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Figure 1: Joint Image and Video Training: Our dual encoding model consists of a visual encoder for images and video and

a text encoder for captions. Unlike 2D or 3D CNNs, our space-time transformer encoder allows us to train flexibly on both

images and videos with captions jointly, by treating an image as a single frame video.

Abstract

Our objective in this work is video-text retrieval – in partic-

ular a joint embedding that enables efficient text-to-video

retrieval. The challenges in this area include the design

of the visual architecture and the nature of the training

data, in that the available large scale video-text training

datasets, such as HowTo100M, are noisy and hence

competitive performance is achieved only at scale through

large amounts of compute.

We address both these challenges in this paper. We pro-

pose an end-to-end trainable model that is designed to take

advantage of both large-scale image and video captioning

datasets. Our model is an adaptation and extension of the

recent ViT and Timesformer architectures, and consists of

attention in both space and time. The model is flexible and

can be trained on both image and video text datasets, either

independently or in conjunction. It is trained with a cur-
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riculum learning schedule that begins by treating images

as ‘frozen’ snapshots of video, and then gradually learns

to attend to increasing temporal context when trained on

video datasets. We also provide a new video-text pretraining

dataset WebVid-2M, comprised of over two million videos

with weak captions scraped from the internet. Despite train-

ing on datasets that are an order of magnitude smaller, we

show that this approach yields state-of-the-art results on

standard downstream video-retrieval benchmarks including

MSR-VTT, MSVD, DiDeMo and LSMDC.

1. Introduction

Joint visual-text models have become increasingly popu-

lar as they enable a wide suite of downstream tasks, includ-

ing text-to-visual retrieval [29, 31, 36, 59], visual caption-

ing [24, 58, 66], and visual question and answering [4, 27].

Their rapid development is due to the usual improvements

on three fronts: new neural network architectures (e.g.

transformers [56] for both text and visual inputs); new
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large-scale datasets; and new loss functions that are, for

example, able to handle label noise [35]. However, their

development mostly proceeds on two independent tracks:

one for images, with its own architectures, training datasets

and benchmarks [25, 29, 52]; and the other for videos

with a similar separation of training datasets and bench-

marks [3, 5, 24, 46, 65, 70]. The only common link be-

tween the two is that often video networks are initialized by

pre-training image networks on image datasets [6, 8]. This

separation of effort is suboptimal given the overlap in infor-

mation that images and video convey over multiple tasks.

For example, although classifying some human actions re-

quires the temporal ordering of video frames, many actions

can be classified from just their distribution over frames or

even from a single frame [51].

In this paper we take a step towards unifying these two

tracks, by proposing a dual encoder architecture which

utilises the flexibility of a transformer visual encoder to

train from images-with-captions, from video clips-with-

captions, or from both (Fig. 1). We do this by treating im-

ages as a special case of videos that are ‘frozen in time’. Us-

ing a transformer-based architecture allows us to train with

variable-length sequences, treating an image as if it was a

single frame video, unlike in standard 3D CNNs [8, 18, 64]

where to train on images jointly with videos one must incur

the cost of actually generating a static video. Furthermore,

unlike many recent methods [16, 31, 36] for video-text dual

encoding, we do not use a set of ‘expert networks’ that are

pre-trained on external image datasets and then fixed, but

instead train the model end-to-end.

This end-to-end training is facilitated by scraping the

web for a new large-scale video-text captioning dataset of

over two million video alt-text pairs (WebVid-2M). We

also take advantage of large-scale image captioning datasets

such as Conceptual Captions [52].

We make the following contributions: (i) we propose a

new end-to-end model for video retrieval that does not rely

on ‘expert’ features, but instead, inspired by [6] employs

a transformer architecture with a modified divided space-

time attention applied directly to pixels; (ii) because our ar-

chitecture can gracefully handle inputs of different lengths,

it is versatile and can be flexibly trained on both video

and image datasets (by treating images as a single-frame

video). We build on this flexibility by designing a curricu-

lum learning schedule that begins with images and then

gradually learns to attend to increasing temporal context

when trained on video datasets through temporal embed-

ding interpolation. We show that this increases efficiency,

allowing us to train models with far less GPU time; (iii) we

introduce a new dataset called WebVid-2M, consisting of

2.5M video-text pairs scraped from the web; and finally (iv)

we achieve state-of-the-art performance by only using the

video modality on MSR-VTT [65], MSVD [9], DiDeMo [3]

and LSMDC [46] – outperforming works that use pre-

extracted experts from multiple modalities, as well as those

that are pretrained on the noisy HowTo100M, which is 20x

larger than our dataset in the number of video-text pairs.

2. Related Works

Pretraining for video-text retrieval. Given that most

video-text retrieval datasets tend to be small-scale, the dom-

inant paradigm for video retrieval has been to use a com-

bination of pre-extracted features from ‘expert’ models, in-

cluding models trained for various diverse tasks and on mul-

tiple modalities such as face, scene and object recognition,

action classification and sound classification. MoEE [36],

CE [31], MMT [16] and concurrent work HiT [30] all fol-

low this paradigm, with the overall similarity for a video-

text pair obtained as a weighted sum of each expert’s simi-

larity with the text.

However, since the release of the HowTo100M

dataset [37], a large-scale instructional video dataset, there

has been a flurry of works leveraging large-scale pretrain-

ing to improve video-text representations for tasks such

as video question-answering [50], text-video retrieval [41]

and video captioning [71]. Although semantically rich and

diverse, text supervision from instructional videos is ex-

tremely noisy, and hence incurs a large computational cost,

as scale is required for competitive results. A few ap-

proaches have been proposed to combat the noise – e.g. us-

ing loss functions such as MIL-NCE [35] or using the raw

audio [1, 48] directly to increase robustness. Given the large

size of existing image-captioning datasets, some have nat-

urally tried to overcome the lack of video-caption training

data with joint image-text pretraining (such as in MoEE [36]

and ClipBERT [26]). MoEE [36] trains on images jointly

by feeding in zeros to all expert streams that require videos,

such as the motion and audio features, while ClipBERT [26]

restricts their feature extractors to 2D CNNs. Instead we

propose an elegant transformer-based encoder that works

well with either images or videos and can be trained effec-

tively on both.

Similar to our work, although only suitable for images is

CLIP [42], which learns an effective joint image-text rep-

resentation from millions of text-image pairs scraped from

the internet using contrastive loss.

End-to-end video representation learning. A large num-

ber of architectural developments have been driven by ac-

tion recognition on datasets such as Kinetics [21] where

manual labelling has been relatively easier than obtaining

textual descriptions for datasets. For a long time this space

was dominated by spatio-temporal CNNs such as I3D [8],

3D ResNets [18], S3D [64] or ‘R(2+1)D’ CNNs [55]. Here,

images are used simply to initialise video models, through

inflation [8]. Multigrid scheduling has been proposed for
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efficient training [63].

Transformers for vision. A number of works use self-

attention for images, either in combination with convolu-

tions [7, 19, 56, 61] or even replacing them entirely.

Works that use only self-attention blocks tend to apply

them at an individual pixel level [12, 39, 43], often requir-

ing tricks to ensure computational tractability, including re-

stricting the scope of self-attention to a local neighbour-

hood [43], adding global self-attention on heavily down-

sized versions, or sparse key-value sampling [11]. To in-

crease efficiency, ViT [14] decompose images into a se-

quence of patches and then feeds linear embeddings of these

patches as inputs to a transformer, effectively adding a sin-

gle convolutional layer to the image at the start. This idea

has been extended in DeiT [54]. For video, previous works

also employ self-attention blocks together with CNN layers,

for action recognition [17] and video classification [10].

In contrast, our architecture consists entirely of self-

attention units and is heavily inspired by ViT [14] and par-

ticularly the Timesformer [6], which uses divided space

and time attention. Unlike these works, we use expandable

temporal embeddings to allow flexible training of variable-

length videos and images both jointly and separately. We

are unaware of any previous works that use self-attention to

train on both images and videos in the same model.

3. Method

In this section, we describe our transformer-based spatio-

temporal model architecture (Section 3.1), and our training

strategy (Section 3.2). Details are given in the Appendix.

3.1. Model Architecture

Input. The visual encoder takes as input an image or video

clip X ∈ RM×3×H×W consisting of M frames of resolu-

tion H × W , where M = 1 for images. The text encoder

takes as input a tokenised sequence of words.

Spatio-temporal patches. Following the protocol in ViT

and Timesformer [6], the input video clip is divided into

M×N non-overlapping spatio-temporal patches of size P×
P , where N = HW/P 2.

Transformer input. The patches x ∈ RM×N×3×P×P are

fed through a 2D convolutional layer and the output is flat-

tened, forming a sequence of embeddings z ∈ RMN×D for

input to the transformer, where D depends of the number of

kernels in the convolutional layer.

Learned temporal and spatial positional embeddings,

E
s ∈ RN×D, Et ∈ RM×D are added to each input token:

z
(0)
p,m = zp,m +E

s
p +E

t
m, (1)

such that all patches within a given frame m (but differ-

ent spatial locations) are given the same temporal positional

embedding Et
m, and all patches in the same spatial location

(but different frames) are given the same spatial positional

embedding Es
p. Thus enabling the model to ascertain the

temporal and spatial position of patches.

In addition, a learned [CLS] token [13] is concatenated

to the beginning of the sequence, which is used to produce

the final visual embedding output embedding of the trans-

former.

Space-time self-attention blocks. The video sequence is

fed into a stack of space-time transformer blocks. We

make a minor modification to the Divided Space-Time at-

tention introduced by [6], by replacing the residual con-

nection between the block input and the temporal atten-

tion output with a residual connection between the block

input and the spatial attention output, see the appendix for

details. Each block sequentially performs temporal self-

attention and then spatial self-attention on the output of pre-

vious block. The video clip embedding is obtained from the

[CLS] token of the final block.

Text encoding. The text encoder architecture is a multi-

layer bidirectional transformer encoder, which has shown

great success in natural language processing tasks [13]. For

the final text encoding, we use the [CLS] token output of

the final layer.

Projection to common text-video space. Both text and

video encodings are projected to a common dimension via

single linear layers. We compute the simliarity between text

and video by performing the dot product between the two

projected embeddings.

Efficiency. Our model has independent dual encoder path-

ways (such as in MIL-NCE [35] and MMV networks [1]),

requiring only the dot product between the video and text

embeddings. This ensures retrieval inference is of trivial

cost since it is indexable, i.e. it allows application of fast ap-

proximate nearest neighbour search, and is scalable to very

large scale retrieval at inference time. Given t text queries

and v videos in a target gallery, our retrieval complexity is

O(t+v). In contrast, ClipBERT [26] which inputs both text

and video as input to a single encoder, has retrieval com-

plexity O(tv) since every text-video combination must be

inputted to the model. Other expert-based retrieval methods

such as MoEE [36], CE [31] and MMT [16] also contain

a dual encoder pathway, however they still require query-

conditioned weights to compute the similarity scores for

each expert, while our model does not.

3.2. Training Strategy

Loss. We employ [68] in a retrieval setting, where matching

text-video pairs in the batch are treated as positives, and

all other pairwise combinations in the batch are treated as

negatives. We minimise the sum of two losses, video-to-
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text and text-to-video:

Lv2t = −
1

B

B∑

i

log
exp(x⊤

i yi/σ)∑B

j=1 exp(x
⊤

i yj/σ)
(2)

Lt2v = −
1

B

B∑

i

log
exp(y⊤i xi/σ)∑B

j=1 exp(y
⊤

i xj/σ)
(3)

where xi and yj are the normalized embeddings of i-th
video and the j-th text respectively in a batch of size B and

σ is the temperature.

Joint image-video training. In this work, we train jointly

on both image-text pairs as well as video-text pairs, tak-

ing advantage of both for larger-scale pretraining. Our joint

training strategy involves alternating batches between the

image and video datasets. Since the attention mechanism

scales with the square of input frames O(M2), the alternate

batch training allows the image batches (M = 1) to be far

greater in size.

Weight initialisation and pretraining. Following [6],

we initialise the spatial attention weights in the space-

time transformer model with ViT [14] weights trained on

ImageNet-21k, and initialise the temporal attention weights

to zero. The residual connections mean that under these ini-

tialisation settings, the model is at first equivalent to ViT

over each input frame – thereby allowing the model to learn

to attend to time gradually as training progresses. Since

transformer architectures have demonstrated most of their

success from large-scale pretraining, we utilise two large-

scale text-image/video datasets with a joint training strat-

egy, resulting in large improvements in performance.

Temporal curriculum learning. The space-time trans-

former architecture allows a variable length input sequence

and therefore a variable number of input video frames. If

the model has only trained on videos up to length m how-

ever, then the temporal positional embedding E
t will only

be learned up to E
t
:m. Therefore, applying the model to

input video of sequences up to length M will result the ad-

dition of Et
m:M , which would not yet be learned.

Two temporal expansion methods are investigated: in-

terpolation and zero-padding. Zeros can be filled in, 0 →
E

t
m:M , allowing the model to learn the additional temporal

positions from scratch during training. Alternatively, inter-

polation could be used to upsample the temporal embed-

dings in the temporal dimension, Et
:m → E

t
:M . We inves-

tigate two methods of interpolation: nearest neighbour and

bilinear. The effects of these different initialisations can be

found in the Supplementary Materials.

We employ this expansion strategy in order to perform

curriculum learning in the number of input frames. Initially

training on fewer frames has drastic savings in computation,

whilst having comparable or even better performance (see

Section 4.5).

Frame sampling. Given a video containing L frames, we

subdivide it into M equal segments where M is the desired

number of frames for the video encoder. During training,

we sample a single frame uniformly from each segment

(in a similar manner to TSN [60] and GST [32]). At test

time, we sample the ith frame in every segment, to get a

video embedding vi. The values for i are determine us-

ing a stride S, resulting in an array of video embeddings

v = [v0, vS , v2S , vM ]. The mean of these video embed-

dings is used as the final embedding for the video.

4. Experiments

We first describe the pretraining datasets including our

WebVid-2M video-text dataset (Section 4.1), followed by

the downstream datasets used for the evaluations in our ex-

periments (Section 4.2). We then describe implementation

details of our model (Section 4.3). Next, we ablate various

training components on the MSR-VTT dataset, in particular

the effects of pretraining and our space-time attention mod-

ification (Section 4.4), and our proposed curriculum strat-

egy (Section 4.5). Then, we compare to the state of the

art on four benchmarks: MSR-VTT, MSVD, DiDeMo and

LSMDC (Section 4.6).

4.1. Pretraining Datasets

We jointly pretrain our model on image and video data.

Video pretraining: The WebVid-2M Dataset. We scrape

the web for a new dataset of videos with textual descrip-

tion annotations, called WebVid-2M. Our dataset consists

of 2.5M video-text pairs, which is an order of magnitude

larger than existing video captioning datasets (see Table 1).

The data was scraped from the web following a simi-

lar procedure to Google Conceptual Captions [52] (CC3M).

We note that more than 10% of CC3M images are in fact

thumbnails from videos, which motivates us to use such

video sources to scrape a total of 2.5M text-video pairs.

The use of data collected for this study is authorised via

the Intellectual Property Office’s Exceptions to Copyright

for Non-Commercial Research and Private Study1. We are

currently performing further analysis of the dataset on its

diversity and fairness.

Figure 2 provides sample video-caption pairs. There are

a variety of different styles used in caption creation, as can

be seen from Figure 2 (left to right) where the first video

has a longer, poetic description compared to the succinct de-

scription for the second video. The third video caption has

a less defined sentence structure, with keywords appended

to the end, while the fourth video mentions a specific place

(maldives). Time-specific information is important for the

second and third example, where details such as “talking on

1www.gov.uk/guidance/exceptions-to-copyright/
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“Lonely beautiful woman sitting on

the tent looking outside. wind on

the hair and camping on the beach

near the colors of water and shore.

freedom and alternative tiny house

for traveler lady drinking”

“Billiards, concentrated young

woman playing in club”

“Female cop talking on walkie-

talkie, responding emergency call,

crime prevention”

“Get anchor for departure safari

dive boat scuba diving maldives”

Figure 2: Example video-caption pairs from the WebVid2M dataset: Note the different captioning styles: from left to

right, captions can be (i) long, slightly poetic, with disjoint sentences and phrases, (ii) succint and to the point, (iii) have a

less defined sentence structure with keywords appended to the end, (iv) mention specific places (‘maldives’). We show two

randomly sampled frames for each video.

walkie-talkie” or “playing billiards” would be missed when

looking at certain frames independently.

Table 1: Dataset Statistics: We train on a new dataset

mined from the web called WebVid2M. Our dataset is an

order of magnitude larger than existing video-text datasets

in the number of videos and captions. HowTo100M (high-

lighted in blue) is a video dataset with noisy, weakly linked

text supervision from ASR.

dataset domain #clips
avg dur.

(secs)
#sent

time

(hrs)

MPII Cook [47] cooking 44 600 6K 8

TACos [44] cooking 7K 360 18K 15.9

DideMo [3] flickr 27K 28 41K 87

MSR-VTT [65] youtube 10K 15 200K 40

Charades [53] home 10K 30 16K 82

LSMDC15 [46] movies 118K 4.8 118K 158

YouCook II [70] cooking 14K 316 14K 176

ActivityNet [24] youtube 100K 180 100K 849

CMD [5] movies 34K 132 34K 1.3K

WebVid-2M open 2.5M 18 2.5M 13K

HT100M [37] instruction 136M 4 136M 134.5K

We note that our video dataset is 10x smaller than

HowTo100M in video duration and over 20x smaller in the

number of paired clip-captions (Table 1). Our dataset con-

sists of manually generated captions, that are for the most

part well formed sentences. In contrast, HowTo100M is

generated from continuous narration with incomplete sen-

tences that lack punctuation. The clip-text pairs are ob-

tained from subtitles and may not be temporally aligned

with the video they refer to, or indeed may not refer to

the video at all [37]. Our captions, on the other hand, are

aligned with the video and describe visual content.

Moreover, there is no noise from imperfect ASR

transcription and grammatical errors as is the case for

HowTo100M. Our dataset also has longer captions on av-

erage (12 vs 4 words for HowTo) which are more diverse

(Measure of Textual Lexical Diversity, MTLD [34] = 203

vs 13.5).

Image pretraining: Google Conceptual Captions [52].

This dataset consists of about 3.3M image and description

pairs. Unlike the curated style of COCO images, Concep-

tual Captions (CC3M) images and their raw descriptions are

harvested from the web, and therefore represent a wider va-

riety of styles. The raw descriptions are harvested from the

Alt-text HTML attribute associated with web images.

4.2. Downstream Datasets

We now describe the downstream text-video datasets that

our model is evaluated on.

MSR-VTT [65] contains 10K YouTube videos with 200K

descriptions. Following other works [31], we train on 9K

train+val videos and report results on the 1K-A test set.

MSVD [9] consists of 80K English descriptions for 1,970

videos from YouTube, with each video containing 40 sen-

tences each. We use the standard split of 1200, 100, and

670 videos for training, validation, and testing [31, 41].

DiDeMo [3] contains 10K Flickr videos annotated with

40K sentences. Following [26, 31], we evaluate paragraph-

to-video retrieval, where all sentence descriptions for a

video are concatenated into a single query. Since this

dataset comes with localisation annotations (ground truth

proposals), we report results with ground truth proposals

(where only the localised moments in the video are con-

catenated and used in the retrieval set as done by [26]) as

well as without (as done by [31]).

LSMDC [45] consists of 118,081 video clips sourced from

202 movies. The validation set contains 7,408 clips and

evaluation is done on a test set of 1,000 videos from movies

disjoint from the train and val sets. This follows the protocol

outlined in [46].
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For downstream datasets with separate val and test

splits, we train all models for 75 epochs and use the epoch

with the lowest validation loss for reporting test results. For

downstream datasets without a val set we report results at

50 epochs.

4.3. Implementation Details

All experiments are conducted with PyTorch [40]. Opti-

mization is performed with Adam, using a learning rate of

1× 10−5, we use batch sizes of 16, 24, and 96 for 8, 4, and

1-frame inputs respectively. The temperature hyperparam-

eter σ for the loss defined in Eq. 2 & 3 is set to 0.05. The

default pretraining is WebVid-2M and CC3M.

For the visual encoder, all models have the following:

|ℓ| = 12 attention blocks, patch size P = 16, sequence

dimension D = 768, 12 heads and takes 4-frames as down-

stream input.

The text encoder of all models, unless specified other-

wise, is instantiated as DistilBERT base-uncased [49] pre-

trained on English Wikipedia and Toronto Book Corpus.

The dimensionality of the common text-video space is set to

256. For visual augmentation, we randomly crop and hor-

izontally flip during training, and center crop the maximal

square crop at test time. All videos are resized to 224× 224
as input. At test-time we compute clip-embeddings for the

video with a stride of 2 seconds. For paragraph-retrieval

settings, we employ text augmentation during training by

randomly sampling and concatenating a variable number of

corresponding captions per video.

Finetuning time. A large motivation for using pre-

extracted expert models for video retrieval is to save compu-

tational cost. Finetuning our 4-frame model for 50 epochs

on MSR-VTT takes 10 hours on 2 Quadro RTX 6000k

GPUs (with 24GB RAM each), which is similar to other

works using pre-extracted expert features [41]. This shows

that our model is lightweight and can be finetuned end-to-

end on the downstream video datasets quickly with suffi-

cient pretraining (which is of one-time cost).

4.4. Ablation Study

In this section we study the effect of different pretraining

strategies. In the Supplementary Materials, we provide ar-

chitectural ablations on different temporal expansion meth-

ods, different visual backbones, different text backbones

and the improvement when using our modified space-time

attention block.

Effect of pretraining. We compare performance on MSR-

VTT with our model (i) trained from scratch, (ii) initialised

with ImageNet weights and then finetuned, as well as (iii)

initalised with ImageNet, and then pretrained on a num-

ber of different visual-text datasets before finetuning. For

the video data, 4 frames are sampled at both pretraining

Table 2: Pretraining sources: The effect of different pre-

training sources. We use 4 frames per video in both pre-

training and finetuning. Pretraining is performed for 1 full

epoch only. Results are presented on the 1K-A MSR-VTT

test set for text-video retrieval. R@k: Recall@K. MedR:

Median Rank

Pre-training #pairs R@1 R@10 MedR

- - 5.6 22.3 55

ImageNet 15.2 54.4 9.0

HowTo-17M subset 17.1M 24.1 63.9 5.0

CC3M 3.0M 24.5 62.7 5.0

WebVid2M 2.5M 26.0 64.9 5.0

CC3M + WebVid2M 5.5M 27.3 68.1 4.0

and finetuning. Results on the MSR-VTT 1KA test set

are shown in Table 2. For HowTo100M, we pretrain on a

random 17M subset due to computational constraints (the

largest subset we could obtain at the time of writing) to-

talling 19K hours. To generate text-video pairs, we sam-

ple 5 contiguous speech-video pairs and concatenate them

to form a longer video. This allows for robustness to the

noisy alignment of speech and vision. We find that train-

ing on CC3M alone does reasonably well, outperforming

the HowTo-17M subset. This demonstrates the benefit of

our flexible encoder that can be cheaply trained on images

and easily applied to videos. Training on WebVid2M also

outperforms training on the HowTo17M subset, despite be-

ing much smaller, confirming that the HowTo100M dataset

is noisy. The best performance is achieved by jointly train-

ing on both CC3M and WebVid2M, effectively exploiting

image and video data.

4.5. Curriculum strategy

Next, we evaluate the ability of our curriculum schedule

to gradually learn the temporal dimension of videos by in-

creasing the input number of frames. Table 3 summarises

the results. Here, we show performance when pretraining

on WebVid2M and finetuning on MSR-VTT. We explore

two types of expansion in time: at pretraining and at finetun-

ing stages. First, we observe that a single frame is not suffi-

cient to capture the video content (18.8 R@1). Performing

the temporal expansion at pretraining stage is better than

doing so at finetuning (26.0 vs 24.9 R@1 with 4 frames).

Finally, we obtain similar performance (slightly better at

R@5) at half the computational cost in GPU hours by em-

ploying a curriculum strategy at pretraining (26.6 R@1).

For 8 frames, the curriculum is even more useful, as we start

training on 1 frame and then move to 4 before finally mov-

ing to 8 frames. Here, we obtain similar or better perfor-

mance than training on 8 frames from the start, with almost

a third of the computational cost. This is to be expected, as
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Table 3: Effect of #frames and curriculum learning: The

effect of a different number of input frames at pretraining

and finetuning. ⇒ indicates a within-dataset curriculum

learning strategy. Results are presented on the 1K-A MSR-

VTT test set for text-video retrieval. Pretraining here is

done on WebVid2M only, with a total budget of one epoch

through the entire dataset. PTT: total pretraining time in

hours.

PT #frames FT #frames R@1 R@10 MedR PTT (hrs)

1 1 18.8 56.6 7.0 16.2

1 4 24.9 67.1 5.0 16.2

4 4 26.0 64.9 5.0 45.6

1⇒4 4 26.6 65.5 5.0 22.1

8 8 25.4 67.3 4.0 98.0

1⇒4⇒8 8 27.4 67.3 4.0 36.0
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Figure 3: Plot showing the zero-shot performance (geomet-

ric mean of R@1,5,10) of various models on the MSR-VTT

test set against their total training time in hours. ⇒ denotes

a curriculum learning strategy. × denotes the multiple of

dataset epochs completed.

fewer frames significantly reduces forward pass times and

enables larger batch sizes. Note that for a fair comparison,

we allow the same number of training iterations for each

row in the table. We further analyse our proposed temporal

curriculum strategy and its effects on training time and ac-

curacy. Figure 3 shows the zero-shot results on MSR-VTT

for various checkpoints with and without curriculum. It

shows that our curriculum method yields a significant train-

ing speedup with a gain in accuracy. Shorter frame models

are able to pass through more of the dataset in a shorter

amount of time, which can lead to significant performance

benefits in a constrained setting.

Expansion of temporal embeddings. We experiment with

both zero padding and interpolation, and find that our model

is robust to the type of temporal expansion strategy. More

detailed results are provided in the Supplementary Materi-

als.

4.6. Comparison to the State of the Art

Results on MSR-VTT can be seen in Table 4. We out-

perform all previous works, including many that pretrain on

HowTo100M which is an order of magnitude larger than

our pretraining dataset both in the number of hours (135K

vs 13K) and in the number of caption-clip pairs (136M vs

5.5M). We also note that we outperform works that ex-

tract expert features (CE uses 9 experts, MMT uses 7) in-

cluding object, motion, face, scene, sound and speech em-

beddings. We even outperform/perform on par with Sup-

port Set [41], which uses expert features from a 34-layer,

R(2+1)-D model pretrained on IG65M, concatenated with

ImageNet ResNet152 features, after which they add a trans-

former network and train end-to-end on HowTo100M.

We also report zero-shot results (Table 4) with no fine-

tuning on MSR-VTT, outperforming both MIL-NCE and

Support Set that trains on HowTo100M. This shows that

our model is more generalisable, and can be used out of

the box, and also perhaps that the domain of WebVid-2M

is closer to that of MSR-VTT than HowTo100M. We will

release the weights of our models publicly.

For both the zero-shot and finetuned setting we show that

the addition of the COCO Captions image dataset further

boosts our state-of-the-art MSR-VTT performance, indicat-

ing that the model is not yet saturated and additional pre-

training dataset will lead to even better downstream perfor-

mance.

For MSVD [9], we outperform all previous methods (Ta-

ble 5). In particular, we outperform Support Set [41] even

though they train on an order of magnitude more data.

Results on DiDeMo can be found in Table 6. Note that

on this dataset, our zero-shot performance is equivalent to

CLIPBERT’s results with finetuning, and after we finetune

our model on the DiDeMo training set we get an additional

14.2% boost in R@1.

In the Supplementary Materials, we demonstrate further

state-of-the-art results on LSMDC text-to-video retrieval.

5. Conclusion

To conclude, we introduce a dual encoder model for

end-to-end training of text-video retrieval, designed to take

advantage of both large-scale image and video captioning

datasets. Our model achieves state-of-the-art performance

on a number of downstream benchmarks, however we note

that the performance of our model is not saturated yet,

and performance could be further improved by training on
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Table 4: Comparison to state-of-the-art results on MSR-VTT for text-to-video retrieval, 1k-A split. †E2E: Works trained

on pixels directly, without using pre-extracted expert features trained for other tasks. Vis Enc. Init.: Datasets used for

pretraining visual encoders for tasks other than visual-text retrieval, eg object classification. Visual-Text PT: Visual-text

pretraining data. Rows highlighted in blue use additional modalities such as sound and speech from the MSR-VTT test

videos. † Object, Motion, Face, Scene, Speech, OCR and Sound classification features.

Method E2E† Vis Enc. Init. Visual-Text PT #pairs PT R@1 R@5 R@10 MedR

JSFusion [67] ✓ - - - 10.2 31.2 43.2 13.0

HT MIL-NCE [37] ✓ - HowTo100M 136M 14.9 40.2 52.8 9.0

ActBERT [72] ✓ VisGenome HowTo100M 136M 16.3 42.8 56.9 10.0

HERO [28] ✓ ImageNet, Kinetics HowTo100M 136M 16.8 43.4 57.7 -

VidTranslate [23] ✓ IG65M HowTo100M 136M 14.7 - 52.8

NoiseEst. [2] ✗ ImageNet, Kinetics HowTo100M 136M 17.4 41.6 53.6 8.0

CE [31] ✗ Numerous experts† - 20.9 48.8 62.4 6.0

UniVL [33] ✗ - HowTo100M 136M 21.2 49.6 63.1 6.0

ClipBERT [26] ✓ - COCO, VisGenome 5.6M 22.0 46.8 59.9 6.0

AVLnet [48] ✗ ImageNet, Kinetics HowTo100M 136M 27.1 55.6 66.6 4.0

MMT [16] ✗ Numerous experts† HowTo100M 136M 26.6 57.1 69.6 4.0

T2VLAD [62] ✗ Numerous experts† - 29.5 59.0 70.1 4.0

Support Set [41] ✗ IG65M, ImageNet - - 27.4 56.3 67.7 3.0

Support Set [41] ✗ IG65M, ImageNet HowTo100M 136M 30.1 58.5 69.3 3.0

Ours ✓ ImageNet CC3M 3M 25.5 54.5 66.1 4.0

Ours ✓ ImageNet CC3M,WV-2M 5.5M 31.0 59.5 70.5 3.0

Ours ✓ ImageNet CC3M,WV-2M,COCO 6.1M 32.5 61.5 71.2 3.0

Zero-shot

HT MIL-NCE [37] ✓ - HowTo100M 136M 7.5 21.2 29.6 38.0

SupportSet [41] IG65M, ImageNet HowTo100M 136M 8.7 23.0 31.1 31.0

Ours ✓ ImageNet CC3M,WV-2M 5.5M 23.2 44.6 56.6 7.0

Ours ✓ ImageNet CC3M,WV-2M,COCO 6.1M 24.7 46.9 57.2 7.0

Table 5: Text-to-video retrieval results on the MSVD [9]

test set.

Method R@1 R@5 R@10 MedR

VSE [22] 12.3 30.1 42.3 14.0

VSE++ [15] 15.4 39.6 53.0 9.0

Multi. Cues [38] 20.3 47.8 61.1 6.0

CE [31] 19.8 49.0 63.8 6.0

Support Set [41] 23.0 52.8 65.8 5.0

Support Set [41] (HowTo PT) 28.4 60.0 72.9 4.0

Ours 33.7 64.7 76.3 3.0

the full HowTo100M dataset, larger weakly paired image

datasets such as Google3BN [20], as well as multi-dataset

combinations thereof.
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Table 6: Text-to-video retrieval results on the DiDeMo test

set. We show results with and without ground truth pro-

posals (GT prop.) as well as with finetuning and without

(zero-shot).

Method GT prop. R@1 R@5 R@10 MedR

S2VT [57] 11.9 33.6 - 13.0

FSE [69] 13.9 36.0 - 11.0

CE [31] 16.1 41.1 - 8.3

ClipBERT [26] ✓ 20.4 44.5 56.7 7.0

Ours 31.0 59.8 72.4 3.0

Ours ✓ 34.6 65.0 74.7 3.0

Zero-shot

Ours 21.1 46.0 56.2 7.0

Ours ✓ 20.2 46.4 58.5 7.0
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