touched by topology. While

interactions of logic programming and dislocated metric spaces are provided in

detail, other areas are given only introductory mentions in the article.

1. Topology And Fuzzy Set Theory

L.A. Zadeh introduced the notion of a fuzzy set in 1965 [15]. Introduction of

fuzzy sets was an answer to the problems posed by the two-valued logic system.

Although there was initial skepticism, very soon the notion of fuzzy set gained

a sound footing. Scientists all over the world switched over to this new system

which they found more natural and nearer to the real life situations. In pure

mathematics, topology was among the first few branches where fuzzy set theory

was systematically applied. The first paper on fuzzy topology by C.L. Chang

appeared in 1968 [2]. In fact, in the year 2008, fuzzy topology is completing

40 years of its existence. During this period, thousands of research papers have

been published in this area.

As fuzzy sets generalize the classical set theory, fuzzy topology also generalizes

the classical topology. In fact, TOP turns out to be a subcategory of FTOP, the

category of fuzzy topological spaces, with continuous mappings as morphisms.

Although there was criticism in the beginning, later on it was found that fuzzy

topology has been able to remove two major deficiencies of TOP [5]:

2000 Mathematics Subject Classification. 50A05.

Key words and phrases. Topology, dislocated metric, fuzzy topology, logic program.

110 R.D. Sarma

(i) There are many locales which can not be represented by any classical sober

topological space. But every locale, indeed, every complete lattice has at least

one representing sober fuzzy topological space.

(ii) Many localic products are not (isomorphic to) any product topology; but

every localic product is a product fuzzy topology.

Apart from these,

(iii) Fuzzy topology gives a much richer representation of distributive lattices than

classical topology alone can - for each complete distributive lattice L, there is

a category of representing fuzzy topological spaces.

(iv) Classical digital topology fails in gray-area modeling; whereas fuzzy digital

topology is found to be suitable for this purpose.

After fuzzy set theory, other newer theories are coming up dealing with the

shortcomings of the classical set theory. L-fuzzy sets, intuitionistic fuzzy sets, rough

sets etc. are amongst them. Studying topological structures in these new systems

has been a thrust area of present day research in topology [5,7,8].

2. Topology and logic programming

Another important area where topology has recently found applications is the

field of logic programming. Topology has entered here indirectly through a

measure called ‘dislocated metric’. Dislocated metrics were first studied by S.G.

Methews in 1986 [4] in the domain theory; however it was Hitzler and Seda,

who used it in logic programming and accordingly defined dislocated topology

in 2000 [3]. In the following, we provide a step by step discussion about the

interrelationship of dislocated metric and logic programming..

2.1. Dislocated metrics

Definition 2.1. Let X be any set and ρ : X × X → R
+ ∪ {0} be a function. Then ρ

is called a dislocated metric if

(i) ρ(x , y) = 0⇒ x = y;

(ii) ρ(x , y) = ρ(y, x);

(iii) ρ(x , y)≤ ρ(x , z) +ρ(z, y).

Thus we need not have, ρ(x , x) = 0.

Example 2.2. Let X = Z
+∪{0}, ρ(x , y) = (x+ y)/2. Then ρ is a dislocated metric

on X . Some open balls of (X ,ρ) are

B1(1) = {0}, B2(1) = {0, 1, 2}, B1/2 =∅.

Some peculiarities of d-metric are

(i) Bǫ(x) need not contain x;

(ii) A constant net {xn = x} need not converge to x

Some results concerning d-metric spaces [3, 9]:

Frontiers of Topology 111

(i) Let (X ,ρ) be a d-metric space and f : X → X be a contraction mapping. Then

f is continuous.

(ii) Let (X ,ρ) be a complete d-metric space and f : X → X be a contraction.

Then f has a unique fixed point (Banach’s Contraction mapping theorem).

(iii) Let (X ,ρ) be a complete d-metric space and {Fn} be a decreasing sequence

of non-empty closed subsets of X such that diam (Fn)→ 0. Then F =
∞
⋂

n=1

Fn

contains exactly one point (Cantor’s Intersection theorem).

2.2. Applying dislocated metrics in logic programming

In this section, we first acquaint our reader with the basic concepts of logic

programming. We heavily depend on Llyod [4] for the contents of this section.

Logic programming began in early 1970’s as a direct outgrowth of the earlier

work in automatic theorem proving and artificial intelligence. The credit for the

introduction of logic programming goes mainly to Kowalaski and Colmerauer [4].

In 1972, Kowalaski and Colmerauer were led to the fundamental idea that “ Logic

can be used as a programming language”.

The acronym PROLOG (PROgramming in LOGic) was conceived accordingly.

There are two major, rather different, classes of logic programming languages

currently available. One may be called ‘system’ language and the other ‘application’

language. However, this division is not precise; it is just to give a flavour of

the two classes of languages. PARLOG, PROLOG, GHC etc. fall in the first

category. Whereas Quintus PROLOG, micro-PROLOG and NU-PROLOG fall in the

second category. The system languages emphasize on AND-parallelism, definite

progamme etc., while the application languages emphasize on OR-Parallelism, and

unrestricted progams etc.

First order logic has two aspects: syntax and semantics. The syntactic aspect is

concerned with well-formed formulas admitted by grammar of a formal language,

as-well-as deeper proof-theoretic issues. The semantics is concerned with the

meanings attached to the well-formed formulas and the symbols they contain. A

first order theory consists of an alphabet, a first order language, a set of axioms

and a set of inference rules. The axioms are a designated subset of well-formed

formulas. The axioms and rules of inference are used to derive the theorems of the

theory.

Definition 2.3. An alphabet consists of seven classes of symbols:

(a) variables denoted by x , y, z, u, v, w, . . .

(b) constants denoted by a, b, c, . . .

(c) function symbols denoted by f , g, h, . . .

(d) predicate symbols denoted by p, q, r, . . .

(e) connectives ∧,∨,∼,→,↔ (conjunction, disjunction, negation, equivalence)

(f) quantifiers ∃,∀ (existencial and universal)

112 R.D. Sarma

(g) punctuation symbols such as , .

Definition 2.4. A term is defined inductively as follows:

(a) a variable is a term

(b) a constant is a term

(c) if f is any n-ary function symbol, t1, t2, . . . , tn are terms, then f (t1, t2, . . . , tn)

is a term.

Definition 2.5. A (well-defined) formula is defined inductively as follows :

(a) if p is an n-ary predicate symbol and t1, t2, . . . , tn are terms, then

p(t1, t2, . . . , tn) is a formula (called an atomic formula or an atom).

(b) if F and G are formulas, so are ∼ F, F ∧ G, F ∨ G, F → G, F ↔ G.

(c) if F is a formula and x is a variable, then (∀x F) and (∃x F) are formulas.

For an 1-ary predicate symbol p and a term t, p(t) may be treated as a property

of t; whereas for any n-ary p, p(t1, t2, . . . , tn) may be treated as a relation amongst

t1, t2, . . . , tn. Some examples of formulas are

∀ x ∃ y(p(x , y)→ q(x))

∼ ∃ x(p(x , a)∧ q(f (x)))

∀ x(p(x , g(x))→ q(x)∧ ∼ r(x))

Definition 2.6. The first order language given by an alphabet consists of the set

of all formulas constructed from the symbols of the alphabet.

Thus a language is a collection of all atoms based on the predicate symbols

and terms obtained from the constants, variables, functional symbols, all formulas

derived from the atoms by use of connectives ∧,∨,∼,→,↔ and quantifiers ∃,∀.

After defining a first order language, now we proceed to define a program:

Definition 2.7. (a) A literal is an atom or the negation of an atom. A positive

literal is an atom; a negative literal is the negation of an atom.

(b) A clause is a formula of the form

∀x1∀x2∀ . . .∀xn(L1 ∨ L2 ∨ . . .∨ Lm),

where each Li is a literal and x1, . . . , xn are variables occurring in L1∨ . . .∨ Lm.

Some examples of clause are

∀x ∀y ∀z(p(x , y, z)∨ ∼ q(x , y)∨ ∼ r(y, z))

∀x ∀y(∼ p(x , y)∨ r(f (x , y), a))

The clause ∀x1∀x2∀ . . .∀xs(A1 ∨ A2 ∨ . . .∨ Am∨ ∼ B1 ∨ . . .∨ ∼ Bn) is equivalent to

∀x1∀x2∀ . . .∀xs(A1 ∨ A2 ∨ . . .∨ Am← B1 ∧ . . .∧ Bn) which is also written as

A1, A2, . . . Am ← B1, . . . , Bn, where all variables are universally quantified,

antecedent is connected by conjunctions and consequents occurs with disjunction,

Ai , B j ’s are all atoms.

Frontiers of Topology 113

Definition 2.8. A definite program clause is a clause of the form A↔ B1, . . . , Bn,

which contains precisely one atom in its consequent. A is called the head and

B1, . . . , Bn is called the body of the program clause.

In this case, we have, “for each assignment of each variable, if B1, . . . , Bn are all

true, then A is true”.

Definition 2.9. A definite program is a finite set of definite program clauses.

The theory of definite programs is simpler in the sense that definite programs

do not allow negations in the body of the clauses.

So far we have discussed syntax of a logic program, especially of definite

program. The semantics of a program is concerned with the meanings attached

to the well-formed formulas and symbols they contain. The declarative semantics

of a logic program is given by the usual semantics of the formulas in the first

order logic. In order to be able to discuss the truth or falsity of a formula, it

is necessary to attach some meaning to each of the symbol in the formula first.

The various quantifiers and connectives have fixed meanings, but the meanings

attached to the constants, function symbols and predicate symbols may vary. An

interpretation consists of some domain so that the variables may be assigned some

range in the domain; along with it contains assignment to each constant element,

also there is assignment to each function symbol and to each predicate symbol.

An interpretation thus specifies a meaning for each symbol in the formula. An

interpretation for which the formula expresses a true statement is called a model

formula.

Formally we define pre-interpretation, interpretation and model in the following

way:

Definition 2.10. (i) A pre-interpretation J of a first order language L consists of

the following:

(a) a non-empty set D, called the Domain of the pre-interpretation;

(b) for each constant in L, the assignment of an element in D;

(c) for each n-ary function symbol in L, the assignment of a mapping from

Dn to D.

(ii) An interpretation I of a first order language L consists of a pre-interpretation

J with domain D, together with the following:

For each n-ary predicate symbol in L, the assignment of a mapping from Dn to

{true, false}.

Definition 2.11. (i) A variable assignment V with respect to J is an assignment

to each variable in L of an element in the domain of J .

(ii) For L, J , D, V with their usual meanings, term assignment is defined as

follows:

(a) each constant is given assignment according to J ;

114 R.D. Sarma

(b) each variable is given assignment according to V ;

(c) if t ′
1
, . . . , t ′

n
are the term assignment of t1, . . . , tn and f ′ is assignment of

n-ary function symbol, then f ′(t ′
1
, . . . , t ′

n
) ∈ D is the term assignment of

f (t1, . . . , tn).

(iii) Let I be an interpretation of a first order language L, and let F be a closed

formula of L. Then I is a model for F if F is true with respect to I . If S is a

set of formulas, then I is a model for S if I is a model for each formula of S.

Example 2.12. Consider the interpretation I:

Domain is the non-negative integers;

a is assigned 0 ;

b is assigned 1;

f is assigned the successor function x → x + 1;

p is assigned the relation {(x , y) : x < y};

q is assigned the relation {x : x > 0};

r is assigned the relation {(x , y) : x divides y}.

Then for the following formulas

(a) ∀x ∃yp(x , y); informal semantics: for each x , there exists y that p(x , y) is

true;

meaning: for every non-negative integer x , there exists

a non-negative integer y such that x is less than y .

I is model for this formula.

(b) ∃x∀yp(x , y) is false, hence I is not a model for this formula.

(c) p(f (a), b) is false as f (a) = f (0) = 1 as b = 1. Therefore I is not a model for

this formula.

In the above example(c), the formula p(s(a), b) is a special one. Its terms s(a), b

do not involve variables. A term not containing variables is called a ground atom.

The formula p(s(a), b) is a ground atom for which interpretation I is not a model.

Definition 2.13. Let L be a first order language. The Herbrand Universe UL for L

is the set of ground terms, which can be formed out of the constants and function

symbols appearing in L. The Herbrand base BL for L is the set of all ground

atoms which can be formed by predicate symbols of L with ground terms from

the Herbrand universe as arguments. The Herbrand pre-interpretation for L is

given by the following:

(a) the domain UL;

(b) the constants in L are assigned themselves in UL;

(c) if f is an n-ary function symbol in L, then the mapping from (UL)
n to UL

defined by (t1, . . . , tn)→ f (t1, . . . , tn) is assigned to f .

A Herbrand interpretation for L is any interpretation based on the Herbrand

preinterpretation for L.

Frontiers of Topology 115

In a Herbrand interpretation, the assignment to constants and function symbols

is fixed, thus, it is possible to identify a Herbrand interpretation with a subset of the

Herbrand base. In fact, for any Herbrand interpretation, the corresponding subset

of the Herbrand base is the set of all ground atoms which are true with respect

to the interpretation. Conversely, given any arbitrary subset of the Herbrand base,

there is a corresponding Herbrand interpretation defined by specifying that the

mapping assigned to a predicate symbol maps some arguments to ‘true’, precisely

when the atom made up of the predicate symbol with the same arguments is in the

given symbol. Thus one may identify a Herbrand interpretation as a subset of the

Herbrand base, which is the collection of all ground atoms of L.

We explain the above concepts with the help of the following example:

Example 2.14. Consider the program P

p(x)← q(f (x), g(x))

r(y)←

which has an underlying first order language L based on the predicate symbols

p, q and r and the function symbols f and g. Since L has no constant, we add

some constant, say a, to form ground terms.

The Herbrand universe for L is

UL = {a, f (a), g(a), f (f (a)), f (g(a)), g(f (a)), g(g(a)), . . .}

The Herbrand base for L is

BL = {p(a), q(a, a), r(a), p(f (a)), p(g(a)), q(a, f (a)), q(f (a), a), . . .}

The Herbrand pre-interpretation of P will consist of

Domain = UL;

Constant a is assigned a;

Function f is assigned t → f (t) where t ∈ UL .

Any Herbrand interpretation of P will essentially contain the above three

features of the Herbrand pre-interpretation; they will differ only in their

assignments regarding the predicate symbols.

Definition 2.15. Let L be a first order language and S be a set of closed formulas

of L. A Herbrand model for S is a Herbrand interpretation I for L which is model

for S, that is, all formulas of S are true with respect to I .

For a program P, we may normally assume that the underlying language is

defined by the constants, function symbols and predicate symbols appearing in P.

With this understanding, we refer to the Herbrand universe as and Herbrand base

as of P.

Since every definite program P has BP as a herbrand model, the set of all

Herbrand models for p is non-empty. Thus the intersection of all Herbrand models

for P is again a model, called the Least Herbrand model for P, denoted by MP .

116 R.D. Sarma

Now we are coming towards combining our discussions on syntax and semantics

of definite programs. We have defined various aspects of a definite program and

looked for the best suitable interpretation or meaning of a program. With MP , the

least Herbrand model, we have reached the answer. There are very strong reasons

for regarding MP as the natural interpretation of a program. In fact the atoms in

MP are precisely those which are logical consequences of the program (An atom

F is a logical consequence of a set of formula S, if whenever each formula of S is

true in an interpretation I , F is also true).

Let P be a definite program. Then IP , the set of all interpretations of P, is a

complete lattice under the partial ordering of set inclusion. We define a mapping

TP , called single step operator, TP : IP → IP as follows: Let I be an Herband

interpretation (that is, a subset of BP). Then

TP(I) = {A∈ BP : A↔ A1, . . . , Anis a ground instance of a clause in

P and {A1, . . . , An} ⊆ I}

(For the definition of ground instance, please refer to [4]).

The single step operator is continuous under Scott topology on Ip. Hence it is

monotonic as a lattice mapping. So by Knaster-Tarski Theorem, a least fixed point

exists for the single step operator. In fact, MP turns out to be the least fixed point

of TP .

However, the above lattice-theoretic method is helpful so long as we deal with

definite programs where bodily atoms of the clauses are positive literals. If we

enhance the syntax, say, as in normal program, allowing negative literals to occur

in the body of the clauses, the single step operator fails to be monotonic. Hence a

fixed point is not obtained by the above approach.

To solve this problem, the possible approaches are

(i) To restrict the syntax;

(ii) To change the operator;

(iii) To shift to other fixed point theorems.

It is in the third approach, that dislocated metrics come to our help. For this,

we proceed as follows:

Let P be a logic program, I be a model for P, l : Bp → N be a level mapping,

where each atom/predicate is given a level. If for each ground instance

A↔ L1, . . . , Ln of a clause in P, we have if Li ∈ I , i = 1, . . . , n, then l(Li)≺ l(A)

then P is called an Acceptable logic program with respect to l and I .

For J , K ∈ IP , we define d(K , K) = 0 and d(J , K) = 2−n, where J and K differ on

some atom A of level n, but agree on all ground atoms of lower levels. Then (IP , d)

is a complete metric space (Notice, earlier we found that (Ip,⊆) is a complete

lattice!).

Frontiers of Topology 117

Define

f : IP → R, by f (K) =

¨

0, if K ⊆ I

2n, if K 6⊆ I ,

where n is the smallest positive integer such that there is an atom a of level n in K

but not in I .

Define

U : IP → R by U(K) =max{ f (K ′), d(K ′, I)},

where K ′ is K restricted to the predicate symbols which are not in Neg∗
P

(For the

definition of Neg∗
P
, refer to [3]). Finally define

ρ : IP × IP → R by ρ(J , K) =max{d(J , K), U(J), U(K)}.

ρ is a d-metric on IP : We find that

(i) ρ(K , K) = U(K)≥ 0 (ρ(K , K)> 0 if K |Neg∗P
 I , thus ρ is not a metric)

(ii) ρ(K , H) = ρ(H, K)

(iii) ρ(H, K) +ρ(K , L) =max{d(H, K), U(H), U(K)}+max{d(K , L), U(K), U(L)}

≥max{d(H, K) + d(K , L), U(H), U(L)}

≥max{d(H, L), U(H), U(L)}

= ρ(H, L)

It can be further proved that [3]

(i) (Ip,ρ) is a complete metric space.

(ii) TP : IP → IP is a contraction mapping.

Hence Banach’s fixed point theorem holds for TP . Therefore TP has a unique

fixed point. Since a supported model for P is a fixed point for TP , it follows that

Every acceptable logic program has a unique supported model.

Thus we have seen that dislocated metrics help us overcome the drawback of

the single step operator that it can no longer provide a fixed point which could

be a reasonably acceptable interpretation of non-positive logic programs. So it is

desirable that this metric and its corresponding topological space are investigated.

Since the set of open balls of a d-metric space does not yield a conventional

topology, a dislocated topology has been defined with a different approach. It

was studied by Hitzler and Seda in 2000 for the first time. Another approach has

been provided in Sarma [9].

Definition 2.16. Let (X ,ρ) be a d-metric space. Let for x ∈ X , Ax = {A⊆ X : there

exists ǫ > 0 such that Bǫ (x) ⊆ A}. Then Ax is called a d-neighborhood system for

x . Let A= {Ax : x ∈ X }. Then (X ,A) is called a d-topological space.

Some properties of d-topological spaces are studied in [3,9]. However, it is still

in embryonic stage.

118 R.D. Sarma

2.3. Query topology

Another important topology used in logic programming is query topology

introduced by Batarekh and Subrahmaniam in 1988 [1, 11]. A query is a typed

first order formula of the type

←W

Where W is a typed first order formula and any free variables of W are assumed

to be universally quantified at the front of the query.

Let P be a normal logic program with its underlying language L. Let J be a pre-

interpretation of L with domain dom(J) and I be an interpretation based on J . Let

X = I J
L

denote the set of all interpretations of L based on J . Given a query E in L,

we define

G(E) = {I ∈ X : E is in I}

and form the class

Ĝ = {G(E) : E is a query }.

The query topology is the topology on X generated by Ĝ as a subbasis. Thus a

typical open set in the query topology is a union of sets of the type G(E1)∩G(E2)∩

. . .∩ G(En).

Some characteristics of a query topology are

(i) it is always second countable, irrespective of the cardinality of the domain D of

J;

(ii) it is not Hausdorff.

To avoid these typical characteristics, atomic topology Q is defined with some

refinement on query topology [1] which has the following features

(i) Topology Q is finer than the query topology; every basic open set is closed in Q.

(ii) Q is regular and Hausdorff, totally disconnected and compact.

(iii) Q and the query topology coincide if J is Herbrand pre-interpretation.

(iv) Q is Cantor topology.

References

[1] A. Batarekh and V.S. Subrahmanian, The query topology in logic programming, Proc.

1989 Symp. on Theoretical Aspects of Computer Science, Lecture notes in Comp. Sc.,

Springer Verlag, 1989, 375–387

[2] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.

[3] P Hitzler and A.K. Seda, Dislocated topologies, J. Elec. Eng. 51 (10)(2000), 3–7.

[4] J.W. Llyod, Foundations of Logic Programming, 2nd edition, Springer Verlag, 1988.

[5] S.E. Rodabaugh, Pointwise lattice-theoretic topology, Fuzzy Sets and Systems

40(1991), 297–345.

[6] A. Rosenfield, Fuzzy digital topology, Infor. And Control 29(1)(1979), 97–117.

[7] R.D. Sarma and N. Ajmal, Fuzzy nets and their applications, Fuzzy Sets and Systems

51(1992), 41–51

[8] R.D. Sarma, The theory of localization for intuitionistic fuzzy topological spaces, J.

Fuzzy Math. 23(2007), 711–724.

Frontiers of Topology 119

[9] R.D. Sarma, Relational topology, Preprint.

[10] A.K. Seda, Some applications of general topology to the semantics of logic programs,

Bull. Europ. Ass. for Theoret. Comp. Sc. 52(1994), 279–292.

[11] A.K. Seda, Quasi-metric and semantics of logic programs, Fund. Inform. 29(1)(1997),

97–117.

[12] A.K. Seda and P. Hitzler, Topology and iterates in computational logic, Proc. of 12th

Summer Conf. on Gen. Top. and its Applications 22 (1999), 427–469.

[13] A.K. Seda, Topology and semantics of logic programs, Fund. Inform. 19(1) (1997),

97–117.

[14] Stephen Willard, General Topology, Addision-Wesely, 1970.

[15] L.A. Zadeh, Fuzzy Sets, Inform. and Control 8(1965), 338–353.

[16] L.A. Zadeh, Fuzzy algorithms, Inf. and Control 19 (1969), 94–102.

[17] L.A. Zadeh, A computational approach to fuzzy quantifiers in natural languages,

Comp. and Math. with Appl. 9(1983), 149–184.

R.D. Sarma, Department of Mathematics, Rajdhani College (University of Delhi),
Delhi 110 015, India.
E-mail: ratna_sarma@yahoo.com

Received July 2, 2009

Accepted May 22, 2010

