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Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought 
and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and 
reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechan-
isms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), 
reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the 
resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. 
Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. 
Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
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Introduction
Fruits are essential to a balanced diet because they provide a 
natural source of phytochemicals, nutrients, and dietary fiber 
(Sabbadini et al. 2021). An adequate fruit intake alleviates 
micronutrient deficiencies, and the dietary polyphenols in 
some fruits reduce inflammation in the short or long term 
(Joseph et al. 2016; McMullin et al. 2019). However, fruit 
crops often suffer drought damage (Faghih et al. 2021). All 
regions of the world are affected by drought due to climate 
change, leading to fruit crop losses (Rachappanavar et al. 
2022). Water scarcity is common in many fruit-producing 
areas worldwide, especially in China, the largest fruit produ-
cer. Fruit crops are commonly planted on slopes, where 
drought is more prominent. Therefore, it is necessary to 
understand the mechanisms by which fruit crops respond 
to drought and to intervene with targeted biotechnological 
approaches to ensure viable fruit production.

Plant roots are in direct contact with the soil and absorb 
most of the water required by plants (Lobet and Draye 
2013). The characteristics and dynamics of plant roots, in-
cluding the root angle, surface area, average diameter, length, 
number of tips and forks, weight, volume, and density, allow 
plants to respond to drought and cope with the early stages 
of drought stress (Hu and Xiong 2014). In addition, the roots’ 
anatomical features, such as the number, size, and morph-
ology of cells, the thickness of the outer cell wall, and the 
cell density, can be adapted under drought stress to enhance 
water and nutrient uptake and provide mechanical strength 
to the root system (Morris et al. 2017; Lynch 2019).

Leaves are the main location of photosynthesis and the or-
gan with the largest area exposed to the environment. The 
keratinization of the leaf surface, a reduction in leaf area, 
and the thickening of the palisade tissue and leaves are 
some changes occurring in plants under drought stress 
(Fang and Xiong 2015). Moreover, drought results in the 
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ADVANCES  

• Fruit crops adapt to drought stress at the 
physiological level via osmotic regulation, balan-
cing the production and removal of reactive 
oxygen species, hormonal changes, secondary 
metabolism, and autophagy.

• Drought-related transcription factors 
(ABA-dependent and ABA-independent) are in-
itiated by drought signals, and various 
microRNAs positively and negatively regulate 
drought tolerance in fruit crops.

• Strategies to reduce drought stress in fruit crops 
include selecting drought-tolerant varieties and 
genes, grafting onto drought-tolerant rootstocks, 
transgenic and polyploid breeding, using ex-
ogenous plant growth regulators and biostimu-
lants, and water-deficit irrigation.

closure of stomata (the organs through which leaves ex-
change gases with their surroundings, formed by paired 
guard cells), leading to a substantial reduction in net photo-
synthetic rates (Daszkowska-Golec and Szarejko 2013).

Fruit is the only or primary product harvested from fruit 
crops. Flower bud differentiation, fruit set, and fruit develop-
ment largely determine the yield and quality of fruit crops. 
Flower bud differentiation is triggered by moderate water- 
deficit stress. A flowering model for lemon [Citrus limon 
(L.) Burm. f.] buds was proposed to understand the mechan-
ism of water deficit-induced flowering (Li et al. 2017a). The 
mechanism of flower bud differentiation in response to 
drought in perennial woody fruit crops remains unclear 
(see Outstanding Questions). However, drought stress often 
results in numerous aborted fruits, substantially reducing 
fruit setting (Liu et al. 2013). Fruit development occurs after 
successful flower bud differentiation and fruit set. The size, 
quality, and aroma of fruit determine fruit quality. The size 
of highbush blueberries (Vaccinium corymbosum) decreased 
or did not change significantly under drought stress (Lobos 
et al. 2018). Fruit quality is primarily determined by the sugar 
content, acid content, and its ratio. Many studies reported 
that moderate drought stress improved fruit quality (e.g. in-
creasing the sugar and acid content) in peaches (Prunus per-
sica L. Batsch) (Miras-Avalos et al. 2013). In contrast, the 
sugar content of Rangpur lime (Citrus limonia Osbeck) (a 
drought-tolerant citrus rootstock) was decreased by severe 
water deficit (Silva et al. 2023). The aroma of all fleshy fruits 
comes from various volatiles, and a favorable aroma increases 
fruit consumption. Beneficial effects of water deficit on fruit 
aroma have been reported in different species. A study on 
grapes (Vitis vinifera L.) found that drought stress caused 
an increase in the contents of volatile organic compounds, 
resulting in complex aromas that improved wine quality 
(Balint and Reynolds 2017).

This review summarizes the physiological and molecular 
mechanisms by which fruit crops cope with drought stress 
and suggest strategies to enhance the drought resistance of 
fruit crops.

Physiological mechanisms to cope with 
drought
Osmotic adjustment
Osmotic adjustment refers to the accumulation of various in-
organic or organic substances when the cell’s water potential 
decreases, thereby reducing the osmotic potential. The sub-
stances involved in osmotic adjustment in fruit crops include 
inorganic ions and organic solutes (such as soluble sugars, al-
kaloids, organic acids, and polyols).

Sorbitol is a major photosynthate and a soluble transport 
carbohydrate in Rosaceae fruit crops. In response to drought, 
all sorbitol-synthesizing pome and stone fruits accumulate 
sorbitol in the leaves, a critical aspect of osmotic adjustment. 
In the sorbitol biosynthetic process in the source leaves, 
glucose-6-phosphate is catalyzed by aldose-6-phosphate re-
ductase (A6PR), also called sorbitol-6-phosphate dehydro-
genase, to generate sorbitol-6-phosphate, which is 
converted to sorbitol via sorbitol-6-phosphate phosphatase 
(Negm and Loescher 1981). The antisense suppression of 
A6PR decreased the transcript level and activity of A6PR in 
mature leaves (Cheng et al. 2005) and reduced the sorbitol 
concentration in the source leaves of apple (Malus domesti-
ca) trees (Li et al. 2018a). In response to short-term water def-
icits, the activity of A6PR and the expression of MdA6PR were 
increased to accumulate sorbitol (Yang et al. 2019). Water 
stress induced sorbitol accumulation in drought-sensitive 
‘NaganoFuji’ and drought-insensitive ‘QinGuan’ apples and 
peaches (Lo Bianco et al. 2000). The leaves of ‘QinGuan’ ap-
ples with higher sorbitol concentrations wilted more slowly 
than those of ‘NaganoFuji’ apples (Wu et al. 2014b). In add-
ition to being a key osmoprotectant in response to drought, 
sorbitol also acts as a signal regulating stamen development 
(Meng et al. 2018a), pollen tube growth (Li et al. 2020a), and 
resistance to Alternaria alternata (Meng et al. 2018b) in M. 
domestica.

Reactive oxygen species
When plants are exposed to drought stress, the dynamic bal-
ance between producing and removing reactive oxygen spe-
cies (ROS) is disrupted. Enzymatic and nonenzymatic 
reactions are activated in plants to remove excessive ROS 
(Miller et al. 2010). ROS-scavenging enzymes include ascor-
bate peroxidase (APX), catalase (CAT), superoxide dismutase 
(SOD), and glutathione peroxidase. The nonenzymatic de-
fense system is comprised of several nonenzymatic and 
low-molecular weight antioxidants, such as proline (Pro), 
ascorbic acid (AsA), carotenoids, glutathione (GSH), cyto-
chrome f (Cytf), a-tocopherol (vitamin E), flavanones, and 
anthocyanins.
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Phytohormones
Phytohormones play a vital role in combating drought stress 
in fruit crops. Endogenous abscisic acid (ABA) levels increase 
as fruit crops sense the onset of drought stress. The accumu-
lation of ABA activates downstream signals, and the main ef-
fects are stomatal closure and the prevention of stomatal 
opening, thereby limiting excessive water loss in plants 
(Kalladan et al. 2017). Crosstalk between ABA and other hor-
mones under drought conditions has been extensively stud-
ied in recent years. For example, Xu et al. (2022a) found that 
auxin and ABA antagonistically regulate AsA accumulation 
to scavenge ROS. Sun et al. (2022) found that ABA and jas-
monic acid (JA) have synergistic effects on the resistance to 
dehydration stress in apples (M. domestica). Nolan et al. 
(2019) found that the brassinosteroid hormone antagonized 
the signal components of the ABA pathway to regulate the 
drought response. In addition, drought reduces the contents 
of cytokinins (CTK) and auxins (AUX/IAA), stimulating 
ethylene (ET) production (Rowe et al. 2016). When water is 
scarce, salicylic acid (SA) stimulates the production of ROS 
to close stomata (Miura et al. 2013). In general, there are few-
er growth stimulators and more growth inhibitors in fruit 
crops under drought conditions.

Secondary metabolites
Various secondary metabolic pathways produce small organic 
compounds which are categorized as secondary metabolites. 
Extensive studies have shown that higher concentrations of sec-
ondary metabolites were accumulated in fruit crops exposed to 
drought stress. Recently, melatonin (MT), an indole substance 
and a potent, naturally occurring antioxidant, was found to 
play a vital role in the drought resistance in fruit crops 
(Fig. 1). N-acetylserotonin-O-methyltransferase (ASMT) and 
serotonin N-acetyltransferase (SNAT) are key enzymes in the 
synthetic pathway of MT in plants (Park et al. 2013; Wang 
et al. 2017a). Evidence indicates that the endogenous MT con-
tent is elevated by applying exogenous MT (Liang et al. 2018b; 
Wang et al. 2021a) and the overexpression of ASMT (Zhou et al. 
2022) and SNAT (Wang et al. 2017a) under normal and drought 
conditions in fruit crops. Under drought, MT protects chloro-
phyll from breakdown by decreasing the gene expression re-
lated to chlorophyll degradation, such as pheophorbide a 
oxygenase (PAO) in apple (Wang et al. 2013b) and chlorophyl-
lase (CHLASE) in Chinese hickory (Carya cathayensis) (Sharma 
et al. 2020). Drought-induced leaf senescence in apple is sup-
pressed by chlorophyll degradation and the upregulation of 
the senescence-associated gene 12 (SAG12) (Wang et al. 
2013b). The chlorophyll content was elevated in apple (Liang 
et al. 2018b), kiwifruit (Actinidia chinensis) (Liang et al. 2019), 
grape (Meng et al. 2014), C. cathayensis (Sharma et al. 2020), 
and loquat (Eriobotrya japonica Lindl.) (Wang et al. 2021a) by 
applying MT in drought conditions. When chlorophyll is ex-
posed to light, the photosynthetic apparatus, including photo-
system I (PSI) and photosystem II (PSII) convert light energy 
into chemical energy. MT increases the quantum yield of PSII 

in above fruit crops (apple, kiwifruit, grape, C. cathayensis, 
and loquat). Nevertheless, the effect of MT on PSI in fruit crops 
under drought requires more research. The antioxidant power 
of MT may protect the integrity of the photosynthetic appar-
atus, which can be damaged by large amounts of ROS produced 
during drought. MT removes ROS in two species of lime plants 
[“Persian lime” (Citrus latifolia Tanaka) and “Mexican lime” 
(Citrus aurantifolia (Christm) Swingle)] (Jafari et al. 2022), apple 
(Liang et al. 2018b), and grape (Meng et al. 2014) and enhances 
the activity of SOD, CAT, and APX and the expression of genes 
encoding these antioxidant enzymes under drought. MT also 
regulates the nonenzymatic antioxidant system. The ratios of 
AsA/dehydroascorbate and GSH/GSSG (oxidized glutathione) 
in apple, the contents of AsA and GSH in grape, and the activity 
of glutathione reductase are increased by the application of MT 
during a drought. Applying MT also increased the contents of 
other secondary metabolites with high antioxidant capacity, 
such as essential oil, phenolic, and flavonoid compounds in cit-
rus (Jafari and Shahsavar 2021) and C. cathayensis (Sharma et al. 
2020). Furthermore, the stomatal properties (number, stomatal 
length, width, etc.) are improved by applying MT to apple 
(Zhou et al. 2022) and grape (Meng et al. 2014), possibly due 
to a decrease in the ABA content. Under drought, MT also 
raises the contents of IAA, JA, and CTK by regulating the expres-
sion of biosynthetic genes to improve drought resistance in lo-
quat (Wang et al. 2021a) and C. cathayensis (Sharma et al. 
2020). Conversely, the IAA levels of transgenic MzASMT1 
Arabidopsis (Arabidopsis thaliana) lines were lower than that 
of the wild type, which may be because IAA and MT share 
the same precursor (Zuo et al. 2014).

In addition, dopamine, a natural product of the catechol-
amine pathway, also has a strong antioxidative capacity 
(Kulma and Szopa 2007). Tyrosine decarboxylase synthesizes 
tyramine from tyrosine, which is used to produce dopamine 
(Świędrych et al. 2004). The apple dopamine content is sub-
stantially increased by the overexpression of MdTYDC, and 
the enhanced photosynthetic performance, lower water 
loss rate, and higher ABA levels may be attributed to the in-
creased dopamine content in transgenic MdTYDC- 
overexpression apples under short- (Gao et al. 2021) and 
long-term (Wang et al. 2021b) moderate drought conditions.

Autophagy
Autophagy, a subcellular degradation and recycling pathway, 
removes damaged organelles or proteins under drought 
stress. Autophagy activity can be triggered by drought in ap-
ple (Wang et al. 2014, 2017b) and peach (Wang et al. 2019). 
AUTOPHAGY-RELATED (ATG) proteins are part of this 
mechanism. Under drought, CONSTITUTIVELY STRESSED 1 
protein (COST1), a plant-specific protein, is ubiquitinated 
and degraded by autophagy and the 26S proteasome in 
Arabidopsis. Subsequently, ATG8 is released, and autophagy 
is activated (Bao et al. 2020). ATG8 is conjugated with phos-
phatidylethanolamine (PE) by two ubiquitin ligation-like 
pathways (such as ATG5 and ATG7) to form ATG-PE, which 
is involved in autophagosome formation and cargo 
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recruitment (Chung et al. 2010). The autophagic activity is 
enhanced by the overexpression of MdATG8i, which im-
proves the osmoregulation ability, water-use efficiency, and 
photosynthetic capacity of MdATG8i-OE apple plants under 
long-term moderate drought stress (Jia et al. 2021b). The 
overexpression of MdATG5a also promotes autophagic activ-
ity under drought stress, thus regulating osmotic adjust-
ments by the mobilization of starch (Jia et al. 2021a). In 
addition, the antioxidant capacity is substantially elevated 
in transgenic MdATG18a-overexpression apple lines, which 
is likely due to the higher frequency of autophagy (Sun 
et al. 2018). Plant hormone signaling is modulated by 
autophagy during drought stress, such as ABA, CTK, ET, 
SA, and brassinosteroids (Liao and Bassham 2020). A 1-μM 
24-epibrassinolide (a highly active synthetic analog of 
the brassinosteroids) treatment alleviated drought 
stress-induced damage and reduced the number of 
autophagosomes in peach (P. persicae L.) leaves (Wang 
et al. 2019). The above studies represent the research pro-
gress of autophagy in fruit crops under drought in recent 
years. Readers are referred to reviews of the function and 
regulation of autophagy in plants under drought (Tang and 
Bassham 2022).

Molecular mechanisms of drought response
This section reviews recent advances in elucidating the sens-
ing and signaling mechanisms, downstream transcriptional 
regulation, and microRNA (miRNA) response pathways of 
drought stress in plants, mainly fruit crops.

Sensing and signaling mechanisms
Studies on the sensing and signaling mechanisms of drought 
stress have mainly focused on model plants. Insufficient 
water is one reason for hyperosmotic stress in plants; thus, 
drought may first be perceived as a decline in the osmotic 
potential (Zhu 2016). Hyperosmotic stress is sensed by the 
plasma membrane-localized Ca2+ channels OSCA1 
(osmolality-sensing ion channel 1) or OSCA1.2 in 
Arabidopsis (Yuan et al. 2014; Liu et al. 2018) (Fig. 2). 
Under hypertonic conditions, the OSCA ion channels open 
due to reduced cell turgor pressure, causing the transport 
of Ca2+ into cells (Liu et al. 2018; Maity et al. 2019). 
Stress-specific signal transduction is triggered by the percep-
tion of hypertonic conditions. This process includes Ca2+, 
ABA, ROS, H+ (pH), lipids, nitric oxide (NO), RNA, post- 
translational modifications of proteins, small peptides, and 

Figure 1. The role of melatonin in the drought stress response of fruit crops. Under drought, the MT content is enhanced by the application of 
exogenous MT and the overexpression of ASMT and SNAT. MT protects PSII and reduces the regulation of chlorophyll by repressing the expression 
of CHLASE and PAO. MT not only acts as a direct scavenger of ROS but also regulates secondary metabolites, enzymatic and nonenzymatic systems 
to remove ROS. MT also showed crosstalk with CTK, IAA, and JA to response drought. Furthermore, MT decreases ABA content to promote stomata 
closure. The solid arrows refer to direct effects, blocked arrows refer to inhibition. MT, melatonin; ASMT, N-acetylserotonin-O-methyltransferase; 
SNAT, serotonin N-acetyltransferase; CHLASE, chlorophyllase; PAO, pheophorbide a oxygenase; PSI/II, photosystem I/II; Fd, ferredoxin; MDA, mono-
dehydroascorbate; AsA, reduced ascorbate; APX, ascorbate peroxidase; CAT, catalase; SOD, superoxide dismutase; ROS, reactive oxygen species; 
MDHA/DHA, monodehydroascorbate/dehydroascorbate; MDHAR/DHAR, monodehydroascorbate reductase/dehydroascorbate reductase; GSSG, 
oxidized glutathione; GSH, reduced glutathione; GR, glutathione reductase; NADPH/NADP, reduced nicotinamide adenine dinucleotide phos-
phate/nicotinamide adenine dinucleotide phosphate; CTK, cytokinin; JA, jasmonic acid; IAA, indole-3-acetic acid; ABA, abscisic acid.
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physical signals (Gong et al. 2020; Lamers et al. 2020; Zhang 
et al. 2022a). Here, we focus on Ca2+ signaling, ABA, ROS sig-
naling, and protein phosphorylation, which are critical for 
drought signal transduction.

Calcium-dependent protein kinases and calcineurin 
B-like-interacting protein kinases (CBLs–CIPKs) may be acti-
vated by the Ca2+ signal, stimulating the slow anion 

channel-associated 1 (SLAC1) S-type anion channel 
(Maierhofer et al. 2014; Brandt et al. 2015), which is respon-
sible for the efflux of anions (Cl− and NO3

−). Drought signals 
initiated by hyperosmotic stress are divided into 
ABA-independent and ABA-dependent types. Some B2/B3/ 
B4 clades of Raf-like kinases are activated independently of 
ABA in response to drought stress and then activate 

Figure 2. The sensing and signaling mechanisms of drought stress in plants. Drought is likely perceived as a decline in osmotic potential, which is 
sensed by the Ca2+ channel OSCA1 or OSCA1.2, causing the transport of Ca2+ into cells. The downstream signaling responses are thus mediated. The 
drought signal transduction network highlights the roles of Ca2+ signaling, ABA, ROS signaling, and protein phosphorylation. The solid arrows refer 
to direct effects, blocked arrows refer to inhibition, shapes on the cell membrane refer to the sensors. Cl−, chloride ion; CLE25, CLAVATA3/ 
EMBRYO-SURROUNDING REGION-RELATED 25; BAM, BARELY ANY MERISTEM; OSCA1/OSCA1.2, osmolality-sensing ion channel 1/osmolality- 
sensing ion channel 1.2; SLAC1, slow anion channel-associated 1; Ca2+, calcium ion; CPKs, calcium-dependent protein kinases; NCED3, 
9-cis-epoxycarotenoid dioxygenase 3; K+, potassium ion; NHX1/2, tonoplast-localized K+/H+ exchangers; VvK1.1, inward shaker K+ channel (the 
counterpart of Arabidopsis AKT1); NO3

−, nitrate ion; CBL–CIPK, calcineurin B-like-interacting protein kinase; HPCA1/GHR1, HYDROGEN 
PEROXIDE-INDUCED Ca2+ INCREASE 1/GUARD CELL HYDROGEN PEROXIDE-RESISTANT1; ABA, abscisic acid; H2O2, hydrogen peroxide; 
RBOHF, one of the isoforms belonging to the respiratory burst oxidase homologs (RBOHs); OST1, OPEN STOMATA 1; PYLs, pyrabactin resistance 
(PYR)/PYR1-like receptors; B2/B3/B4/RAFs, B2/B3/B4 clades of Raf-like kinases; SnRKs, the members of sucrose nonfermenting 1 (SNF1)-related pro-
tein kinases; PP2C, type 2C protein phosphatase; MdMEK2, mitogen-activated protein kinase kinase 2; MAP3K17/18, mitogen-activated protein 
kinase kinase kinase 17/18; MEK3, mitogen-activated protein kinase kinase 3; MdMPK6, mitogen-activated protein kinase 6; MPKs, mitogen- 
activated protein kinases; TFs, transcription factors.
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SnRK2s [the members of sucrose nonfermenting 1 
(SNF1)-related protein kinases] (Katsuta et al. 2020). Under 
hyperosmotic stress, ABA binds to pyrabactin resistance 
(PYR)/PYR1-like receptors, which then physically interact 
with and inhibit type 2C protein phosphatase, resulting in 
the activation of SnRK2s (Ma et al. 2009; Park et al. 2009; 
Chen et al. 2020a). The activated SnRK2s then phosphorylate 
downstream effector proteins, such as SLAC1 (Brandt et al. 
2015), transcription factors (TFs) (Zhu 2016), and RBOHF 
[one of the isoforms belonging to the respiratory burst oxi-
dase homologs (RBOHs)] (Drerup et al. 2013). Moreover, 
ABA and water stress can induce the expression of OPEN 
STOMATA 1 (OST1), a kinase located in guard cells and in-
volved in ABA-induced stomatal closure (Belin et al. 2006; 
Yoshida et al. 2015). The primary function of OST1 is kinase 
regulation of anion channels in guard cell ABA signaling 
(Assmann and Jegla 2016). OST1 has been characterized in 
Arabidopsis (Belin et al. 2006), tomato (Solanum lycopersi-
cum) (Burger 2022), cabbage (Brassica oleracea) (Wang 
et al. 2013a), maize (Zea mays) (Wu et al. 2019), poplar 
(Populus euphratica) (Rao et al. 2023), and rice (Oryza sativa) 
(Zhang et al. 2023). In addition to phosphorylating SLAC1 at 
Ser-120 to activate the anion channel (Geiger et al. 2009) and 
phosphorylating the microtubule-associated protein SPIRAL1 
(SPR1) at Ser-6 to facilitate microtubule disassembly (Wang 
et al. 2022b), OST1 also targets RBOHF to generate ROS under 
osmotic stress (Han et al. 2019). H2O2 is likely sensed by 
GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) 
(Hua et al. 2012) and the leucine-rich repeat receptor 
kinase HYDROGEN PEROXIDE-INDUCED Ca2+ INCREASE 1 
(HPCA1) (Wu et al. 2020) to generate Ca2+ signals. Thousands 
of different mitogen-activated protein kinase (MPK/MAPK) 
modules can be combined due to the many family members 
in the plant MAPK pathway. The kinase cascades consisting 
of MAPK, MAPK kinase (MAP2K/MKK/MEK), and MAPK 
kinase kinases (MAPKKK/MEKK/MAP3K) are often involved 
in osmotic stress signal transduction. For example, the 
modules of MAP3K17/18–MKK3–MPK1/2/7/14 cascades 
respond to ABA downstream of SnRK2s during drought stress 
responses in plants (Danquah et al. 2015; de Zelicourt et al. 
2016). In addition, a small peptide called CLAVATA3/ 
EMBRYO-SURROUNDING REGION-RELATED 25 (CLE25), a 
long-distance messenger from roots to shoots, was recently dis-
covered. The drought signal caused CLE25 to form CLE25 pep-
tide in roots, which was transferred to the vasculature and the 
leaves. After CLE25 was bound to its receptor proteins BARELY 
ANY MERISTEM (BAM), it caused the expression of 
9-cis-epoxycarotenoid dioxygenase 3 (NCED3), a gene encoding 
the key ABA biosynthetic enzyme, increasing the ABA concen-
tration and reducing stomatal opening in response to dehydra-
tion stress (Takahashi et al. 2018).

Recently, several groups have independently reported the 
early response of fruit crops to drought signals (Fig. 2). Under 
drought stress, MdPYL9 interacts with MdPP2CAs in 
ABA-dependent and ABA-independent pathways (Yang 
et al. 2022b), suggesting that a nonABA signal may drive 

the interaction between PYL9 and PP2CAs in response to 
drought signals in apple plants. Water-deficit stress also sub-
stantially increases MdMPK6 activity, and the constitutively 
active form of MdMEK2-activated MdMPK6 then elicits 
downstream transcriptional regulatory responses (Shan 
et al. 2021). It is well known that ABA promotes stomatal 
closure under drought stress (Brodribb and McAdam 
2013). Song et al. (2018) reported that CBL–CIPK modules 
activated the tonoplast-localized K+/H+ exchangers (NHX1 
and NHX2) to promote vacuolar K+ accumulation, negatively 
regulating ABA-mediated stomatal closure. Similarly, the 
CBL1–CIPK23 network activates an inward shaker K+ chan-
nel (VvK1.1, the counterpart of Arabidopsis AKT1) in grape 
berries under drought stress (Cuellar et al. 2010).

Transcriptional regulation
Following the sensing of drought stress cues, downstream 
transcriptional regulatory responses are triggered in fruit 
crops. TFs are the major regulators of gene expression and 
play a pivotal role in the drought response via 
ABA-dependent and ABA-independent pathways (Fig. 3).

In ABA-dependent regulation, ABSCISIC ACID- 
INSENSITIVE5 is a vital transcription factor in the drought stress 
response. In apple, the expression of MdABI5 is triggered by 
ABA or drought signaling, enhancing the expression levels 
of ABA-responsive genes EARLY METHIONINE-LABELED6 
(MdEM6) and RESPONSIVE TO DESICCATION29A (MdRD29A) 
by directly binding to their promoters, which in turn increases 
the ABA contents to enhance drought resistance. Meanwhile, 
TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (MdTCP46), which 
is repressed by ABA or drought signaling, interacts with and in-
hibits MdABI5 to regulate drought tolerance negatively (Liu 
et al. 2022). Drought was found to induce the expression of 
MdAREB2, which then targets and induces the expression of 
amylase genes (MdAMY1, MdAMY3, MdBAM1, and 
MdBAM3), Suc uptake transporter (MdSUT2) and tonoplast 
monosaccharide transporter (MdTMT1). This signal subse-
quently activates the expression of MdSUT2, eventually leading 
to the accumulation of soluble sugar to influence drought tol-
erance (Ma et al. 2017). This regulatory pathway sheds light on 
why drought promotes fruit quality. In grape, the expressions of 
two lignin biosynthetic genes [peroxidase4 (VvPRX4) and 
(VvPRX72)] were increased by overexpressing VlbZIP30, a posi-
tive regulator of dehydration tolerance through the ABA core 
signaling pathway (Tu et al. 2018), thus promoting the depos-
ition of lignin in grapevine stems under drought. In the mean-
while, VlbZIP30 also bound the promoter of VvNAC17 
(drought-responsive gene) and VvPRX N1 in grapevine leaves, 
improving drought resistance (Tu et al. 2020). ABA plays a 
key role in plant drought tolerance and regulates the expression 
of most target genes via the ABA-responsive element (ABRE) 
and the ABRE binding protein/ABRE binding factor (AREB/ 
ABF) TFs. Zhang et al. (2022c) found that the PtrABF4– 
PtrABR1 TF complex upregulated the β-amylase gene (BAM3) 
expression in trifoliate orange [Poncirus trifoliata (L.) Raf.], pro-
moting starch catabolism and increasing soluble sugars to cope 
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with drought conditions. More interestingly, ABA-induced 
PtrABF4 also acts as a positive upstream regulator of PtrABR1 
to improve the transcript level of PtrBAM3. ABA signaling is trig-
gered by water loss in Citrus sinensis, enhancing the expression 
levels of CsMYB96, which simultaneously binds to the 

promoters of CsPIPs (encoding plasma membrane intrinsic pro-
teins) and three wax-related genes (WRGs) such as 
ECERIFERUM1 (CsCER1) and beta-ketoacyl-CoA synthases 
(CsKCS4 and CsKCS12). The inhibited CsPIPs expression blocks 
water movement and affects stomatal aperture, regulating 

Figure 3. ABA-dependent and ABA-independent transcriptional regulatory pathways in fruit crops under drought stress. The solid arrows refer to 
direct effects, blocked arrows refer to inhibition, the dashed lines refer to indirect effects or unknown effects, and the red solid arrows refer to the 
regulation of drought stress via both ABA-dependent and ABA-independent pathways. AsA, ascorbic acid; ROS, reactive oxygen species; BAM, 
BARELY ANY MERISTEM; EM6, EARLY METHIONINE-LABELED6; RD29A, RESPONSIVE TO DESICCATION29A; NCED, 9-cis-epoxycarotenoid dioxygen-
ase; AMY, amylase; SUT, Suc uptake transporter; TMT, tonoplast monosaccharide transporter; ABI, ABSCISIC ACID-INSENSITIVE; PRX, peroxidase; 
ABF, ABRE binding factor; ABR, ABA-responsive; AREB, ABA-responsive element binding protein; TCP, TEOSINTE BRANCHED 1/CYCLOIDEA/PCF; 
ABA, abscisic acid; WRG, wax-related genes; PIPs, plasma membrane intrinsic proteins; MEK, mitogen-activated protein kinase kinase; MPK, mitogen- 
activated protein kinase; SND, secondary wall-associated NAC domain protein; CLH, chlorophyllase; PAO, pheide a oxygenase; RCCR, red chlorophyll 
catabolite reductase; VND, VASCULAR-RELATED NAC DOMAIN; SUFB, a member of sulfur mobilization (SUF) system; BZR, brassinazole-resistant; 
FRI, FRIGIDA; DHN, dehydration protein; ADC, arginine decarboxylase; Exo70B, a subunit of exocyst; PUB, plant U-box E3 ubiquitin ligase; CBFs, 
C-REPEAT BINDING FACTORs; GH3.6, GRETCHEN HAGEN3.6.
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stomatal and nonstomatal water loss. In addition, the activated 
WRG expression increases wax biosynthesis, decreasing epider-
mal permeability and water loss (Zhang et al. 2022b). In pear 
(Pyrus betulaefolia), increased ABA contents induced by 
drought stress enhanced the expression of PbrWRKY53, which 
upregulates PbrNCED1 (9-cis-type carotenoid dioxygenase, a 
key enzyme in the synthesis of ABA under drought) by binding 
to the W-box element in its promoter. AsA synthesis and ROS 
scavenging are promoted by the upregulated PbrWRKY53– 
PbrNCED1 module, alleviating drought-associated damage 
and improving drought resistance (Liu et al. 2019).

In ABA-independent regulation, MYB (v-myb avian myelo-
blastosis viral oncogene homolog), WRKY (so named because 
of the WRKYGQK heptapeptide at the N-terminal end), 
ERF (ethylene response factor), and BZR (brassinazole- 
resistant) regulons are critical in drought response and toler-
ance. In apple, water deficiency activates MdMYB88 and 
MdMYB124, which bind to the promoters of MdMYB46 
and VASCULAR-RELATED NAC-DOMAIN6 (MdVND6). The 
increased expression of MdMYB46 causes cellulose and lignin 
deposition by activating the downstream genes related to 
cellulose and lignin biosynthesis to adapt to drought. 
Upregulated MdMYB46 also improves hydraulic conductivity 
by regulating root xylem vessel formation, increasing drought 
tolerance (Geng et al. 2018). MdSND1 (secondary wall- 
associated NAC domain protein 1) has also been reported 
to regulate lignin biosynthesis by activating the transcription 
of MdMYB46/83 and participating in the response to osmotic 
stress in apple plants (Chen et al. 2020b). Jiang et al. (2022b)
identified a negative regulator of drought stress tolerance, 
GRETCHEN HAGEN3.6 (GH3.6), in apple plants. They found 
that MdGH3.6 negatively regulated root development, cu-
ticular wax content, and antioxidant enzyme activity. 
However, MdMYB94 negatively regulated the promoters of 
MdGH3.6 and positively regulated water-deficit tolerance in 
apple plants. In addition, drought stress activates MdWRKY17, 
which then binds to the promoters of MdSUFB, a gene 
encoding a member of sulfur mobilization system, and indirectly 
downregulates chlorophyll catabolic genes (chlorophyllase 
(MdCLH), pheide a oxygenase (MdPAO), and red chlorophyll 
catabolite reductase (MdRCCR) to maintain chlorophyll le-
vels (Shan et al. 2021). Moreover, the phosphorylation of 
MdWRKY17 by the drought-activated MdMEK2–MdMPK6 
cascade is important for fine-tuning the expression of 
MdSUFB to stabilize the chlorophyll content under moderate 
drought stress. In the grapevine V. vinifera, drought induces 
the expression of VviERF105, which interacts with VviPUB19 
through its UND domain and is degraded by the E3 ubiquitin 
ligase VviPUB19. The upregulated VviERF105 expression pro-
motes the expression of CBFs (C-REPEAT BINDING FACTOR) 
and downstream resistance genes and inhibits ROS accumula-
tion (Wang et al. 2022a). Since VviERF105-OE Arabidopsis 
showed lower sensitivity to ABA and higher resistance to man-
nitol and NaCl than the control group, it is possible that 
VviERF105 is not involved in plant abiotic stress via the ABA 
pathway (Wang et al. 2022a). Wang et al. (2023) also 

demonstrated that VviPUB19 ubiquitinated and degraded 
VviExo70B (a subunit of exocyst). Under drought stress, the 
overexpression of VviExo70B may improve plant drought resist-
ance by decreasing relative electrolyte leakages and increasing 
chlorophyll contents and survival rates in ABA-dependent 
and ABA-independent pathways. In citrus, drought stress in-
duced the expression of CiBZR1, a member of the citrus BZR 
transcription factor family, which activated CiFRI (FRIGIDA, a 
key regulator of flowering time and drought tolerance) by bind-
ing to its promoter. Furthermore, the overexpression of CiFRI 
elevated the ability of ROS detoxification in transgenic lines un-
der drought, and a dehydration protein (CiDHN) functioned as 
a CiFRI-stabilizing factor by interacting with CiFRI protein (Xu 
et al. 2022b). In a previous study, a dehydration treatment in-
duced the expression of FcWRKY70 in Fortunella crassifolia, 
and the overexpression of FcWRKY70 in lemon (C. limon) im-
proved the tolerance to drought stress by elevating putrescine 
levels via the regulation of the arginine decarboxylase gene 
(Gong et al. 2015). In P. betulaefolia, PbrMYB21 (a R2R3-type 
MYB), which acts as a positive regulator of drought tolerance, 
binds specifically to the PbrADC promoter. The elevated 
PbrADC expression levels cause accumulations of polyamine 
in PbrMYB21 overexpressing tobacco (Nicotiana tabacum), im-
proving drought tolerance (Li et al. 2017b).

miRNA responses
Plant miRNAs are 20 to 24 nucleotide noncoding RNAs that 
are vital in the responses to abiotic stresses (Song et al. 2019). 
Since miRNAs are relatively complex, we review mainly the 
recent progress in miRNA-related regulatory networks in-
volved in the drought response in fruit crops (Fig. 4). In order 
to avoid repeating the content of several recent reviews on 
miRNAs or drought (not specifically for fruits), we do not dis-
cuss the classification and comparison of small RNAs (Axtell 
2013), miRNA biogenesis (Achkar et al. 2016), the cell biology 
of miRNAs (the processes that miRNAs are involved in and 
the subcellular sites in which these processes take place) 
(Yu et al. 2017), the role of miRNAs in plant development 
(Teotia and Tang 2015; Dong et al. 2022), the effect of 
miRNAs on plant abiotic and biotic stress responses (exclud-
ing fruit crops) (Sunkar et al. 2012), and miRNA research pro-
gress made in V. vinifera, Citrus spp, M. domestica, and P. 
persica (the role of miRNAs in the drought response in fruit 
crops has not been reviewed, except for one paper on the 
role of miRNAs in peach crops) (Solofoharivelo et al. 2014).

The miRNA responses in grapevine have been reviewed in 
detail. Rock (2013) proposed that the evolution of trans- 
acting small interfering RNA gene 4 (TAS4) may be key to 
nutraceutical synthesis in grape development. Control of 
the expression of miRNAs ensures the beneficial effects of re-
sveratrol, one of grape’s polyphenols (Lancon et al. 2012). 
Recently, miRNAs regulating drought stress in apple plants 
have received increasing attention (Fig. 4). Ma et al. (2014)
cloned 146 miRNA precursors from apple (11 of which 
were novel), identified the genomic location of miRNAs, 
and analyzed their expression levels in five different tissues. 
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Niu et al. (2019) identified 67 miRNAs that were differentially 
expressed under drought conditions in drought-tolerant ap-
ples compared with drought-sensitive apples. They verified 
that miR156p and miRn-249 played positive roles in osmotic 
stress tolerance. SERRATE is usually involved in miRNA bio-
genesis (Laubinger et al. 2008). Drought stress reduces the 
MdSE expression level, and MdSE interacts with and inhibits 
two positive regulators (MdMYB88 and its putative paralog 
MdMYB124) of the drought resistance of apple plants (M. 
domestica) (Li et al. 2020b; Xie et al. 2021). MdSE negatively 
regulates apple drought resistance by reducing the expres-
sion of mdm-miR156, mdm-miR166, mdm-miR172, and 
mdm-miR319 (positive regulators of osmotic stress), and in-
creasing the expression of mdm-miR399 (a negative regula-
tor of osmotic stress) (Li et al. 2020b). Interestingly, 
MdMYB88 directly binds to the promoter of the ABA 

biosynthetic gene 9-cis-epoxycarotenoid dioxygenase 3 
(MdNCED3) and promotes ABA accumulation, inhibiting 
MdMYB88/124 expression under drought conditions (Xie 
et al. 2021). Coincidentally, MdSE is enriched in the 
MdNCED3 promoter in the same region where MdMYB88/ 
124 binds and decreases MdNCED3 activity (Li et al. 
2020b). MdSE consistently reduces ABA accumulation and 
stomatal aperture under drought stress (Li et al. 2020b). 
Plants modify their root system structure in response to 
drought conditions by increasing the length and number of 
adventitious roots for maximum water assimilation (Gilbert 
and Medina 2016). In Arabidopsis, the overexpression of 
miR160a and miR160c increased the number of adventitious 
roots, but the overexpression of the AUXIN RESPONSE 
FACTOR17 (ARF17) reduced it (Gutierrez et al. 2009). In apple 
crops, Mdm-miR160 negatively targets MdARF17, which 

Figure 4. The regulatory roles of microRNAs (miRNAs) in fruit crops combating drought stress. The miR156p, miRn-249, mdm-miR160, 
mdm-miR171i, and miR166f respond to drought stimuli via regulating downstream genes. In addition, drought inhibits MdSE, which activates 
mdm-miR399 and inhibits mdm-miR156, mdm-miR166, mdm-miR172, and mdm-miR319, inducing the expression of drought-responsive genes. 
The m6A level of drought-responsive genes are increased by MdMTA to improve the drought tolerance. MTA, methylase; M6A, 
N6-methyladenosine; ROS, reactive oxygen species; ARF, AUXIN RESPONSE FACTOR; HYL, HYPONASTIC LEAVES; SE, SERRATE; NCED, 
9-cis-epoxycarotenoid dioxygenase; ABA, abscisic acid; SCL, SCARECROW-LIKE PROTEINS; AsA, ascorbic acid.
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interacts with HYPONASTIC LEAVES1 (MdHYL1) and nega-
tively regulates the expression of MdHYL1, regulating the 
abundance of Mdm-miR160 (Shen et al. 2022). 
Mdm-miR160e OE, MdARF17 RNAi, and MdHYL1 OE trans-
genic apple plants have more root biomass and longer adven-
titious roots under drought conditions, suggesting that the 
drought tolerance of apple plants is influenced by the posi-
tive feedback loop of Mdm-miR160–MdARF17–MdHYL1 
(Shen et al. 2022). Furthermore, drought inhibits the tran-
scription level of mdm-miR171i, which negatively targets 
MsSCL26.1 (SCARECROW-LIKE PROTEINS26.1) in wild apple 
(Malus sieversii) plants, especially the roots (Wang et al. 2020). 
The antioxidant enzyme gene MONODEHYDROASCORBATE 
REDUCTASE (MsMDHAR) catalyzes the reduction of monode-
hydroascorbate into AsA, which might be upregulated by 
MsSCL26.1. The homeostasis of the AsA metabolism in plant 
cells is maintained to improve the drought tolerance of apple 
plants (Wang et al. 2020). When RNA transmits genetic infor-
mation from DNA to proteins, various modifications of RNA 
transcripts occur. MTA (methylase, an ortholog of methyltrans-
ferase METTL3) is a methyltransferase and a component of 
N6-methyladenosine (m6A, the most common RNA modifica-
tion) (Meyer et al. 2012). Drought stress induces the expression 
of MdMTA to increase the m6A level of drought-responsive 
genes in apple plants (Hou et al. 2022). The mRNA stability 
and translation efficiency of genes involved in ROS scavenging 
and lignin deposition are promoted by the increased m6A level, 
increasing the drought tolerance of apple plants (Hou et al. 
2022).

In addition to apple plants, miR166f is a possible positive 
regulator of the drought tolerance of mulberry (Morus multi-
caulis) plants (Li et al. 2018b). Pagliarani et al. (2017) found 
that the concentration of drought-responsive miRNAs in dif-
ferent genotypes (a drought-tolerant grapevine rootstock, 
M4, V. vinifera × Vitis berlandieri and a commercial cultivar, 
Cabernet Sauvignon) was affected by reciprocal grafting, sug-
gesting either miRNA transport between the scion and root-
stock or signals triggering miRNA expression in the graft 
partner.

Strategies for overcoming drought stress
Breeding and biotechnology
Numerous strategies exist for plants to deal with drought 
(Fig. 5). A vital strategy is to plant drought-tolerant species 
that are more sustainable, economical, and ecologically 
friendly. Many fruit crop varieties with strong drought resist-
ance have been identified (Wang et al. 2012; Liu et al. 2012a, 
2012b; Wu et al. 2014b; Geng et al. 2019; Sousa et al. 2022). 
Although many drought-tolerant germplasms of fruit crops 
have been developed by breeding programs, reliable informa-
tion on drought-tolerant or drought-sensitive accessions must 
be obtained by conducting experiments at different sites.

Autopolyploid fruit crops have received more attention 
than diploid progenitors due to their tolerance to abiotic 
stresses (Jiang et al. 2022a). Polyploid plants are characterized 

by small size, short internodes, and high stress tolerance. The 
development of polyploid rootstocks has become a popular 
strategy in recent years to improve the drought tolerance of 
fruit crops. Tetraploid lemon (C. limonia Osb.) (Vieira et al. 
2016), tetraploid Rangpur lime citrus (Allario et al. 2013), 
and triploid citrus (Lourkisti et al. 2022) are more drought- 
tolerant than diploid types. Studies on the drought tolerance 
of citrus polyploids have demonstrated their superior 
drought tolerance. However, research on the drought resist-
ance of other polyploid fruit crops must be strengthened.

Genome sequencing and resequencing provide data, mo-
lecular tools, and alternative approaches to plant breeding. 
In fruit crops, the presence of heterozygotes hinders the fidel-
ity of genome assembly and results in numerous repetitive 
sequences. However, this problem can be circumvented by 
using doubled haploid lines in genome sequencing, resulting 
in high-quality genome combinations (Wu et al. 2014a). 
Recently, Sun et al. (2020) sequenced the heterozygous lines 
to reveal the diploid state of the genomes. The whole gen-
ome sequences of Prunus humilis (Wang et al. 2022c) and 
Illumina sequencing of pooled total RNA from drought- 
sensitive and drought-tolerant apple plants (Niu et al. 
2019) have provided additional insights into drought adap-
tion in fruit crops. However, whole genome sequencing 
and assembly is expensive and complex, whereas transcrip-
tome analysis does not have these drawbacks. Qian et al. 
(2020) revealed the molecular regulatory mechanism of 
ABA-mediated drought tolerance in pomegranate (Punica 
granatum L.) via transcriptome analysis.

Numerous drought-responsive genes have been identified 
by various functional genomics approaches. Most of these 
genes were overexpressed or suppressed by utilizing trans-
genic technologies to improve plant drought tolerance (Hu 
and Xiong 2014). In recent years, precise genetic editing tech-
niques, commonly referred to as genome editing techniques 
[such as zinc-finger nucleases, transcription activator-like ef-
fector nucleases, and the Clustered Regularly Interspaced 
Short Palindromic Repeats (CRISPR)/CRISPR-associated pro-
tein 9 (Cas9) system], have been developed. They do not 
have the biosafety problems associated with transgenic tech-
nology because precise genetic modifications are performed 
at specific sites (Hua et al. 2019). The CRISPR-Cas9 system is 
the most powerful and user-friendly genome editing tool due 
to its precision, efficiency, and simplicity. VvEPFL9-1 
(Epidermal Patterning Factor Like9-1) knockout through the 
CRISPR-Cas9 system reduces the stomatal density of grape-
vine, decreasing the use of irrigation water and increasing 
crop water-use efficiency (Clemens et al. 2022).

Horticultural management practices
Grafting fruit crops onto drought-tolerant rootstocks to im-
prove water efficiency has been proposed as a fundamental 
strategy for coping with drought (Berdeja et al. 2015). 
Therefore, it is particularly important to understand the 
mechanism of rootstock–scion interaction and develop root-
stocks that enhance the growth and productivity of offspring 
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under drought conditions. Recently, the application of ex-
ogenous substances (plant growth regulators and biostimu-
lants) to improve drought resistance and maintain the 
yield of fruit crops has become a research frontier (Basile 
et al. 2020). Arbuscular mycorrhizal fungi are widely used 
in fruit crops due to their capacity to improve plant mineral 
uptake. The enhanced drought tolerance may be closely re-
lated to the enhanced water absorption capacity of plants 
due to a change in the root structure (Wu et al. 2013). 
Moreover, the drought tolerance of apples is enhanced by 
the application of exogenous MT (Li et al. 2015, 2016; Liang 
et al. 2018b) and dopamine (Liang et al. 2018a; Gao et al. 
2020). In addition, deficit irrigation has become increasingly 
popular to maintain crop production and conserve water 
in arid and semi-arid regions (El Jaouhari et al. 2018; Zuazo 
et al. 2021; Yang et al. 2022a). The main techniques are regu-
lated deficit irrigation (targeted water reduction during cer-
tain phenological stages), partial root drying (partial root 
drying and alternating water stress), and sustained deficit ir-
rigation (continuous water reduction throughout the pheno-
logical development of crops). The effects of the three deficit 
irrigation techniques on the growth and yield of fruit crops 
are different due to different experimental conditions (i.e. 
various cultivars, tree ages, climatic conditions, and soil 
types). The negative impacts of drought stress can be 

mitigated using drought-tolerant plant genotypes combined 
with adaptive agronomic practices (such as deficit irrigation, 
soil management, and plant density).

Conclusions and future directions
Drought entails many challenges and threats to fruit crops. 
Because fruit crops are mostly woody perennials (some are 
herbaceous perennials), research on their drought resistance 
is more complex than that of annual plants. Although 
drought slows vegetative growth and reduces the yield of 
fruit crops by affecting their root structure and photosyn-
thesis, many studies have shown that moderate drought 
stress can improve fruit quality. The effect of drought on sec-
ondary metabolite production is paramount for fruit crops. 
Moderate drought stress promotes higher levels of healthy 
phytochemicals that may improve fruit quality. In addition, 
the activity of secondary metabolism may also help fruit 
crops cope with drought. However, the available data suggest 
that the basic mechanisms of drought adaptation in fruit 
crops can be better understood by analyzing well-known mo-
lecular mechanisms in model plants; much work remains to 
be done in this area (see Outstanding Questions).

In addition, many strategies have been proposed to im-
prove the drought resistance of fruit crops. The application 
of exogenous substances (plant growth regulators and 

Figure 5. Strategies for overcoming drought in fruit crops. There are two strategies to reduce drought stress in fruit crops. One is advanced breeding, 
including traditional breeding, transgenic technology, and genome sequencing. Another is horticultural management practices, including grafting 
onto drought-tolerant rootstocks, using exogenous plant growth regulators and biostimulants, and water-deficit irrigation.
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biostimulants) is widely used to improve drought resistance 
and maintain the yield of fruit crops. Drought-tolerant var-
ieties developed by traditional breeding methods and 
molecular-assisted breeding should be utilized in future agri-
cultural production.

Many unknown factors must be elucidated in the future. 
The current understanding of the role of polyploidy in im-
proving the drought resistance of fruit crops is based on ex-
periments with very few species, primarily citrus fruits. These 
studies represent a small fraction of the diversity of fruit 
crops, and future studies should aim to increase the breadth 
of fruit crop species. Additionally, it is particularly important 
to breed rootstocks that improve the growth and productiv-
ity of offspring to resist drought. However, evaluating 
the quality of drought-tolerant rootstocks is complex. 
The identification of drought-tolerant rootstocks and 
the interaction between the rootstocks and scions of 
fruit crops require a substantial research effort (see 
Outstanding Questions). Furthermore, it is crucial to focus 
on strengthening the adaptability of different germplasm 
resources of fruit crops to drought stress to understand 
the effects of drought on fruit crops and the underlying 
mechanisms. The result will provide a scientific basis for 
identifying and selecting drought-tolerant genotypes and 
varieties of fruit crops.
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