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Abstract

In this paper, we discuss distributed optimization over directed graphs, where doubly stochastic weights cannot be

constructed. Most of the existing algorithms overcome this issue by applying push-sum consensus, which utilizes

column-stochastic weights. The formulation of column-stochastic weights requires each agent to know (at least) its

out-degree, which may be impractical in, for example, broadcast-based communication protocols. In contrast, we

describe FROST (Fast Row-stochastic-Optimization with uncoordinated STep-sizes), an optimization algorithm

applicable to directed graphs that does not require the knowledge of out-degrees, the implementation of which is

straightforward as each agent locally assigns weights to the incoming information and locally chooses a suitable

step-size. We show that FROST converges linearly to the optimal solution for smooth and strongly convex functions

given that the largest step-size is positive and sufficiently small.
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1 Introduction
In this paper, we study distributed optimization, where n

agents are tasked to solve the following problem:

min
x∈Rn

F(x) �
1

n

n∑

i=1

fi(x),

where each objective, fi : R
p → R, is private and known

only to agent i. The goal of the agents is to find the

global minimizer of the aggregate cost, F(x), via local

communication with their neighbors and without reveal-

ing their private objective functions. This formulation has

recently received great attention due to its extensive appli-

cations in, for example, machine learning [1–6], control

[7], cognitive networks, [8, 9], and source localization

[10, 11].

Early work on this topic includes Distributed Gradient

Descent (DGD) [12, 13], which is computationally simple

but is slow due to a diminishing step-size. The conver-

gence rates are O
(
log k√

k

)
for general convex functions

andO
(
log k
k

)
for strongly convex functions, where k is the
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number of iterations.With a constant step-size, DGD con-

verges faster albeit to an inexact solution [14, 15]. Related

work also includes methods based on the Lagrangian dual

[16–19] to achieve faster convergence, at the expense of

more computation. To achieve both fast convergence and

computational simplicity, some fast distributed first-order

methods have been proposed. A Nesterov-type approach

[20] achieves O
(
log k

k2

)
for smooth convex functions with

bounded gradient assumption. EXact firsT-ordeR Algo-

rithm (EXTRA) [21] exploits the difference of two con-

secutive DGD iterates to achieve a linear convergence to

the optimal solution. Exact diffusion [22, 23] applies an

adapt-then-combine structure [24] to EXTRA and gener-

alizes the symmetric doubly stochastic weights required

in EXTRA to locally balanced row-stochastic weights over

undirected graphs. Of significant relevance to this paper is

a distributed gradient tracking technique built on dynamic

consensus [25], which enables each agent to asymptot-

ically learn the gradient of the global objective func-

tion. This technique was first proposed simultaneously in

[26, 27]. Xu et al. and Qu and Li [26, 28] combine it

with the DGD structure to achieve improved convergence

for smooth and convex problems. Lorenzo and Scutari

[27, 29], on the other hand, propose the NEXT framework

for a more general class of non-convex problems.
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All of the aforementioned methods assume that the

multi-agent network is undirected. In practice, it may not

be possible to achieve undirected communication. It is

of interest, thus, to develop optimization algorithms that

are fast and are applicable to arbitrary directed graphs.

The challenge here lies in the fact that doubly stochas-

tic weights, standard in many distributed optimization

algorithms, cannot be constructed over arbitrary directed

graphs. In particular, the weight matrices in directed

graphs can only be either row-stochastic or column-

stochastic, but not both.

We now discuss related work on directed graphs. Early

work based on DGD includes subgradient-push [30, 31]

and Directed-Distributed Gradient Descent (D-DGD)

[32, 33], with a sublinear convergence rate of O
(
log k√

k

)
.

Some recent work extends these methods to asyn-

chronous networks [34–36]. To accelerate the con-

vergence, DEXTRA [37] combines push-sum [38] and

EXTRA [21] to achieve linear convergence given that the

step-size lies in some non-trivial interval. This restriction

on the step-size is later relaxed in ADD-OPT/Push-

DIGing [39, 40], which linearly converge for a suffi-

ciently small step-size. Of relevance is also [41], where

distributed non-convex problems are considered with

column-stochastic weights. More recent work [42, 43]

proposes the AB and ABm algorithms, which employ

both row- and column-stochastic weights to achieve

(accelerated) linear convergence over arbitrary strongly

connected graphs. Note that although the construction of

doubly stochastic weights is avoided, all of the aforemen-

tioned methods require each agent to know its out-degree

to formulate doubly or column-stochastic weights. This

requirement may be impractical in situations where the

agents use a broadcast-based communication protocol.

In contrast, Refs. [44, 45] provide algorithms that only

use row-stochastic weights. Row-stochastic weight design

is simple and is further applicable to broadcast-based

methods.

In this paper, we focus on optimization with row-

stochastic weights following the recent work in [44, 45].

We propose a fast optimization algorithm, termed as

FROST (Fast Row-stochastic Optimization with uncoor-

dinated STep-sizes), which is applicable to both directed

and undirected graphs with uncoordinated step-sizes

among the agents. Distributed optimization (based on

gradient tracking) with uncoordinated step-sizes has been

previously studied in [26, 46, 47], over undirected graphs

with doubly stochastic weights, and in [48], over directed

graphs with column-stochastic weights. These works

introduce a notion of heterogeneity among the step-sizes,

defined respectively as the relative deviation of the step-

sizes from their average in [26, 46] and as the ratio of

the largest to the smallest step-size in [47, 48]. It is then

shown that when the heterogeneity is small enough, i.e.,

the step-sizes are very close to each other, and when the

largest step-size follows a bound as a function of the het-

erogeneity, the proposed algorithms linearly converge to

the optimal solution. A challenge in this formulation is

that choosing a sufficiently small, local step-size does not

ensure small heterogeneity, while no step-size can be cho-

sen to be zero. In contrast, a major contribution of this

paper is that we establish linear convergence with uncoor-

dinated step-sizes when the upper bound on the step-sizes

is independent of any notion of heterogeneity. The imple-

mentation of FROST therefore is completely local, since

each agent locally chooses a sufficiently small step-size,

independent of other step-sizes, and locally assigns row-

stochastic weights to the incoming information. In addi-

tion, our analysis shows that all step-sizes except one can

be zero for the algorithm to work, which is a novel result in

distributed optimization. We show that FROST converges

linearly to the optimal solution for smooth and strongly

convex functions.

Notation: We use lowercase bold letters to denote vec-

tors and uppercase italic letters to denote matrices. The

matrix, In, represents the n × n identity, whereas 1n (0n)

is the n-dimensional uncoordinated vector of all 1’s (0’s).

We further use ei to denote an n-dimensional vector of

all 0’s except 1 at the ith location. For an arbitrary vec-

tor, x, we denote its ith element by [ x]i and diag{x}
is a diagonal matrix with x on its main diagonal. We

denote by X ⊗ Y the Kronecker product of two matri-

ces, X and Y. For a primitive, row-stochastic matrix, A, we

denote its left and right Perron eigenvectors by π r and 1n,

respectively, such that π
⊤
r 1n = 1; similarly, for a primi-

tive, column-stochastic matrix, B, we denote its left and

right Perron eigenvectors by 1n and π c, respectively, such

that 1⊤
n π c = 1 [49]. For a matrix, X, we denote ρ(X) as

its spectral radius and diag(X) as a diagonal matrix con-

sisting of the corresponding diagonal elements of X. The

notation ‖ · ‖2 denotes the Euclidean norm of vectors and

matrices, while ‖·‖F denotes the Frobenius norm ofmatri-

ces. Depending on the argument, we denote ‖ · ‖ either as

a particular matrix norm, the choice of which will be clear

in Lemma 1, or a vector norm that is compatible with this

matrix norm, i.e., ‖Xx‖ ≤ ‖X‖‖x‖ for all matrices, X, and

all vectors, x [49].

We now describe the rest of the paper. Section 2

states the problem and assumptions. Section 3 reviews

related algorithms that use doubly stochastic or

column-stochastic weights and shows the intuition

behind the analysis of these types of algorithms. In

Section 4, we provide the main algorithm, FROST,

proposed in this paper. In Section 5, we develop the

convergence properties of FROST. Simulation results

are provided in Section 6, and Section 7 concludes

the paper.
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2 Problem formulation
Consider n agents communicating over a strongly con-

nected network, G = (V , E), where V = {1, · · · , n} is the
set of agents and E is the set of edges, (i, j), i, j ∈ V , such

that agent j can send information to agent i, i.e., j → i.

Define N in
i as the collection of in-neighbors, i.e., the set

of agents that can send information to agent i. Simi-

larly,N out
i is the set of out-neighbors of agent i. Note that

both N in
i and N out

i include agent i. The agents are tasked

to solve the following problem:

P1 : min
x

F(x) �
1

n

n∑

i=1

fi(x),

where fi : R
p → R is a private cost function only known

to agent i. We denote the optimal solution of P1 as x∗.
We will discuss different distributed algorithms related

to this problem under the applicable set of assumptions,

described below:

Assumption 1 The graph, G, is undirected and con-

nected.

Assumption 2 The graph, G, is directed and strongly

connected.

Assumption 3 Each local objective, fi, is convex with

bounded subgradient.

Assumption 4 Each local objective, fi, is smooth and

strongly convex, i.e., ∀i and ∀x, y ∈ R
p,

i. There exists a positive constant l such that

∥∥∇fi(x) − ∇fi(y)
∥∥
2

≤ l‖x − y‖2.

ii. there exists a positive constant μ such that

fi(y) ≥ fi(x) + ∇fi(x)
⊤(y − x) + μ

2
‖x − y‖22.

Clearly, the Lipschitz continuity and strong convexity

constants for the global objective function, F = 1
n

∑n
i=1 fi,

are l and μ, respectively.

Assumption 5 Each agent in the network has and knows

its unique identifier, e.g., 1, · · · , n.
If this were not true, the agents may implement a finite-

time distributed algorithm to assign such identifiers, e.g.,

with the help of task allocation algorithms, [50, 51], where

the task at each agent is to pick a unique number from the

set {1, . . . , n}.

Assumption 6 Each agent knows its out-degree in the

network, i.e., the number of its out-neighbors.

We note here that Assumptions 3 and 4 do not hold

together; when applicable, the algorithms we discuss use

either one of these assumptions but not both. We will dis-

cuss FROST, the algorithm proposed in this paper, under

Assumptions 2, 4, 5.

3 Related work
In this section, we discuss related distributed first-order

methods and provide an intuitive explanation for each one

of them.

3.1 Algorithms using doubly stochastic weights

A well-known solution to distributed optimization over

undirected graphs is Distributed Gradient Descent (DGD)

[12, 13], which combines distributed averaging with a

local gradient step. Each agent i maintains a local esti-

mate, xik , of the optimal solution, x∗, and implements the

following iteration:

xik+1 =
n∑

j=1

wijx
j
k − αk∇fi

(
xik

)
, (1)

where W =
{
wij

}
is doubly stochastic and respects

the graph topology. The step-size αk is diminishing such

that
∑∞

k=0 αk = ∞ and
∑∞

k=0 α2
k < ∞. Under the

Assumptions 1, 3, and 6, DGD converges to x∗ at the rate

of O
(
log k√

k

)
. The convergence rate is slow because of the

diminishing step-size. If a constant step-size is used in

DGD, i.e., αk = α, it converges faster to an error ball, pro-

portional to α, around x∗ [14, 15]. This is because x∗ is not
a fixed-point of the above iteration when the step-size is a

constant.

To accelerate the convergence, Refs. [26, 28] recently

propose a distributed first-order method based on gradi-

ent tracking, which uses a constant step-size and replaces

the local gradient, at each agent in DGD, with an asymp-

totic estimator of the global gradient1. The algorithm is

updated as follows [26, 28]:

xik+1 =
n∑

j=1

wijx
j
k − αyik , (2a)

yik+1 =
n∑

j=1

wijy
j
k + ∇fi

(
xik+1

)
− ∇fi

(
xik

)
, (2b)

initialized with yi0 = ∇fi
(
xi0

)
and an arbitrary xi0 at each

agent. The first equation is essentially a descent method,

after mixing with neighboring information, where the

descent direction is yik , instead of∇fi
(
xik

)
as was in Eq. (1).

The second equation is a global gradient estimator when

viewed as dynamic consensus [52], i.e., yik asymptotically

tracks the average of local gradients: 1
n

∑n
i=1 ∇fi

(
xik

)
. It is

shown in Refs. [28, 40, 46] that xik converges linearly to x∗

under Assumptions 1, 4, and 6, with a sufficiently small
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step-size, α. Note that these methods, Eqs. (1) and (2a)–

(2b), are not applicable to directed graphs as they require

doubly stochastic weights.

3.2 Algorithms using column-stochastic weights

We first consider the case when DGD in Eq. (1) is applied

to a directed graph and the weight matrix is column-

stochastic but not row-stochastic. It can be obtained

that [32]:

xk+1 = xk − αk

n

n∑

i=1

∇fi
(
xik

)
, (3)

where xk = 1
n

∑n
i=1 x

i
k . From Eq. (3), it is clear that the

average of the estimates, xk , converges to x∗, as Eq. (3)

can be viewed as a centralized gradient method if each

local estimate xik converges to xk . However, since the

weightmatrix is not row-stochastic, the estimates of agents

will not reach an agreement [32]. This discussion moti-

vates combining DGD with an algorithm, called push-

sum, briefly discussed next, that enables agreement over

directed graphs with column-stochastic weights.

3.2.1 Push-sum consensus

Push-sum [38, 53] is a technique to achieve average con-

sensus over arbitrary digraphs. At time k, each agent

maintains two state vectors, xik , z
i
k ∈ R

p, and an auxil-

iary scalar variable, vik , initialized with vi0 = 1. Push-sum

performs the following iterations:

vik+1 =
n∑

j=1

bijv
j
k , (4a)

xik+1 =
n∑

j=1

bijx
j
k (4b)

zik+1 =
xik+1

vik+1

, (4c)

where B =
{
bij

}
is column-stochastic. Equation (4a) can

be viewed as an independent algorithm to asymptotically

learn the right Perron eigenvector of B; recall that the right

Perron eigenvector of B is not 1n because B is not row-

stochastic and we denote it by π c. In fact, it can be verified

that limk→∞ vi(k) = n[π c]i and that limk→∞ xi(k) =
[π c]i

∑n
i=1 xi(0). Therefore, the limit of zi(k), as the ratio

of xi(k) over vi(k), is the average of the initial values:

lim
k→∞

zik = lim
k→∞

xik

vik
= [π c]i

∑n
i=1 xi(0)

n[π c]i
=

∑n
i=1 x

i
0

n
.

In the next subsection, we present subgradient-push

that applies push-sum toDGD, see [32, 33] for an alternate

approach that does not require eigenvector estimation of

Eq. (4a).

3.2.2 Subgradient-push

To solve Problem P1 over arbitrary directed graphs, Refs.

[30, 31] develop subgradient-push with the following

iterations:

vik+1 =
n∑

j=1

bijv
j
k , (5a)

xik+1 =
n∑

j=1

bijx
j
k − αk∇fi

(
zik

)
, (5b)

zk+1 =
xik+1

vik+1

, (5c)

initialized with vi0 = 1 and an arbitrary xi0 at each agent.

The step-size, αk , satisfies the same conditions as in DGD.

To understand these iterations, note that Eqs. (5a)–(5c)

are nearly the same as Eqs. (4a)–(4c), except that there

is an additional gradient term in Eq. (5b), which drives

the limit of zik to x∗. Under the Assumptions 2, 3, and 6,

subgradient-push converges to x∗ at the rate of O
(
log k√

k

)
.

For extensions of subgradient-push to asynchronous net-

works, see recent work [34–36]. We next describe an

algorithm that significantly improves this convergence

rate.

3.2.3 ADD-OPT/Push-DIGing

ADD-OPT [39], extended to time-varying graphs in

Push-DIGing [40], is a fast algorithm over directed

graphs, which converges at a linear rate to x∗ under the

Assumptions 2, 4, and 6, in contrast to the sublinear con-

vergence of subgradient-push. The three vectors, xik , z
i
k ,

and yik , and a scalar vik maintained at each agent i, are

updated as follows:

vik+1 =
n∑

j=1

bijv
j
k , (6a)

xik+1 =
n∑

j=1

bijx
j
k − αyik , (6b)

zik+1 =
xik+1

vik+1

, (6c)

yik+1 =
n∑

j=1

bijy
i
k + ∇fi

(
zik+1

)
− ∇fi

(
zik

)
, (6d)

where each agent is initialized with vi0 = 1, yi0 = ∇fi
(
xi0

)
,

and an arbitrary xi0. We note here that ADD-OPT/Push-

DIGing essentially applies push-sum to the algorithm

in Eqs. (2a)–(2b), where the doubly stochastic weights

therein are replaced by column-stochastic weights.



Xin et al. EURASIP Journal on Advances in Signal Processing          (2019) 2019:1 Page 5 of 14

3.2.4 TheAB algorithm

As we can see, subgradient-push and ADD-OPT/Push-

DIGing, described before, have a nonlinear term that

comes from the division by the eigenvector estimation.

In contrast, the AB algorithm, introduced in [42] and

extended to ABm with the addition of a heavy-ball

momentum term in [43] and to time-varying graphs in

[54], removes this nonlinearity and remains applicable to

directed graphs by a simultaneous application of row- and

column-stochastic weights2. Each agent i maintains two

variables: xik , y
i
k ∈ R

p, where, as before, xik is the estimate

of x∗ and yik tracks the average gradient,
1
n

∑n
i=1 ∇fi

(
xik

)
.

TheAB algorithm, initialized with yi0 = ∇fi
(
xi0

)
and arbi-

trary xi0 at each agent, performs the following iterations:

xik+1 =
n∑

j=1

aijx
j
k − αyik , (7a)

yik+1 =
n∑

j=1

bijy
j
k + ∇fi

(
xik+1

)
− ∇fi

(
xik

)
, (7b)

where A = {aij} is row-stochastic and B = {bij} is

column-stochastic. It is shown that AB converges lin-

early to x∗ for sufficiently small step-sizes under the

Assumptions 2, 4, and 6 [42]. Therefore,AB can be viewed

as a generalization of the algorithm in Eqs. (2a)–(2b) as

the doubly stochastic weights therein are replaced by row-

and column-stochastic weights. Furthermore, it is shown

in [43] that ADD-OPT/Push-DIGing in Eqs. (6a)–(6d) in

fact can be derived from an equivalent form ofAB after a

state transformation on the xk-update; see [43] for details.

For applications of the AB algorithm to distributed least

squares, see, for instance, [56].

4 Algorithms using row-stochastic weights
All of the aforementioned methods require at least

each agent to know its out-degree in the network in

order to construct doubly or column-stochastic weights.

This requirement may be infeasible, e.g., when agents

use broadcast-based communication protocols. Row-

stochastic weights, on the other hand, are easier to imple-

ment in a distributedmanner as every agent locally assigns

an appropriate weight to each incoming variable from

its in-neighbors. In the next section, we describe the

main contribution of this paper, i.e., a fast optimization

algorithm that uses only row-stochastic weights and unco-

ordinated step-sizes.

To motivate the proposed algorithm, we first consider

DGD in Eq. (1) over directed graphs when the weight

matrix in DGD is chosen to be row-stochastic, but not

column-stochastic. From consensus arguments and the

fact that the step-size αk goes to 0, it can be verified that

the agents achieve agreement. However, this agreement

is not on the optimal solution. This can be shown [32]

by defining an accumulation state, x̂k =
∑n

i=1[π r]i x
i
k ,

where π r is the left Perron eigenvector of the row-

stochastic weight matrix, to obtain

x̂(k + 1) = x̂(k) − αk

n∑

i=1

[π r]i ∇fi (xi(k)) . (8)

It can be verified that the agents agree to the limit of

the above iteration, which is suboptimal since this itera-

tion minimizes a weighted sum of the objective functions

and not the sum. This argument leads to a modifica-

tion of Eq. (8) that cancels the imbalance in the gradient

term caused by the fact that π r is not a vector of all 1’s,

a consequence of losing the column-stochasticity in the

weight matrix. The modification, introduced in [44], is

implemented as follows:

yik+1 =
n∑

j=1

aijy
j
k , (9a)

xik+1 =
n∑

j=1

aijx
j
k − αk

∇fi
(
xik

)
[
yik

]
i

, (9b)

where A = {aij} is row-stochastic and the algorithm

is initialized with yi0 = ei and an arbitrary xi0 at each

agent. Equation (9a) asymptotically learns the left Per-

ron eigenvector of the row-stochastic weight matrix A,

i.e., limk→∞ yik = π r , ∀i. The above algorithm achieves

a sublinear convergence rate of O
(
log k√

k

)
under the

Assumptions 2, 3, and 5, see [44] for details.

4.1 FROST (Fast Row-stochastic Optimization with

uncoordinated STep-sizes)

Based on the insights that gradient tracking and constant

step-sizes provide exact and fast linear convergence, we

now describe FROST that adds gradient tracking to the

algorithm in Eqs. (9a)–(9b) while using constant but unco-

ordinated step-sizes at the agents. Each agent i at the kth

iteration maintains three variables, xik , z
i
k ∈ R

p, and yik ∈
R
n. At k + 1-th iteration, agent i performs the following

update:

yik+1 =
n∑

j=1

aijy
j
k , (10a)

xik+1 =
n∑

j=1

aijx
j
k − αiz

j
k , (10b)

zik+1 =
n∑

j=1

aijz
j
k +

∇fi

(
xik+1

)

[
yik+1

]
i

−
∇fi

(
xik

)

[
yik

]
i

, (10c)
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where αi’s are the uncoordinated step-sizes locally chosen

at each agent and the row-stochastic weights, A =
{
aij

}
,

respect the graph topology such that:

aij =
{

> 0, j ∈ N in
i ,

0, otherwise,

n∑

j=1

aij = 1, ∀i.

The algorithm is initialized with an arbitrary xi0, y
i
0 = ei,

and zi0 = ∇fi
(
xi0

)
. We point out that the initial condition

for Eq. (10a) and the divisions in Eq. (10c) require each

agent to have a unique identifier. Clearly, Assumption 5 is

applicable here. Note that Eq. (10c) is a modified gradient

tracking update, first applied to optimization with row-

stochastic weights in [45], where the divisions are used to

eliminate the imbalance caused by the left Perron eigen-

vector of the (row-stochastic) weight matrix A. We note

that the algorithm in [45] requires identical step-sizes at

the agents and thus is a special case of Eqs. (10a)–(10c).

For analysis purposes, we write Eqs. (10a)–(10c) in a

compact vector-matrix form. To this aim, we introduce

some notation as follows: let xk , yk , and ∇f(xk) collect

the local variables xik , y
i
k , and ∇fi

(
xik

)
in a vector in R

np,

respectively, and define

Y k =
[
y1k , · · · , y

n
k

]⊤
,

Yk = Y k ⊗ Ip,

Ỹk = diag (Yk) ,

A = A ⊗ Ip,

α = [α1, · · · ,αn]
⊤ ,

D = diag{α} ⊗ Ip.

Since the weight matrix A is primitive with positive

diagonals, it is straightforward to verify that Ỹk is invert-

ible for any k. Based on the notation above, Eqs. (10a)–

(10c) can be written compactly as follows:

Y k+1 = A Y k , (11a)

xk+1 = Axk − Dzk , (11b)

zk+1 = Azk + Ỹ−1
k+1∇f

(
xk+1

)
− Ỹ−1

k ∇f (xk) , (11c)

where Y 0 = In, z0 = ∇f0, and x0 is arbitrary. We

emphasize that the implementation of FROST needs

no knowledge of agent’s out-degree anywhere in the

network in contrast to the earlier related work in

[30–33, 37, 39, 40, 42, 43]. Note that Refs. [22, 23] also use

row-stochastic weights but require an additional locally

balanced assumption and are only applicable to undi-

rected graphs.

5 Convergence analysis
In this section, we present the convergence analysis of

FROST described in Eqs. (11a)–(11c). We first define a

few additional variables as follows:

Y∞ = lim
k→∞

Yk ,

Ỹ∞ = diag (Y∞) ,

∇f(x∗) =
[
∇f1(x

∗)⊤, · · · ,∇fn(x
∗)⊤

]⊤
,

τ =
∥∥A − Inp

∥∥
2
,

ǫ =
∥∥Inp − Y∞

∥∥
2
,

α = max
i

{αi},

y = sup
k

‖Yk‖2 ,

ỹ = sup
k

∥∥∥Ỹ−1
k

∥∥∥
2
.

Since A is primitive and row-stochastic, from the

Perron-Frobenius theorem [49], we note that Y∞ =(
1nπ

⊤
r

)
⊗ Ip, where π

⊤
r is the left Perron eigenvector of A.

5.1 Auxiliary relations

We now start the convergence analysis with a key

lemma regarding the contraction of the augmented weight

matrix A under an arbitrary norm.

Lemma 1 Let Assumption 2 hold and consider the aug-

mented weight matrix A = A ⊗ Ip. There exists a vector

norm, ‖ · ‖, such that ∀a ∈ R
np,

‖Aa − Y∞a‖ ≤ σ ‖a − Y∞a‖ ,

where 0 < σ < 1 is some constant.

Proof It canbeverified thatAY∞ = Y∞ and Y∞Y∞ = Y∞,

which leads to the following relation:

Aa − Y∞a = (A − Y∞) (a − Y∞a) .

Next, from the Perron-Frobenius theorem, we note

that [49]

ρ (A − Y∞) = ρ
(
A − 1nπ

⊤
r

)
< 1;

thus, there exists a matrix norm, ‖ · ‖, with ‖A − Y∞‖ < 1

and a compatible vector norm, ‖ · ‖, see Chapter 5 in [49],

such that

‖Aa − Y∞a‖ ≤ ‖A − Y∞‖ ‖a − Y∞a‖ ,

and the lemma follows with σ = ‖A − Y∞‖.

As shown above, the existence of a norm in which the

consensus process with row-stochastic matrix A is a con-

traction does not follow the standard 2-norm argument

for doubly stochastic matrices [28, 40]. The ensuing argu-

ments built on this notion of contraction under arbitrary

norms were first introduced in [39] for column-stochastic

weights and in [45] for row-stochastic weights; these argu-

ments are harmonized later to hold simultaneously for

both row- and column-stochastic weights in [42, 43].
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The next lemma, a direct consequence of the contrac-

tion introduced in Lemma 1, is a standard result from

consensus and Markov chain theory [57].

Lemma 2 Consider Yk , generated from the weight

matrix A. We have:

‖Yk − Y∞‖2 ≤ rσ k , ∀k,
where r is some positive constant and σ is the contraction

factor defined in Lemma 1.

Proof Note that Yk = Ak ⊗ Ip = Ak from Eq. (11a), and

Yk−Y∞ = Ak−Y∞ = (A−Y∞)(Ak−1−Y∞) = (A−Y∞)k .

From Lemma 1, we have

‖Yk − Y∞‖ =
∥∥∥(A − Y∞)k

∥∥∥ ≤ σ k .

The proof follows from the fact that all matrix norms are

equivalent.

As a consequence of Lemma 2, we next estab-

lish the linear convergence of the sequences
{
Ỹ−1
k

}

and
{
Ỹ−1
k+1 − Ỹ−1

k

}
.

Lemma 3 The following inequalities hold ∀k :

(a)
∥∥∥Ỹ−1

k − Ỹ−1
∞

∥∥∥
2

≤ √
nr̃y2σ k ;

(b)
∥∥∥Ỹ−1

k+1 − Ỹ−1
k

∥∥∥
2

≤ 2
√
nr̃y2σ k .

Proof The proof of (a) is as follows:
∥∥∥Ỹ−1

k − Ỹ−1
∞

∥∥∥
2

=
∥∥∥Ỹ−1

k (Ỹ∞ − Ỹk)Ỹ
−1
∞

∥∥∥
2
,

≤
∥∥∥Ỹ−1

k

∥∥∥
2

∥∥Ỹk − Ỹ∞
∥∥
2

∥∥Ỹ−1
∞

∥∥
2
,

≤ ỹ2
∥∥diag (Yk − Y∞)

∥∥
2

≤
√
nr̃y2σ k ,

where the last inequality uses Lemma 2 and the fact

that ‖X‖F ≤ √
n‖X2‖,∀X ∈ R

n×n. The result in (b) is

straightforward by applying (a), i.e.,
∥∥∥Ỹ−1

k+1 − Ỹ−1
k

∥∥∥
2

≤
∥∥∥Ỹ−1

k+1 − Ỹ−1
∞

∥∥∥
2
+

∥∥∥Ỹ−1
∞ − Ỹ−1

k

∥∥∥
2
,

≤
√
nr̃y2σ k+1 +

√
nr̃y2σ k ,

which completes the proof.

The next lemma presents the dynamics that govern

the evolution of the weighted sum of zk ; recall that zk ,

in Eq. (11c), asymptotically tracks the average of local

gradients, 1
n

∑n
i=1 ∇fi

(
xik

)
.

Lemma 4 The following equation holds for all k:

Y∞zk = Y∞Ỹ−1
k ∇f(xk). (12)

Proof Recall that Y∞A = Y∞. We obtain from Eq. (11c)

that

Y∞zk = Y∞zk−1 + Y∞Ỹ−1
k ∇f(xk) − Y∞Ỹ−1

k−1∇f(xk−1).

Doing this iteratively, we have

Y∞zk = Y∞z0 + Y∞Ỹ−1
k ∇f(xk) − Y∞Ỹ−1

0 ∇f(x0).

Withthe initial conditions that z0 = ∇f(x0) and Ỹ0 = Inp,

we complete the proof.

The next lemma, a standard result in convex optimiza-

tion theory from [58], states that the distance to the

optimal solution contracts in each step in the centralized

gradient method.

Lemma 5 Let μ and l be the strong convexity and

Lipschitz continuity constants for the global objective func-

tion, F(x), respectively. Then ∀x ∈ R
p and 0 < α < 2

l , we

have

∥∥x − α∇F(x) − x∗∥∥
2

≤ σF
∥∥x − x∗∥∥

2
,

where σF = max (|1 − αμ| , |1 − αl|).

With the help of the previous lemmas, we are ready to

derive a crucial contraction relationship in the proposed

algorithm.

5.2 Contraction relationship

Our strategy to show convergence is to bound ‖xk+1 −
Y∞xk+1‖, ‖Y∞xk+1 − 1n ⊗ x∗‖2, and ‖zk+1 − Y∞zk+1‖
as a linear function of their values in the last iteration

and ∇f(xk); this approach extends the work in [28] on

doubly stochastic weights to row-stochastic weights. We

will present this relationship in the next lemmas. Before

we proceed, we note that since all vector norms are equiv-

alent in R
np, there exist positive constants c, d such that:

‖ · ‖2 ≤ c‖ · ‖, ‖ · ‖ ≤ d‖ · ‖2. First, we derive a bound

for ‖xk+1 − Y∞xk+1‖, the consensus error of the agents.

Lemma 6 The following inequality holds, ∀k:

‖xk+1 − Y∞xk+1‖ ≤ σ‖xk − Y∞xk‖ + αdǫ‖zk‖2,
(13)

where d is the equivalence-norm constant such that ‖ · ‖ ≤
d‖ · ‖2 and α is the largest step-size among the agents.

Proof Note that Y∞A = Y∞. Using Eq. (11b) and

Lemma 1, we have:

‖xk+1 − Y∞xk+1‖
= ‖Axk − Dzk − Y∞ (Axk − Dzk)‖ ≤ σ‖xk − Y∞xk‖ + αdǫ‖zk‖2,

which completes the proof.
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Next, we derive a bound for ‖Y∞xk+1 − 1n ⊗ x∗‖2, i.e.,
the optimality gap between the accumulation state of the

network, Y∞xk+1, and the optimal solution, 1n ⊗ x∗.

Lemma 7 If π
⊤
r α < 2

nl , the following inequality

holds, ∀k:

‖Y∞xk+1 − 1n ⊗ x∗‖2
≤ αnlc‖xk − Y∞xk‖ + λ‖Y∞xk − 1n ⊗ x∗‖2

+ αyc‖zk − Y∞zk‖ + α
√
nrỹy2σ k ‖∇f(xk)‖2 , (14)

where λ = max
(∣∣1 − nπ

⊤
r αμ

∣∣ ,
∣∣1 − nπ

⊤
r αl

∣∣) and c is the

equivalence-norm constant such that ‖ · ‖2 ≤ c‖ · ‖.

Proof Recalling that Y∞ =
(
1nπ

⊤
r

)
⊗Ip and Y∞A = Y∞,

we have the following:

‖Y∞xk+1 − 1n ⊗ x∗‖2
=

∥∥Y∞ (Axk − Dzk + (D − D)Y∞zk) − 1n ⊗ x∗∥∥
2
,

≤
∥∥Y∞xk − Y∞DY∞zk − 1n ⊗ x∗∥∥

2
+ αyc‖zk − Y∞zk‖.

(15)

Since the last term in the inequality above matches the

second last term in Eq. (14), we only need to handle the

first term. We further note that:

Y∞DY∞ =
((

1nπ
⊤
r

)
⊗ Ip

) (
diag{α} ⊗ Ip

) ((
1nπ

⊤
r

)
⊗ Ip

)
=

(
π

⊤
r α

)
Y∞.

Now, we derive a upper bound for the first term in

Eq. (15)

‖Y∞xk − Y∞DY∞zk − 1n ⊗ x∗‖2

≤
∥∥∥(1n ⊗ Ip)

((
π

⊤
r ⊗ Ip

)
xk−x∗ − n(π⊤

r α)∇F
((

π
⊤
r ⊗ Ip

)
xk

))∥∥∥
2

+
∥∥∥n(π⊤

r α)(1n ⊗ Ip)∇F
((

π
⊤
r ⊗ Ip

)
xk

)
−

(
π

⊤
r α

)
Y∞zk

∥∥∥
2
,

:= s1 + s2.

(16)

If π⊤
r α < 2

nl , according to Lemma 5

s1 ≤ λ‖Y∞xk − 1n ⊗ x∗‖2, (17)

where λ = max
(∣∣1 − nπ

⊤
r αμ

∣∣ ,
∣∣1 − nπ

⊤
r αl

∣∣).
Next we derive a bound for s2

s2 =
(
π

⊤
r α

) ∥∥∥n(1n ⊗ Ip)∇F
((

π
⊤
r ⊗ Ip

)
xk

)
− Y∞zk

∥∥∥
2
,

≤α

∥∥∥n(1n ⊗ Ip)∇F
((

π
⊤
r ⊗ Ip

)
xk

)
−(1n ⊗ Ip)

(
1⊤
n ⊗ Ip

)
∇f(xk)

∥∥∥
2
,

+ α

∥∥∥(1n ⊗ Ip)
(
1⊤
n ⊗ Ip

)
∇f(xk) − Y∞zk

∥∥∥
2

:= s3 + s4,

(18)

where it is straightforward to bound s3 as

s3 ≤ αnlc‖xk − Y∞xk‖. (19)

Since Y∞Ỹ−1
∞ =

(
1n1

⊤
n

)
⊗Ip and Y∞zk = Y∞Ỹ−1

k ∇f(xk)

from Lemma 4, we have:

s4=α

∥∥∥Y∞Ỹ−1
∞ ∇f(xk) − Y∞Ỹ−1

k
∇f(xk)

∥∥∥
2

≤ α
√
nrỹy2σ k

∥∥∇f(xk)
∥∥
2 ,

(20)

where we use Lemma 3. Combining Eqs. (15)–(20), we

finish the proof.

Next, we bound ‖zk+1 − Y∞zk+1‖, the error in gradient

estimation.

Lemma 8 The following inequality holds, ∀k
‖zk+1 − Y∞zk+1‖
≤ ǫ̃ylτcd‖xk − Y∞xk‖ + σ‖zk − Y∞zk‖ + αǫ̃yld‖zk‖2

+ 2d
√
nrǫ̃y2σ k‖∇f(xk)‖2.

Proof According to Eq. (11c) and Lemma 1, we have:

‖zk+1 − Y∞zk+1‖

≤ σ ‖zk − Y∞zk‖ +
∥∥∥
(
Ỹ−1
k+1∇f(xk) − Ỹ−1

k ∇f(xk)
)

−
(
Y∞zk+1 − Y∞zk

)∥∥∥ .

(21)

Note that Y∞zk = Y∞Ỹ−1
k ∇f(xk) from Lemma 4.

Therefore,
∥∥∥
(
Ỹ−1
k+1

∇f(xk) − Ỹ−1
k

∇f(xk)
)

−
(
Y∞zk+1 − Y∞zk

)∥∥∥
2

=
∥∥∥
(
Inp − Y∞

) (
Ỹ−1
k+1

∇f(xk) − Ỹ−1
k

∇f(xk)
)∥∥∥

2
,

≤ ǫ

∥∥∥Ỹ−1
k+1

∇f(xk) − Ỹ−1
k+1

∇f(xk)
∥∥∥
2
+ǫ

∥∥∥Ỹ−1
k+1

∇f(xk) − Ỹ−1
k

∇f(xk)
∥∥∥
2
,

≤ ǫ̃yl
∥∥xk+1 − xk

∥∥
2 + 2

√
nrǫ̃y2σ k

∥∥∇f(xk)
∥∥
2 ,

(22)

where in the last inequality, we use Lemma 3. We now

bound ‖xk+1 − xk‖2.
∥∥xk+1 − xk

∥∥
2

≤
∥∥(A − Inp)xk

∥∥
2
+ α ‖zk‖2 ,

≤
∥∥(A − Inp) (xk − Y∞xk)

∥∥
2
+ α ‖zk‖2 ,

≤τ ‖xk − Y∞xk‖2 + α ‖zk‖2 , (23)

where in the second inequality, we use the fact that

(A − Inp)Y∞ is a zero matrix. Combining Eqs. (21)–(23),

we obtain the desired result.

The last step is to bound ‖zk‖2 in terms of ‖xk −Y∞xk‖,
‖Y∞xk − 1n ⊗ x∗‖2, and ‖zk − Y∞zk‖. Then, we can

replace ‖zk‖2 in Lemmas 6 and 8 by this bound in order to

develop a LTI system inequality.

Lemma 9 The following inequality holds, ∀k:
‖zk‖2 ≤cnl‖xk − Y∞xk‖ + nl‖Y∞xk − 1n ⊗ x∗‖2

+ c‖zk − Y∞zk‖ +
√
nrỹy2σ k‖∇f(xk)‖2.

(24)
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Proof Recall that Y∞Ỹ−1
∞ = (1n ⊗ Ip)

(
1⊤
n ⊗ Ip

)

and Y∞zk = Y∞Ỹ−1
k ∇f(xk) from Lemma 4. We have the

following:

‖zk‖2 ≤ ‖zk − Y∞zk‖2 + ‖Y∞zk‖2
≤c‖zk−Y∞zk‖+‖Y∞Ỹ−1

k ∇f(xk)−Y∞Ỹ−1
∞ ∇f(xk)‖2

+‖Y∞Ỹ−1
∞ ∇f(xk)−(1n ⊗ Ip)

(
1⊤
n ⊗ Ip

)
∇f(x∗)‖2,

≤ c‖zk − Y∞zk‖ +
√
nlỹy2σ k‖∇f(xk)‖2

+ nl‖xk − 1n ⊗ x∗‖2,
≤ cnl‖xk − Y∞xk‖ + nl‖Y∞xk − 1n ⊗ x∗‖2

+ c‖zk − Y∞zk‖ +
√
nrỹy2σ k‖∇f(xk)‖2,

(25)

where in the second inequality, we use the fact that(
1⊤
n ⊗ Ip

)
∇f(x∗) = 0, which is the optimality condition

for Problem P1.

Before the main result, we present an additional lemma

from nonnegative matrix theory that will be helpful in

establishing the linear convergence of FROST.

Lemma 10 (Theorem 8.1.29 in [49]) Let X ∈ R
n×n be

a nonnegative matrix and x ∈ R
n be a positive vector.

If Xx < ωx, then ρ(X) < ω.

5.3 Main results

With the help of the auxiliary relationships developed in

the previous subsection, we now present the main results

as follows in Theorems 1 and 2. Theorem 1 states that the

relationships derived in the previous subsection indeed

provide a contraction when the largest step-size, α, is

sufficiently small. Theorem 2 then establishes the linear

convergence of FROST.

Theorem 1 If π
⊤
r α < 2

nl , the following LTI system

inequality holds:

tk+1 ≤ Jαtk + Hksk , ∀k, (26)

where tk , sk ∈ R
3, and Jα ,Hk ∈ R

3×3 are defined as

follows:

tk =

⎡
⎣

‖xk − Y∞xk‖
‖Y∞xk − 1n ⊗ x∗‖2
‖zk − Y∞zk‖

⎤
⎦ ,

Jα =

⎡
⎣

σ + a1α a2α a3α

a4α λ a5α

a6 + a7α a8α σ + a9α

⎤
⎦ ,

Hk =

⎡
⎣

αdǫ
√
nrỹy2 0 0

α
√
nrỹy2 0 0

d
√
nrǫ̃y2 (2 + αrỹy) 0 0

⎤
⎦ σ k ,

sk =

⎡
⎣

‖∇f(xk)‖2
0

0

⎤
⎦ ,

and the constants ai’s are

a1 = cdǫnl, a4 = cnl a7 = cdnl2ǫ̃y

a2 = dǫnl, a5 = yc, a8 = dnl2ǫ̃y

a3 = d2ǫ, a6 = ǫ̃ylτcd, a9 = d2ǫ l̃y.

Let [π r]− be the smallest element in π r . When the largest

step-size, α, satisfies

0 < α < min

{
δ1(1 − σ)

a1δ1 + a2δ2 + a3δ3
,

(1 − σ)δ3 − δ1a6

a7δ1 + a8δ2 + a9δ3
,
1

nl

}
,

(27)

with positive constants δ1, δ2, δ3 such that

δ3 > 0, δ1 <
(1 − σ)δ3

a6
, δ2 >

a4δ1 + a5δ3

μn[π r]−
, (28)

then the spectral radius of Jα is strictly less than 1.

Proof Combining Lemmas 6–9, one can verify that

Eq. (26) holds if π
⊤
r α < 2

nl . Recall that λ =
max

(∣∣1 − μnπ
⊤
r α

∣∣ ,
∣∣1 − lnπ

⊤
r α

∣∣). When π
⊤
r α < 1

nl , λ =
1 − μnπ

⊤
r α, since μ ≤ l [59]. In order to make π

⊤
r α < 1

nl

hold, it is suffice to require α < 1
nl . The next step is

to find an upper bound, α̂, on the largest step-size such

that ρ(Jα) < 1 when α < α̂. In the light of Lemma 10, we

solve for the range of the largest step-size, α, and a positive

vector δ = [δ1, δ2, δ3]
⊤ from the following:

⎡
⎣

σ + a1α a2α a3α

a4α 1 − μn(π⊤
r α) a5α

a6 + a7α a8α σ + a9α

⎤
⎦

⎡
⎣

δ1
δ2
δ3

⎤
⎦ <

⎡
⎣

δ1
δ2
δ3

⎤
⎦ ,

(29)

which is equivalent to the following set of inequalities:
⎧
⎨
⎩

(a1δ1 + a2δ2 + a3δ3)α < δ1(1 − σ),

(a4δ1 + a5δ3)α − δ2μnπ
⊤
r α < 0,

(a7δ1 + a8δ2 + a9δ3)α < (1 − σ)δ3 − δ1a6.

(30)

Since the right hand side of the third inequality in

Eq. (30) has to be positive, we have that:

0 < δ1 <
(1 − σ)δ3

a6
. (31)

In order to find the range of δ2 such that the second

inequality holds, it suffices to solve for the range of δ2 such

that the following inequality holds:

(a4δ1 + a5δ3)α − δ2μn[π r]− α < 0,

where [_r]− is the smallest entry in π r . Therefore, as

long as

δ2 >
a4δ1 + a5δ3

μn[π r]−
, (32)

the second inequality in Eq. (30) holds. The next step is to

solve the range of α from the first and third inequalities in

Eq. (30). We get
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Fig. 1 A strongly connected and unbalanced directed graph

α < min

{
δ1(1 − σ)

a1δ1 + a2δ2 + a3δ3
,

(1 − σ)δ3 − δ1a6

a7δ1 + a8δ2 + a9δ3

}
,

where the range of δ1 and δ2 is given in Eqs. (31) and (32),

respectively, and δ3 is an arbitrary positive constant and

the theorem follows.

Note that δ1, δ2, δ3 are essentially adjustable parame-

ters that are chosen independently from the step-sizes.

Specifically, according to Eq. (28), we first choose an

arbitrary positive constant δ3 and subsequently choose a

constant δ1 such that 0 < δ1 <
(1−σ)δ3

a6
and finally we

choose a constant δ2 such that δ2 > a4δ1+a5δ3
μn[π r]−

.

Theorem 2 If the largest step-size α follows the bound in

Eq. (27), we have:

∥∥xk − 1n ⊗ x∗∥∥ ≤ m (max {ρ (Jα) , σ } + ξ)k ,

where ξ is an arbitrarily small constant, σ is the contrac-

tion factor defined in Lemma 1, and m is some positive

constant.

Noticing that ρ (Jα) < 1 when the largest step-size, α,

follows the bound in Eq. (27) and that Hk linearly decays

at the rate of σ k , one can intuitively verify Theorem 2. A

rigorous proof follows from [45].

Fig. 2 (Left) Each curve represents the linear convergence of FROST when the corresponding agent uses a positive step-size, optimized manually,

while every other agent uses zero step-size. (Right) Convergence comparison across different algorithms
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Fig. 3 Directed graphs with n = 50 nodes and increasing sparsity: G1 ,G2 , and G3

In Theorems 1 and 2, we establish the linear conver-

gence of FROST when the largest step-size, α, follows

the upper bound defined in Eq. (27). Distributed opti-

mization (based on gradient tracking) with uncoordinated

step-sizes have been previously studied in [26, 46, 47],

over undirected graphs with doubly stochastic weights,

and in [48], over directed graphs with column-stochastic

weights. These works rely on some notion of heterogene-

ity of the step-sizes, defined respectively as the relative

deviation of the step-sizes from their average, ‖(In−U)α‖2
‖Uα‖2 ,

where U = 1n1
⊤
n /n, in [26, 46], and as the ratio of the

largest to the smallest step-size, maxi{αi}
mini{αi} , in [47, 48]. The

authors then show that when the heterogeneity is small

enough and when the largest step-size follows a bound

that is a function of the heterogeneity, the proposed algo-

rithms converge to the optimal solution. It is worth noting

that sufficiently small step-sizes cannot guarantee suffi-

ciently small heterogeneity in both of the aforementioned

definitions. In contrast, the upper bound on the largest

step-size in this paper, Eqs. (27) and (28), is indepen-

dent of any notion of heterogeneity and only depends

on the objective functions and the network parameters3.

Each agent therefore locally picks a sufficiently small step-

size independent of other step-sizes. Besides, this bound

allows the agents to choose a zero step-size as long as at

least one of them is positive and sufficiently small.

6 Numerical results
In this section, we use numerical experiments to support

the theoretical results. We consider a distributed logistic

regression problem. Each agent i has access to mi train-

ing data, (cij, yij) ∈ R
p × {−1,+1}, where cij contains p

features of the jth training data at agent i and yij is the cor-

responding binary label. The network of agents coopera-

tively solves the following distributed logistic regression

problem:

min
w∈Rp ,b∈R

F(w, b) =
n∑

i=1

mi∑

j=1

ln
[
1 + exp

(
−

(
w⊤cij + b

)
yij

)]
+ nλ

2
‖w‖22,

with each private loss function being

fi(w, b) =
mi∑

j=1

ln
[
1 + exp

(
−

(
w⊤cij + b

)
yij

)]
+ λ

2
‖w‖22,

(33)

where λ
2‖w‖22 is a regularization term used to pre-

vent overfitting of the data. The feature vectors, cij’s,

are randomly generated from some Gaussian distri-

bution with zero mean. The binary labels are ran-

domly generated from some Bernoulli distribution. The

network topology is shown in Fig. 1. We adopt a

simple uniform weighting strategy to construct the row-

and column-stochastic weights when needed: aij =
1/|N in

i |, bij = 1/|N out
j |, ∀i, j. We plot the aver-

age of residuals at each agent, 1
n

∑n
i=1 ‖xi(k) − x∗‖2.

In Fig. 2 (left), each curve represents the linear conver-

gence of FROST when the corresponding agent uses a

positive step-size, optimized manually, while every other

agent uses zero step-size.

In Fig. 2 (right), we compare the performance of FROST,

with ADD-OPT/Push-DIGing [39, 40], see Section 3.2.3,

and with the AB algorithm in [42, 43], see Section 3.2.4.

The step-size used in each algorithm is optimized. For

FROST, we first manually find the optimal identical step-

Fig. 4 Influence of network sparsity on the performance of FROST
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size for all agents, which is 0.07 in our experiment,

and then randomly generate uncoordinated step-sizes of

FROST from the uniform distribution over the inter-

val [ 0, 0.07] (therefore, the convergence speed of FROST

shown in this experiment is conservative). The numeri-

cal experiments thus verify our theoretical finding that

as long as the largest step-size of FROST is positive and

sufficiently small, FROST linearly converges to the opti-

mal solution.

In the next experiment, we show the influence of the

network sparsity on the convergence of FROST. For this

purpose, we use three different graphs each with n = 50

nodes, where G1 has roughly 10% of total edges, G2 has

roughly 13% of total edges, and G3 has roughly 16% of

total edges. These graphs are shown in Fig. 3, and the

performance of FROST over each one of them is shown

in Fig. 4.

7 Conclusions
In this paper, we consider distributed optimization appli-

cable to both directed and undirected graphs with row-

stochastic weights and when the agents in the network

have uncoordinated step-sizes. Most of the existing algo-

rithms are based on column-stochastic weights, which

may be infeasible to implement in many practical sce-

narios. Row-stochastic weights, on the other hand, are

straightforward to implement as each agent locally deter-

mines the weights assigned to each incoming information.

We propose a fast algorithm that we call FROST (Fast

Row-stochastic Optimization with uncoordinated STep-

sizes) and show that when the largest step-size is positive

and sufficiently small, FROST linearly converges to the

optimal solution. Simulation results further verify the

theoretical analysis.

Endnotes
1EXTRA [21] is another related algorithm, which uses

the difference between two consecutive DGD iterates to

achieve linear convergence to the optimal solution.
2See [32, 33] for related work with sublinear rate based

on surplus consensus [55].
3The constants δ1, δ2, and δ3 in Eqs. (27) and (28)

are tunable parameters that only depend on the network

topology and objective functions.
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