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We analyse under which dynamical conditions the coherence of an open quantum system is totally unaffected
by noise. For a single qubit, specific measures of coherence are found to freeze under different conditions, with
no general agreement between them. Conversely, for an N-qubit system with even N, we identify universal
conditions in terms of initial states and local incoherent channels such that all bona fide distance-based coher-
ence monotones are left invariant during the entire evolution. This finding also provides an insightful physical
interpretation for the freezing phenomenon of quantum correlations beyond entanglement. We further obtain
analytical results for distance-based measures of coherence in two-qubit states with maximally mixed marginals.
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Introduction. The coherent superposition of states stands as
one of the characteristic features that mark the departure of
quantum mechanics from the classical realm, if not the most
essential one [1]. Quantum coherence constitutes a power-
ful resource for quantum metrology [2, 3] and entanglement
creation [4, 5], and is at the root of a number of intriguing
phenomena of wide-ranging impact in quantum optics [6–9],
quantum information [10], solid state physics [11, 12], and
thermodynamics [13–18]. In recent years, research on the
presence and functional role of quantum coherence in biolog-
ical systems has also attracted a considerable interest [19–35].

Despite the fundamental importance of quantum coherence,
only very recently have relevant first steps been achieved to-
wards developing a rigorous theory of coherence as a physi-
cal resource [36–38], and necessary constraints have been put
forward to assess valid quantifiers of coherence [36, 39]. A
number of coherence measures have been proposed and in-
vestigated, such as the l1-norm and relative entropy of coher-
ence [36], and the skew information [40, 41]. Attempts to
quantify coherence via a distance-based approach, which has
been fruitfully adopted for entanglement and other correla-
tions [42–52], have revealed some subtleties [53].

A lesson learned from natural sciences is that coherence-
based effects can flourish and persist at significant timescales
under suitable exposure to decohering environments. Recent
evidence suggests that a fruitful interplay between long-lived
quantum coherence and tailored noise may be in fact crucial to
enhance certain biological processes, such as light harvesting
[27, 28, 30, 31]. This surprising cooperation between tradi-
tionally competing phenomena provides an inspiration to ex-
plore other physical contexts, such as quantum information
science, in order to seek for general conditions under which
coherence can be sustained in the presence of typical sources
of noise [54, 55]. Progress on this fundamental question can
lead to a more efficient exploitation of coherence to empower
the performance of real-world quantum technologies.

In this Letter we investigate the dynamics of quantum co-
herence in open quantum systems under paradigmatic inco-
herent noisy channels. While coherence is generally nonin-
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FIG. 1: (color online) Frozen quantum coherence for an N-qubit
system subject to incoherent noisy channels Λ acting on each qubit.

creasing under any incoherent channel [36], our goal is to
identify initial states and dynamical conditions, here labelled
freezing conditions, such that coherence will remain exactly
constant (frozen) during the whole evolution (see Fig. 1).

For a single qubit subject to a Markovian bit flip, bit-phase
flip, phase flip, depolarising, amplitude damping, or phase
damping channel [10], we study the evolution of the l1-norm
and relative entropy of coherence [36] with respect to the com-
putational basis. We show that no nontrivial condition ex-
ists such that both measures are simultaneously frozen. We
then turn our attention to two-qubit systems, for which we
remarkably identify a set of initial states such that all bona
fide distance-based measures of coherence are frozen forever
when each qubit is independently experiencing a nondissipa-
tive flip channel. These results are extended to N-qubit sys-
tems with any even N, for which suitable conditions support-
ing the freezing of all distance-based measures of coherence
are provided. Such a universal freezing of quantum coher-
ence within the geometric approach is intimately related to
the freezing of distance-based quantum correlations beyond
entanglement [50, 52, 56–58], thus shedding light on the latter
from a physical perspective. Finally, some analytical results
for the l1-norm of coherence are obtained, and its freezing
conditions in general one- and two-qubit states are identified.

Incoherent states and channels. Quantum coherence is con-
ventionally associated with the capability of a quantum state
to exhibit quantum interference phenomena [9]. Coherence
effects are usually ascribed to the off-diagonal elements of
a density matrix with respect to a particular reference basis,
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whose choice is dictated by the physical scenario under con-
sideration [59]. Here, for an N-qubit system associated to a
Hilbert space C2N

, we fix the computational basis {|0〉, |1〉}⊗N

as the reference basis, and we define incoherent states as those
whose density matrix δ is diagonal in such a basis,

δ =
∑1

i1,...,iN =0
di1,...,iN |i1, . . . , iN〉〈i1, . . . , iN | . (1)

Markovian dynamics of an open quantum system is de-
scribed by a completely positive trace-preserving (CPTP) map
Λ, i.e. a quantum channel, whose action on the state ρ of the
system can be characterised by a set of Kraus operators {K j}

such that Λ(ρ) =
∑

j K jρK†j , where
∑

j K†j K j = I. Incoherent
quantum channels (ICPTP maps) constitute a subset of quan-
tum channels that satisfy the additional constraint K jIK†j ⊂ I
for all j, where I is the set of incoherent states [36]. This
implies that ICPTP maps transform incoherent states into in-
coherent states, and no creation of coherence would be wit-
nessed even if an observer had access to individual outcomes.

We will consider paradigmatic instances of incoherent
channels which embody typical noise sources in quantum in-
formation processing [10, 36], and whose action on a single
qubit is described as follows, in terms of a parameter q ∈ [0, 1]
which encodes the strength of the noise. The bit flip, bit-phase
flip and phase flip channels are represented in Kraus form by

KFk
0 =

√
1 − q/2 I, KFk

i, j,k = 0, KFk
k =

√
q/2 σk, (2)

with k = 1, k = 2 and k = 3, respectively, and σ j being
the j-th Pauli matrix. The depolarising channel is represented
by KD

0 =
√

1 − 3q/4I, KD
j =

√
q/4σ j, with j ∈ {1, 2, 3}.

Finally, the amplitude damping channel is represented by

KA
0 =

(
1 0
0

√
1 − q

)
, KA

1 =

(
0
√

q
0 0

)
, and the phase damp-

ing channel by KP
0 =

(
1 0
0

√
1 − q

)
, KP

1 =

(
0 0
0
√

q

)
.

The action of N independent and identical local noisy chan-
nels (of a given type, say labelled by Ξ = {Fk,D, A, P}) on
each qubit of an N-qubit system, as depicted in Fig. 1, maps
the system state ρ into the evolved state

ΛΞ⊗N
q (ρ) =

∑
j1,···, jN

(
KΞ

j1 ⊗ · · · ⊗ KΞ
jN

)
ρ
(
KΞ

j1
†
⊗ · · · ⊗ KΞ

jN

†
)
. (3)

Coherence monotones. Baumgratz et al. [36] have formu-
lated a set of physical requirements which should be satisfied
by any valid measure of quantum coherence C, namely:

C1. C(ρ) ≥ 0 for all states ρ, with C(δ) = 0 for all
incoherent states δ ∈ I;

C2a. Contractivity under incoherent channels ΛICPTP,
C(ρ) ≥ C(ΛICPTP(ρ));

C2b. Contractivity under selective measurements on
average, C(ρ) ≥

∑
j p jC(ρ j), where ρ j =

K jρK†j /p j and p j = Tr(K jρK†j ), for any {K j}

such that
∑

j K†j K j = I and K jIK j ⊂ I for all j;
C3. Convexity, C(qρ+(1−q)τ) ≤ qC(ρ)+(1−q)C(τ)

for any states ρ and τ and q ∈ [0, 1].

We now recall known measures of coherence. The l1-norm
quantifies coherence in an intuitive way, via the off-diagonal
elements of a density matrix ρ in the reference basis [36],

Cl1 (ρ) =
∑

i, j

∣∣∣ρi j

∣∣∣ . (4)

Alternatively, one can quantify coherence by means of a
geometric approach. Given a distance D, a generic distance-
based measure of coherence is defined as

CD(ρ) = min
δ∈I

D(ρ, δ) = D(ρ, δρ) , (5)

where δρ is one of the closest incoherent states to ρ with re-
spect to D. We refer to bona fide distances D as those which
satisfy natural properties [10] of contractivity under quantum
channels, i.e. D(Λ(ρ),Λ(τ)) ≤ D(ρ, τ) for any states ρ, τ and
CPTP map Λ, and joint convexity, i.e. D(qρ+(1−q)$, qτ+(1−
q)ς) ≤ qD(ρ, τ) + (1 − q)D($, ς) for any states ρ,$, τ, ς and
q ∈ [0, 1]. We then refer to bona fide distance-based measures
of coherence CD as those defined by Eq. (5) using a bona fide
distance D: all such measures will satisfy requirements C1,
C2a, and C3 [36]. Additional contractivity requirements are
needed for a distance D in order for the corresponding CD to
obey C2b as well [60]. For instance, while the fidelity-based
geometric measure of coherence has been recently proven to
be a full coherence monotone [5], a related coherence quanti-
fier defined via the squared Bures distance (which is contrac-
tive and jointly convex) is known not to satisfy C2b [53].

All our subsequent findings will apply to bona fide distance-
based coherence measures CD, which clearly include coher-
ence monotones obeying all the resource-theory requirements
recalled earlier. An example of a distance-based coherence
monotone is the relative entropy of coherence [36], given by

CRE(ρ) = S(ρdiag) − S(ρ) (6)

for any state ρ, where ρdiag is the matrix containing only the
leading diagonal elements of ρ in the reference basis, and
S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy.

We can also define the trace distance of coherence CTr as in
Eq. (5) using the bona fide trace distance DTr(ρ, τ) = 1

2 Tr|ρ−τ|.
For one-qubit states ρ, the trace distance of coherence equals
(half) the l1-norm of coherence [48, 53], but this equivalence
is not valid for higher dimensional systems, and it is still un-
known whether CTr obeys requirement C2b in general.

Frozen coherence: one qubit. We now analyse conditions
such that the l1-norm and relative entropy of coherence are
invariant during the evolution of a single qubit (initially in a
state ρ) under any of the noisy channels ΛΞ

q described above.
This is done by imposing a vanishing differential of the mea-
sures on the evolved state, ∂qC(ΛΞ

q (ρ)) = 0 ∀q ∈ [0, 1], with
respect to the noise parameter q, which can also be interpreted
as a dimensionless time [61]. We find that only the bit and bit-
phase flip channels allow for nonzero frozen coherence (in the
computational basis), while all the other considered incoher-
ent channels leave coherence invariant only trivially when the
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initial state is already incoherent. We can then ask whether
nontrivial common freezing conditions for Cl1 and CRE exist.

Writing a single-qubit state in general as ρ = 1
2 (I+

∑
j n jσ j)

in terms of its Bloch vector ~n = {n1, n2, n3}, the bit flip channel
Λ

F1
q maps an initial Bloch vector ~n(0) to an evolved one ~n(q) =

{n1(0), (1−q)n2(0), (1−q)n3(0)}. As the l1-norm of coherence
is independent of n3, while n1 is unaffected by the channel,
we get that necessary and sufficient freezing conditions for
Cl1 under a single-qubit bit flip channel amount to n2(0) = 0
in the initial state. Similar conclusions apply to the bit-phase
flip channel Λ

F2
q by swapping the roles of n1 and n2.

Conversely, the relative entropy of coherence is also de-
pendent on n3. By analysing the q-derivative of CRE , we see
that such a measure is frozen through the bit flip channel only
when either n1(0) = 0 and n2(0) = 0 (trivial because the initial
state is incoherent) or n2(0) = 0 and n3(0) = 0 (trivial be-
cause the initial state is invariant under the channel). There-
fore, there is no nontrivial freezing of the relative entropy of
coherence under the bit flip or bit-phase flip channel either.

We conclude that, although the l1-norm of coherence can be
frozen for specific initial states under flip channels, nontrivial
universal freezing of coherence is impossible for the dynamics
of a single qubit under paradigmatic incoherent maps.

Frozen coherence: two qubits. This is not true anymore when
considering more than one qubit. We will now show that any
bona fide distance-based measure of quantum coherence man-
ifests freezing forever in the case of two qubits A and B un-
dergoing local identical bit flip channels [62] and starting from
the initial conditions specified as follows. We consider two-
qubit states with maximally mixed marginals (M3

2 states), also
known as Bell-diagonal states [63], which are identified by a
triple ~c = {c1, c2, c3} in their Bloch representation

ρ =
1
4

(
IA ⊗ IB +

∑3

j=1
c jσ

A
j ⊗ σ

B
j

)
. (7)

Local bit flip channels on each qubit map initial M3
2 states

with ~c(0) = {c1(0), c2(0), c3(0)} to M3
2 states with ~c(q) =

{c1(0), (1 − q)2c2(0), (1 − q)2c3(0)}. Then, the subset of M3
2

states supporting frozen coherence for all bona fide distance-
based measures is given by the initial condition [50, 52, 57],

c2(0) = −c1(0)c3(0) . (8)

To establish this claim, we first enunciate two auxiliary re-
sults, which simplify the evaluation of distance-based coher-
ence monotones (5) for the relevant class of M3

2 states.
Lemma 1. According to any contractive and convex distance
D, one of the closest incoherent states δρ to a M3

2 state ρ is
always a M3

2 incoherent state, i.e. one of the form

δρ = 1
4

(
IA ⊗ IB + sσA

3 ⊗ σ
B
3

)
, for some s ∈ [−1, 1] . (9)

Lemma 2. According to any contractive and convex distance
D, one of the closest incoherent states δρ to a M3

2 state ρ with
triple {c1,−c1c3, c3} is the M3

2 state δρ with triple {0, 0, c3}.

It then follows that any bona fide distance-based measure of
coherence CD for the M3

2 states ρ(q), evolving from the initial
conditions (8) under local bit flip channels, is given by

CD(ρ(q)) = D
(
{c1(0),−(1 − q)2c1(0)c3(0), (1 − q)2c3(0)},

{0, 0, (1 − q)2c3(0)}
)

= CD(ρ(0)) ,

which is frozen for any q ∈ [0, 1], or equivalently frozen for-
ever for any t [61]. The two Lemmas and the main implica-
tion on frozen coherence can be rigorously proven by invok-
ing and adapting recent results on the dynamics of quantum
correlations for M3

2 states, reported in [52]. A comprehen-
sive proof is provided in the Supplemental Material [64]. This
finding shows that, in contrast to the one-qubit case, universal
freezing of quantum coherence—measured within a bona fide
geometric approach—can in fact occur in two-qubit systems
exposed to conventional local decohering dynamics.

Coming back now to the two specific coherence monotones
analysed here [36], we know that the relative entropy of co-
herence CRE is a bona fide distance-based measure, hence it
manifests freezing in the conditions of Eq. (8). Interestingly,
we will now show that the l1-norm of coherence Cl1 coincides
with (twice) the trace distance of coherence CTr for any M3

2
state, which implies that Cl1 also freezes in the same dynami-
cal conditions. To this aim we need to show that, with respect
to the trace distance DTr, one of the closest incoherent states δρ
to a M3

2 state ρ is always its diagonal part ρdiag. The trace dis-
tance between a M3

2 state ρ with {c1, c2, c3} and one of its clos-
est incoherent states δρ, which is itself a M3

2 state of the form
(A.36) according to Lemma 1, is given by DTr(ρ, δρ) = 1

4 (|s +

c1−c2−c3|+|s−c1+c2−c3|+|s+c1+c2−c3|+|−s+c1+c2+c3|).
It is immediate to see that the minimum over δρ is attained by
s = c3, i.e., by δρ = ρdiag as claimed. Notice, however, that the
equivalence between Cl1 and CTr does not extend to general
two-qubit states, as can be confirmed numerically.

Similarly to the single-qubit case, we can derive a larger set
of necessary and sufficient freezing conditions valid specifi-
cally for the l1-norm of coherence. Every two-qubit state ρ
can be transformed, by local unitaries, into a standard form
[65] with Bloch representation ρ = 1

4

(
IA ⊗ IB +

∑3
j=1 x jσ

A
j ⊗

IB +
∑3

j=1 y jI
A ⊗ σB

j +
∑3

j=1 T j jσ
A
j ⊗ σ

B
j

)
. We have then that

initial states of this form, with x1, y1, x3, y3, T33 arbitrary,
x2 = y2 = 0, and T22 = uT11 with u ∈ [−1, 1], manifest frozen
coherence as measured by Cl1 under local bit flip channels;
however, the same does not hold for CRE in general.

Frozen coherence: N qubits. Our main finding can be read-
ily generalised to a system of N qubits with any even N. We
define N-qubit states with maximally mixed marginals (M3

N
states) [58, 66] as those with density matrix of the form ρ =
1

2N

(
I⊗N +

∑3
j=1c jσ

⊗N
j

)
, still specified by the triple {c1, c2, c3}

as in the N = 2 case. We have then that, when the system is
evolving according to identical and independent local bit flip
channels acting on each qubit as in Eq. (3) with Ξ = F1, the
quantum coherence of the system is universally frozen accord-
ing to any bona fide distance-based measure if the N qubits are
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initialised in a M3
N state respecting the freezing condition

c2(0) = (−1)N/2c1(0)c3(0) , (10)

which generalises (8). This is the most general result of the
present Letter [62], and its full proof is provided in the Sup-
plemental Material [64]. We observe that, by virtue of the
formal equivalence between a system of N qubits and a sin-
gle qudit with dimension d = 2N , our results can also be
interpreted as providing universal freezing conditions for all
bona fide distance-based measures of coherence in a single
2N-dimensional system with any even N. Naturally, one may
expect larger sets of freezing conditions to exist for specific
coherence monotones such as the l1-norm, like in the N = 2
case; their characterisation is outside the scope of this Letter.

We further note that no universal freezing of coherence is
instead possible for M3

N states with odd N, whose dynamical
properties are totally analogous to those of one-qubit states.
Coherence versus quantum correlations. The freezing con-
ditions established here for coherence have been in fact identi-
fied in previous literature [50, 52, 56–58], as various measures
of so-called discord-type quantum correlations were shown to
freeze under the same dynamical conditions up to a threshold
time t?, defined in our notation [61] by the largest value of q
such that |c3(q)| ≥ |c1(q)|, for M3

N states evolving under local
bit flip channels. Focusing on the two-qubit case for clarity,
we note that for M3

2 states with |c3| ≥ |c1|, and for any bona fide
distance D, the distance-based measure of coherence CD, de-
fined by Eq. (5) and evaluated in Eq. (10), coincides with the
corresponding distance-based measure of discord-type quan-
tum correlations QD, formalised e.g. in Ref. [52]. Hence, the
freezing of coherence might provide a deeper insight into the
peculiar phenomenon of frozen quantum correlations under
local flip channels (see also [67]), as the latter just reduce to
coherence for t ≤ t? under the conditions we identified.

More generally, measures of discord-type correlations [46,
68, 69] may be recast as suitable measures of coherence in
bipartite systems, minimised over the reference basis, with
minimisation restricted to local product bases. For instance,
the minimum l1-norm of coherence [36] yields the negativ-
ity of quantumness [48, 70, 71], the minimum relative en-
tropy of coherence [36] yields the relative entropy of discord
[45, 70, 72, 73], and the minimum skew information [40]
yields the local quantum uncertainty [74]. Our result sug-
gest therefore that the computational basis is the product basis
which minimises coherence (according to suitable bona fide
measures) for particular M3

2 states undergoing local bit flip
noise ΛF1 up to t ≤ t?, while coherence is afterwards min-
imised in the eigenbasis of σ1, which is the pointer basis to-
wards which the system eventually converges due to the local
decoherence [75]; similar conclusions can be drawn for the
other k-flip channels [62].

We finally remark that, unlike more general discord-type
correlations, entanglement [44] plays no special role in the
freezing phenomenon analysed in this Letter, as the latter can
also happen for states that remain separable during the whole
evolution, e.g. the M3

2 states with initial triple { 14 ,−
1
16 ,

1
4 }.

Conclusions. We have determined exact conditions such that
any bona fide distance-based measure of quantum coherence
[36] is dynamically frozen: this occurs for an even number of
qubits, initialised in a particular class of states with maximally
mixed marginals, and undergoing local independent and iden-
tical nondissipative flip channels (Fig. 1). We have also shown
that there is no general agreement on freezing conditions be-
tween specific coherence monotones when considering either
the one-qubit case or more general N-qubit initial states. This
highlights the prominent role played by the aforementioned
universal freezing conditions in ensuring a durable physical
exploitation of coherence, regardless of how it is quantified,
for applications such as quantum metrology [2] and nanoscale
thermodynamics [17, 18]. It will be interesting to explore
practical realisations of such dynamical conditions [75–80].

Complex systems are inevitably subject to noise, hence it
is natural and technologically crucial to question under what
conditions the quantum resources that we can extract from
them are not deteriorated during open evolutions [81]. In
addressing this problem by focusing on coherence, we have
also revealed an intrinsic physical explanation for the freezing
of discord-type correlations [52], by exposing and exploiting
the intimate link between these two nonclassical signatures.
Providing unified quantitative resource-theory frameworks for
coherence, entanglement, and other quantum correlations is
certainly a task worthy of further investigation [5].
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Appendix: Supplemental Material

Consider the N-qubit states with the following matrix rep-
resentation in the computational basis:

ρ =
1

2N

I⊗N +

3∑
i=1

ciσ
⊗N
i

 , (A.11)

where I is the 2 × 2 identity matrix, σi is the i-th Pauli matrix
and ci = Tr

[
ρσ⊗N

i

]
∈ [−1, 1]. These states will be referred

to as M3
N states, as they have maximally mixed marginals (by

tracing out any K < N qubits), and will be uniquely identified
by the triple {c1, c2, c3}.

In this appendix we will show that, for an even number N
of qubits, all bona fide distance-based measures of quantum
coherence will exhibit the freezing phenomenon when each
qubit is subject to local independent bit flip noise, for an initial
M3

N state specified by {c1, (−1)N/2c1c3, c3}.
The evolution of an N-qubit state ρ under local independent

identical k-flip channels, where the index k ∈ {1, 2, 3} respec-
tively identifies the bit flip (k = 1), bit-phase flip (k = 2),
and phase flip (k = 3) channel, can be characterised in the
operator-sum representation by the map

ΛFk⊗N
q (ρ) =

∑
j1, j2,···, jN

KFk
j1
⊗KFk

j2
⊗· · ·⊗KFk

jN
ρKFk

j1

†
⊗KFk

j2

†
⊗· · ·⊗KFk

jN

†

(A.12)
where the single-qubit Kraus operators KFk

j are reported in
the main text in terms of the strength of the noise q ∈ [0, 1],
which in dynamical terms can be expressed as q(t) = 1 −
exp(−γt) with t representing time and γ being the decoher-
ence rate. From Eqs. (A.11) and (A.12), one can easily see
that N non-interacting qubits initially in a M3

N state, under-
going local identical flip channels, evolve preserving the M3

N
structure during the entire dynamics (i.e, for all q ∈ [0, 1],
or equivalently for all t ≥ 0). More precisely, the triple
{c1(q), c2(q), c3(q)} characterising the M3

N evolved state ρ(q)
can be written as follows

ci, j,k(q) = (1 − q)Nci, j,k(0), ck(q) = ck(0) , (A.13)

where {c1(0), c2(0), c3(0)} is the triple characterising the initial
M3

N state ρ.
We start by showing that, for even N, the eigenvectors and

eigenvalues of an arbitrary M3
N state ρ are given by, respec-

tively

|β±1 〉 =
1
√

2
(|000 . . . 000〉 ± |111 . . . 111〉) , (A.14)

|β±2 〉 =
1
√

2
(|000 . . . 001〉 ± |111 . . . 110〉) ,

|β±3 〉 =
1
√

2
(|000 . . . 010〉 ± |111 . . . 101〉) ,

|β±4 〉 =
1
√

2
(|000 . . . 011〉 ± |111 . . . 100〉) ,

· · ·

|β±2N−1−1〉 =
1
√

2
(|011 . . . 110〉 ± |100 . . . 001〉) ,

|β±2N−1〉 =
1
√

2
(|011 . . . 111〉 ± |100 . . . 000〉) ,

and

λ±p =
1

2N

[
1 ± c1 ± (−1)N/2(−1)pc2 + (−1)pc3

]
, (A.15)

where p is the parity of |β±i 〉 with respect to the parity operator
along the z-axis Π3 ≡ σ

⊗N
3 , i.e.

Π3|β
±
i 〉 = (−1)p|β±i 〉. (A.16)

It will suffice to prove the following equation:

ρ|β±i 〉 = λ±p |β
±
i 〉, (A.17)

for any i ∈ {1, · · · , 2N−1}. In fact, by writing a generic state
|β±i 〉 as follows

|β±i 〉 =
1
√

2
(|p,N − p〉 ± |N − p, p〉) , (A.18)

where |n0, n1〉 denotes any element of the N-qubit computa-
tional basis whose number of 0’s (1’s) is equal to n0 (n1), one
can easily see that

σ⊗N
1 |β

±
i 〉 =

1
√

2
(|N − p, p〉 ± |p,N − p〉) ,

σ⊗N
2 |β

±
i 〉 =

1
√

2
(−1)N/2

[
(−1)p|N − p, p〉 ± (−1)N−p|p,N − p〉

]
,

σ⊗N
3 |β

±
i 〉 =

1
√

2

[
(−1)N−p|p,N − p〉 ± (−1)p|N − p, p〉

]
.

Eventually, by using the above three equations, Eq. (A.11)
and the fact that N is even, so that (−1)N−p = (−1)p, one can
easily verify that ρ|β±i 〉 is equal to λ±p |β

±
i 〉, i.e. that Eq. (A.17)

holds.
Now we are ready to show the three essential pieces which

will lead us to prove the main result on the universal freezing
phenomenon of bona fide distance-based measures of quan-
tum coherence in the N-qubit setting (with even N).
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Lemma A.1. For all even N, any contractive distance sat-
isfies the following translational invariance properties within
the space of N-qubit M3

N states:

D({c1, (−1)N/2c1c3, c3}, {c1, 0, 0}) = D({0, 0, c3}, {0, 0, 0})
(A.19)

and

D({c1, (−1)N/2c1c3, c3}, {0, 0, c3}) = D({c1, 0, 0}, {0, 0, 0})
(A.20)

for all c1 and c3, where {c1, (−1)N/2c1c3, c3} denotes a M3
N

state in Eq. (A.11) with c2 = (−1)N/2c1c3.

Proof. Let us start by proving Eq. (A.19). First of all, by con-
sidering the channel Λ

F3⊗N
1 representing the local independent

phase flip noise expressed by Eq. (A.12), when k = 3 and
q = 1 (i.e. t → ∞), we have the following inequality

D({0, 0, c3}, {0, 0, 0})
= D(ΛF3⊗N

1 {c1, (−1)N/2c1c3, c3},Λ
F3⊗N
1 {c1, 0, 0}) (A.21)

≤ D({c1, (−1)N/2c1c3, c3}, {c1, 0, 0}),

where the first equality is due to the fact that

{0, 0, c3} = Λ
F3⊗N
1 {c1, (−1)N/2c1c3, c3}, and (A.22)

{0, 0, 0} = Λ
F3⊗N
1 {c1, 0, 0}, (A.23)

while the final inequality in (A.21) is due to the contractivity
of the distance D.

In order to prove the opposite inequality and thus
Eq. (A.19), we now introduce a N-qubit global rephasing
channel Λ

R3
r which is defined in the operator-sum represen-

tation as

ΛR3
r (ρ) =

∑
i,±

KR3
i,±ρKR3

i,±
†
, (A.24)

with

KR3
1,± =

√
1 ± r

2
|β±1 〉〈000 . . . 000|, (A.25)

KR3
2,± =

√
1 ± r

2
|β±2 〉〈000 . . . 001|,

KR3
3,± =

√
1 ± r

2
|β±3 〉〈000 . . . 010|,

KR3
4,± =

√
1 ± r

2
|β±4 〉〈000 . . . 011|,

· · ·

KR3

2N−1−1,± =

√
1 ± r

2
|β±2N−1−1〉〈011 . . . 110|,

KR3

2N−1,±
=

√
1 ± r

2
|β±2N−1〉〈011 . . . 111|,

KR3

2N−1+1,± =

√
1 ± r

2
|β±2N−1〉〈100 . . . 000|,

KR3

2N−1+2,± =

√
1 ± r

2
|β±2N−1−1〉〈100 . . . 001|,

· · ·

KR3

2N−3,± =

√
1 ± r

2
|β±4 〉〈111 . . . 100|,

KR3

2N−2,± =

√
1 ± r

2
|β±3 〉〈111 . . . 101|,

KR3

2N−1,± =

√
1 ± r

2
|β±2 〉〈111 . . . 110|,

KR3

2N ,±
=

√
1 ± r

2
|β±1 〉〈111 . . . 111|,

where r ∈ [0, 1] is a parameter denoting the rephasing
strength, {|β±i 〉} is the N-qubit basis defined in Eq. (A.14), and

the 2N+1 Kraus operators satisfy
∑

i,± KR3
i,±
†
KR3

i,± = I⊗N , thus en-
suring that Λ

R3
r is a CPTP map.

It is now essential to see that the effect of Λ
R3
r on a M3

N state
of the form {0, 0, c3} is given by

ΛR3
r ({0, 0, c3}) = {r, (−1)N/2r c3, c3}, (A.26)

for any even N. To prove Eq. (A.26), it will be useful to split
the N-qubit states |β±i 〉 into the states |Φ±i 〉 and |Ψ±i 〉 with even
and odd parity, respectively, i.e. such that

Π3|Φ
±
i 〉 = |Φ±i 〉,

Π3|Ψ
±
i 〉 = −|Ψ±i 〉, (A.27)

where i ∈ {1, · · · , 2N−2}. Thanks to Eqs. (A.15), (A.16) (A.17)
and (A.27), one gets that the spectral decomposition of a M3

N
state ρ{c1,c2,c3} with generic triple {c1, c2, c3} can be written as
follows,

ρ{c1,c2,c3} (A.28)

=
1

2N

[
1 + c1 + (−1)N/2c2 + c3

]∑
i

|Φ+
i 〉〈Φ

+
i |

+
1

2N

[
1 − c1 − (−1)N/2c2 + c3

]∑
i

|Φ−i 〉〈Φ
−
i |

+
1

2N

[
1 + c1 − (−1)N/2c2 − c3

]∑
i

|Ψ+
i 〉〈Ψ

+
i |

+
1

2N

[
1 − c1 + (−1)N/2c2 − c3

]∑
i

|Ψ−i 〉〈Ψ
−
i |

As a consequence

ρ{0,0,c3} (A.29)

=
1

2N (1 + c3)
∑

i

|Φ+
i 〉〈Φ

+
i |

+
1

2N (1 + c3)
∑

i

|Φ−i 〉〈Φ
−
i |

+
1

2N (1 − c3)
∑

i

|Ψ+
i 〉〈Ψ

+
i |

+
1

2N (1 − c3)
∑

i

|Ψ−i 〉〈Ψ
−
i |,
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while

ρ{r,(−1)N/2r c3,c3} (A.30)

=
1

2N (1 + r)(1 + c3)
∑

i

|Φ+
i 〉〈Φ

+
i |

+
1

2N (1 − r)(1 + c3)
∑

i

|Φ−i 〉〈Φ
−
i |

+
1

2N (1 + r)(1 − c3)
∑

i

|Ψ+
i 〉〈Ψ

+
i |

+
1

2N (1 − r)(1 − c3)
∑

i

|Ψ−i 〉〈Ψ
−
i |.

By exploiting the following equalities

ΛR3
r (|Φ+

i 〉〈Φ
+
i |) =

1 + r
2
|Φ+

i 〉〈Φ
+
i | +

1 − r
2
|Φ−i 〉〈Φ

−
i |, (A.31)

ΛR3
r (|Φ−i 〉〈Φ

−
i |) =

1 + r
2
|Φ+

i 〉〈Φ
+
i | +

1 − r
2
|Φ−i 〉〈Φ

−
i |,

ΛR3
r (|Ψ+

i 〉〈Ψ
+
i |) =

1 + r
2
|Ψ+

i 〉〈Ψ
+
i | +

1 − r
2
|Ψ−i 〉〈Ψ

−
i |,

ΛR3
r (|Ψ−i 〉〈Ψ

−
i |) =

1 + r
2
|Ψ+

i 〉〈Ψ
+
i | +

1 − r
2
|Ψ−i 〉〈Ψ

−
i |,

and the linearity of the global rephasing channel, we get

ΛR3
r ({0, 0, c3}) =

1
2N (1 + c3)

∑
i

ΛR3
r (|Φ+

i 〉〈Φ
+
i |)(A.32)

+
1

2N (1 + c3)
∑

i

ΛR3
r (|Φ−i 〉〈Φ

−
i |)

+
1

2N (1 − c3)
∑

i

ΛR3
r (|Ψ+

i 〉〈Ψ
+
i |)

+
1

2N (1 − c3)
∑

i

ΛR3
r (|Ψ−i 〉〈Ψ

−
i |)

= {r, (−1)N/2r c3, c3}.

We then have the inequality

D({c1, (−1)N/2c1c3, c3}, {c1, 0, 0})
= D(ΛR3

c1
{0, 0, c3},Λ

R3
c1
{0, 0, 0}) (A.33)

≤ D({0, 0, c3}, {0, 0, 0}),

where the first equality is due to the fact that

{c1, (−1)N/2c1c3, c3} = ΛR3
c1
{0, 0, c3}, and

{c1, 0, 0} = ΛR3
c1
{0, 0, 0},

while the final inequality in (A.33) is again due to the contrac-
tivity of the distance D. By putting together the two inequal-
ities (A.21) and (A.33), we immediately get the invariance of
Eq. (A.19) for any contractive distance.

In order now to prove Eq. (A.20), we introduce the local
unitary V⊗N with V = 1

√
2
(I + iσ2). The effect of V⊗N on a

general M3
N state is given by

V⊗N{c1, c2, c3}V⊗N† = {c3, c2, c1}, (A.34)

where this can be easily seen by utilising the fact that N is
even and the following single-qubit identities:

Vσ1V† = σ3,

Vσ2V† = σ2,

Vσ3V† = −σ1.

Thanks to the invariance under unitaries of any contrac-
tive distance D, the effect of the unitary V⊗N expressed
by Eq. (A.34), and the just proven invariance expressed by
Eq. (A.19), we eventually have

D({c1, (−1)N/2c1c3, c3}, {0, 0, c3}) (A.35)

= D(V⊗N{c1, (−1)N/2c1c3, c3}V⊗N†,V⊗N{0, 0, c3}V⊗N†)
= D({c3, (−1)N/2c1c3, c1}, {c3, 0, 0})
= D({0, 0, c1}, {0, 0, 0})

= D(V⊗N{0, 0, c1}V⊗N†,V⊗N{0, 0, 0}V⊗N†)
= D({c1, 0, 0}, {0, 0, 0}),

that is Eq. (A.20).

�

Lemma A.2. For all even N, according to any contractive
and convex distance D, one of the closest incoherent states δρ
to a M3

N state ρ is always a M3
N incoherent state, i.e. one of

the form

δρ =
1

2N

(
I⊗N + s σ⊗N

3

)
(A.36)

for some coefficient s ∈ [−1, 1].

Proof. Consider an arbitrary N-qubit state ρ, which can be
represented as

ρ =
1

2N

3∑
i1,i2,...,iN =0

τi1i2...iNσi1 ⊗ σi2 . . . ⊗ σiN , (A.37)

where the coefficients τi1,i2,...iN = Tr
[
ρ σi1 ⊗ σi2 . . . ⊗ σiN

]
∈

[−1, 1] are the correlation tensor elements of ρ, and σ0 ≡ I.
Any term involving σ1 or σ2 in the tensorial sum (A.37) intro-
duces off-diagonal elements, therefore we can write a general
N-qubit incoherent state, with respect to the computational
basis, as

δ =
1

2N

∑
i1,i2,...,iN ={0,3}

τi1i2...iNσi1 ⊗ σi2 . . . ⊗ σiN , (A.38)

where each index i j can now take either 0 or 3 as the only
values. For any N-qubit incoherent state δ, we can define a
corresponding incoherent M3

N state δM3
N
, whose τ tensor is ob-

tained from the one of δ by setting all the τi1,i2,...iN equal to
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zero, but for the two entries τ00...0 and τ33...3. We want to show
that D(ρ, δM3

N
) ≤ D(ρ, δ) for any M3

N state ρ and N-qubit in-
coherent state δ, which readily implies that one of the closest
incoherent states δρ to a M3

N state ρ is indeed a M3
N state.

To begin, first consider the family of N − 1 unitaries

{U j}
N−1
j=1 = {(σ1 ⊗ σ1 ⊗ I

⊗N−2), (I ⊗ σ1 ⊗ σ1 ⊗ I
⊗N−3),(A.39)

(I⊗2 ⊗ σ1 ⊗ σ1 ⊗ I
⊗N−4), (I⊗3 ⊗ σ1 ⊗ σ1 ⊗ I

⊗N−5),
. . . , (I⊗N−3 ⊗ σ1 ⊗ σ1 ⊗ I), (I⊗N−2 ⊗ σ1 ⊗ σ1)}.

We note that every M3
N state ρ is invariant under the action of

any U j. This can be seen as follows

U jρU†j =
1

2N

U jI
⊗NU†j +

3∑
i=1

ciU jσ
⊗N
i U†j


=

1
2N

I⊗N +

3∑
i=1

ciσ
⊗N
i

 = ρ, (A.40)

where in the second equality we use U jI
⊗NU†j = I⊗N and

U jσ
⊗N
i U†j = σ⊗N

i which arises simply by recalling σ1σ1σ1 =

σ1, σ1σ2σ1 = −σ2 and σ1σ3σ1 = −σ3 and noting that there
are always two σ1’s in each unitary.

Now consider the action of U1 on a generic incoherent state
δ. The state transforms as

U1δU
†

1 =
1

2N

∑
i1,i2,...,iN ={0,3}

τi1i2...iNσ1σi1σ1⊗σ1σi2σ1⊗σi3⊗. . .⊗σiN .

(A.41)
We have σ1σ0σ1 = σ0 and σ1σ3σ1 = −σ3, hence the co-
efficients τU1

i1i2...iN
of U1δU

†

1 are τU1
00... = τ00..., τ

U1
33... = τ33...,

τU1
03... = −τ03... and τU1

30... = −τ30...; in other words, U1 flips the
sign of any element τi1i2...iN for which i1 , i2. We can further
define a state that is a linear combination of δ and U1δU

†

1 ,

δ1 =
1
2

(δ + U1δU
†

1). (A.42)

The coefficients τ1
i1i2...iN

of δ1 can be found simply as

τ1
i1i2...iN

=
1
2

(
τi1i2...iN + τU1

i1i2...iN

)
. (A.43)

We see therefore that τ1
00... = τ00..., τ1

33... = τ33..., τ1
03... = 0 and

τ1
30... = 0.

Now, convexity and contractivity of the distance D can be
used to establish the inequality D(ρ, δ1) ≤ D(ρ, δ) for any M3

N
state ρ and any incoherent state δ. Indeed,

D(ρ, δ1) = D
(
ρ,

1
2

(δ + U1δU
†

1)
)

(A.44)

≤
1
2

(
D(ρ, δ) + D(ρ,U1δU

†

1)
)

=
1
2

(
D(ρ, δ) + D(U1ρU†1 ,U1δU

†

1)
)

= D(ρ, δ),

where in the first equality we use the definition of δ1, in the
subsequent inequality we use the convexity of D, in the equal-
ity on the third line we use the invariance of ρ through U1, i.e.
U1ρU†1 = ρ, and in the final equality we use the invariance of
D through unitaries D(U1ρU†1 ,U1δU

†

1) = D(ρ, δ) implied by
the contractivity of D.

Returning to the action of U j on δ, it is a simple extension
of the previous argument for U1 to see that U j flips the value
of τi1i2...iN when i j , i j+1. We are now in a position to define a
set of incoherent states {δ0, δ1, δ2 . . . δN−1} in an iterative way

δ j =
1
2

(
δ j−1 + U jδ

j−1U†j
)
, (A.45)

for j ∈ [1,N −1] and δ0 ≡ δ. The initial state is the incoherent
state δ with correlation tensor elements τi1i2...iN . The first state
δ1 loses all the τi1i2...iN from δ for which i1 , i2. Next, the j-th
state δ j loses all the τi1i2...iN from δ for which i j , i j+1. The
final state δN−1 loses all the τi1i2...iN from δ for which iN−1 , iN .
The only remaining values of τi1i2...iN from δ in δN−1 are those
for which i1 = i2 = i3 . . . = iN . Only τ00...0 and τ33...3 obey this
condition, i.e. δN−1 is the incoherent M3

N state δM3
N
.

The inequality D(ρ, δ1) ≤ D(ρ, δ) can now be generalised
iteratively,

D(ρ, δ j) = D
(
ρ,

1
2

(δ j−1 + U jδ
j−1U†j )

)
(A.46)

≤
1
2

(
D(ρ, δ j−1) + D(ρ,U jδ

j−1U†j )
)

=
1
2

(
D(ρ, δ j−1) + D(U jρU†j ,U jδ

j−1U†j )
)

= D(ρ, δ j−1),

where we use, in order, the definition of δ j for j ∈ [1,N −
1], the convexity of D, the invariance of ρ through any U j,
i.e. U jρU†j = ρ, and the invariance of D through unitaries,

D(U jρU†j ,U jδ
j−1U†j ) = D(ρ, δ j−1).

This process gives a hierarchy of N − 1 inequali-
ties D(ρ, δ j) ≤ D(ρ, δ j−1), which chained together imply
D(ρ, δ0) ≤ D(ρ, δN−1). We know that δ0 ≡ δ and δN−1 ≡ δM3

N
,

hence we have shown that

D(ρ, δM3
N
) ≤ D(ρ, δ) ∀δ. (A.47)

�

Lemma A.3. For all even N, according to any contrac-
tive distance D, it holds that one of the closest incoherent
M3

N states δ with triple {0, 0, s} to a M3
N state ρ with triple

{c1, (−1)N/2c1c3, c3} is specified by s = c3.

Proof. We need to prove that, for any z, it holds that

D({c1, (−1)N/2c1c3, c3}, {0, 0, c3}) (A.48)
≤ D({c1, (−1)N/2c1c3, c3}, {0, 0, c3 + z}).
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In fact

D({c1, (−1)N/2c1c3, c3}, {0, 0, c3})
= D({c1, 0, 0}, {0, 0, 0})
= D(ΛF1⊗N

1 {c1, (−1)N/2c1c3, c3},Λ
F1⊗N
1 {0, 0, c3 + z})

≤ D({c1, (−1)N/2c1c3, c3}, {0, 0, c3 + z}),

where the first equality is due to Lemma A.1, which holds
for any contractive distance D and any even N, the second
equality is due to the fact that

{c1, 0, 0} = Λ
F1⊗N
1 {c1, (−1)N/2c1c3, c3}, and (A.49)

{0, 0, 0} = Λ
F1⊗N
1 {0, 0, c3 + z}, (A.50)

with Λ
F1⊗N
1 representing the action of N local independent bit

flip noisy channels expressed by Eq. (A.12), when k = 1 and
q = 1 (i.e., t → ∞), and finally the inequality is due to con-
tractivity of the distance D.

�

Due to Lemma A.2 and Lemma A.3, we finally get that any
bona fide distance-based measure of quantum coherence CD

of the evolved M3
N state ρ(q), given in Eq. (A.13), is equal to

the following distance

CD(ρ(q)) = D({c1, (−1)N/2(1 − q)Nc1c3, (1 − q)Nc3},

{0, 0, (1 − q)Nc3}), (A.51)

which is frozen for any q (equivalently, for any time t) thanks
to Lemma A.1, Eq. (A.20). This concludes the proof of the
central result in the main text.

Notice further that Lemma A.3 implies that the l1-norm of
coherence equals (twice) the trace distance of coherence for
all M3

N states with even N, which entails that Cl1 is frozen
as well in the same dynamical conditions as for all bona fide
distance-based measures of coherence, including e.g. CRE .
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