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Frozen Robust Multi-array Analysis (fRMA)

Matthew N. McCall, Benjamin M. Bolstad, Rafael A. Irizarry∗

May 22, 2009

Abstract

Robust Multi-array Analysis (RMA) is the most widely used prepro-
cessing algorithm for Affymetrix and Nimblegen gene-expression microar-
rays. RMA performs background correction, normalization, and summa-
rization in a modular way. The last two steps require multiple arrays to be
analyzed simultaneously. The ability to borrow information across sam-
ples provides RMA various advantages. For example, the summarization
step fits a parametric model that accounts for probe-effects, assumed to
be fixed across arrays, and improves outlier detection. Residuals, obtained
from the fitted model, permit the creation of useful quality metrics. How-
ever, the dependence on multiple arrays has two drawbacks: (1) RMA can-
not be used in clinical settings where samples must be processed individu-
ally or in small batches and (2) data sets preprocessed separately are not
comparable. We propose a preprocessing algorithm, frozen RMA (fRMA),
which allows one to analyze microarrays individually or in small batches
and then combine the data for analysis. This is accomplished by utiliz-
ing information from the large publicly available microarray databases. In
particular, estimates of probe-specific effects and variances are precom-
puted and frozen. Then, with new data sets, these are used in concert
with information from the new array(s) to normalize and summarize the
data. We find that fRMA is comparable to RMA when the data are an-
alyzed as a single batch and outperforms RMA when analyzing multiple
batches. The methods described here are implemented in the R package
frma and are currently available for download from the software section
of http://rafalab.jhsph.edu

1 Introduction

Affymetrix and Nimblegen expression microarrays are composed of oligonu-
cleotide probes 25 base-pairs in length. These are designed to match transcripts
of interest and are referred to as perfect match (PM) probes. Genes are typi-
cally represented by groups of these probes referred to as probe-sets. The typical
probe-set is comprised of 11 probes. Each array contains tens of thousands of
probe-sets. Mismatch (MM) probes are also included; however, because RMA
does not use MMs and Affymetrix appears to be phasing them out, we do not
discuss MMs here.
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1 INTRODUCTION 2

Statistical analysis of these arrays begins with the data generated from scan-
ning and consists of reducing the data from the probe level to the gene level
in a step referred to as preprocessing. There are numerous preprocessing algo-
rithms. Bolstad (2004) provides an extensive list of the various algorithms and
compares them based on the Affymetrix HGU133a Spike-In data set. He finds
that, in general, methods that fit models across arrays outperform methods
that process each array separately. Therefore, it is not surprising that the most
popular preprocessing algorithms perform multi-array analysis: these include
RMA (Irizarry et al., 2003), gcRMA (Wu et al., 2004), MBEI (Li and Wong,
2001), and PLIER (Affymetrix, 2005). In this paper we focus on RMA, the most
widely used procedure; however, the ideas presented here can be applied to most
multi-array methods.

Like most preprocessing algorithms, RMA performs three steps: background

correction, normalization, and summarization. The last two steps require multi-
ple arrays, and we briefly review them below. The background correction step is
performed on each array individually, and we do not discuss it here. We refer the
reader to Bolstad (2004) for a detailed explanation of the background correction
procedure.

Once probe intensities have been background corrected, a normalization step
is required to remove variation due to target preparation and hybridization. This
is necessary to make data from different arrays comparable. Using a spike-in
experiment, Bolstad et al. (2003) demonstrated that quantile normalization has
the best overall performance among various competing methods. This algorithm
forces the probe intensity distribution to be the same on all the arrays. To create
this reference distribution each quantile is averaged across arrays.

After background correction and normalization, we are left with the task of
summarizing probe intensities into gene-expression to be used in downstream
analysis. A simple approach is to report the mean or median of the PM intensi-
ties in each probe-set; however, this approach fails to take advantage of the well
documented probe-effect. Li and Wong (2001) first observed that the within-
array variability between probes within a probe-set is typically greater than the
variability of an individual probe across arrays. To address this, Irizarry et al.

(2003) proposed the following probe-level model:

Yijn = θin + φjn + εijn, (1)

with Yijn representing the log2 background corrected and normalized intensity
of probe j ∈ 1, . . . , Jn, in probe-set n ∈ 1, . . . , N on array i ∈ 1, . . . , I. Here θin

represents the expression of probe-set n on array i, and φjn represents the probe-
effect for the jth probe of probe-set n. Measurement error is represented by εijn.
Note that θ is the parameter of interest as it is interpreted as gene-expression.

For identifiability, the probe effects are constrained within a probe-set to
sum to zero; this can be interpreted as assuming that on average the probes
accurately measure the true gene-expression. Note that, given this necessary
constraint, a least squares estimate of θ would not change if the probe effects
were ignored, i.e φin = 0 for all i and n. However, outliers are common in
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1 INTRODUCTION 3

microarray data, and robust estimates of the θs do change if we include the
probe-effect parameters. This is illustrated by Figure 1. In this figure a value
that appears typical when studying the data of just one array, is clearly detected
as an outlier when appropriately measuring the probe effect. The figure also
demonstrates that failure to appropriately down-weight this probe can result in
a false difference when comparing two arrays.
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Figure 1: Log2 probe-level expression for the WDR1 gene across 42 arrays from
the Affymetrix HGU133a Spike-In experiment. The large pane shows expression
values for 5 probes designed to measure the same gene across the 42 arrays.
The left most pane shows the expression data for only array 17, and the top
pane shows the expression values from median and median polish. Ignoring the
probe effect amounts to looking at only the left pane where probe 5 does not
appear to be an outlier. The large pane shows that probe 5 is easily detected
as an outlier on array 17 when fitting a multi-array model. The top pane shows
the advantage of multi-array methods which account for the probe-effect – the
median expression value for array 17 is over-expressed, but the expression value
from median polish is not.

To estimate the θs robustly, the current implementation of RMA in the
Bioconductor R package affy (Gautier et al., 2004) uses median polish, an ad-hoc
procedure developed by Tukey (1977). However, Model 1 can be fit using more
statistically rigorous procedures such as M-estimation techniques (Huber et al.,
1981). An implementation of this approach is described in Bolstad (2004) and is
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1 INTRODUCTION 4

implemented in the Bioconductor R package affyPLM. In this implementation,
the standard deviation of the measurement errors is assumed to depend on
probe-set but not probe nor array, i.e. we assume V ar(εijn) = σ2

n does not
depend on i or j.

Originally, median polish was used over more statistically rigorous proce-
dures due to its computational simplicity. Median polish has remained the
default in the Bioconductor implementation of RMA because competing pro-
cedures have not outperformed it in empirically-based comparisons (data not
shown). However, the M-estimators provide an advantage for the development of
quality metrics since estimates of σ2

n and standard error calculations for the esti-
mates of θ are readily available. Therefore, both median polish and M-estimator
approaches are currently widely used.

Although multi-array methods typically outperform single-array ones, they
come at a price. For example, a logistics problem arises from the need to analyze
all samples at once which implies that data sets that grow incrementally need to
be processed every time an array is added. More importantly, as we demonstrate
later, artifacts are introduced when groups of arrays are processed separately.
Therefore, available computer memory limits the size of an experiment and the
feasibility of large meta-analyses. Furthermore, for microarrays to be used in
clinical diagnostics, they must provide information based on a single array.

Two multi-array tasks that current single array methods can not perform
are: (1) computing the reference distribution used in quantile normalization and
(2) estimating the φs and V ar(εij) in Model (1). Katz et al. (2006) proposed
performing these tasks by running RMA on a reference database of biologi-
cally diverse samples. The resulting probe-effect estimates, φ̂, and the reference
distribution used in the quantile normalization step were stored or frozen for
future use. For a single new array they proposed the following algorithm: (1)
background correct as done by RMA, (2) force the probe intensity to have the
same distribution as the frozen reference distribution (quantile normalization),

and (3) for each probe-set report the median of yij − φ̂j . They showed that
this algorithm outperforms earlier attempts at single-array preprocessing such
as MAS5.0 but falls short of RMA.

Katz et al. (2006) assumed that the φjs are constant across studies; however,
we find that some probes behave differently from study to study. Note that to
measure the gene expression in a sample, a sequence of steps are carried out: (1)
target preparation, (2) hybridization, and (3) scanning. We define a microarray
batch as a group that underwent these steps in the same lab during the same
time period. This should not be confused with an experiment, a group of arrays
intended to be used collectively to address a question. Experiments are typically
composed of one or more batches. Because laboratory technician experience and
various environmental factors can alter the results of these steps (Fare et al.,
2003; Irizarry et al., 2005), one must be careful when comparing microarray
data generated under different conditions. These between-batch differences are
commonly referred to as batch effects. Figure 2 demonstrates that some probes
behave differently from batch to batch even after quantile normalization. If
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Figure 2: Plots demonstrating batch specific probe effects. (A) Histogram of
F-statistics comparing between batch versus within batch variability for each
probe in the database. An F-statistic of 1.31 corresponds to a p-value of 0.01
when testing the null hypothesis: no batch specific probe-effect. Over half the
probes have an F-statistic greater than 1.31 showing strong evidence against
the probe effects being constant between batches. (B) Residuals for a probe
obtained by fitting a probe-level linear model to 300 arrays - 50 from each of 6
different breast tumor studies. This is an example of a probe that shows much
greater variability between batches than within.

enough probes behave this way, then it is no surprise that a procedure that es-
timates probe effects for the batch in question, such as RMA, outperforms the
method proposed by Katz et al. (2006). In this paper, we propose a methodol-
ogy that takes this probe/batch interaction into account to produce an improved
single array method. Furthermore, we noticed that even within batches, vari-
ability differs across probes (see Figure 3). Current approaches assume V ar(εij)
is constant across probes. An approach that weights probes according to their
precision is more appropriate.

In this paper we expand upon the work of Katz et al. (2006) to develop
fRMA – a methodology that combines the statistical advantages of multi-array
analysis with the logistical advantages of single-array algorithms. In Section 2
we describe the new procedure and the model that motivates it. In Section 3 we
demonstrate the advantages of fRMA. Finally, in Section 4 we summarize the
findings.

2 Methods

We assume the following probe level model:

Yijkn = θin + φjn + γjkn + εijkn. (2)
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2 METHODS 6
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Figure 3: Plots demonstrating that different probes show different variability.
(A) Histogram of average within-batch residual standard deviation. The long
right tail demonstrates that some probes are far more variable than others within
a batch. Treating these as being equally reliable as less variable probes produces
suboptimal results. (B) Residuals from fitting a probe-level linear model to a
batch of 40 arrays from GSE1456. The probe in red shows considerably more
variability than the other probes within the same probe-set.

The parameters and notation here are the same as those in Model (1) with a
few exceptions. First, we added the notation k ∈ 1, . . . , K to represent batch
and a random effect term, γ, that explains the variability in probe effects across
batches. Note that for batch k, we can think of φjn + γjkn as the batch-specific
probe-effect for probe j in probe-set n. In our model, the variance of the random
effect is probe specific, V ar(γjkn) = τ2

jn. The second difference is that we permit
the within-batch probe variability to depend on probe as well, i.e. V ar(εijkn) =
σ2

jn.
The first step in our procedure was to create a reference distribution, to be

used in quantile normalization, and to estimate the φs, τs and σs from a fixed
set of samples. To accomplish this, we created a database of 850 samples from
the public repositories GEO (Edgar et al., 2002) and ArrayExpress (Parkin-
son et al., 2008). We refer to these as the training data set. We selected the
arrays to balance studies and tissues. Specifically, we generated all the unique
experiment/tissue type combinations from roughly 6000 well-annotated sam-
ples. We then randomly selected 5 samples from each experiment/tissue type
combination with at least 5 samples. This resulted in 170 experiment/tissue type
combinations. The GEO accession numbers for all 850 samples can be found in
Supplementary Table 1.

The standard way to fit model (2), a random effects model, to data known to
have outliers is not straight forward. Therefore, we adopted a modular approach,
which we describe in detail here. First, we fit model (1) using a robust procedure

to obtain φ̂j and θ̂i for each sample i and probe j. We then used the residuals,
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2 METHODS 7

rijkn = Yijkn − (θ̂i + φ̂j) to estimate the variance terms τ2 and σ2. Specifically,
we defined τ̂2

jn = 1
K

∑
k(r̄.jkn − r̄.j.n)2 and σ̂2

jn = 1
IK

∑
k

∑
i(rijkn − r̄.jkn)2

where r̄.jkn = 1
I

∑
i rijkn and r̄.j.n = 1

IK

∑
k

∑
i rijkn .

With these estimates in place we were then ready to define a preprocessing
procedure for single arrays and small batches. We motivate and describe these
next.

2.1 fRMA algorithm

First, we background corrected each new array in the same manner as the train-
ing data set. Remember RMA background correction is a single array method.
Second, we quantile normalized each of the new arrays to the reference distri-
bution created from the training data set. The final step was to summarize the
probes in each probe-set. Note that the arrays analyzed are not part of any of
the batches represented in the training data set. For presentation purposes, we
denote the new batch by l.

The first task in the summarization step was to remove the global batch
effect from each intensity and create a probe-effect-corrected intensity:

Y ∗

ijln ≡ Yijln − φ̂jn = θin + γjln + εijln

The second task was to estimate the θs from these data using a robust proce-
dure. A different approach was used for single array summarization and batch
summarization.

2.1.1 Single array

Here we dropped the i and l notation because we are analyzing only one array
and one batch.

We estimated θn with a robust mean that weights each of the data points
by the inverse of its variance:

Var(Y ∗

jn) = τ2
jn + σ2

jn.

The log gene-expression was then estimated by the weighted mean:

θ̂n =

Jn∑

j=1

wjn

vjn
Y ∗

jn/

Jn∑

j=1

wjn

vjn

with vjn = τ̂2
jn + σ̂2

jn and wjn, the weights obtained from a M-estimator proce-
dure. This statistic has an intuitive interpretation – probes with large batch to
batch (τ) or array to array (σ) variation should be down-weighted, as well as,
intensities that are outliers (small w).

2.1.2 Batch of arrays:

Here we dropped the l notation because this method is intended to be applied
to arrays from the same batch.

Hosted by The Berkeley Electronic Press



3 RESULTS 8

Note that the probe-effect corrected data Y∗

jn ≡ {Y ∗

ijn}i=1,...,I are correlated
because they share the random effect γjn. We therefore implemented a robust
procedure that accounts for this correlation. We rewrote model (2) in matrix
notation:

Y∗

n = Xθ + δ.

Here Y∗

n ≡ (Y∗

1,n, . . . ,Y∗

Jn,n)′ is a vector of all the probe-effect corrected in-
tensities for probe-set n, θ ≡ (θ1n, . . . , θIn)′ are the parameters of interest,
X ≡ 1(Jn×1) ⊗ I(I×I) is a matrix of indicator variables, and δ is a vector of cor-
related errors with covariance matrix Σ ≡ (τ1,n, . . . , τJn,n)′ × 1(1×Jn) ⊗ 1(I×I) +
(σ1,n, . . . , σJn,n)′ × 1(1×Jn) ⊗ I(I×I). Here ⊗ is used to represent the Kronecker
Product. Note that the entries of Σ were estimated from the training set and
treated as known. Therefore, we can easily rotate the intensities into indepen-
dent identically distributed data: Z ≡ Σ−1/2Y. We then estimated the trans-
formed parameters Σ−1/2θ using a standard M-estimator. Note that the final
estimate can be expressed as a weighted least squares estimate:

θ̂ = (X′Σ−1/2WΣ−1/2X)−1Σ−1/2WΣ−1/2Y∗

n

with W a diagonal matrix of the weights obtained from the robust procedure.
This estimate also has an intuitive interpretation as probes with large corre-

lation get down-weighted and correlation is taken into account in the definition
of distances used to define an outlier. Note that if just one of the entries of Y∗

jn

is large in absolute value, it is likely an outlier, but, if all entries are large, it
is probably due to a large batch-specific probe effect and is not considered an
outlier.

3 Results

To demonstrate the utility of the fRMA algorithm, we compared it to RMA.
First we assessed the preprocessing algorithms in terms of accuracy, precision,
and overall performance as done by affycomp and spkTools (Irizarry et al., 2006;
McCall and Irizarry, 2008). Then we assessed robustness to batch effects using
two publicly available data sets.

We used the Affymetrix HGU133a spike-in data set to calculate measures
of accuracy, precision, and overall performance. To assess accuracy, we calcu-
lated the signal detection slope, the slope from regressing observed expression
on nominal concentration in the log2 scale. It can be interpreted as the expected
difference in observed expression when the true difference is a fold change of 2;
as such, the optimal result is one. To assess precision, we computed the standard
deviation of null log-ratios and the 99.5th percentile of the null distribution. Here
null refers to the transcripts which were not spiked in and therefore should not
be differentially expressed. The first precision measure is an estimate of the ex-
pected spread of observed log-ratios for non-differentially expressed genes. The
second precision measure assesses outliers; we expect 0.5% of non-differentially
expressed genes to exceed this value. Lastly, we calculated two measures of over-
all performance – the signal-to-noise ratio (SNR) and the probability of a gene
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with a true log2 fold change of 2 being in a list of the 100 genes with the greatest
fold change (POT). These measures were computed in 3 strata based on average
expression across arrays. For a more detailed explanation of these measures, see
McCall and Irizarry (2008).

First, the measures described above were calculated treating the data as
a single batch; the results can be seen in Table 1. Then, the same data were
preprocessed in the three original batches in which the data were generated;
the results for these analyses can be seen in Table 2. In both tables we also
report the results from preprocessing the data with fRMA one array at a time.
When the data were preprocessed as a single batch, RMA outperformed fRMA
in the medium stratum based on SNR and POT. But in the low and high
strata, RMA and fRMA performed comparably. When we processed the data in
batches, fRMA outperformed RMA in all three strata primarily due to better
precision.
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Figure 4: Heatmaps of 15 tissue types hybridized on 2 arrays each and prepro-
cessed in 2 batches – (A) was preprocessed using RMA and (B) was preprocessed
using single array fRMA.

To assess the effect of combining data preprocessed separately, we created
two artificial batches each containing the same 15 tissues from the E-AFMX-5
data set (Su et al., 2004). We then analyzed each batch separately with RMA
and fRMA. After obtaining a matrix of expression values for each batch, we
performed hierarchical clustering on the combined expression matrix. Figure 4
shows that when the samples were preprocessed with RMA, they clustered based
on the artificial batches, but when they were preprocessed with fRMA, they
clustered based on tissue type.

Next, we compared batch effects using a publicly available breast cancer data
set of 159 Affymetrix HGU133a arrays accessible at the NCBI GEO database
(Edgar et al., 2002), accession GSE1456 (Pawitan et al., 2005). The dates on
which the arrays were generated varied from June 18th, 2002 to March 8th, 2003.
We grouped the data into 6 batches based on these dates (see Supplementary
Table 2) and processed each batch separately using fRMA. We also processed
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3 RESULTS 10

Low
Accuracy Precision Performance

Preprocessing Slope (SD) SD 99.5% SNR POT
fRMA - batch 0.26 (0.24) 0.10 0.36 2.60 0.33

RMA 0.25 (0.32) 0.10 0.36 2.50 0.36
fRMA - single array 0.25 (0.25) 0.11 0.45 2.27 0.22

Medium
Accuracy Precision Performance

Preprocessing Slope (SD) SD 99.5% SNR POT
RMA 0.83 (0.37) 0.09 0.40 9.22 0.88

fRMA - batch 0.80 (0.35) 0.09 0.44 8.89 0.85
fRMA - single array 0.82 (0.37) 0.10 0.49 8.20 0.82

High
Accuracy Precision Performance

Preprocessing Slope (SD) SD 99.5% SNR POT
fRMA - single array 0.58 (0.18) 0.06 0.23 9.67 0.98

RMA 0.57 (0.18) 0.06 0.22 9.50 0.97
fRMA - batch 0.62 (0.20) 0.07 0.25 8.86 0.97

Table 1: For these results we treated the spike-in data as a single batch. For
each of the intensity strata we report summary assessments for accuracy, pre-
cision, and overall performance. The first column shows the signal detection
slope which can be interpreted as the expected observed difference when the
true difference is a fold change of 2. In parenthesis is the standard deviation of
the log-ratios associated with non-zero nominal log-ratios. The second column
shows the standard deviation of null log-ratios. The SD can be interpreted as
the expected range of observed log-ratios for genes that are not differentially
expressed. The third column shows the 99.5th percentile of the null distribu-
tion. It can be interpreted as the expected minimum value that the top 100
non-differentially expressed genes will reach. The fourth column shows the ra-
tio of the values in column 1 and column 2. It is a rough measure of signal to
noise ratio. The fifth column shows the probability that, when comparing two
samples, a gene with a true log fold change of 2 will appear in a list of the 100
genes with the highest log-ratios.

the entire data set as one batch using RMA. Table 3 shows that there are
statistically significant differences in average expression from batch to batch
when the data are processed with RMA. These differences are not present when
the data are analyzed using fRMA.
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Low
Accuracy Precision Performance

Preprocessing Slope (SD) SD 99.5% SNR POT
fRMA - batch 0.26 (0.26) 0.10 0.33 2.60 0.39

fRMA - single array 0.25 (0.25) 0.11 0.45 2.27 0.22
RMA 0.25 (0.32) 0.14 0.47 1.79 0.25

Medium
Accuracy Precision Performance

Preprocessing Slope (SD) SD 99.5% SNR POT
fRMA - batch 0.81 (0.36) 0.09 0.40 9.00 0.87

fRMA - single array 0.82 (0.37) 0.10 0.49 8.20 0.82
RMA 0.83 (0.39) 0.12 0.46 6.92 0.83

High
Accuracy Precision Performance

Preprocessing Slope (SD) SD 99.5% SNR POT
fRMA - batch 0.58 (0.20) 0.06 0.21 9.67 0.97

fRMA - single array 0.58 (0.18) 0.06 0.23 9.67 0.98
RMA 0.58 (0.20) 0.08 0.26 7.25 0.95

Table 2: Just as in Table 1 but processed in three batches then combined for
analysis.

4 Discussion

We have described a flexible preprocessing algorithm for Affymetrix expression
arrays that performs well whether the arrays are preprocessed individually or
in batches. The algorithm follows the same three steps as current algorithms:
background correction, normalization, and summarization. Specifically, we have
improved upon the summarization step by accounting for between-probe and
between-batch variability.

Table 1 demonstrated that when analyzing batches of data together, RMA
performed slightly better. Table 2 showed that when analyzing data in batches,
fRMA consistently outperformed RMA. Specifically, fRMA showed greater pre-
cision than RMA.

Perhaps the greatest disadvantage of multi-array preprocessing methods is
the inability to make reliable comparisons between arrays preprocessed sepa-
rately. Figure 4 showed the potentially erroneous results that one might obtain
when combining data preprocessed separately. Furthermore, Table 3 showed
that even if it were computationally feasible to preprocess all the data simul-
taneously with RMA, it would be unwise to do so due to batch effects. Unlike
RMA, fRMA accounts for these batch effects and thereby allows one to combine
data from different batches for down-stream analysis.

As more data become publicly available, methods that allow simultaneous
analysis of thousands of arrays become necessary to make use of this wealth of
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RMA
Coefficients Estimate Std. Error P-value
Intercept 6.758 0.003 <0.001
batch2 -0.014 0.003 <0.001
batch3 0.002 0.004 0.658
batch4 -0.004 0.004 0.338
batch5 -0.010 0.003 0.004
batch6 -0.021 0.004 <0.001

fRMA
Coefficients Estimate Std. Error P-value
Intercept 7.183 0.002 <0.001
batch2 ≈0.000 0.003 0.949
batch3 ≈0.000 0.003 0.937
batch4 ≈0.000 0.003 0.885
batch5 ≈0.000 0.003 0.968
batch6 -0.001 0.003 0.656

Table 3: This table displays coefficients obtained from regressing gene expression
on array batch. RMA shows a significant batch effect while fRMA does not.

data. fRMA allows the user to preprocess arrays individually or in small batches
and then combine the data to make inferences across a wide range of arrays.
This ability will certainly prove useful as microarrays become more common in
clinical settings.

The preprocessing methods examined here can be summarized based on what
information they use to estimate probe effects. RMA uses only the information
present in the data being currently analyzed; whereas fRMA utilizes both the
information present in the data being analyzed and the information from the
database. By using both sources of information, fRMA is able to perform well
across a variety of situations.

The fRMA methodology can be easily extended to provide quality metrics
for a single array. Brettschneider et al. (2008) demonstrate that the Normalized
Unscaled Standard Error (NUSE) can detect aberrant arrays when other quality
metrics fail. The NUSE provides a measure of precision for each gene on an
array relative to the other arrays. Precisions is estimated from the RMA model
residuals. Therefore, the NUSE is multi-array on two counts. Using the fRMA
methodology, one can develop a single-array version of NUSE. Precision can be
estimated from the residuals described in Section 2 and the relative precision
can be computed relative to all the arrays in the training dataset.

Finally, note that fRMA requires a large database of arrays of the same
platform. Currently, our software only handles two human arrays: HGU133A
and HGU133Plus2. However, we have downloaded all available raw data (CEL)
files for five other popular platforms and expect to have software for these in
the near future.
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