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The frozen natural orbital (FNO) coupled-cluster method increases the speed of coupled-cluster
(CC) calculations by an order of magnitude with no consequential error along a potential energy
surface. This method allows the virtual space of a correlated calculation to be reduced by about half,
significantly reducing the time spent performing the coupled-cluster (CC) calculation. This paper
reports the derivation and implementation of analytical gradients for FNO-CC, including all orbital
relaxation for both noncanonical and semicanonical perturbed orbitals. These derivatives introduce
several new orbital relaxation contributions to the CC density matrices. FNO-CCSD(T) and
FNO-ACCSD(T) are applied to a test set of equilibrium structures, verifying that these methods are
capable of reproducing geometries and vibrational frequencies accurately, as well as energies.
Several decomposition pathways of nitroethane are investigated using CCSD(T) and ACCSD(T)
with 60% of the FNO virtual orbitals in a cc-pVTZ basis, and find differences on the order of
5 kcal/mol with reordering of the transition state energies when compared to B3LYP 6-311
+G(3df,2p). © 2008 American Institute of Physics. [DOI: 10.1063/1.2902285]

I. INTRODUCTION

Prediction of structures of equilibria and transition states
is among the most important tasks for computational chem-
istry. Coupled-cluster theory has shown itself to be well-
suited for determining equilibrium structures, especially in
the coupled-cluster singles, doubles, and perturbative triples
[CCSD(T)] form.'™ A significant drawback of the coupled-
cluster approach is the high computational scaling with re-
spect to the size of the system. For CCSD(T), for example,
the most expensive step is O(n*N*) where n is the number of
occupied orbitals and N is the number of unoccupied orbitals
and M=N+n is the total number of basis functions. It is
well-known, however, that standard basis sets are not opti-
mal; one can reduce the size of the virtual (unoccupied)
space without adversely affecting the numerical results. In
particular, in large basis sets there are combinations of virtual
orbitals that do not contribute significantly to the coupled-
cluster (CC) energy. One can, therefore, reduce the compu-
tational cost by identifying and removing these irrelevant
functions from the basis set. There is a long history of trying
to generate such spaces for configuration interaction*™"" and
many-body perturbation theory'>'* (MBPT) and, more re-
cently for coupled-cluster theory.ls_22 Perhaps the most pow-
erful method of doing so is to use frozen natural orbitals
(FNOs).'#223-28 Thege orbitals use information from an ap-
proximate one-particle reduced density matrix to choose the
best subset of one-particle orbitals within which to perform a
correlated calculation. When using FNOs based on the
MBPT(2) density matrix,””*" this truncated orbital set has
been shown to be surprisingly effective at truncating larger
basis sets, allowing ~50% of a modified unoccupied orbital
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set to be removed without significant changes to ground state
CC energies and density matrices.'* ™ The FNO procedure
could be combined with further reductions in the underlying
contracted Gaussian basis® > for further savings.

The frozen natural orbitals are able to achieve this
speed-up by tailoring the basis set to a molecule at a particu-
lar geometry. Therefore, when one wants to calculate forces
there is a nontrivial component due to the changes in the
underlying structure of the frozen natural orbitals. To account
for these changes, one must introduce a set of coupled-
perturbed frozen natural orbital equations, similar to the
coupled-perturbed Hartree-Fock (CPHF) equations, and rear-
range the terms in a computationally efficient manner, to
avoid calculating many perturbation-dependent quantities.

High-energy gas phase chemistry is an area that both
tests and takes advantage of computational chemistry tech-
niques. These reactions are especially susceptible to small
errors in the treatment of correlation both in energetics and
structures.”* To be predictive, one must use high-levels of
correlation and large basis sets, which tax computational re-
sources. Nitroethane is a prototype for the decomposition of
the nitroalkane class of high-energy materials.”>*® When
compared to the better studied nitlromethane,3 739 the decom-
position of nitroethane introduces one important additional
pathway: The elimination of HONO.***" This pathway is
apparently the kinetically favored one for thermal decompo-
sition of nitroethane, and is important in the decomposition
of more complicated materials, such as 1,3,5-
trinitrohexahydro-1,3,5-triazine (RDX). The energetics of
decomposition for nitroethane have been studied using the
density functional theory (DFT) (using the B3LYP func-
tional) (Ref. 42) but to be able to understand the relative
importance of the various pathways with confidence high-
level correlated calculations should be performed at the ap-

© 2008 American Institute of Physics
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propriately optimized stationary points. Nitroethane has five
heavy atoms and, to use a large enough basis set to be de-
finitive, one needs several hundred basis functions. To per-
form multiple optimizations and transition state searches
with CCSD(T) in that size of basis is a computational chal-
lenge; instead, we apply the FNO procedure, with analytical
gradients to calculate the potential energy surface for nitro-
ethane decomposition. We use both CCSD(T) and the more
recent ACCSD(T),¥*** which, by using information from
the left-hand CCSD eigenvector, improves the description of
bond breaking.

Il. THEORY

A. Frozen natural orbital CC

The FNO-CC method has been summarized before in
Ref. 20. Below, i, j, and k indicate occupied orbitals, a, b,
and ¢ indicate virtual orbitals, and p, ¢, and r indicate arbi-
trary orbitals. A set of improved virtual orbitals is generated
through a series of relatively simple operations. First, the
conventional HF equations are solved and then the MBPT(2)
density matrix is computed in the resulting virtual orbital
space. This density matrix is defined as

1w {chlij)ij I ca)
D=2 (1)

cij €ij €;j

where the denominator

e;lj‘b:fii‘i'fjj_faa_fbh (2)

is composed of diagonal Fock matrix elements f,,,. The den-
sity matrix is diagonalized yielding a set of natural orbitals
whose occupied space has been frozen to the original
Hartree-Fock orbitals (hence the name “frozen natural orbit-
als”). Associated with each natural orbital is an approximate
occupation number. Then, based on keeping those orbitals
with highest occupation, the virtual space is partitioned into
two subspaces: A set of kept orbitals and a set of dropped
orbitals. The Fock matrix is formed in these new orbitals,
and is separately diagonalized in each of the two subspaces.
Therefore, at the end of the process, one has three sets of
orbitals: Canonical Hartree-Fock occupied orbitals, a kept set
of Hartree-Fock virtual orbitals that are canonical among
themselves, and a dropped set of Hartree-Fock virtual orbit-
als that are also canonical among themselves. Orbitals in the
original Hartree-Fock basis will be uncapitalized, while or-
bitals after the FNO transformation will be denoted by capi-
tals. Kept virtuals are indicated by A’, B’, and C’, dropped
virtuals are A”, B”, and C”, and arbitrary virtuals (the union
of the kept and dropped orbitals) are A, B, and C.

Hartree-Fock orbitals in a given basis set are completely
defined by the following Brillouin condition:

Siar=fiar=0. (3)

Similarly, at the end of the FNO procedure, the additional
“Brillouin” condition is
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Dl =0. (4)

This equation is similar to the Hartree-Fock condition for
noncanonical orbitals as the off-diagonal elements Df,)B, and
Di‘z,,)B,, can be nonzero. The combination of the Brillouin con-
dition and the equivalent FNO condition will be used to cal-
culate gradients.

The overall set of FNO molecular orbital coefficients can
be expressed in the following series of equalities. The ele-
ments V,p are the overall transformations, while C,,, is the
original Hartree-Fock transformation and U,z is the addi-
tional FNO transformation in the virtual space, where

M, Vv, - are atomic orbitals,

V,LLI: Clu', (Sa)
Via= > CpUpa- (5b)
b

The final molecular orbitals are defined by

|Py= 2 V,plu). (6)

B. Gradients
A general expression for CC gradients js*0#®
[?ECC afP/Q/
a_= E YrrorT
X P’Q’ X
KP'Q"IIR'S")

o (7)

+ 2 FP'Q’,R’S’
PIQ/R/SV

where P’, Q', R’, and S’ run over all correlated orbitals.
Ypror and I'prgr grgr are the one- and two-particle coupled-
cluster response density matrices in the active space. The
derivatives dfp:o//dx and (P'Q"lIR'S")/ dx are total deriva-
tives of the molecular orbital Fock operator and two-electron
integrals. These total derivatives can be separated into a
piece due to the atomic orbitals and a piece due to the mo-
lecular orbital coefficients; to calculate the gradient effi-
ciently, it is necessary to distinguish between these two.

The derivative of an active FNO orbital with respect to
an external perturbation is

W upr 9l )
> ﬁw +> Vﬂprg- (8)
w o

JP")
W =
Focusing on the first (molecular orbital) term one can param-
etrize the response as
IV upr
ax -

2 VoV (9)
0

The coefficient V)é p 18 the equivalent of a coupled-perturbed
Hartree-Fock coefficient for the FNOs, which we will refer
to as a CPFNO coefficient. It is important to note that the
CPFNO coefficients have contributions from all orbitals, in-

cluding those dropped during the FNO procedure.
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The atomic orbital piece from Eq. (8) contributes to sev-
eral perturbed integrals that are transformed into the FNO
basis (here and below we are assuming real orbitals),

Kulv)
S;()Q = E V,u VQ E upP VQ > (10)
v x ox
Kl v)
Vv =2, V.Vo—™/, 11
PQ E uP VQ X % uPY vQ 0’))( ( )
N KuvlNo)
(PQIRSY= 2 VypVugVaVas— (12)
MVNO X

where the atomic orbital part of the Fock matrix derivative is

g =g+ 2 (PII QD). (13)

Then the full partial derivatives of the Fock matrix and the
two-electron integrals can be written as

J
%Q = ,3% + [froVip +fRPV§Q]
R
+ 2 [(PRI QI) + (PI| QR)]V,, (14)
RI
w =(PQIRS)+ X [Vy(UQIRS)

VIo(PUIIRS) + Vi(PQ | US)

+ Vi (PQIIRU)]. (15)
Substituting these definitions into Eq. (7),
(9_ = E Ypro! PX')Q'
X P’Q’

+ 2 Tpigris(P'Q"IIR'S")X
P!QIRIS!

22 pp/ p/: (16)

where the intermediate matrix I, is

, 1
I’PP’ =— 5|:E (’yPrQr + ’yQ/Pr)fPQr
o'

+ 2 (PQ'IR'Spgr prs:
Q/RIS/

+<Q,P ”R,S,>FQ’P',R’S’ +<Q,R, ” PS’>FQ!R!,P!S!

+(Q'R"I1S'P)l g1 5p) + 2 ((Q'PIR'P")
QIR/

+<Q,P, IIR,P))’YQ’R’ap’,OCC . (17)

with 6ps ,.=0 if P’ is not an occupied orbital and =1 if P’ is
occupied. Unlike the energy, the derivative depends on orbit-
als that are dropped by the FNO procedure due to the pres-
ence of terms such as fpy, and (PQ'lIR'S").
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By requiring orthonormality of the perturbed orbitals,
the CPFNO coefficients satisfy

Vip+Sho+ Vig=0. (18)
The perturbed integral S);Q is known, so one can solve for
VX

or:

1
Vir==Sko=Vio. Vir=-3S (19)

Therefore, there are only independent equations for P> Q.
Expanding the last term of Eq. (16),

- 22 Dy Vi =2 20 Xpp Vi + 2 1,85, (20)

P>P' PP’
where
Xppr =I;”P_II,3P” (21)
) Ip for P<P',
1 (22)

e I, for P>P'.

Now, we must address how to calculate the CPFNO co-
efficients. As is the case for CPHF,49 in CC theory their
direct calculation is avoided by using the Dalgarno-Stewart
interchange theorem,5 051 and sometimes called the z-vector
method for CPHF.’**® The governing equations of the FNOs
are those expressed in Egs. (3) and (4). Differentiating these
equations, one has the requirements that

Ifarr Ofan
fA l= fA l=0, (233)
Ix Ix
@
aD MAT
—A" . (23b)
ax

Taking into account that the overall molecular orbital matrix
V is a composite of the Hartree-Fock molecular orbital ma-
trix C and the FNO transformation matrix U, differentiating
Eq‘ (5)’

WV, _dC 3 (243)
x ax

v U

—ud E —“—U,,A+c —bA (24b)

X X Ix

One can use a similar parametrization of the responses of the
C and U matrices as was used for V,

E CraCip> (25a)

aUaB
Ix

= UycUy. (25b)
c

Note that, by construction, the matrix U can be expanded

purely within the virtual space. Relating the CPFNO coeffi-

cients Vi, to C¥, and Uy,

X — X
VI.I Cl]’

(26a)
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VY= 2 UpaCF;, (26b)
b
V=2 ChUpa, (26¢)
b
(26d)

V= Ulp+ 2 UgClyUgy.
cd

The coefficients Cl’fq are CPHF coefficients, whose solutions
will be implicit; they obey an orthonormality condition. The
perturbed FNO transformation obeys a slightly different con-
dition because U acts in the orthonormal Hartree-Fock basis,

Cr,+Sr,+Ch, =0, (27a)
UX, + Uz =0. (27b)

The relations expressed in Eq. (27) can be rearranged to
reduce the number of independent variables,

Cor==54=Cop Chp=- Esgp’ (28a)
Usa=-Ukp UL, =0. (28b)

For all choices of perturbed FNO orbitals, choose the under-
lying CPHF coefficients in the virtual space to be noncanoni-
cal (as will be discussed further below), to define

1
Chy=- Esgb' (29)

a

This choice then can be inserted into Eq. (26d), yielding

Vig=Uls— %SXB' (30)
The definition of Cé will be dependent on choosing canoni-
cal or noncanonical perturbed orbitals. Satisfying the
Hartree-Fock perturbed Brillouin conditions is unchanged
due to the FNO procedure, because the FNOs are still a
(noncanonical) set of Hartree-Fock orbitals. Because the
Brillouin condition is still satisfied, we do not need to in-
clude single excitation contributions to the MBPT(2) density
matrix. On the other hand, focusing on the perturbed density
matrix reveals some additional complexities.

The form of the density matrix illustrated in Eq. (1) only
holds for canonical Hartree-Fock orbitals. Therefore, to di-
rectly use that equation to derive a perturbed density matrix,
as is needed to impose the CPFNO condition [Eq. (23b)] one
needs to require canonical perturbed underlying. Hartree-
Fock orbitals. This restriction would necessitate solving the
CPHF equations before constructing the perturbed density
matrix for each perturbation. We instead construct the re-
sponse independently of solving the CPHF coefficients by
first working in the original Hartree-Fock basis (that defined
by the coefficients C). The general form of the MBPT(2)
density matrix for noncanonical Hartree-Fock orbitals is

J. Chem. Phys. 128, 164101 (2008)

D= E ti7 Ve, (31)

L_[L

where the first-order 7, amplitudes satisfy the following
equation:

e W) = (ab |l if) + P_(ab) X, Jactij 15

c#a

~P_ ()2 futi?, (32)

k#i

with P..(pg)=1=P,, where P,, interchanges orbitals p and
q. In the case that the Hartree-Fock orbitals are canonical,
the last two terms vanish, allowing the following solution:

= (33)

which, when inserted into the general expression for the den-
sity matrix, returns the original result from Eq. (1). Introduc-
ing an external perturbation yields

Dy _ Is ﬂ_fﬂtma) N tcbma_fcﬂ
ax 2% Ix ax
cb(l
= —P+(ab)2 Ttw(]) (34)
ijc X

where the perturbed T amplitudes are defined by the follow-
ing perturbed amplitude equation:54

aeﬁ.’?ﬂb(l Eabaz“”“) Kab |l ij)
ax Y ax ax
(%cb(l)
+P(ab>2(f“ 0+ f P
c*a
ab(1)
f[ , ot b(1
-P_ (1})2( ktk]b<1) + v .
k#i
(35)

Using the fact that the underlying unperturbed orbitals are
canonical (even if the perturbed orbitals are not), one can
simplify the amplitude equation to

ab(1)
9 t“h Eab(%z ﬁ(abll Kab Il ij) cPan)S fac Cb(l)
(9X 19)( (9)( c#a
B E ik av(1)
P Th. G
k#i

The unperturbed T amplitudes are known (since they corre-
spond to canonical orbitals), leading to the following final
expression:

A bat;f?’“) _ Kab| i,) P(a b)E Ifuc (bl ij)
oy ax ax 6”
—P_(i) 2 = (37)
i OX EZ,"

This set of equations depends on the occupied-virtual block
of CPHF coefficients through the perturbed two-electron in-
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TABLE I. Intermediate quantities for FNO gradients.

Myy= 2 (cb ij><lk” ca)

Erhelr]fem
(bl jRXkll cay 1 (di &)k | da)
— L _5 ~ SV 7
abu 2 E; 5;1? 2 1"2,7«1 5;11?57)?

1 (dbllij)ijllcay 1 (ed ij)ijll ea)
Myog==2, ———— 45 e
ab.cd 22,-,- egf’ef;’el?f 2 hEEije Eg’egdegfl

Yayiy=(6+ Moy +22, Muylkil )42, Mo edcilldj)

E (db lj><lj | ca) l

ELb e 5 (€+ €M ypcq
1]

ab cd=
Yab,c[ = Mab,(‘i + E/‘k Mab.jk«jc H kl> + </l ” kC))

+ Ede My, g ((de |l ei) +(dil ec))

tegrals and the perturbed Fock operator, as can be seen by
expanding the full perturbed density matrix,

&D(z Do _ p (4 )|: E &b || l]><l] Il ca)

Ix ax b

ije ij €ij

@(cb 1 kj)ij Il ca)

cb _cb _ca
ijke (9)( Ekj Elj Elj

ls (%(db I1ij)ij | cay

cb _db ca
2ijcd &)( lj 65 lj
Ifpa{cbij)ijll ca
gm Gcb”f/w >)1 | (38)
X ij lj lj
Expanding the integral derivatives,
(9Dab
= P+(ab)|:2 (Yab LdSLd + Mab cdfid) + 2 (Yab ij
X i>j
Yab,ji)cl)‘;"'EMab,i]ﬁ] E Yab /ISU
ij i>j
+2 (Yab ch +Mab czSX +D1(12b),x’ (39)

where the intermediate quantities M and Y are defined in
Table I and the perturbed density matrix Dfli)”‘ is defined as

{cb I ij)Xijl ca)
AME——TET—<
ijc Elj Eij

D(2) X — (40)

This term will be further discussed below.

These equations have been derived in the original
Hartree-Fock basis, but the CPFNO equation is in the FNO
basis. To transform the results, one uses

2
DG, = > UppDP U, (41)
be

Differentiating this expression,
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(9D // ’ U pan aD(z)
A - E { DD U+ Uppn 25U,
Ix ox ox
U0
+ UppDP—2 } (42)
x

The perturbed FNO density can therefore be written, using
=0 and the relationship expressed in Eq. (30),

B"B’
2)
oD
AVAT B 2) X
(7 __EDA/B'VA"B/ +EDA”B”VB”A’
X B"
1
(2 o )
E DA'B'S ngr + = E DA"B” B"A!
2 B' B"

+P,(A"A’ )[2 Yanar sV + 2 (Yanar 1y
>J

= Yanar )Vis+ E (Yarar pcSpe
BC
+M A”A’,BC]&BXC)) +> MA”A’,IJfg)
17

2
— 2 Y S+ E M yngr piSpr | + wa)A)f,
>7

(43)

where the quantities M and Y have been transformed to the
FNO basis. The perturbed quantities have therefore been
completely separated from the CPFNO coefficients, which
allows for a perturbation-independent solution of the CPFNO
equations. To go further, one must choose between nonca-
nonical and canonical perturbed FNOs.

1. Noncanonical perturbed orbitals

For the choice of noncanonical perturbed orbitals, we are
free to define

1
V== 55k, (44a)
1
VX'B’ = 2SA!B/9 (44b)
VA(HBH == ES;XHBH- (44C)
The only terms that need to be solved are V}; and V%,,.

Then CPFNO equations in matrix form are

AVO,VO O Vzo B?/(O
Ay Anyr iy VX,, ’ - BX” ’ ’ (45)

where

%ﬁﬁﬁ+&m+ESAuwm (46)
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TABLE II. Elements of the noncanonial CPFNO A matrix.

Ay py=(ABILI)+(AJIIB) = 63f s+ 6150ppf 11
Avw r=Vows s+ Yawrss
~8ypD?

AANAI B" B = 5AHB//D A'B"

A’B’

BY,, =P, (A"A") { D (Yanar 5eSEe+ Mungr 5ef 30
BC
+ 2 (MA"A’ IJﬁJ - YA”A’ JISIJ>
X 1 X (2)
+ Mynpr giSpy | — EE SangDprar
IB B'

(2) ),
E DAHBIISXHA! + DAHAX! 5 (47)
B”

and the elements of matrix A are in Table II.
The interchange theorem can be written

> XpoVho=X'VX=X"A"'BY = - DVTBX
P>Q

=— > DYyB} (48)

P>0

Therefore, one can solve the perturbation-independent equa-
tion below, instead of Eq. (45),

T

A\Y;O Vo Avo,v”v’ |: D(Or) ] l _XVO 1 (49)
T (or) | = | _ :

O AV"V’ vyt D ! XV"V’

The second of these equations, which determines the orbital
response of the uncorrelated molecular orbitals, can be
solved independently of the first, using a standard linear
equation solver. Substituting this result into the equation for
the virtual-occupied block of the orbital response contribu-
tion to the density matrix,

> D(or)[<BA 11y + (BINIJA) + (f11855 ~ fa5) S1/] = — Xy,
JB

(50)

Xy =Xp+ 2 DB"B'[YB”B’A1+ Y g arl- (51)
B”B’

This modified z-vector equation can then be solved by the
standard method.” Using these orbital relaxation compo-
nents, one can form the final full density matrices,

Dy=yy- 2 (M yrgr 1y + MA’A”,IJ)DA(:rrf)V ) (52a)
ANA/

D= ya+ DY, (52b)

DAB: ’yBC 2 (MC”C’ AB+MC/C”AB)DC”C” (520)

c’'c’

and intermediate matrices
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Iy=1I),- 2 DSHATI KD+~ S (Vo
A”A’
+ YAIAHJ[)D‘(A(:IAM (533)

Ly="Ly=fuDSP = X (Mpogr aj— Mpigr ) Dy
B/IB/

(53b)

E (YC"C’ A'B’ + YC’C"A’B’)DC”C” (53C)
c'c’

IArBr _IA'B' -

(or) 1£(2) (or)
]A’/A’ - AHAI + _2 DA!IB!DBIAI - 2 DAHBHDB/IA!

BI BH
- E (YBHB/ AHA/ + YBIBHAHA/)DBO:Z);V, (53d)
BHB/
]A//BII — 2 (YC//C/ A//BN + YC C/I A”B")D(;):)C‘, (536)
CNC/
The final term left to address is D( X from BX This term

AVA! ATAT
is only simply expressed [as in Eq. (40)] when the orbitals
are those from canonical Hartree-Fock. Therefore, to com-
pletely separate the perturbed orbital contribution requires

additional integral transforms. First, one must back-
transform the orbital response density matrix D A,, A, to the
Hartree-Fock basis,

D=2 Uac"Dcncrch' (54)

CIIC!
This object can now be contracted with the perturbation in-
dependent pieces of D(,, '

<1] llac)
D\ 55

ab ij E Ef;jr Elaf ( )
This term can only be formed in the Hartree-Fock basis,
leading to the following final expression for noncanonical

perturbed orbital gradients:

oE
< 2 DPQf<pQ > Lpors(PQ I RS)X
ax PORS
+ E LS + Eb‘, Gopiablij)*. (56)
abij

Because of the extra G term, a separate back-transformation
is necessary to write the G, ;; term in the atomic orbital
basis before contraction with the derivative integrals.

2. Canonical gradients

In the case of CCSD(T), it is highly advantageous to
impose the condition that the perturbed orbitals remain

: . 1255 . .
semicanonical. When frozen occupied or virtuals are
used, the derivative is calculated using canonical perturbed
orbitals as well.*® (This condition is actually more stringent
than strictly necessary; as long as mixing occurs only within

the frozen and active subsets of orbitals, they do not need to
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TABLE III. Elements of the canonical CPFNO A matrix.

A k=00 (Fu=ru)
A,JYAK=(IAI\JK>+(IKHJA)
Aprpr=Oufap— O110spfu+ (ABI1J)+(AJ|IB)
Ayrgr ci=(A'CIB')+(A'TIIB' C)
AA’B’,C’I)’ =S¢ Oprpr(farar=Iprpr)
Ayrpr aren=0Oprcrfarart Surcrfangr
Aprpr i=Yarpar g+ Y anar yy=Y gran ji=Y aran g1
Aprpr gr=Yanpr g+ Yaran gy

(2)
) = SupD

@)

Anar g =SymgrD g

be maintained canonical.) Therefore, one must formulate the
FNO orbital relaxation terms in semicanonical orbitals.
Supplementing the conventional Brillouin condition (and the
FNO condition) are the requirements that

Pu_,
Ix ax

(9 ’ !
Yaw (57)

There is no need to impose canonicality on the uncorrelated
orbitals {A"} because the computational advantage lies in de-
termining the CC contribution to the density matrices, which
does not involve the uncorrelated orbitals. By imposing this
requirement one can no longer choose VY=-1/2S}, and

VX 5 =—1/28%,,,. However, one can choose Vi,
=-1 /2554("3"’ since the dropped virtuals can be noncanonical.

Therefore, no iterative equations have to be solved in the
uncorrelated-uncorrelated sector.

The new CPHF equations can be written in matrix form
as follows:

X
Aoo,oo Aoo,vo 0 0 VOO
X
0 Avo,vo 0 0 VVO
O AV,V’,VO AV,V,,V’V, AV,V,,V"V, Vfl([vf
AV”V’,OO Av"v’,vo 0 Av”v’,v”v’ V\)frrvr
X
Boo
X
Bvo
= BX - (58)
vy’
Bé/ﬂvl

The right-hand side of this equation is given by

BYy o == [ + S5 pforor + 2 SYUPTIQT),  (59)
Iy

B;\\/'!A' = P+(A"A/)[E (YA”A',BC'%C + MA”A’,BC]&BXC))
BC

X) X
+ MA”A’,IJﬁJ -2y AnAr aiSTy
[T, <7

1 2
+2 MA"A’,BIS§1:| - 52 SX!/B!D(BI)A/
1B B’
1
2 D% .$%, + DX (60)

A" B
B

The matrix elements of A are given in Table III.
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Solving the linear equation

Al 0O 0 Avourt || D
Azo,oo AVTo,vo A\To,v’v’ Azo,v”v’ D‘(/(()Jr)
0 0o Al... 0 Dy,
0 0 Az:”v’,v’v’ Az:"v’,v”v’ _D‘(/(’)’iz’ _
- Xoo
- Xvo
= _x... (61)
- XV"V’

yields the orbital response contribution to the overall density
matrix. In this form, it is obvious that the solution for the
active virtual-active virtual block does not couple to the
other blocks, yielding
- XA/BI
pon o X )
Jarar=forp
The FNO block can then be determined by inserting the new
orbital relaxation terms from the active virtual block,

2 2 g
> DO (8D = 845D == Xana, (63)
B"B'
iAHA! =XAHAr + EfA”B’DES‘O/ri/' (64)
BV

Furthermore, after solving for the inactive-active virtual
block, the orbital response for the occupied-occupied block
can be solved,

- 5 =Xy
E Dggi)[fsmfsu(fn—fu)] :_XIJ:>D§3): )
K>L fu=1u
(65)
v _ 2 (or)
X[J—X[J"‘ P_(IJ) (YAHAIJJ‘F YAIAIVJJ)DA//A/- (66)

A'A!

Finally, the response of the occupied-occupied block and
the virtual-virtual blocks can be inserted into the equation for
the occupied-virtual block,

> DY 8pSi(fan— fun) + (BANJD +(BI I JA)] = — X,
JB

(67)
~ 1
Xor=Xo+ 3 2 DI AP I1IQ") +(AQ' 1 1P")]
P!Ql
+ 2 Dgfz);'[YB”B’,AI‘*' Yprprarl- (68)
BNBI

This equation now fits the standard form of the z-vector
equations.

After solving for all of the orbital response components
of the density matrices, one can define the full, relaxed, den-
sity matrices via
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1. Solve SCF equations
2. FNO procedure:
(a) Construct MBPT(2) Density Matrix
(b} Form FNO basis
{c) Construct M and Y matrices in FNO basis (Table I}

(d) Store (ij || ab) and HF orbital eigenvalues for construction of Gap; [Eq. (55)]

[

. Solve correlated calculation in truncated FNO basis

'y

. Form response density matrices y and T’

o

. Solve FNO Z-vector equations for orbital response, D) [Eq. (49) or Eq. (61)]

=3

. Form relaxed density matrices D [Eq. (52) or Eq. (69)] and G [Eq. (55)] and intermediate
matrix I [Eq. (53) or Eq. (70)]

7. Back-transform all density matrices to the AQ basis

w

. Contract against integral derivatives.

FIG. 1. Steps in an FNO derivative calculation.

Dyy=vyy+ Dﬁr) -> (Manpr g+ Mg IJ)DAHAr , (69a)

AUA/
D= ya+ DY, (69b)
Dap=vpc+ Dy Or) > (Mcner ap + MC'C”,AB)D(CO:)CM
C//c/
(69¢)
and the final intermediate matrices,
Iy=1}= 2 (IP1JQ)DSY - f,,D", (70a)
PO
L= 1Ly = fuDSy = 20 (Mpigr g1 = Mpign o) Digry
BNBI
(70b)
IA/B/:IA’B’ fB/B'DAO’rB’_ 2 (YC”C'A/B'
CI/C/
+ YC’C”A’B’)D((‘);)C‘H (70c)
Ly =Ly = Fara D0, + = E b DY
2
2 D;!/)BHD;;I%/ - Z (YBIIB/’ANA/
B// BHB/
+ YB!BN A”A’)DBO”IZ”’ (70d)
IAHBH —_— E (YCI/C/ A//BH + YC/CN AHBH)DC?/I/‘)Cu . (703)

c'c’

Again, it is necessary to include the p“ A,, A, term separately
via a back-transformation, as is expressed in Egs. (54)—(56).

A summary of the steps necessary to calculate a deriva-
tive using the FNOs is shown in Fig. 1.
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C. Smoothness of the potential energy surface

The FNO procedure developed here will not necessarily
yield rigorously smooth potential energy surfaces (PESs).
Note that the FNO truncation is performed point by point on
the PES, without consideration of the connection between
that point and other points on the potential energy surface.
Therefore, if the structure or size of the space spanned by the
correlated set of virtual orbitals changes as a function of the
geometry, it is possible that the energy could change discon-
tinuously.

To minimize the impact of discontinuities, the code rec-
ognizes orbitals that are close in occupation to the correlated
orbitals. Those within a certain tolerance of the cutoff occu-
pation are considered to be quasidegenerate and are retained.
Assuming that the geometry steps are not too large, this pro-
cedure should smooth changes in the FNO structure. It
should be clear that this problem is not unique to the frozen
natural orbital truncation procedure, but exists for all proce-
dures (such as localized orbitals methods) that truncate the
correlation space in a geometry dependent way.56_58 To the
best of the authors’ knowledge, there is no fully satisfactory
solution to this problem.

lll. IMPLEMENTATION

The FNO-CC gradients have been implemented within
the ACES II program system.59 It takes advantage of real Abe-
lian point group symmetry, and all equations are fully spin-
summed and applicable to closed- or open-shells using single
determinant relativistic Hartree-Fock (RHF) or spin-
polarized unrestricted Hartree-Fock (UHF) references. In a
FNO energy calculation, a partial integral transformation is
performed before the FNO truncation, and then a full integral
transformation is performed in the resultant truncated basis.
This computational advantage is unachievable for gradients;
instead, one must perform a full integral transformation for
both the truncated and full basis sets, requiring the storage of
more integrals. The correlated calculations are then per-
formed within the truncated basis. The formation of the den-
sity matrices proceeds in two parts: First, the correlated con-
tributions are formed within the truncated basis, then these
density matrices are expanded to the full basis, and the or-
bital relaxation terms are calculated and included. One cal-
culates the M and Y in the HF basis and then stores them in
the truncated FNO basis, so that they can be added to the
orbital relaxation equations. The back-transformation of the
FNO density matrix and the G, ;; term are performed sepa-
rately. These terms are then summed before contraction with
derivative integrals.

Compared to gradient calculations that do not use FNOs,
the largest added expense is the necessity of calculating and
storing several new intermediates of a dimension similar to
that of the two-electron integrals. The computational cost is
far less than the cost of the CC procedure, though, and does
not change the overall scaling of the coupled-cluster, but,
instead reduces its cost in applications. However, the addi-
tional storage costs could be problematic for some combina-
tions of computer and molecule.
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TABLE IV. Comparison of optimized equilibrium bond lengths for different correlation-consistent basis sets
Refs. 65 and 66 for multiple FNO truncations for CCSD(T) and ACCSD(T). The percentage indicates what
percent of the virtual space of each molecule was active. For truncated basis sets (20%—80%) errors are relative
to the untruncated basis set result; for 100%, errors are relative to experiment. Averages were calculated over

the set of molecules from Ref. 60. Only valence electrons were correlated. A is the (signed) mean error, A, is
the mean absolute error, A, is the maximum absolute error, and A is the standard deviation. All numbers are

in units of pm.

CCSD(T) ACCSD(T)
Basis set — — — —
(%) A Az\bs Ama\x As(d A Aabs Amax AMd
cc-pVDZ
20 0.02 0.66 2.30 0.80 0.05 0.63 1.93 0.74
40 -0.17 0.54 1.73 0.70 -0.14 0.54 1.85 0.71
60 -0.53 0.54 243 0.63 -0.51 0.52 2.3 0.60
80 -0.26 0.30 345 0.51 -0.24 0.29 3.22 0.65
100* 1.72 1.72 4.51 0.82 1.69 1.69 4.12 0.76
cc-pVTZ
20 0.30 0.64 5.50 1.21 0.32 0.63 5.47 1.20
40 0.15 0.21 0.87 0.25 0.16 0.22 0.88 0.24
60 -0.03 0.14 0.57 0.19 -0.02 0.14 0.53 0.19
80 -0.03 0.09 0.45 0.13 -0.03 0.09 0.41 0.13
100° 0.05 0.22 0.90 0.29 0.02 0.22 0.71 0.27
cc-pVQZ
20 0.05 0.18 0.68 0.24 0.07 0.18 0.77 0.23
40 -0.11 0.18 1.11 0.27 -0.11 0.17 1.01 0.26
60 0.00 0.05 0.26 0.07 0.02 0.05 0.26 0.07
80 0.00 0.03 0.10 0.04 0.00 0.02 0.10 0.03
100° -0.06 0.13 0.71 0.19 -0.10 0.14 0.71 0.19

“Relative to experiment.

All gradient calculations were verified by comparing the
analytical gradient expression to those obtained by numerical
differentiation of the energy.

IV. RESULTS AND DISCUSSION
A. Calibration

To determine the capability of FNO truncated gradients
to reproduce structures, we applied FNO CCSD(T) and
ACCSD(T) to the set of well-characterized molecules from
Bak et al.%’ Comparative statistics are shown in Tables
IV-VII. We have chosen to show the dependence of geo-
metrical properties versus the percentage of the virtual space
retained in the truncated calculations. In some ways, this way
of choosing a truncation is unsatisfying; it would be better if
one were able to examine the MBPT(2) occupation numbers,
and then chose proper cutoffs based on these values. How-
ever, while we have looked into this issue, we have not been
able to determine any consistent truncation criterion: The
occupation numbers go smoothly from high to low occupa-
tion, without any sharp changes that would indicate a place
to truncate. Because the goal of the method is to reduce the
computational cost of the calculation, at this point it seems
better to use a truncation scheme where the speed-up can be
predicted, even if it is less satisfying theoretically.

One immediate conclusion is that the FNO convergence
behavior is identical for both CCSD(T) and ACCSD(T).
Mean absolute errors (probably the best single measure of
the results) are almost identical, especially for larger basis

sets. The convergence with respect to truncation of the FNO
geometries is not monotonic; while there is generally a trend

that less truncation leads to better A, there are exceptions.
Even more dramatic are the maximum errors, which do not
show a clear convergence behavior. These results are not
necessarily surprising. Especially for the double-{ basis sets,
the truncated basis sets can become so small that one cannot
consider them meaningful points for extrapolation of the
convergence behavior. Unlike the convergence of the energy,
the convergence of geometric properties will tend to be less
clear-cut: Optimized geometries are dependent not just on
the energy at a point, but rather the relative energy at a point
to the points around it. There is, therefore, a delicate balance
to the best choice of basis and method for geometry predic-
tion, leading to more complicated convergence behavior.

Examining the tables of bond angles (Tables VI and
VII), it is clear that both methods underestimate bond angles,
even with all the different truncations. Importantly, the FNO
truncations do not significantly affect the standard deviations
of the geometries.

To better understand the convergence behavior of the
FNOs, the mean absolute errors from experiment for this
data set are plotted in Figs. 2-5. In these plots, each point
represents retaining 20%, 40%, 60%, 80%, or 100% of the
virtual space of the corresponding basis. On the horizontal
axis is a measure of the relative size of the truncated basis set
as compared to the largest basis in the calculation (100%
quadruple-{). For bond lengths, all choices of basis sets 60%
triple-{ or larger perform similarly. The picture in the bond
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TABLE V. Comparison of optimized equilibrium bond lengths for different correlation-consistent basis sets
Refs. 65 and 66 for multiple FNO truncations for CCSD(T) and ACCSD(T). The percentage indicates what
percent of the virtual space of each molecule was active. For truncated basis sets (20%—80%) errors are relative
to the untruncated basis set result; for 100%, errors are relative to experiment. Averages were calculated over
the set of molecules from Ref. 60. All electrons were correlated. A is the (signed) mean error, A is the mean
absolute error, A, is the maximum absolute error, and Ay is the standard deviation. All numbers are in units

of pm.
CCSD(T) ACCSD(T)
Basis set — — — —

(%) A A A Ay A Ao A Ay

cc-pVDZ
20 -0.09 0.66 2.21 0.81 -0.05 0.62 1.84 0.74
40 -0.58 0.63 2.96 0.73 -0.56 0.60 2.86 0.69
60 -0.30 0.33 2.34 0.49 -0.29 0.31 2.14 0.45
80 -0.14 0.17 0.99 0.24 -0.14 0.17 0.98 0.24
100 1.66 1.66 442 0.80 1.63 1.63 4.03 0.74

cc-pVTZ
20 —-0.11 0.26 2.37 0.50 -0.09 0.25 2.15 0.47
40 -0.24 0.32 0.92 0.34 -0.23 0.31 0.91 0.33
60 -0.29 0.33 1.34 0.43 -0.28 0.32 1.34 0.42
80 -0.09 0.11 0.33 0.12 -0.09 0.11 0.33 0.12
100° 0.19 0.26 1.04 0.28 0.15 0.25 0.86 0.27

cc-pVQZ
20 -0.21 0.25 0.71 0.23 -0.21 0.25 0.70 0.22
40 -0.06 0.07 0.33 0.10 -0.06 0.08 0.30 0.09
60 -0.05 0.09 0.52 0.13 -0.04 0.09 0.49 0.12
80 0.00 0.01 0.05 0.02 0.00 0.01 0.05 0.02
100 -0.01 0.09 0.63 0.17 -0.06 0.10 0.64 0.18

“Relative to experiment.

TABLE VI. Comparison of optimized equilibrium bond angles for different correlation-consistent basis sets
(Refs. 65 and 66) for multiple FNO truncations for CCSD(T) and ACCSD(T). The percentage indicates what
percent of the virtual space of each molecule was active. For truncated basis sets (20%—80%) errors are relative
to the untruncated basis set result; for 100%, errors are relative to experiment. Averages were calculated over
the set of molecules from Ref. 60. Only valence electrons were correlated. A is the (signed) mean error, A, is
the mean absolute error, A, is the maximum absolute error, and A is the standard deviation. All numbers are
in units of degrees.

CCSD(T) ACCSD(T)
Basis set
(%) & &abs Ama\x As(d & &ahs Amax Asld
cc-pVDZ
20 0.18 0.34 0.66 0.36 0.20 0.29 0.64 0.30
40 0.64 0.77 1.36 0.61 0.62 0.76 1.36 0.63
60 0.53 0.60 1.00 0.46 0.51 0.58 0.96 0.46
80 0.13 0.17 0.49 0.21 0.12 0.16 0.47 0.21
100* -1.99 1.99 4.97 1.53 -1.97 1.97 4.92 1.52
cc-pVTZ
20 0.10 0.36 0.89 0.46 0.09 0.34 0.85 0.45
40 0.01 0.19 0.47 0.27 0.01 0.18 0.47 0.27
60 0.12 0.19 0.41 0.22 0.12 0.19 0.41 0.22
80 0.07 0.10 0.27 0.11 0.07 0.10 0.28 0.11
100° -0.90 0.91 4.26 1.31 -0.88 0.89 4.20 1.29
cc-pVQZ
20 -0.03 0.31 0.68 0.40 -0.03 0.30 0.65 0.40
40 0.08 0.18 0.40 0.23 0.08 0.18 0.41 0.23
60 0.04 0.07 0.14 0.08 0.04 0.07 0.13 0.08
80 0.01 0.02 0.09 0.03 0.01 0.02 0.09 0.03
100* -0.69 0.69 3.90 1.23 -0.68 0.68 3.83 1.21

“Relative to experiment.
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TABLE VII. Comparison of optimized equilibrium bond angles for different correlation-consistent basis sets
(Refs. 65 and 66) for multiple FNO truncations for CCSD(T) and ACCSD(T). The percentage indicates what
percent of the virtual space of each molecule was active. For truncated basis sets (20%—80%) errors are relative
to the untruncated basis set result; for 100%, errors are relative to experiment. Averages were calculated over

the set of molecules from Ref. 60. All electrons were correlated. A is the (signed) mean error, &ﬂhs is the mean
absolute error, A, is the maximum absolute error, and Ay is the standard deviation. All numbers are in units

of degrees.
CCSD(T) ACCSD(T)
Basis set — — — —
(%) A Aubs Apax Aga A Aps A Agq
cc-pCVDZ
20 0.39 0.40 1.06 0.41 0.38 0.38 1.01 0.39
40 0.43 0.61 1.26 0.65 0.42 0.60 1.25 0.65
60 0.37 0.37 0.65 0.18 0.37 0.37 0.66 0.18
80 0.10 0.24 0.99 0.41 0.10 0.24 0.99 0.41
100 -1.99 1.99 4.97 1.53 -1.98 1.98 4.93 1.52
cc-pCVTZ
20 0.17 0.29 0.72 0.34 0.16 0.29 0.73 0.34
40 0.38 0.49 1.02 0.46 0.38 0.50 1.02 0.47
60 0.32 0.37 1.28 0.44 0.32 0.37 1.28 0.44
80 -0.03 0.20 0.53 0.26 -0.02 0.20 0.52 0.26
100" -1.01 1.01 4.26 1.28 -1.00 1.00 4.20 1.26
cc-pCVQZ
20 0.02 0.28 0.63 0.37 0.01 0.27 0.62 0.36
40 0.09 0.16 0.39 0.21 0.09 0.16 0.39 0.21
60 0.07 0.11 0.28 0.12 0.07 0.10 0.27 0.12
80 —-0.01 0.01 0.04 0.02 -0.02 0.03 0.10 0.04
100 -0.70 0.70 3.92 1.23 -0.69 0.69 3.84 1.21

“Relative to experiment.

angle plots is more mixed, with full convergence not
achieved until 40% of the quadruple-{ basis, though the 60%
triple-{ basis performs quite well. Double-{ basis sets are
inadequate at every truncation. These plots provide a guide
for the choice of an optimal basis set of a given size. For
example, 20% of a cc-pVQZ basis or 40% of a cc-pVTZ
basis yield results that are approximately the same for bond
lengths (as shown in Fig. 2) and have the same cost (at the
correlated level) as the inferior untruncated cc-pVDZ basis
set.

e e CCSD(T) cC-pVDZ
Q= CCSD(T) cc-pVTZ
e———fy—— CCSD(T) cc-pVQZ
wwed]e== ACCSD(T) cc-pVDZ
mmmeQme= ACCSD(T) cc-pVTZ
~==~== ACCSD(T) cc-pVQZ

=
- ”n N
— —

Mean é\bsolute Error in Bond Length {pm)
o
T

L ey
0 s s 1 s L " 1 L 1 s 1 L n s c
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Mean Percentage of cc-pVQZ Virtual Space Retained (%)
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FIG. 2. Mean deviation from experiment for bond lengths (in pm) for the
equilibrium geometries of the set of molecules from Ref. 60 as a function of
correlation-consistent valence basis set and FNO truncation for CCSD(T)
and ACCSD(T). The horizontal axis is the average number of virtual basis
functions as a percentage of the virtual space of the largest basis cc-pVQZ.
Only valence orbitals were correlated.

The tables provide the required information to rezero the
results to those in the complete basis, to isolate the FNO
effect from the experimental values. Such plots would reach
zero deviation much more rapidly as the tables show.

Even more sensitive to the electron structure method
than geometries are vibrational frequencies. In Tables VIII
and IX the data for vibrational frequencies as compared to
the untruncated basis set results for aug-cc-pVDZ and aug-
cc-pVTZ basis sets are shown. For the closed-shell mol-

——{}—— CCSD(T) cc-pCVDZ
—(— CCSD(T) cc-pCVTZ
———— CCSD(T} cc-pCVQZ
emed}=== ACCSD(T) cc-pCVDZ
wmmesQmme ACCSD(T) ce-pCVTZ
~==ap=== ACCSD(T) cc-pCVQZ

-
=3

-
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T

-
O
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Mean Absolute Error in Bond Length (pm)
P
e
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- 0 = (4]
1 1 1 i N L N 1
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Mean Percentage of cc-pCVQZ Virtual Space Retained (%)

FIG. 3. Mean deviation from experiment for bond lengths (in pm) for the
equilibrium geometries of the set of molecules from Ref. 60 as a function of
correlation-consistent core-valence basis set and FNO truncation for
CCSD(T) and ACCSD(T). The horizontal axis is the average number of
virtual basis functions as a percentage of the virtual space of the largest
basis cc-pCVQZ. All electrons were correlated.
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08 | ——{—— CCSD(T) cc-pVDZ
—— CCSD(T) cc-pVTZ
——t—— CCSD(T) cc-pVQZ
===1--= ACCSD(T} cc-pVDZ
~==-0=== ACCSD(T) cc-pVTZ
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FIG. 4. Mean deviation from experiment for bond angles (in degrees) for
the equilibrium geometries of the set of molecules from Ref. 60 as a func-
tion of correlation-consistent valence basis set and FNO truncation for
CCSD(T) and ACCSD(T). The horizontal axis is the average number of
virtual basis functions as a percentage of the virtual space of the largest
basis cc-pVQZ. Only valence orbitals were correlated.

ecules used to calculate the averages in Table VIII, the mean
absolute errors are acceptable for basis set truncations of
40% or more, with mean errors of 10 cm™ or less. This
stands in stark contrast to the open-shell results in Table IX,
where 80% of the given basis sets are required to reproduce
the untruncated results. For the open-shell molecules, we use
UHF reference functions because we have not yet imple-
mented FNOs for restricted open-shell Hartree-Fock (ROHF)
reference functions. For cyanide radical, it is known that a
ROHEF reference function provides significantly better results
than UHF (Ref. 61) for perturbation theory, which may be
skewing the averages. However, even the NH, results show
more dependence than the closed-shell molecules. It is pos-
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FIG. 5. Mean deviation from experiment for bond angles (in degrees) for
the equilibrium geometries of the set of molecules from Ref. 60 as a func-
tion of correlation-consistent core-valence basis set and FNO truncation for
CCSD(T) and ACCSD(T). The horizontal axis is the average number of
virtual basis functions as a percentage of the virtual space of the largest
basis cc-pCVQZ. All electrons were correlated.

sible that the UHF reference function is the source of this
discrepancy, but further work is necessary to verify that con-
jecture.

Deviations from experiment for these sets of molecules
are shown in Figs. 6 and 7. More so than the geometries, the
deviations in the vibrational frequencies are nonuniform,
with different percentages exhibiting radically different
agreements with experiment. In the open-shell set, what is
immediately clear is that the results agree much more poorly
(at all basis sets sizes) with experiment than the closed-shell
set. One surprising feature of the open-shell figure is that the
augmented double-{ basis set results are significantly better
than the triple-{ results. This behavior holds for all FNO
truncations maintaining more than 40% of the basis set.

TABLE VIII. Comparison of vibrational frequencies for the selected closed-shell molecules H,O (Ref. 67),
NH; (Ref. 68), H,CO (Refs. 69 and 70), and C,H, (Ref. 71) at equilibrium with different augmented
correlation-consistent basis sets (Refs. 65, 66, and 72) for multiple FNO truncations for CCSD(T) and
ACCSD(T). The percentage indicates what percent of the virtual space of each molecule was active. For
truncated basis sets (20%—80%) errors are relative to the untruncated basis set result; for 100%, errors are

relative to experiment. Only valence electrons were correlated. A is the (signed) mean error, A is the mean
absolute error, A, is the maximum absolute error, and Ay is the standard deviation. All numbers are in units

of cm™!.
CCSD(T) ACCSD(T)
Basis set
(%) A Aabs Amax Asld A Aabs Amax Asld
aug-cc-pVDZ
20 —-11 27 86 37 -10 27 86 37
40 -8 10 37 10 -8 10 36 10
60 -6 7 34 8 -5 7 34 8
80 -1 1 4 -1 1 4 1
100? 18 26 70 27 17 25 70 27
aug-cc-pVTZ
20 -11 18 54 22 -10 18 53 22
40 -6 8 20 8 -6 8 20 7
60 -4 9 48 15 -4 9 48 15
80 =0 1 5 1 =0 1 5 1
100* 4 18 49 25 3 17 48 25

“Relative to experiment.
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TABLE IX. Comparison of vibrational frequencies for the selected open-shell radicals CN (Ref. 73) and NH,
(Ref. 74) at equilibrium with different augmented correlation-consistent basis sets (Refs. 65, 66, and 72) for
multiple FNO truncations for CCSD(T) and ACCSD(T). The percentage indicates what percent of the virtual
space of each molecule was active. For truncated basis sets (20%—80%) errors are relative to the untruncated

basis set result; for 100%, errors are relative to experiment. Only valence electrons were correlated. A is the
(signed) mean error, A is the mean absolute error, A, is the maximum absolute error, and A, is the standard

deviation. All numbers are in units of cm™'.

CCSD(T) ACCSD(T)
Basis set
(%) A Aabs Amax Asld A Aabs Amax Asld
aug-cc-pVDZ
20 -99 99 280 122 -105 105 309 137
40 -30 30 101 48 =27 27 91 43
60 -16 16 31 10 -17 17 34 12
80 -3 3 8 3 -1 1 2 1
100? -69 69 121 52 =76 76 122 44
aug-cc-pVTZ
20 -36 47 126 63 =22 34 76 41
40 -17 17 45 20 -19 20 58 27
60 -12 12 30 12 -13 13 33 15
80 =0 3 6 4 -8 8 30 15
100* -105 105 171 52 -114 114 173 51

“Relative to experiment.

These results are more difficult to interpret than those for
geometries and energies. Especially when compared to ex-
periment, the results are much less uniform and show more
dependence on the degree of FNO truncation than other
properties. This fact should not be surprising; a hessian de-
pends more strongly on the energy differences around the
equilibrium structure than does a (first) derivative. A note of
caution: It is possible for the FNO procedure to show dis-
continuities in the vibrational frequencies. We did not see
this appear in the results for the set of molecules used here,
but in other cases small changes in the truncation level can
lead to larger changes in the vibrational frequencies. This
dependence illustrates the problem of local smoothness

] P CCSD(T) aug-cc-pVDZ
—(—— CCSD(T) aug-cc-pVTZ
wewdJeww. ACCSD(T) aug-cc-pVDZ
mmm)=== ACCSD(T) aug-cc-pVTZ

N N N N n
(=] N S » [+

Mean Absolute Error in Vibrational Freq. (cm-1)
(o]

1 " . 1 " (] 1 " " i 1
20 40 60 80 100
Mean Percentage of aug-cc-pVTZ Virtual Space Retained (%)

FIG. 6. Mean deviation from experiment for vibrational frequencies (in
cm™!) for the equilibrium geometries of the closed-shell molecules H,0,
NH;, H,CO, and C,H, as a function of augmented correlation-consistent
valence basis set and FNO truncation for CCSD(T) and ACCSD(T). The
horizontal axis is the average number of virtual basis functions as a percent-
age of the virtual space of the largest basis aug-cc-pVTZ. Only valence
orbitals are correlated.

around any given point once the FNO procedure has been
applied. We are currently looking more closely at these is-
sues in an attempt to provide less truncation dependent vi-
brational frequencies for all molecules. There is also the is-
sue of vibrational frequencies from atomic natural orbital
basis sets®*® compared to those from correlation-consistent
ones, which will be considered in future work.

B. Nitroethane

The decomposition of nitroethane can occur via several
different pathways.42 Schematics of the possible reaction
paths are shown in Figs. 8—10. The numbering of transition
states and intermediates corresponds to that used in Ref. 42.
To sort out the relative importance of each of the individual
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FIG. 7. Mean deviation from experiment for vibrational frequencies (in
cm™!) for the equilibrium geometries of the open-shell molecules CN and
NH, as a function of augmented correlation-consistent valence basis set and
FNO truncation for CCSD(T) and ACCSD(T). The horizontal axis is the
average number of virtual basis functions as a percentage of the virtual
space of the largest basis aug-cc-pVTZ. Only valence orbitals are correlated.



164101-14  A. G. Taube and R. J. Bartlett
e it HONO Elimination
Direct Fission CH3CH2
[ +NQO2
50 r
5 40
£ [
E
g [
z 0r
g
2 r CH2CH2
T 20p . +HONO
Q Ly ‘eameme
4 [
10fF
0 [Nitroethane

Reaction Coordinate

FIG. 8. Schematic of the one-step HONO elimination and direct fission
pathways for decomposition of nitroethane. The vertical axis measures the
ZPE corrected energies (in kcal/mol) relative to nitroethane from
ACCSD(T) calculations with 60% of the virtual space of the cc-pVTZ basis
set retained via FNOs.

pathways, all of the relevant species are optimized using
FNO CCSD(T) and FNO ACCSD(T). In the main pathways,
there is one reactant (nitroethane), five intermediates, ten
transition states, and a total of twelve products. Each of these
28 critical points are fully optimized in a cc-pVTZ basis set
with 60% of the virtual space kept using FNOs. This basis
sets both performed well in the calibration tests and are small
enough to allow the calculations to be completed using our
computational resources. Calculations were performed both
locally, on our SG1 Altix, as well as at Department of De-
fense Major Shared Resource Centers. The core occupied
orbitals and corresponding core virtual orbitals are dropped
as well. For nitroethane and its isomers, this yielded a total
of 15 active occupied orbitals and 117 active virtual orbitals.
The expected savings per geometry optimization step of each
critical point, as compared to a full basis set calculation, is
approximately 75%. RHF references are used for closed-
shell species, and for open-shell species UHF references are
used. At the optimized critical points, finite-difference Hes-
sians are calculated to verify that the geometries did, in fact,
correspond to either minima or first-order transition states, as
well as to determine the vibrational frequencies, allowing
zero-point energy (ZPE) corrections to be included.

The decomposition of nitroethane can be broken into
four main classes of pathways: Direct fission of nitroethane
to form ethyl radical and nitrogen dioxide (Fig. 8), single-
step elimination of HONO (Fig. 8), isomerization to ethylni-
trite (denoted INT3) and subsequent decomposition (Fig. 9),
and  isomerization to ethyl hydroxy  nitroxide
[CH3CHN(OH)O] (denoted INT5) and then further decom-
position (Fig. 10). In the figures mentioned, we have used the
notation from Ref. 42 for the intermediates, transition states,
and some products (P4 and P8 are two cyclic isomers of
nitroethane). When compared to nitromethane, analogies of
each of these pathways exists—except for the HONO elimi-
nation. For the set of pathways beginning with isomerization
to ethylnitrite, we focus on the mechanism that yields the
lowest energy products CH;CHO+HNO. For isomerization
through ethyl hydroxy nitroxide, we choose to focus on the
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FIG. 9. Schematic of the decomposition pathway of nitroethane through
isomerization to ethylnitrite. The vertical axis measures the ZPE corrected
energies (in kcal/mol) relative to nitroethane from ACCSD(T) calculations
with 60% of the virtual space of the cc-pVTZ basis set retained via FNOs.

thermodynamically minimum set of products CH;CNO
+H,0, elimination of water. To provide an estimate of the
importance of these different paths, in Fig. 11 we plot a
qualitative picture of their relative energies.

Table X compares the results from B3LYP in a 6-311
+G(3df,2p) basis and the 60% FNO calculations with
CCSD(T) and ACCSD(T) at their respective optimized ge-
ometries. Focusing first on the B3LYP results from Ref. 42,
the energy differences between the different pathways are
relatively small. To appropriately model the kinetics of the
decomposition of these reactions, it is important that the sta-
tionary point energies are converged with respect to elec-
tronic structure—small changes in barrier heights can lead to
large differences in kinetics.

Before considering the differences between the coupled-
cluster results and those from DFT, note that the results for
CCSD(T) and ACCSD(T) agree closely, with minimal
changes in energy ordering to the different species, despite
the fact that ACCSD(T) does much better for RHF-based CC
bond breaking. Because of this similarity, we will simply
refer to the CC results when comparing against B3LYP
rather than choosing one or another. Qualitatively, the results
from CC and DFT seem to agree quite well; products and
intermediates are ordered the same in CC and DFT, and tran-
sition states are not radically rearranged. As is noted in Ref.
42, B3LYP tends to underestimate energy barriers; our
coupled-cluster results support this conclusion, as the major-
ity of the transition states were determined to be higher in
energy than predicted by DFT. The shifts are not uniform,
however, leading to a reordering of several of the high-lying
transition states.

The lower-lying transition states were left unchanged in
order, leading to the same conclusions about the kinetically
favored channel. The transition state for the elimination of
HONO via a concerted reaction has the lowest barrier by
10 kcal/mol in B3LYP and by 8 kcal/mol for both CCSD(T)
and ACCSD(T). The concerted nature of this transition state
might raise concern about the applicability of the perturba-
tive CCSD(7) method, which fails for RHF-based bond
breaking, but recent work®  shows, surprisingly, that
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FIG. 10. Schematic of the decomposition pathway of
nitroethane through isomerization to ethyl hydroxy ni-
troxide. The vertical axis measures the ZPE corrected
energies (in kcal/mol) relative to nitroethane from
ACCSD(T) calculations with 60% of the virtual space
of the cc-pVTZ basis set retained via FNOs.

CH3CNO
+H20

Reaction Coordinate

CCSD(T) and ACCSD(T) (which ameliorates the RHF fail-
ure) tend to reproduce transition states with equal accuracy.
From the B3LYP calculations, the elimination of water is
the most thermodynamically stable product by more than
16 kcal/mol. On the other hand, the coupled-cluster calcula-
tions predict an energy gap between the elimination of water
and the elimination of HNO of only 6.8 kcal/mol
[CCSD(T)] or 6.3 kcal/mol [ACCSD(T)]. The elimination
of water is exoenergetic in B3LYP by more than
7.5 kcal/mol, while it is endoenergetic by 1.5 kcal/mol by
both CC methods. When comparing to the energies of the
intermediates, the global minimum on the CC potential en-
ergy surface is now 1,l-nitrosoethanol (INT7) and ethylni-
trite (INT3) is slightly lower in energy than nitroethane. The
coupled-cluster calculations also suggest that the elimination
of HNO is less favorable kinetically, as the barriers along the
reaction pathway are higher relative to those from B3LYP.

V. CONCLUSION

The application of methods that reduce basis set size will
always be limited unless analytical gradients are available.

For methods such as FNO-CC, where the basis set reduction
is based on an auxiliary calculation for the molecule at a
particular geometry, the inclusion of orbital relaxation terms
is substantially more complicated than it is for more tradi-
tional methods that simply modify the orbital eigenvalue
equations. In our case, because of the dependence on a
MBPT(2) density matrix, there is an orbital relaxation con-
tribution to the two-particle density matrix that is new. Be-
cause of the one- and two-particle natures of all the interac-
tions in the Hamiltonian, the most general such truncation
procedure should only contribute orbital relaxation effects to
both density matrices.

Despite the complexity of the orbital relaxation terms,
we are able to show that just as in the case for Hartree-Fock
orbitals one can separate the perturbation-dependent integral
derivatives from the perturbation-independent orbital relax-
ation. Therefore, one needs to solve the CPFNO equations
(or equivalently, the z-vector equations) once instead of for
each perturbation. Then the CC results follow with substan-
tial savings in time that can approach an order of magnitude,
depending upon the level of CC correlation. Unfortunately,
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FIG. 11. Schematic of the most important pathways for
each possible isomerization for the decomposition of
nitroethane. The vertical axis measures the ZPE cor-
rected energies (in kcal/mol) relative to nitroethane
from ACCSD(T) calculations with 60% of the virtual
space of the cc-pVTZ basis set retained via FNOs.
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TABLE X. Relative energies of important stationary points for the decom-
position of nitroethane in kcal/mol. All species are at their appropriately
optimized structures and energies are relative to that of nitroethane including
zero-point energy corrections. The B3LYP DFT results are from Ref. 42 and
use the 6-311+G(3df,2p) basis. Results for CCSD(T) and ACCSD(T) are
from this work using a cc-pVTZ basis set with 60% of the virtual orbitals
kept by the FNO procedure. Only valence electrons were correlated. Species
labels correspond to those in Figs. 8-10.

Species B3LYP CCSD(T) ACCSD(T)
Transition states
TS5 42.11 48.29 48.32
TS6 59.40 64.83 64.94
TS8 35.35 38.07 38.46
TS9 52.50 57.62 57.72
TS10 63.08 60.15 60.81
TS11 64.74 67.27 67.42
TS12 55.93 67.10 68.32
TS13 61.41 60.48 63.30
TS14 31.83 31.07 31.31
TS15 70.41 66.20 68.26
Intermediates
INT3 1.60 -0.12 -0.27
INTS 9.64 14.66 14.61
INT7 -5.54 -10.32 -10.54
Products
CH;CH,+NO, 52.32 57.12 56.95
CH,CH,+HONO 15.62 18.35 18.26
CH;CHO+HNO 8.62 5.26 4.98
CH;CNO+H,0 =7.72 1.57 1.34
CH;CH,O0+NO 36.22 34.53 34.00
P4 54.40 53.88 54.61
P8 24.47 21.99 21.90

the price paid for this computational saving is the need to
store several quantities of the dimension of two-electron in-
tegrals. Proper combination of the terms in an integral-direct
formalism may be able to circumvent that complication.

The FNO procedure initiates the optimized virtual space
(OVOS) method,'*!"*""*? which imposes the additional con-
straint of trying to obtain the lowest MBPT(2) energyl6 or
maximizes the overlap between the truncated and untrun-
cated MBPT(2) wavefunctions.?>®* This constraint can easily
be added to the analytical FNO gradient procedure presented
here to enable OVOS structures and hessians to be obtained
analytically. In fact, the OVOS method is an example of the
general issue of imposing additional conditions on a virtual
space to fulfill a desired objective.

The application of the FNO truncation methods to the
test set of molecules showed that while a cc-pVDZ or cc-
pCVDZ basis is inadequate to be predictive for geometries a
truncated cc-pVTZ basis of the same number of active orbit-
als is substantially better. It is always preferable to use the
largest possible basis set and then reduce its effective virtual
orbital space dimension via the FNO method than to com-
promise on the size of the underlying basis set. Results for
vibrational frequencies are more mixed, without the clear
preference for FNO truncations over untruncated smaller ba-
sis sets. This conclusion may partly be due to the limited set

J. Chem. Phys. 128, 164101 (2008)

of molecules studied, but it also suggests that some further
developments of the proper treatment of vibrational frequen-
cies within FNO-CC may be needed.

Our results support the general conclusions reached by
Denis et al.** about the decomposition of nitroethane. The
one-step elimination of HONO appears to be favored kineti-
cally, with the barrier for that reaction which is 8 kcal/mol
lower than that for the direct bond fission. However, there
are important differences in the energetics, with the energies
along the pathways initiated by the isomerization to ethylni-
trite being most affected. The gap between the thermody-
namically favored products (CH;CNO+H,0) and
CH;CHO+HNO is reduced to roughly 6 kcal/mol versus
16 kcal/mol from B3LYP calculations.
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